* m68klinux-nat.c: Remove #ifndef USE_PROC_FS check.
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4 2001, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "defs.h"
24
25 #include "elf/external.h"
26 #include "elf/common.h"
27 #include "elf/mips.h"
28
29 #include "symtab.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdbcore.h"
34 #include "target.h"
35 #include "inferior.h"
36
37 #include "gdb_assert.h"
38
39 #include "solist.h"
40 #include "solib.h"
41 #include "solib-svr4.h"
42
43 #include "bfd-target.h"
44 #include "elf-bfd.h"
45 #include "exec.h"
46
47 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
48 static int svr4_have_link_map_offsets (void);
49
50 /* This hook is set to a function that provides native link map
51 offsets if the code in solib-legacy.c is linked in. */
52 struct link_map_offsets *(*legacy_svr4_fetch_link_map_offsets_hook) (void);
53
54 /* Link map info to include in an allocated so_list entry */
55
56 struct lm_info
57 {
58 /* Pointer to copy of link map from inferior. The type is char *
59 rather than void *, so that we may use byte offsets to find the
60 various fields without the need for a cast. */
61 gdb_byte *lm;
62
63 /* Amount by which addresses in the binary should be relocated to
64 match the inferior. This could most often be taken directly
65 from lm, but when prelinking is involved and the prelink base
66 address changes, we may need a different offset, we want to
67 warn about the difference and compute it only once. */
68 CORE_ADDR l_addr;
69 };
70
71 /* On SVR4 systems, a list of symbols in the dynamic linker where
72 GDB can try to place a breakpoint to monitor shared library
73 events.
74
75 If none of these symbols are found, or other errors occur, then
76 SVR4 systems will fall back to using a symbol as the "startup
77 mapping complete" breakpoint address. */
78
79 static char *solib_break_names[] =
80 {
81 "r_debug_state",
82 "_r_debug_state",
83 "_dl_debug_state",
84 "rtld_db_dlactivity",
85 "_rtld_debug_state",
86
87 /* On the 64-bit PowerPC, the linker symbol with the same name as
88 the C function points to a function descriptor, not to the entry
89 point. The linker symbol whose name is the C function name
90 prefixed with a '.' points to the function's entry point. So
91 when we look through this table, we ignore symbols that point
92 into the data section (thus skipping the descriptor's symbol),
93 and eventually try this one, giving us the real entry point
94 address. */
95 "._dl_debug_state",
96
97 NULL
98 };
99
100 #define BKPT_AT_SYMBOL 1
101
102 #if defined (BKPT_AT_SYMBOL)
103 static char *bkpt_names[] =
104 {
105 #ifdef SOLIB_BKPT_NAME
106 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
107 #endif
108 "_start",
109 "__start",
110 "main",
111 NULL
112 };
113 #endif
114
115 static char *main_name_list[] =
116 {
117 "main_$main",
118 NULL
119 };
120
121 /* link map access functions */
122
123 static CORE_ADDR
124 LM_ADDR_FROM_LINK_MAP (struct so_list *so)
125 {
126 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
127
128 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
129 builtin_type_void_data_ptr);
130 }
131
132 static int
133 HAS_LM_DYNAMIC_FROM_LINK_MAP ()
134 {
135 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
136
137 return lmo->l_ld_offset >= 0;
138 }
139
140 static CORE_ADDR
141 LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
142 {
143 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
144
145 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
146 builtin_type_void_data_ptr);
147 }
148
149 static CORE_ADDR
150 LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
151 {
152 if (so->lm_info->l_addr == (CORE_ADDR)-1)
153 {
154 struct bfd_section *dyninfo_sect;
155 CORE_ADDR l_addr, l_dynaddr, dynaddr, align = 0x1000;
156
157 l_addr = LM_ADDR_FROM_LINK_MAP (so);
158
159 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
160 goto set_addr;
161
162 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
163
164 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
165 if (dyninfo_sect == NULL)
166 goto set_addr;
167
168 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
169
170 if (dynaddr + l_addr != l_dynaddr)
171 {
172 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
173 {
174 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
175 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
176 int i;
177
178 align = 1;
179
180 for (i = 0; i < ehdr->e_phnum; i++)
181 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
182 align = phdr[i].p_align;
183 }
184
185 /* Turn it into a mask. */
186 align--;
187
188 /* If the changes match the alignment requirements, we
189 assume we're using a core file that was generated by the
190 same binary, just prelinked with a different base offset.
191 If it doesn't match, we may have a different binary, the
192 same binary with the dynamic table loaded at an unrelated
193 location, or anything, really. To avoid regressions,
194 don't adjust the base offset in the latter case, although
195 odds are that, if things really changed, debugging won't
196 quite work. */
197 if ((l_addr & align) == 0 && ((dynaddr - l_dynaddr) & align) == 0)
198 {
199 l_addr = l_dynaddr - dynaddr;
200
201 warning (_(".dynamic section for \"%s\" "
202 "is not at the expected address"), so->so_name);
203 warning (_("difference appears to be caused by prelink, "
204 "adjusting expectations"));
205 }
206 else
207 warning (_(".dynamic section for \"%s\" "
208 "is not at the expected address "
209 "(wrong library or version mismatch?)"), so->so_name);
210 }
211
212 set_addr:
213 so->lm_info->l_addr = l_addr;
214 }
215
216 return so->lm_info->l_addr;
217 }
218
219 static CORE_ADDR
220 LM_NEXT (struct so_list *so)
221 {
222 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
223
224 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
225 builtin_type_void_data_ptr);
226 }
227
228 static CORE_ADDR
229 LM_NAME (struct so_list *so)
230 {
231 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
232
233 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
234 builtin_type_void_data_ptr);
235 }
236
237 static int
238 IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
239 {
240 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
241
242 /* Assume that everything is a library if the dynamic loader was loaded
243 late by a static executable. */
244 if (bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
245 return 0;
246
247 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
248 builtin_type_void_data_ptr) == 0;
249 }
250
251 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
252
253 /* Validity flag for debug_loader_offset. */
254 static int debug_loader_offset_p;
255
256 /* Load address for the dynamic linker, inferred. */
257 static CORE_ADDR debug_loader_offset;
258
259 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
260 static char *debug_loader_name;
261
262 /* Local function prototypes */
263
264 static int match_main (char *);
265
266 static CORE_ADDR bfd_lookup_symbol (bfd *, char *, flagword);
267
268 /*
269
270 LOCAL FUNCTION
271
272 bfd_lookup_symbol -- lookup the value for a specific symbol
273
274 SYNOPSIS
275
276 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags)
277
278 DESCRIPTION
279
280 An expensive way to lookup the value of a single symbol for
281 bfd's that are only temporary anyway. This is used by the
282 shared library support to find the address of the debugger
283 interface structures in the shared library.
284
285 If SECT_FLAGS is non-zero, only match symbols in sections whose
286 flags include all those in SECT_FLAGS.
287
288 Note that 0 is specifically allowed as an error return (no
289 such symbol).
290 */
291
292 static CORE_ADDR
293 bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags)
294 {
295 long storage_needed;
296 asymbol *sym;
297 asymbol **symbol_table;
298 unsigned int number_of_symbols;
299 unsigned int i;
300 struct cleanup *back_to;
301 CORE_ADDR symaddr = 0;
302
303 storage_needed = bfd_get_symtab_upper_bound (abfd);
304
305 if (storage_needed > 0)
306 {
307 symbol_table = (asymbol **) xmalloc (storage_needed);
308 back_to = make_cleanup (xfree, symbol_table);
309 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
310
311 for (i = 0; i < number_of_symbols; i++)
312 {
313 sym = *symbol_table++;
314 if (strcmp (sym->name, symname) == 0
315 && (sym->section->flags & sect_flags) == sect_flags)
316 {
317 /* Bfd symbols are section relative. */
318 symaddr = sym->value + sym->section->vma;
319 break;
320 }
321 }
322 do_cleanups (back_to);
323 }
324
325 if (symaddr)
326 return symaddr;
327
328 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
329 have to check the dynamic string table too. */
330
331 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
332
333 if (storage_needed > 0)
334 {
335 symbol_table = (asymbol **) xmalloc (storage_needed);
336 back_to = make_cleanup (xfree, symbol_table);
337 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
338
339 for (i = 0; i < number_of_symbols; i++)
340 {
341 sym = *symbol_table++;
342
343 if (strcmp (sym->name, symname) == 0
344 && (sym->section->flags & sect_flags) == sect_flags)
345 {
346 /* Bfd symbols are section relative. */
347 symaddr = sym->value + sym->section->vma;
348 break;
349 }
350 }
351 do_cleanups (back_to);
352 }
353
354 return symaddr;
355 }
356
357 /*
358
359 LOCAL FUNCTION
360
361 elf_locate_base -- locate the base address of dynamic linker structs
362 for SVR4 elf targets.
363
364 SYNOPSIS
365
366 CORE_ADDR elf_locate_base (void)
367
368 DESCRIPTION
369
370 For SVR4 elf targets the address of the dynamic linker's runtime
371 structure is contained within the dynamic info section in the
372 executable file. The dynamic section is also mapped into the
373 inferior address space. Because the runtime loader fills in the
374 real address before starting the inferior, we have to read in the
375 dynamic info section from the inferior address space.
376 If there are any errors while trying to find the address, we
377 silently return 0, otherwise the found address is returned.
378
379 */
380
381 static CORE_ADDR
382 elf_locate_base (void)
383 {
384 struct bfd_section *dyninfo_sect;
385 int dyninfo_sect_size;
386 CORE_ADDR dyninfo_addr;
387 gdb_byte *buf;
388 gdb_byte *bufend;
389 int arch_size;
390
391 /* Find the start address of the .dynamic section. */
392 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
393 if (dyninfo_sect == NULL)
394 {
395 /* This may be a static executable. Look for the symbol
396 conventionally named _r_debug, as a last resort. */
397 struct minimal_symbol *msymbol;
398
399 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
400 if (msymbol != NULL)
401 return SYMBOL_VALUE_ADDRESS (msymbol);
402 else
403 return 0;
404 }
405
406 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
407
408 /* Read in .dynamic section, silently ignore errors. */
409 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
410 buf = alloca (dyninfo_sect_size);
411 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
412 return 0;
413
414 /* Find the DT_DEBUG entry in the the .dynamic section.
415 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
416 no DT_DEBUG entries. */
417
418 arch_size = bfd_get_arch_size (exec_bfd);
419 if (arch_size == -1) /* failure */
420 return 0;
421
422 if (arch_size == 32)
423 { /* 32-bit elf */
424 for (bufend = buf + dyninfo_sect_size;
425 buf < bufend;
426 buf += sizeof (Elf32_External_Dyn))
427 {
428 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
429 long dyn_tag;
430 CORE_ADDR dyn_ptr;
431
432 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
433 if (dyn_tag == DT_NULL)
434 break;
435 else if (dyn_tag == DT_DEBUG)
436 {
437 dyn_ptr = bfd_h_get_32 (exec_bfd,
438 (bfd_byte *) x_dynp->d_un.d_ptr);
439 return dyn_ptr;
440 }
441 else if (dyn_tag == DT_MIPS_RLD_MAP)
442 {
443 gdb_byte *pbuf;
444 int pbuf_size = TYPE_LENGTH (builtin_type_void_data_ptr);
445
446 pbuf = alloca (pbuf_size);
447 /* DT_MIPS_RLD_MAP contains a pointer to the address
448 of the dynamic link structure. */
449 dyn_ptr = bfd_h_get_32 (exec_bfd,
450 (bfd_byte *) x_dynp->d_un.d_ptr);
451 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
452 return 0;
453 return extract_typed_address (pbuf, builtin_type_void_data_ptr);
454 }
455 }
456 }
457 else /* 64-bit elf */
458 {
459 for (bufend = buf + dyninfo_sect_size;
460 buf < bufend;
461 buf += sizeof (Elf64_External_Dyn))
462 {
463 Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
464 long dyn_tag;
465 CORE_ADDR dyn_ptr;
466
467 dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
468 if (dyn_tag == DT_NULL)
469 break;
470 else if (dyn_tag == DT_DEBUG)
471 {
472 dyn_ptr = bfd_h_get_64 (exec_bfd,
473 (bfd_byte *) x_dynp->d_un.d_ptr);
474 return dyn_ptr;
475 }
476 else if (dyn_tag == DT_MIPS_RLD_MAP)
477 {
478 gdb_byte *pbuf;
479 int pbuf_size = TYPE_LENGTH (builtin_type_void_data_ptr);
480
481 pbuf = alloca (pbuf_size);
482 /* DT_MIPS_RLD_MAP contains a pointer to the address
483 of the dynamic link structure. */
484 dyn_ptr = bfd_h_get_64 (exec_bfd,
485 (bfd_byte *) x_dynp->d_un.d_ptr);
486 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
487 return 0;
488 return extract_typed_address (pbuf, builtin_type_void_data_ptr);
489 }
490 }
491 }
492
493 /* DT_DEBUG entry not found. */
494 return 0;
495 }
496
497 /*
498
499 LOCAL FUNCTION
500
501 locate_base -- locate the base address of dynamic linker structs
502
503 SYNOPSIS
504
505 CORE_ADDR locate_base (void)
506
507 DESCRIPTION
508
509 For both the SunOS and SVR4 shared library implementations, if the
510 inferior executable has been linked dynamically, there is a single
511 address somewhere in the inferior's data space which is the key to
512 locating all of the dynamic linker's runtime structures. This
513 address is the value of the debug base symbol. The job of this
514 function is to find and return that address, or to return 0 if there
515 is no such address (the executable is statically linked for example).
516
517 For SunOS, the job is almost trivial, since the dynamic linker and
518 all of it's structures are statically linked to the executable at
519 link time. Thus the symbol for the address we are looking for has
520 already been added to the minimal symbol table for the executable's
521 objfile at the time the symbol file's symbols were read, and all we
522 have to do is look it up there. Note that we explicitly do NOT want
523 to find the copies in the shared library.
524
525 The SVR4 version is a bit more complicated because the address
526 is contained somewhere in the dynamic info section. We have to go
527 to a lot more work to discover the address of the debug base symbol.
528 Because of this complexity, we cache the value we find and return that
529 value on subsequent invocations. Note there is no copy in the
530 executable symbol tables.
531
532 */
533
534 static CORE_ADDR
535 locate_base (void)
536 {
537 /* Check to see if we have a currently valid address, and if so, avoid
538 doing all this work again and just return the cached address. If
539 we have no cached address, try to locate it in the dynamic info
540 section for ELF executables. There's no point in doing any of this
541 though if we don't have some link map offsets to work with. */
542
543 if (debug_base == 0 && svr4_have_link_map_offsets ())
544 {
545 if (exec_bfd != NULL
546 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
547 debug_base = elf_locate_base ();
548 }
549 return (debug_base);
550 }
551
552 /* Find the first element in the inferior's dynamic link map, and
553 return its address in the inferior.
554
555 FIXME: Perhaps we should validate the info somehow, perhaps by
556 checking r_version for a known version number, or r_state for
557 RT_CONSISTENT. */
558
559 static CORE_ADDR
560 solib_svr4_r_map (void)
561 {
562 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
563
564 return read_memory_typed_address (debug_base + lmo->r_map_offset,
565 builtin_type_void_data_ptr);
566 }
567
568 /* Find the link map for the dynamic linker (if it is not in the
569 normal list of loaded shared objects). */
570
571 static CORE_ADDR
572 solib_svr4_r_ldsomap (void)
573 {
574 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
575 ULONGEST version;
576
577 /* Check version, and return zero if `struct r_debug' doesn't have
578 the r_ldsomap member. */
579 version = read_memory_unsigned_integer (debug_base + lmo->r_version_offset,
580 lmo->r_version_size);
581 if (version < 2 || lmo->r_ldsomap_offset == -1)
582 return 0;
583
584 return read_memory_typed_address (debug_base + lmo->r_ldsomap_offset,
585 builtin_type_void_data_ptr);
586 }
587
588 /*
589
590 LOCAL FUNCTION
591
592 open_symbol_file_object
593
594 SYNOPSIS
595
596 void open_symbol_file_object (void *from_tty)
597
598 DESCRIPTION
599
600 If no open symbol file, attempt to locate and open the main symbol
601 file. On SVR4 systems, this is the first link map entry. If its
602 name is here, we can open it. Useful when attaching to a process
603 without first loading its symbol file.
604
605 If FROM_TTYP dereferences to a non-zero integer, allow messages to
606 be printed. This parameter is a pointer rather than an int because
607 open_symbol_file_object() is called via catch_errors() and
608 catch_errors() requires a pointer argument. */
609
610 static int
611 open_symbol_file_object (void *from_ttyp)
612 {
613 CORE_ADDR lm, l_name;
614 char *filename;
615 int errcode;
616 int from_tty = *(int *)from_ttyp;
617 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
618 int l_name_size = TYPE_LENGTH (builtin_type_void_data_ptr);
619 gdb_byte *l_name_buf = xmalloc (l_name_size);
620 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
621
622 if (symfile_objfile)
623 if (!query ("Attempt to reload symbols from process? "))
624 return 0;
625
626 if ((debug_base = locate_base ()) == 0)
627 return 0; /* failed somehow... */
628
629 /* First link map member should be the executable. */
630 lm = solib_svr4_r_map ();
631 if (lm == 0)
632 return 0; /* failed somehow... */
633
634 /* Read address of name from target memory to GDB. */
635 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
636
637 /* Convert the address to host format. */
638 l_name = extract_typed_address (l_name_buf, builtin_type_void_data_ptr);
639
640 /* Free l_name_buf. */
641 do_cleanups (cleanups);
642
643 if (l_name == 0)
644 return 0; /* No filename. */
645
646 /* Now fetch the filename from target memory. */
647 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
648
649 if (errcode)
650 {
651 warning (_("failed to read exec filename from attached file: %s"),
652 safe_strerror (errcode));
653 return 0;
654 }
655
656 make_cleanup (xfree, filename);
657 /* Have a pathname: read the symbol file. */
658 symbol_file_add_main (filename, from_tty);
659
660 return 1;
661 }
662
663 /* If no shared library information is available from the dynamic
664 linker, build a fallback list from other sources. */
665
666 static struct so_list *
667 svr4_default_sos (void)
668 {
669 struct so_list *head = NULL;
670 struct so_list **link_ptr = &head;
671
672 if (debug_loader_offset_p)
673 {
674 struct so_list *new = XZALLOC (struct so_list);
675
676 new->lm_info = xmalloc (sizeof (struct lm_info));
677
678 /* Nothing will ever check the cached copy of the link
679 map if we set l_addr. */
680 new->lm_info->l_addr = debug_loader_offset;
681 new->lm_info->lm = NULL;
682
683 strncpy (new->so_name, debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
684 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
685 strcpy (new->so_original_name, new->so_name);
686
687 *link_ptr = new;
688 link_ptr = &new->next;
689 }
690
691 return head;
692 }
693
694 /* LOCAL FUNCTION
695
696 current_sos -- build a list of currently loaded shared objects
697
698 SYNOPSIS
699
700 struct so_list *current_sos ()
701
702 DESCRIPTION
703
704 Build a list of `struct so_list' objects describing the shared
705 objects currently loaded in the inferior. This list does not
706 include an entry for the main executable file.
707
708 Note that we only gather information directly available from the
709 inferior --- we don't examine any of the shared library files
710 themselves. The declaration of `struct so_list' says which fields
711 we provide values for. */
712
713 static struct so_list *
714 svr4_current_sos (void)
715 {
716 CORE_ADDR lm;
717 struct so_list *head = 0;
718 struct so_list **link_ptr = &head;
719 CORE_ADDR ldsomap = 0;
720
721 /* Make sure we've looked up the inferior's dynamic linker's base
722 structure. */
723 if (! debug_base)
724 {
725 debug_base = locate_base ();
726
727 /* If we can't find the dynamic linker's base structure, this
728 must not be a dynamically linked executable. Hmm. */
729 if (! debug_base)
730 return svr4_default_sos ();
731 }
732
733 /* Walk the inferior's link map list, and build our list of
734 `struct so_list' nodes. */
735 lm = solib_svr4_r_map ();
736
737 while (lm)
738 {
739 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
740 struct so_list *new = XZALLOC (struct so_list);
741 struct cleanup *old_chain = make_cleanup (xfree, new);
742
743 new->lm_info = xmalloc (sizeof (struct lm_info));
744 make_cleanup (xfree, new->lm_info);
745
746 new->lm_info->l_addr = (CORE_ADDR)-1;
747 new->lm_info->lm = xzalloc (lmo->link_map_size);
748 make_cleanup (xfree, new->lm_info->lm);
749
750 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
751
752 lm = LM_NEXT (new);
753
754 /* For SVR4 versions, the first entry in the link map is for the
755 inferior executable, so we must ignore it. For some versions of
756 SVR4, it has no name. For others (Solaris 2.3 for example), it
757 does have a name, so we can no longer use a missing name to
758 decide when to ignore it. */
759 if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
760 free_so (new);
761 else
762 {
763 int errcode;
764 char *buffer;
765
766 /* Extract this shared object's name. */
767 target_read_string (LM_NAME (new), &buffer,
768 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
769 if (errcode != 0)
770 warning (_("Can't read pathname for load map: %s."),
771 safe_strerror (errcode));
772 else
773 {
774 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
775 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
776 xfree (buffer);
777 strcpy (new->so_original_name, new->so_name);
778 }
779
780 /* If this entry has no name, or its name matches the name
781 for the main executable, don't include it in the list. */
782 if (! new->so_name[0]
783 || match_main (new->so_name))
784 free_so (new);
785 else
786 {
787 new->next = 0;
788 *link_ptr = new;
789 link_ptr = &new->next;
790 }
791 }
792
793 /* On Solaris, the dynamic linker is not in the normal list of
794 shared objects, so make sure we pick it up too. Having
795 symbol information for the dynamic linker is quite crucial
796 for skipping dynamic linker resolver code. */
797 if (lm == 0 && ldsomap == 0)
798 lm = ldsomap = solib_svr4_r_ldsomap ();
799
800 discard_cleanups (old_chain);
801 }
802
803 if (head == NULL)
804 return svr4_default_sos ();
805
806 return head;
807 }
808
809 /* Get the address of the link_map for a given OBJFILE. Loop through
810 the link maps, and return the address of the one corresponding to
811 the given objfile. Note that this function takes into account that
812 objfile can be the main executable, not just a shared library. The
813 main executable has always an empty name field in the linkmap. */
814
815 CORE_ADDR
816 svr4_fetch_objfile_link_map (struct objfile *objfile)
817 {
818 CORE_ADDR lm;
819
820 if ((debug_base = locate_base ()) == 0)
821 return 0; /* failed somehow... */
822
823 /* Position ourselves on the first link map. */
824 lm = solib_svr4_r_map ();
825 while (lm)
826 {
827 /* Get info on the layout of the r_debug and link_map structures. */
828 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
829 int errcode;
830 char *buffer;
831 struct lm_info objfile_lm_info;
832 struct cleanup *old_chain;
833 CORE_ADDR name_address;
834 int l_name_size = TYPE_LENGTH (builtin_type_void_data_ptr);
835 gdb_byte *l_name_buf = xmalloc (l_name_size);
836 old_chain = make_cleanup (xfree, l_name_buf);
837
838 /* Set up the buffer to contain the portion of the link_map
839 structure that gdb cares about. Note that this is not the
840 whole link_map structure. */
841 objfile_lm_info.lm = xzalloc (lmo->link_map_size);
842 make_cleanup (xfree, objfile_lm_info.lm);
843
844 /* Read the link map into our internal structure. */
845 read_memory (lm, objfile_lm_info.lm, lmo->link_map_size);
846
847 /* Read address of name from target memory to GDB. */
848 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
849
850 /* Extract this object's name. */
851 name_address = extract_typed_address (l_name_buf,
852 builtin_type_void_data_ptr);
853 target_read_string (name_address, &buffer,
854 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
855 make_cleanup (xfree, buffer);
856 if (errcode != 0)
857 warning (_("Can't read pathname for load map: %s."),
858 safe_strerror (errcode));
859 else
860 {
861 /* Is this the linkmap for the file we want? */
862 /* If the file is not a shared library and has no name,
863 we are sure it is the main executable, so we return that. */
864 if ((buffer && strcmp (buffer, objfile->name) == 0)
865 || (!(objfile->flags & OBJF_SHARED) && (strcmp (buffer, "") == 0)))
866 {
867 do_cleanups (old_chain);
868 return lm;
869 }
870 }
871 /* Not the file we wanted, continue checking. */
872 lm = extract_typed_address (objfile_lm_info.lm + lmo->l_next_offset,
873 builtin_type_void_data_ptr);
874 do_cleanups (old_chain);
875 }
876 return 0;
877 }
878
879 /* On some systems, the only way to recognize the link map entry for
880 the main executable file is by looking at its name. Return
881 non-zero iff SONAME matches one of the known main executable names. */
882
883 static int
884 match_main (char *soname)
885 {
886 char **mainp;
887
888 for (mainp = main_name_list; *mainp != NULL; mainp++)
889 {
890 if (strcmp (soname, *mainp) == 0)
891 return (1);
892 }
893
894 return (0);
895 }
896
897 /* Return 1 if PC lies in the dynamic symbol resolution code of the
898 SVR4 run time loader. */
899 static CORE_ADDR interp_text_sect_low;
900 static CORE_ADDR interp_text_sect_high;
901 static CORE_ADDR interp_plt_sect_low;
902 static CORE_ADDR interp_plt_sect_high;
903
904 static int
905 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
906 {
907 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
908 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
909 || in_plt_section (pc, NULL));
910 }
911
912 /* Given an executable's ABFD and target, compute the entry-point
913 address. */
914
915 static CORE_ADDR
916 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
917 {
918 /* KevinB wrote ... for most targets, the address returned by
919 bfd_get_start_address() is the entry point for the start
920 function. But, for some targets, bfd_get_start_address() returns
921 the address of a function descriptor from which the entry point
922 address may be extracted. This address is extracted by
923 gdbarch_convert_from_func_ptr_addr(). The method
924 gdbarch_convert_from_func_ptr_addr() is the merely the identify
925 function for targets which don't use function descriptors. */
926 return gdbarch_convert_from_func_ptr_addr (current_gdbarch,
927 bfd_get_start_address (abfd),
928 targ);
929 }
930
931 /*
932
933 LOCAL FUNCTION
934
935 enable_break -- arrange for dynamic linker to hit breakpoint
936
937 SYNOPSIS
938
939 int enable_break (void)
940
941 DESCRIPTION
942
943 Both the SunOS and the SVR4 dynamic linkers have, as part of their
944 debugger interface, support for arranging for the inferior to hit
945 a breakpoint after mapping in the shared libraries. This function
946 enables that breakpoint.
947
948 For SunOS, there is a special flag location (in_debugger) which we
949 set to 1. When the dynamic linker sees this flag set, it will set
950 a breakpoint at a location known only to itself, after saving the
951 original contents of that place and the breakpoint address itself,
952 in it's own internal structures. When we resume the inferior, it
953 will eventually take a SIGTRAP when it runs into the breakpoint.
954 We handle this (in a different place) by restoring the contents of
955 the breakpointed location (which is only known after it stops),
956 chasing around to locate the shared libraries that have been
957 loaded, then resuming.
958
959 For SVR4, the debugger interface structure contains a member (r_brk)
960 which is statically initialized at the time the shared library is
961 built, to the offset of a function (_r_debug_state) which is guaran-
962 teed to be called once before mapping in a library, and again when
963 the mapping is complete. At the time we are examining this member,
964 it contains only the unrelocated offset of the function, so we have
965 to do our own relocation. Later, when the dynamic linker actually
966 runs, it relocates r_brk to be the actual address of _r_debug_state().
967
968 The debugger interface structure also contains an enumeration which
969 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
970 depending upon whether or not the library is being mapped or unmapped,
971 and then set to RT_CONSISTENT after the library is mapped/unmapped.
972 */
973
974 static int
975 enable_break (void)
976 {
977 #ifdef BKPT_AT_SYMBOL
978
979 struct minimal_symbol *msymbol;
980 char **bkpt_namep;
981 asection *interp_sect;
982
983 /* First, remove all the solib event breakpoints. Their addresses
984 may have changed since the last time we ran the program. */
985 remove_solib_event_breakpoints ();
986
987 interp_text_sect_low = interp_text_sect_high = 0;
988 interp_plt_sect_low = interp_plt_sect_high = 0;
989
990 /* Find the .interp section; if not found, warn the user and drop
991 into the old breakpoint at symbol code. */
992 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
993 if (interp_sect)
994 {
995 unsigned int interp_sect_size;
996 char *buf;
997 CORE_ADDR load_addr = 0;
998 int load_addr_found = 0;
999 struct so_list *so;
1000 bfd *tmp_bfd = NULL;
1001 struct target_ops *tmp_bfd_target;
1002 int tmp_fd = -1;
1003 char *tmp_pathname = NULL;
1004 CORE_ADDR sym_addr = 0;
1005
1006 /* Read the contents of the .interp section into a local buffer;
1007 the contents specify the dynamic linker this program uses. */
1008 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
1009 buf = alloca (interp_sect_size);
1010 bfd_get_section_contents (exec_bfd, interp_sect,
1011 buf, 0, interp_sect_size);
1012
1013 /* Now we need to figure out where the dynamic linker was
1014 loaded so that we can load its symbols and place a breakpoint
1015 in the dynamic linker itself.
1016
1017 This address is stored on the stack. However, I've been unable
1018 to find any magic formula to find it for Solaris (appears to
1019 be trivial on GNU/Linux). Therefore, we have to try an alternate
1020 mechanism to find the dynamic linker's base address. */
1021
1022 /* TODO drow/2006-09-12: This is somewhat fragile, because it
1023 relies on read_pc. On both Solaris and GNU/Linux we can use
1024 the AT_BASE auxilliary entry, which GDB now knows how to
1025 access, to find the base address. */
1026
1027 tmp_fd = solib_open (buf, &tmp_pathname);
1028 if (tmp_fd >= 0)
1029 tmp_bfd = bfd_fopen (tmp_pathname, gnutarget, FOPEN_RB, tmp_fd);
1030
1031 if (tmp_bfd == NULL)
1032 goto bkpt_at_symbol;
1033
1034 /* Make sure the dynamic linker's really a useful object. */
1035 if (!bfd_check_format (tmp_bfd, bfd_object))
1036 {
1037 warning (_("Unable to grok dynamic linker %s as an object file"), buf);
1038 bfd_close (tmp_bfd);
1039 goto bkpt_at_symbol;
1040 }
1041
1042 /* Now convert the TMP_BFD into a target. That way target, as
1043 well as BFD operations can be used. Note that closing the
1044 target will also close the underlying bfd. */
1045 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1046
1047 /* On a running target, we can get the dynamic linker's base
1048 address from the shared library table. */
1049 solib_add (NULL, 0, NULL, auto_solib_add);
1050 so = master_so_list ();
1051 while (so)
1052 {
1053 if (strcmp (buf, so->so_original_name) == 0)
1054 {
1055 load_addr_found = 1;
1056 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
1057 break;
1058 }
1059 so = so->next;
1060 }
1061
1062 /* Otherwise we find the dynamic linker's base address by examining
1063 the current pc (which should point at the entry point for the
1064 dynamic linker) and subtracting the offset of the entry point. */
1065 if (!load_addr_found)
1066 {
1067 load_addr = (read_pc ()
1068 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1069 debug_loader_name = xstrdup (buf);
1070 debug_loader_offset_p = 1;
1071 debug_loader_offset = load_addr;
1072 solib_add (NULL, 0, NULL, auto_solib_add);
1073 }
1074
1075 /* Record the relocated start and end address of the dynamic linker
1076 text and plt section for svr4_in_dynsym_resolve_code. */
1077 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1078 if (interp_sect)
1079 {
1080 interp_text_sect_low =
1081 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1082 interp_text_sect_high =
1083 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1084 }
1085 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1086 if (interp_sect)
1087 {
1088 interp_plt_sect_low =
1089 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1090 interp_plt_sect_high =
1091 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1092 }
1093
1094 /* Now try to set a breakpoint in the dynamic linker. */
1095 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1096 {
1097 /* On ABI's that use function descriptors, there are usually
1098 two linker symbols associated with each C function: one
1099 pointing at the actual entry point of the machine code,
1100 and one pointing at the function's descriptor. The
1101 latter symbol has the same name as the C function.
1102
1103 What we're looking for here is the machine code entry
1104 point, so we are only interested in symbols in code
1105 sections. */
1106 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep, SEC_CODE);
1107 if (sym_addr != 0)
1108 break;
1109 }
1110
1111 /* We're done with both the temporary bfd and target. Remember,
1112 closing the target closes the underlying bfd. */
1113 target_close (tmp_bfd_target, 0);
1114
1115 if (sym_addr != 0)
1116 {
1117 create_solib_event_breakpoint (load_addr + sym_addr);
1118 return 1;
1119 }
1120
1121 /* For whatever reason we couldn't set a breakpoint in the dynamic
1122 linker. Warn and drop into the old code. */
1123 bkpt_at_symbol:
1124 warning (_("Unable to find dynamic linker breakpoint function.\n"
1125 "GDB will be unable to debug shared library initializers\n"
1126 "and track explicitly loaded dynamic code."));
1127 }
1128
1129 /* Scan through the lists of symbols, trying to look up the symbol and
1130 set a breakpoint there. Terminate loop when we/if we succeed. */
1131
1132 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1133 {
1134 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1135 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1136 {
1137 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1138 return 1;
1139 }
1140 }
1141
1142 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1143 {
1144 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1145 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1146 {
1147 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1148 return 1;
1149 }
1150 }
1151 #endif /* BKPT_AT_SYMBOL */
1152
1153 return 0;
1154 }
1155
1156 /*
1157
1158 LOCAL FUNCTION
1159
1160 special_symbol_handling -- additional shared library symbol handling
1161
1162 SYNOPSIS
1163
1164 void special_symbol_handling ()
1165
1166 DESCRIPTION
1167
1168 Once the symbols from a shared object have been loaded in the usual
1169 way, we are called to do any system specific symbol handling that
1170 is needed.
1171
1172 For SunOS4, this consisted of grunging around in the dynamic
1173 linkers structures to find symbol definitions for "common" symbols
1174 and adding them to the minimal symbol table for the runtime common
1175 objfile.
1176
1177 However, for SVR4, there's nothing to do.
1178
1179 */
1180
1181 static void
1182 svr4_special_symbol_handling (void)
1183 {
1184 }
1185
1186 /* Relocate the main executable. This function should be called upon
1187 stopping the inferior process at the entry point to the program.
1188 The entry point from BFD is compared to the PC and if they are
1189 different, the main executable is relocated by the proper amount.
1190
1191 As written it will only attempt to relocate executables which
1192 lack interpreter sections. It seems likely that only dynamic
1193 linker executables will get relocated, though it should work
1194 properly for a position-independent static executable as well. */
1195
1196 static void
1197 svr4_relocate_main_executable (void)
1198 {
1199 asection *interp_sect;
1200 CORE_ADDR pc = read_pc ();
1201
1202 /* Decide if the objfile needs to be relocated. As indicated above,
1203 we will only be here when execution is stopped at the beginning
1204 of the program. Relocation is necessary if the address at which
1205 we are presently stopped differs from the start address stored in
1206 the executable AND there's no interpreter section. The condition
1207 regarding the interpreter section is very important because if
1208 there *is* an interpreter section, execution will begin there
1209 instead. When there is an interpreter section, the start address
1210 is (presumably) used by the interpreter at some point to start
1211 execution of the program.
1212
1213 If there is an interpreter, it is normal for it to be set to an
1214 arbitrary address at the outset. The job of finding it is
1215 handled in enable_break().
1216
1217 So, to summarize, relocations are necessary when there is no
1218 interpreter section and the start address obtained from the
1219 executable is different from the address at which GDB is
1220 currently stopped.
1221
1222 [ The astute reader will note that we also test to make sure that
1223 the executable in question has the DYNAMIC flag set. It is my
1224 opinion that this test is unnecessary (undesirable even). It
1225 was added to avoid inadvertent relocation of an executable
1226 whose e_type member in the ELF header is not ET_DYN. There may
1227 be a time in the future when it is desirable to do relocations
1228 on other types of files as well in which case this condition
1229 should either be removed or modified to accomodate the new file
1230 type. (E.g, an ET_EXEC executable which has been built to be
1231 position-independent could safely be relocated by the OS if
1232 desired. It is true that this violates the ABI, but the ABI
1233 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1234 */
1235
1236 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1237 if (interp_sect == NULL
1238 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
1239 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
1240 {
1241 struct cleanup *old_chain;
1242 struct section_offsets *new_offsets;
1243 int i, changed;
1244 CORE_ADDR displacement;
1245
1246 /* It is necessary to relocate the objfile. The amount to
1247 relocate by is simply the address at which we are stopped
1248 minus the starting address from the executable.
1249
1250 We relocate all of the sections by the same amount. This
1251 behavior is mandated by recent editions of the System V ABI.
1252 According to the System V Application Binary Interface,
1253 Edition 4.1, page 5-5:
1254
1255 ... Though the system chooses virtual addresses for
1256 individual processes, it maintains the segments' relative
1257 positions. Because position-independent code uses relative
1258 addressesing between segments, the difference between
1259 virtual addresses in memory must match the difference
1260 between virtual addresses in the file. The difference
1261 between the virtual address of any segment in memory and
1262 the corresponding virtual address in the file is thus a
1263 single constant value for any one executable or shared
1264 object in a given process. This difference is the base
1265 address. One use of the base address is to relocate the
1266 memory image of the program during dynamic linking.
1267
1268 The same language also appears in Edition 4.0 of the System V
1269 ABI and is left unspecified in some of the earlier editions. */
1270
1271 displacement = pc - exec_entry_point (exec_bfd, &exec_ops);
1272 changed = 0;
1273
1274 new_offsets = xcalloc (symfile_objfile->num_sections,
1275 sizeof (struct section_offsets));
1276 old_chain = make_cleanup (xfree, new_offsets);
1277
1278 for (i = 0; i < symfile_objfile->num_sections; i++)
1279 {
1280 if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
1281 changed = 1;
1282 new_offsets->offsets[i] = displacement;
1283 }
1284
1285 if (changed)
1286 objfile_relocate (symfile_objfile, new_offsets);
1287
1288 do_cleanups (old_chain);
1289 }
1290 }
1291
1292 /*
1293
1294 GLOBAL FUNCTION
1295
1296 svr4_solib_create_inferior_hook -- shared library startup support
1297
1298 SYNOPSIS
1299
1300 void svr4_solib_create_inferior_hook ()
1301
1302 DESCRIPTION
1303
1304 When gdb starts up the inferior, it nurses it along (through the
1305 shell) until it is ready to execute it's first instruction. At this
1306 point, this function gets called via expansion of the macro
1307 SOLIB_CREATE_INFERIOR_HOOK.
1308
1309 For SunOS executables, this first instruction is typically the
1310 one at "_start", or a similar text label, regardless of whether
1311 the executable is statically or dynamically linked. The runtime
1312 startup code takes care of dynamically linking in any shared
1313 libraries, once gdb allows the inferior to continue.
1314
1315 For SVR4 executables, this first instruction is either the first
1316 instruction in the dynamic linker (for dynamically linked
1317 executables) or the instruction at "start" for statically linked
1318 executables. For dynamically linked executables, the system
1319 first exec's /lib/libc.so.N, which contains the dynamic linker,
1320 and starts it running. The dynamic linker maps in any needed
1321 shared libraries, maps in the actual user executable, and then
1322 jumps to "start" in the user executable.
1323
1324 For both SunOS shared libraries, and SVR4 shared libraries, we
1325 can arrange to cooperate with the dynamic linker to discover the
1326 names of shared libraries that are dynamically linked, and the
1327 base addresses to which they are linked.
1328
1329 This function is responsible for discovering those names and
1330 addresses, and saving sufficient information about them to allow
1331 their symbols to be read at a later time.
1332
1333 FIXME
1334
1335 Between enable_break() and disable_break(), this code does not
1336 properly handle hitting breakpoints which the user might have
1337 set in the startup code or in the dynamic linker itself. Proper
1338 handling will probably have to wait until the implementation is
1339 changed to use the "breakpoint handler function" method.
1340
1341 Also, what if child has exit()ed? Must exit loop somehow.
1342 */
1343
1344 static void
1345 svr4_solib_create_inferior_hook (void)
1346 {
1347 /* Relocate the main executable if necessary. */
1348 svr4_relocate_main_executable ();
1349
1350 if (!svr4_have_link_map_offsets ())
1351 {
1352 warning (_("no shared library support for this OS / ABI"));
1353 return;
1354
1355 }
1356
1357 if (!enable_break ())
1358 return;
1359
1360 #if defined(_SCO_DS)
1361 /* SCO needs the loop below, other systems should be using the
1362 special shared library breakpoints and the shared library breakpoint
1363 service routine.
1364
1365 Now run the target. It will eventually hit the breakpoint, at
1366 which point all of the libraries will have been mapped in and we
1367 can go groveling around in the dynamic linker structures to find
1368 out what we need to know about them. */
1369
1370 clear_proceed_status ();
1371 stop_soon = STOP_QUIETLY;
1372 stop_signal = TARGET_SIGNAL_0;
1373 do
1374 {
1375 target_resume (pid_to_ptid (-1), 0, stop_signal);
1376 wait_for_inferior ();
1377 }
1378 while (stop_signal != TARGET_SIGNAL_TRAP);
1379 stop_soon = NO_STOP_QUIETLY;
1380 #endif /* defined(_SCO_DS) */
1381 }
1382
1383 static void
1384 svr4_clear_solib (void)
1385 {
1386 debug_base = 0;
1387 debug_loader_offset_p = 0;
1388 debug_loader_offset = 0;
1389 xfree (debug_loader_name);
1390 debug_loader_name = NULL;
1391 }
1392
1393 static void
1394 svr4_free_so (struct so_list *so)
1395 {
1396 xfree (so->lm_info->lm);
1397 xfree (so->lm_info);
1398 }
1399
1400
1401 /* Clear any bits of ADDR that wouldn't fit in a target-format
1402 data pointer. "Data pointer" here refers to whatever sort of
1403 address the dynamic linker uses to manage its sections. At the
1404 moment, we don't support shared libraries on any processors where
1405 code and data pointers are different sizes.
1406
1407 This isn't really the right solution. What we really need here is
1408 a way to do arithmetic on CORE_ADDR values that respects the
1409 natural pointer/address correspondence. (For example, on the MIPS,
1410 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1411 sign-extend the value. There, simply truncating the bits above
1412 TARGET_PTR_BIT, as we do below, is no good.) This should probably
1413 be a new gdbarch method or something. */
1414 static CORE_ADDR
1415 svr4_truncate_ptr (CORE_ADDR addr)
1416 {
1417 if (TARGET_PTR_BIT == sizeof (CORE_ADDR) * 8)
1418 /* We don't need to truncate anything, and the bit twiddling below
1419 will fail due to overflow problems. */
1420 return addr;
1421 else
1422 return addr & (((CORE_ADDR) 1 << TARGET_PTR_BIT) - 1);
1423 }
1424
1425
1426 static void
1427 svr4_relocate_section_addresses (struct so_list *so,
1428 struct section_table *sec)
1429 {
1430 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
1431 sec->bfd));
1432 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
1433 sec->bfd));
1434 }
1435 \f
1436
1437 /* Architecture-specific operations. */
1438
1439 /* Per-architecture data key. */
1440 static struct gdbarch_data *solib_svr4_data;
1441
1442 struct solib_svr4_ops
1443 {
1444 /* Return a description of the layout of `struct link_map'. */
1445 struct link_map_offsets *(*fetch_link_map_offsets)(void);
1446 };
1447
1448 /* Return a default for the architecture-specific operations. */
1449
1450 static void *
1451 solib_svr4_init (struct obstack *obstack)
1452 {
1453 struct solib_svr4_ops *ops;
1454
1455 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
1456 ops->fetch_link_map_offsets = legacy_svr4_fetch_link_map_offsets_hook;
1457 return ops;
1458 }
1459
1460 /* Set the architecture-specific `struct link_map_offsets' fetcher for
1461 GDBARCH to FLMO. */
1462
1463 void
1464 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1465 struct link_map_offsets *(*flmo) (void))
1466 {
1467 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
1468
1469 ops->fetch_link_map_offsets = flmo;
1470 }
1471
1472 /* Fetch a link_map_offsets structure using the architecture-specific
1473 `struct link_map_offsets' fetcher. */
1474
1475 static struct link_map_offsets *
1476 svr4_fetch_link_map_offsets (void)
1477 {
1478 struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
1479
1480 gdb_assert (ops->fetch_link_map_offsets);
1481 return ops->fetch_link_map_offsets ();
1482 }
1483
1484 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1485
1486 static int
1487 svr4_have_link_map_offsets (void)
1488 {
1489 struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
1490 return (ops->fetch_link_map_offsets != NULL);
1491 }
1492 \f
1493
1494 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
1495 `struct r_debug' and a `struct link_map' that are binary compatible
1496 with the origional SVR4 implementation. */
1497
1498 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1499 for an ILP32 SVR4 system. */
1500
1501 struct link_map_offsets *
1502 svr4_ilp32_fetch_link_map_offsets (void)
1503 {
1504 static struct link_map_offsets lmo;
1505 static struct link_map_offsets *lmp = NULL;
1506
1507 if (lmp == NULL)
1508 {
1509 lmp = &lmo;
1510
1511 lmo.r_version_offset = 0;
1512 lmo.r_version_size = 4;
1513 lmo.r_map_offset = 4;
1514 lmo.r_ldsomap_offset = 20;
1515
1516 /* Everything we need is in the first 20 bytes. */
1517 lmo.link_map_size = 20;
1518 lmo.l_addr_offset = 0;
1519 lmo.l_name_offset = 4;
1520 lmo.l_ld_offset = 8;
1521 lmo.l_next_offset = 12;
1522 lmo.l_prev_offset = 16;
1523 }
1524
1525 return lmp;
1526 }
1527
1528 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1529 for an LP64 SVR4 system. */
1530
1531 struct link_map_offsets *
1532 svr4_lp64_fetch_link_map_offsets (void)
1533 {
1534 static struct link_map_offsets lmo;
1535 static struct link_map_offsets *lmp = NULL;
1536
1537 if (lmp == NULL)
1538 {
1539 lmp = &lmo;
1540
1541 lmo.r_version_offset = 0;
1542 lmo.r_version_size = 4;
1543 lmo.r_map_offset = 8;
1544 lmo.r_ldsomap_offset = 40;
1545
1546 /* Everything we need is in the first 40 bytes. */
1547 lmo.link_map_size = 40;
1548 lmo.l_addr_offset = 0;
1549 lmo.l_name_offset = 8;
1550 lmo.l_ld_offset = 16;
1551 lmo.l_next_offset = 24;
1552 lmo.l_prev_offset = 32;
1553 }
1554
1555 return lmp;
1556 }
1557 \f
1558
1559 static struct target_so_ops svr4_so_ops;
1560
1561 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
1562
1563 void
1564 _initialize_svr4_solib (void)
1565 {
1566 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
1567
1568 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
1569 svr4_so_ops.free_so = svr4_free_so;
1570 svr4_so_ops.clear_solib = svr4_clear_solib;
1571 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1572 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1573 svr4_so_ops.current_sos = svr4_current_sos;
1574 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
1575 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
1576
1577 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
1578 current_target_so_ops = &svr4_so_ops;
1579 }
This page took 0.093172 seconds and 4 git commands to generate.