bfd/
[deliverable/binutils-gdb.git] / gdb / solib-sunos.c
1 /* Handle SunOS shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4 2001, 2004, 2007, 2008 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22
23 #include <sys/types.h>
24 #include <signal.h>
25 #include "gdb_string.h"
26 #include <sys/param.h>
27 #include <fcntl.h>
28
29 /* SunOS shared libs need the nlist structure. */
30 #include <a.out.h>
31 #include <link.h>
32
33 #include "symtab.h"
34 #include "bfd.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdbcore.h"
38 #include "inferior.h"
39 #include "solist.h"
40 #include "bcache.h"
41 #include "regcache.h"
42
43 /* The shared library implementation found on BSD a.out systems is
44 very similar to the SunOS implementation. However, the data
45 structures defined in <link.h> are named very differently. Make up
46 for those differences here. */
47
48 #ifdef HAVE_STRUCT_SO_MAP_WITH_SOM_MEMBERS
49
50 /* FIXME: Temporary until the equivalent defines have been removed
51 from all nm-*bsd*.h files. */
52 #ifndef link_dynamic
53
54 /* Map `struct link_map' and its members. */
55 #define link_map so_map
56 #define lm_addr som_addr
57 #define lm_name som_path
58 #define lm_next som_next
59
60 /* Map `struct link_dynamic_2' and its members. */
61 #define link_dynamic_2 section_dispatch_table
62 #define ld_loaded sdt_loaded
63
64 /* Map `struct rtc_symb' and its members. */
65 #define rtc_symb rt_symbol
66 #define rtc_sp rt_sp
67 #define rtc_next rt_next
68
69 /* Map `struct ld_debug' and its members. */
70 #define ld_debug so_debug
71 #define ldd_in_debugger dd_in_debugger
72 #define ldd_bp_addr dd_bpt_addr
73 #define ldd_bp_inst dd_bpt_shadow
74 #define ldd_cp dd_cc
75
76 /* Map `struct link_dynamic' and its members. */
77 #define link_dynamic _dynamic
78 #define ld_version d_version
79 #define ldd d_debug
80 #define ld_un d_un
81 #define ld_2 d_sdt
82
83 #endif
84
85 #endif
86
87 /* Link map info to include in an allocated so_list entry */
88
89 struct lm_info
90 {
91 /* Pointer to copy of link map from inferior. The type is char *
92 rather than void *, so that we may use byte offsets to find the
93 various fields without the need for a cast. */
94 char *lm;
95 };
96
97
98 /* Symbols which are used to locate the base of the link map structures. */
99
100 static char *debug_base_symbols[] =
101 {
102 "_DYNAMIC",
103 "_DYNAMIC__MGC",
104 NULL
105 };
106
107 static char *main_name_list[] =
108 {
109 "main_$main",
110 NULL
111 };
112
113 /* Macro to extract an address from a solib structure. When GDB is
114 configured for some 32-bit targets (e.g. Solaris 2.7 sparc), BFD is
115 configured to handle 64-bit targets, so CORE_ADDR is 64 bits. We
116 have to extract only the significant bits of addresses to get the
117 right address when accessing the core file BFD.
118
119 Assume that the address is unsigned. */
120
121 #define SOLIB_EXTRACT_ADDRESS(MEMBER) \
122 extract_unsigned_integer (&(MEMBER), sizeof (MEMBER))
123
124 /* local data declarations */
125
126 static struct link_dynamic dynamic_copy;
127 static struct link_dynamic_2 ld_2_copy;
128 static struct ld_debug debug_copy;
129 static CORE_ADDR debug_addr;
130 static CORE_ADDR flag_addr;
131
132 #ifndef offsetof
133 #define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
134 #endif
135 #define fieldsize(TYPE, MEMBER) (sizeof (((TYPE *)0)->MEMBER))
136
137 /* link map access functions */
138
139 static CORE_ADDR
140 LM_ADDR (struct so_list *so)
141 {
142 int lm_addr_offset = offsetof (struct link_map, lm_addr);
143 int lm_addr_size = fieldsize (struct link_map, lm_addr);
144
145 return (CORE_ADDR) extract_signed_integer (so->lm_info->lm + lm_addr_offset,
146 lm_addr_size);
147 }
148
149 static CORE_ADDR
150 LM_NEXT (struct so_list *so)
151 {
152 int lm_next_offset = offsetof (struct link_map, lm_next);
153 int lm_next_size = fieldsize (struct link_map, lm_next);
154
155 /* Assume that the address is unsigned. */
156 return extract_unsigned_integer (so->lm_info->lm + lm_next_offset,
157 lm_next_size);
158 }
159
160 static CORE_ADDR
161 LM_NAME (struct so_list *so)
162 {
163 int lm_name_offset = offsetof (struct link_map, lm_name);
164 int lm_name_size = fieldsize (struct link_map, lm_name);
165
166 /* Assume that the address is unsigned. */
167 return extract_unsigned_integer (so->lm_info->lm + lm_name_offset,
168 lm_name_size);
169 }
170
171 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
172
173 /* Local function prototypes */
174
175 static int match_main (char *);
176
177 /* Allocate the runtime common object file. */
178
179 static void
180 allocate_rt_common_objfile (void)
181 {
182 struct objfile *objfile;
183 struct objfile *last_one;
184
185 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
186 memset (objfile, 0, sizeof (struct objfile));
187 objfile->md = NULL;
188 objfile->psymbol_cache = bcache_xmalloc ();
189 objfile->macro_cache = bcache_xmalloc ();
190 obstack_init (&objfile->objfile_obstack);
191 objfile->name = xstrdup ("rt_common");
192
193 /* Add this file onto the tail of the linked list of other such files. */
194
195 objfile->next = NULL;
196 if (object_files == NULL)
197 object_files = objfile;
198 else
199 {
200 for (last_one = object_files;
201 last_one->next;
202 last_one = last_one->next);
203 last_one->next = objfile;
204 }
205
206 rt_common_objfile = objfile;
207 }
208
209 /* Read all dynamically loaded common symbol definitions from the inferior
210 and put them into the minimal symbol table for the runtime common
211 objfile. */
212
213 static void
214 solib_add_common_symbols (CORE_ADDR rtc_symp)
215 {
216 struct rtc_symb inferior_rtc_symb;
217 struct nlist inferior_rtc_nlist;
218 int len;
219 char *name;
220
221 /* Remove any runtime common symbols from previous runs. */
222
223 if (rt_common_objfile != NULL && rt_common_objfile->minimal_symbol_count)
224 {
225 obstack_free (&rt_common_objfile->objfile_obstack, 0);
226 obstack_init (&rt_common_objfile->objfile_obstack);
227 rt_common_objfile->minimal_symbol_count = 0;
228 rt_common_objfile->msymbols = NULL;
229 terminate_minimal_symbol_table (rt_common_objfile);
230 }
231
232 init_minimal_symbol_collection ();
233 make_cleanup_discard_minimal_symbols ();
234
235 while (rtc_symp)
236 {
237 read_memory (rtc_symp,
238 (char *) &inferior_rtc_symb,
239 sizeof (inferior_rtc_symb));
240 read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_sp),
241 (char *) &inferior_rtc_nlist,
242 sizeof (inferior_rtc_nlist));
243 if (inferior_rtc_nlist.n_type == N_COMM)
244 {
245 /* FIXME: The length of the symbol name is not available, but in the
246 current implementation the common symbol is allocated immediately
247 behind the name of the symbol. */
248 len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
249
250 name = xmalloc (len);
251 read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_nlist.n_un.n_name),
252 name, len);
253
254 /* Allocate the runtime common objfile if necessary. */
255 if (rt_common_objfile == NULL)
256 allocate_rt_common_objfile ();
257
258 prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value,
259 mst_bss, rt_common_objfile);
260 xfree (name);
261 }
262 rtc_symp = SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_next);
263 }
264
265 /* Install any minimal symbols that have been collected as the current
266 minimal symbols for the runtime common objfile. */
267
268 install_minimal_symbols (rt_common_objfile);
269 }
270
271
272 /*
273
274 LOCAL FUNCTION
275
276 locate_base -- locate the base address of dynamic linker structs
277
278 SYNOPSIS
279
280 CORE_ADDR locate_base (void)
281
282 DESCRIPTION
283
284 For both the SunOS and SVR4 shared library implementations, if the
285 inferior executable has been linked dynamically, there is a single
286 address somewhere in the inferior's data space which is the key to
287 locating all of the dynamic linker's runtime structures. This
288 address is the value of the debug base symbol. The job of this
289 function is to find and return that address, or to return 0 if there
290 is no such address (the executable is statically linked for example).
291
292 For SunOS, the job is almost trivial, since the dynamic linker and
293 all of it's structures are statically linked to the executable at
294 link time. Thus the symbol for the address we are looking for has
295 already been added to the minimal symbol table for the executable's
296 objfile at the time the symbol file's symbols were read, and all we
297 have to do is look it up there. Note that we explicitly do NOT want
298 to find the copies in the shared library.
299
300 The SVR4 version is a bit more complicated because the address
301 is contained somewhere in the dynamic info section. We have to go
302 to a lot more work to discover the address of the debug base symbol.
303 Because of this complexity, we cache the value we find and return that
304 value on subsequent invocations. Note there is no copy in the
305 executable symbol tables.
306
307 */
308
309 static CORE_ADDR
310 locate_base (void)
311 {
312 struct minimal_symbol *msymbol;
313 CORE_ADDR address = 0;
314 char **symbolp;
315
316 /* For SunOS, we want to limit the search for the debug base symbol to the
317 executable being debugged, since there is a duplicate named symbol in the
318 shared library. We don't want the shared library versions. */
319
320 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
321 {
322 msymbol = lookup_minimal_symbol (*symbolp, NULL, symfile_objfile);
323 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
324 {
325 address = SYMBOL_VALUE_ADDRESS (msymbol);
326 return (address);
327 }
328 }
329 return (0);
330 }
331
332 /*
333
334 LOCAL FUNCTION
335
336 first_link_map_member -- locate first member in dynamic linker's map
337
338 SYNOPSIS
339
340 static CORE_ADDR first_link_map_member (void)
341
342 DESCRIPTION
343
344 Find the first element in the inferior's dynamic link map, and
345 return its address in the inferior. This function doesn't copy the
346 link map entry itself into our address space; current_sos actually
347 does the reading. */
348
349 static CORE_ADDR
350 first_link_map_member (void)
351 {
352 CORE_ADDR lm = 0;
353
354 read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy));
355 if (dynamic_copy.ld_version >= 2)
356 {
357 /* It is a version that we can deal with, so read in the secondary
358 structure and find the address of the link map list from it. */
359 read_memory (SOLIB_EXTRACT_ADDRESS (dynamic_copy.ld_un.ld_2),
360 (char *) &ld_2_copy, sizeof (struct link_dynamic_2));
361 lm = SOLIB_EXTRACT_ADDRESS (ld_2_copy.ld_loaded);
362 }
363 return (lm);
364 }
365
366 static int
367 open_symbol_file_object (void *from_ttyp)
368 {
369 return 1;
370 }
371
372
373 /* LOCAL FUNCTION
374
375 current_sos -- build a list of currently loaded shared objects
376
377 SYNOPSIS
378
379 struct so_list *current_sos ()
380
381 DESCRIPTION
382
383 Build a list of `struct so_list' objects describing the shared
384 objects currently loaded in the inferior. This list does not
385 include an entry for the main executable file.
386
387 Note that we only gather information directly available from the
388 inferior --- we don't examine any of the shared library files
389 themselves. The declaration of `struct so_list' says which fields
390 we provide values for. */
391
392 static struct so_list *
393 sunos_current_sos (void)
394 {
395 CORE_ADDR lm;
396 struct so_list *head = 0;
397 struct so_list **link_ptr = &head;
398 int errcode;
399 char *buffer;
400
401 /* Make sure we've looked up the inferior's dynamic linker's base
402 structure. */
403 if (! debug_base)
404 {
405 debug_base = locate_base ();
406
407 /* If we can't find the dynamic linker's base structure, this
408 must not be a dynamically linked executable. Hmm. */
409 if (! debug_base)
410 return 0;
411 }
412
413 /* Walk the inferior's link map list, and build our list of
414 `struct so_list' nodes. */
415 lm = first_link_map_member ();
416 while (lm)
417 {
418 struct so_list *new
419 = (struct so_list *) xmalloc (sizeof (struct so_list));
420 struct cleanup *old_chain = make_cleanup (xfree, new);
421
422 memset (new, 0, sizeof (*new));
423
424 new->lm_info = xmalloc (sizeof (struct lm_info));
425 make_cleanup (xfree, new->lm_info);
426
427 new->lm_info->lm = xmalloc (sizeof (struct link_map));
428 make_cleanup (xfree, new->lm_info->lm);
429 memset (new->lm_info->lm, 0, sizeof (struct link_map));
430
431 read_memory (lm, new->lm_info->lm, sizeof (struct link_map));
432
433 lm = LM_NEXT (new);
434
435 /* Extract this shared object's name. */
436 target_read_string (LM_NAME (new), &buffer,
437 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
438 if (errcode != 0)
439 warning (_("Can't read pathname for load map: %s."),
440 safe_strerror (errcode));
441 else
442 {
443 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
444 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
445 xfree (buffer);
446 strcpy (new->so_original_name, new->so_name);
447 }
448
449 /* If this entry has no name, or its name matches the name
450 for the main executable, don't include it in the list. */
451 if (! new->so_name[0]
452 || match_main (new->so_name))
453 free_so (new);
454 else
455 {
456 new->next = 0;
457 *link_ptr = new;
458 link_ptr = &new->next;
459 }
460
461 discard_cleanups (old_chain);
462 }
463
464 return head;
465 }
466
467
468 /* On some systems, the only way to recognize the link map entry for
469 the main executable file is by looking at its name. Return
470 non-zero iff SONAME matches one of the known main executable names. */
471
472 static int
473 match_main (char *soname)
474 {
475 char **mainp;
476
477 for (mainp = main_name_list; *mainp != NULL; mainp++)
478 {
479 if (strcmp (soname, *mainp) == 0)
480 return (1);
481 }
482
483 return (0);
484 }
485
486
487 static int
488 sunos_in_dynsym_resolve_code (CORE_ADDR pc)
489 {
490 return 0;
491 }
492
493 /*
494
495 LOCAL FUNCTION
496
497 disable_break -- remove the "mapping changed" breakpoint
498
499 SYNOPSIS
500
501 static int disable_break ()
502
503 DESCRIPTION
504
505 Removes the breakpoint that gets hit when the dynamic linker
506 completes a mapping change.
507
508 */
509
510 static int
511 disable_break (void)
512 {
513 CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
514
515 int in_debugger = 0;
516
517 /* Read the debugger structure from the inferior to retrieve the
518 address of the breakpoint and the original contents of the
519 breakpoint address. Remove the breakpoint by writing the original
520 contents back. */
521
522 read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy));
523
524 /* Set `in_debugger' to zero now. */
525
526 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
527
528 breakpoint_addr = SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_bp_addr);
529 write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst,
530 sizeof (debug_copy.ldd_bp_inst));
531
532 /* For the SVR4 version, we always know the breakpoint address. For the
533 SunOS version we don't know it until the above code is executed.
534 Grumble if we are stopped anywhere besides the breakpoint address. */
535
536 if (stop_pc != breakpoint_addr)
537 {
538 warning (_("stopped at unknown breakpoint while handling shared libraries"));
539 }
540
541 return 1;
542 }
543
544
545 /*
546
547 LOCAL FUNCTION
548
549 enable_break -- arrange for dynamic linker to hit breakpoint
550
551 SYNOPSIS
552
553 int enable_break (void)
554
555 DESCRIPTION
556
557 Both the SunOS and the SVR4 dynamic linkers have, as part of their
558 debugger interface, support for arranging for the inferior to hit
559 a breakpoint after mapping in the shared libraries. This function
560 enables that breakpoint.
561
562 For SunOS, there is a special flag location (in_debugger) which we
563 set to 1. When the dynamic linker sees this flag set, it will set
564 a breakpoint at a location known only to itself, after saving the
565 original contents of that place and the breakpoint address itself,
566 in it's own internal structures. When we resume the inferior, it
567 will eventually take a SIGTRAP when it runs into the breakpoint.
568 We handle this (in a different place) by restoring the contents of
569 the breakpointed location (which is only known after it stops),
570 chasing around to locate the shared libraries that have been
571 loaded, then resuming.
572
573 For SVR4, the debugger interface structure contains a member (r_brk)
574 which is statically initialized at the time the shared library is
575 built, to the offset of a function (_r_debug_state) which is guaran-
576 teed to be called once before mapping in a library, and again when
577 the mapping is complete. At the time we are examining this member,
578 it contains only the unrelocated offset of the function, so we have
579 to do our own relocation. Later, when the dynamic linker actually
580 runs, it relocates r_brk to be the actual address of _r_debug_state().
581
582 The debugger interface structure also contains an enumeration which
583 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
584 depending upon whether or not the library is being mapped or unmapped,
585 and then set to RT_CONSISTENT after the library is mapped/unmapped.
586 */
587
588 static int
589 enable_break (void)
590 {
591 int success = 0;
592 int j;
593 int in_debugger;
594
595 /* Get link_dynamic structure */
596
597 j = target_read_memory (debug_base, (char *) &dynamic_copy,
598 sizeof (dynamic_copy));
599 if (j)
600 {
601 /* unreadable */
602 return (0);
603 }
604
605 /* Calc address of debugger interface structure */
606
607 debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
608
609 /* Calc address of `in_debugger' member of debugger interface structure */
610
611 flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
612 (char *) &debug_copy);
613
614 /* Write a value of 1 to this member. */
615
616 in_debugger = 1;
617 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
618 success = 1;
619
620 return (success);
621 }
622
623 /*
624
625 LOCAL FUNCTION
626
627 special_symbol_handling -- additional shared library symbol handling
628
629 SYNOPSIS
630
631 void special_symbol_handling ()
632
633 DESCRIPTION
634
635 Once the symbols from a shared object have been loaded in the usual
636 way, we are called to do any system specific symbol handling that
637 is needed.
638
639 For SunOS4, this consists of grunging around in the dynamic
640 linkers structures to find symbol definitions for "common" symbols
641 and adding them to the minimal symbol table for the runtime common
642 objfile.
643
644 */
645
646 static void
647 sunos_special_symbol_handling (void)
648 {
649 int j;
650
651 if (debug_addr == 0)
652 {
653 /* Get link_dynamic structure */
654
655 j = target_read_memory (debug_base, (char *) &dynamic_copy,
656 sizeof (dynamic_copy));
657 if (j)
658 {
659 /* unreadable */
660 return;
661 }
662
663 /* Calc address of debugger interface structure */
664 /* FIXME, this needs work for cross-debugging of core files
665 (byteorder, size, alignment, etc). */
666
667 debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
668 }
669
670 /* Read the debugger structure from the inferior, just to make sure
671 we have a current copy. */
672
673 j = target_read_memory (debug_addr, (char *) &debug_copy,
674 sizeof (debug_copy));
675 if (j)
676 return; /* unreadable */
677
678 /* Get common symbol definitions for the loaded object. */
679
680 if (debug_copy.ldd_cp)
681 {
682 solib_add_common_symbols (SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_cp));
683 }
684 }
685
686 /*
687
688 GLOBAL FUNCTION
689
690 sunos_solib_create_inferior_hook -- shared library startup support
691
692 SYNOPSIS
693
694 void sunos_solib_create_inferior_hook ()
695
696 DESCRIPTION
697
698 When gdb starts up the inferior, it nurses it along (through the
699 shell) until it is ready to execute it's first instruction. At this
700 point, this function gets called via expansion of the macro
701 SOLIB_CREATE_INFERIOR_HOOK.
702
703 For SunOS executables, this first instruction is typically the
704 one at "_start", or a similar text label, regardless of whether
705 the executable is statically or dynamically linked. The runtime
706 startup code takes care of dynamically linking in any shared
707 libraries, once gdb allows the inferior to continue.
708
709 For SVR4 executables, this first instruction is either the first
710 instruction in the dynamic linker (for dynamically linked
711 executables) or the instruction at "start" for statically linked
712 executables. For dynamically linked executables, the system
713 first exec's /lib/libc.so.N, which contains the dynamic linker,
714 and starts it running. The dynamic linker maps in any needed
715 shared libraries, maps in the actual user executable, and then
716 jumps to "start" in the user executable.
717
718 For both SunOS shared libraries, and SVR4 shared libraries, we
719 can arrange to cooperate with the dynamic linker to discover the
720 names of shared libraries that are dynamically linked, and the
721 base addresses to which they are linked.
722
723 This function is responsible for discovering those names and
724 addresses, and saving sufficient information about them to allow
725 their symbols to be read at a later time.
726
727 FIXME
728
729 Between enable_break() and disable_break(), this code does not
730 properly handle hitting breakpoints which the user might have
731 set in the startup code or in the dynamic linker itself. Proper
732 handling will probably have to wait until the implementation is
733 changed to use the "breakpoint handler function" method.
734
735 Also, what if child has exit()ed? Must exit loop somehow.
736 */
737
738 static void
739 sunos_solib_create_inferior_hook (void)
740 {
741 if ((debug_base = locate_base ()) == 0)
742 {
743 /* Can't find the symbol or the executable is statically linked. */
744 return;
745 }
746
747 if (!enable_break ())
748 {
749 warning (_("shared library handler failed to enable breakpoint"));
750 return;
751 }
752
753 /* SCO and SunOS need the loop below, other systems should be using the
754 special shared library breakpoints and the shared library breakpoint
755 service routine.
756
757 Now run the target. It will eventually hit the breakpoint, at
758 which point all of the libraries will have been mapped in and we
759 can go groveling around in the dynamic linker structures to find
760 out what we need to know about them. */
761
762 clear_proceed_status ();
763 stop_soon = STOP_QUIETLY;
764 stop_signal = TARGET_SIGNAL_0;
765 do
766 {
767 target_resume (pid_to_ptid (-1), 0, stop_signal);
768 wait_for_inferior (0);
769 }
770 while (stop_signal != TARGET_SIGNAL_TRAP);
771 stop_soon = NO_STOP_QUIETLY;
772
773 /* We are now either at the "mapping complete" breakpoint (or somewhere
774 else, a condition we aren't prepared to deal with anyway), so adjust
775 the PC as necessary after a breakpoint, disable the breakpoint, and
776 add any shared libraries that were mapped in.
777
778 Note that adjust_pc_after_break did not perform any PC adjustment,
779 as the breakpoint the inferior just hit was not inserted by GDB,
780 but by the dynamic loader itself, and is therefore not found on
781 the GDB software break point list. Thus we have to adjust the
782 PC here. */
783
784 if (gdbarch_decr_pc_after_break (current_gdbarch))
785 {
786 stop_pc -= gdbarch_decr_pc_after_break (current_gdbarch);
787 write_pc (stop_pc);
788 }
789
790 if (!disable_break ())
791 {
792 warning (_("shared library handler failed to disable breakpoint"));
793 }
794
795 solib_add ((char *) 0, 0, (struct target_ops *) 0, auto_solib_add);
796 }
797
798 static void
799 sunos_clear_solib (void)
800 {
801 debug_base = 0;
802 }
803
804 static void
805 sunos_free_so (struct so_list *so)
806 {
807 xfree (so->lm_info->lm);
808 xfree (so->lm_info);
809 }
810
811 static void
812 sunos_relocate_section_addresses (struct so_list *so,
813 struct section_table *sec)
814 {
815 sec->addr += LM_ADDR (so);
816 sec->endaddr += LM_ADDR (so);
817 }
818
819 static struct target_so_ops sunos_so_ops;
820
821 void
822 _initialize_sunos_solib (void)
823 {
824 sunos_so_ops.relocate_section_addresses = sunos_relocate_section_addresses;
825 sunos_so_ops.free_so = sunos_free_so;
826 sunos_so_ops.clear_solib = sunos_clear_solib;
827 sunos_so_ops.solib_create_inferior_hook = sunos_solib_create_inferior_hook;
828 sunos_so_ops.special_symbol_handling = sunos_special_symbol_handling;
829 sunos_so_ops.current_sos = sunos_current_sos;
830 sunos_so_ops.open_symbol_file_object = open_symbol_file_object;
831 sunos_so_ops.in_dynsym_resolve_code = sunos_in_dynsym_resolve_code;
832
833 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
834 current_target_so_ops = &sunos_so_ops;
835 }
This page took 0.05042 seconds and 4 git commands to generate.