daily update
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23
24 #include "elf/external.h"
25 #include "elf/common.h"
26 #include "elf/mips.h"
27
28 #include "symtab.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbcore.h"
33 #include "target.h"
34 #include "inferior.h"
35 #include "regcache.h"
36 #include "gdbthread.h"
37 #include "observer.h"
38
39 #include "gdb_assert.h"
40
41 #include "solist.h"
42 #include "solib.h"
43 #include "solib-svr4.h"
44
45 #include "bfd-target.h"
46 #include "elf-bfd.h"
47 #include "exec.h"
48 #include "auxv.h"
49 #include "exceptions.h"
50
51 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
52 static int svr4_have_link_map_offsets (void);
53 static void svr4_relocate_main_executable (void);
54
55 /* Link map info to include in an allocated so_list entry */
56
57 struct lm_info
58 {
59 /* Pointer to copy of link map from inferior. The type is char *
60 rather than void *, so that we may use byte offsets to find the
61 various fields without the need for a cast. */
62 gdb_byte *lm;
63
64 /* Amount by which addresses in the binary should be relocated to
65 match the inferior. This could most often be taken directly
66 from lm, but when prelinking is involved and the prelink base
67 address changes, we may need a different offset, we want to
68 warn about the difference and compute it only once. */
69 CORE_ADDR l_addr;
70
71 /* The target location of lm. */
72 CORE_ADDR lm_addr;
73 };
74
75 /* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
83 static char *solib_break_names[] =
84 {
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
89 "__dl_rtld_db_dlactivity",
90 "_rtld_debug_state",
91
92 NULL
93 };
94
95 static char *bkpt_names[] =
96 {
97 "_start",
98 "__start",
99 "main",
100 NULL
101 };
102
103 static char *main_name_list[] =
104 {
105 "main_$main",
106 NULL
107 };
108
109 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
110 the same shared library. */
111
112 static int
113 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
114 {
115 if (strcmp (gdb_so_name, inferior_so_name) == 0)
116 return 1;
117
118 /* On Solaris, when starting inferior we think that dynamic linker is
119 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
120 contains /lib/ld.so.1. Sometimes one file is a link to another, but
121 sometimes they have identical content, but are not linked to each
122 other. We don't restrict this check for Solaris, but the chances
123 of running into this situation elsewhere are very low. */
124 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
125 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
126 return 1;
127
128 /* Similarly, we observed the same issue with sparc64, but with
129 different locations. */
130 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
131 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
132 return 1;
133
134 return 0;
135 }
136
137 static int
138 svr4_same (struct so_list *gdb, struct so_list *inferior)
139 {
140 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
141 }
142
143 /* link map access functions */
144
145 static CORE_ADDR
146 LM_ADDR_FROM_LINK_MAP (struct so_list *so)
147 {
148 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
149 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
150
151 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
152 ptr_type);
153 }
154
155 static int
156 HAS_LM_DYNAMIC_FROM_LINK_MAP (void)
157 {
158 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
159
160 return lmo->l_ld_offset >= 0;
161 }
162
163 static CORE_ADDR
164 LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
165 {
166 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
167 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
168
169 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
170 ptr_type);
171 }
172
173 static CORE_ADDR
174 LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
175 {
176 if (so->lm_info->l_addr == (CORE_ADDR)-1)
177 {
178 struct bfd_section *dyninfo_sect;
179 CORE_ADDR l_addr, l_dynaddr, dynaddr;
180
181 l_addr = LM_ADDR_FROM_LINK_MAP (so);
182
183 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
184 goto set_addr;
185
186 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
187
188 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
189 if (dyninfo_sect == NULL)
190 goto set_addr;
191
192 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
193
194 if (dynaddr + l_addr != l_dynaddr)
195 {
196 CORE_ADDR align = 0x1000;
197 CORE_ADDR minpagesize = align;
198
199 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
200 {
201 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
202 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
203 int i;
204
205 align = 1;
206
207 for (i = 0; i < ehdr->e_phnum; i++)
208 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
209 align = phdr[i].p_align;
210
211 minpagesize = get_elf_backend_data (abfd)->minpagesize;
212 }
213
214 /* Turn it into a mask. */
215 align--;
216
217 /* If the changes match the alignment requirements, we
218 assume we're using a core file that was generated by the
219 same binary, just prelinked with a different base offset.
220 If it doesn't match, we may have a different binary, the
221 same binary with the dynamic table loaded at an unrelated
222 location, or anything, really. To avoid regressions,
223 don't adjust the base offset in the latter case, although
224 odds are that, if things really changed, debugging won't
225 quite work.
226
227 One could expect more the condition
228 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
229 but the one below is relaxed for PPC. The PPC kernel supports
230 either 4k or 64k page sizes. To be prepared for 64k pages,
231 PPC ELF files are built using an alignment requirement of 64k.
232 However, when running on a kernel supporting 4k pages, the memory
233 mapping of the library may not actually happen on a 64k boundary!
234
235 (In the usual case where (l_addr & align) == 0, this check is
236 equivalent to the possibly expected check above.)
237
238 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
239
240 if ((l_addr & (minpagesize - 1)) == 0
241 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
242 {
243 l_addr = l_dynaddr - dynaddr;
244
245 if (info_verbose)
246 printf_unfiltered (_("Using PIC (Position Independent Code) "
247 "prelink displacement %s for \"%s\".\n"),
248 paddress (target_gdbarch, l_addr),
249 so->so_name);
250 }
251 else
252 warning (_(".dynamic section for \"%s\" "
253 "is not at the expected address "
254 "(wrong library or version mismatch?)"), so->so_name);
255 }
256
257 set_addr:
258 so->lm_info->l_addr = l_addr;
259 }
260
261 return so->lm_info->l_addr;
262 }
263
264 static CORE_ADDR
265 LM_NEXT (struct so_list *so)
266 {
267 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
268 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
269
270 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
271 ptr_type);
272 }
273
274 static CORE_ADDR
275 LM_PREV (struct so_list *so)
276 {
277 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
278 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
279
280 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
281 ptr_type);
282 }
283
284 static CORE_ADDR
285 LM_NAME (struct so_list *so)
286 {
287 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
288 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
289
290 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
291 ptr_type);
292 }
293
294 static int
295 IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
296 {
297 /* Assume that everything is a library if the dynamic loader was loaded
298 late by a static executable. */
299 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
300 return 0;
301
302 return LM_PREV (so) == 0;
303 }
304
305 /* Per pspace SVR4 specific data. */
306
307 struct svr4_info
308 {
309 CORE_ADDR debug_base; /* Base of dynamic linker structures */
310
311 /* Validity flag for debug_loader_offset. */
312 int debug_loader_offset_p;
313
314 /* Load address for the dynamic linker, inferred. */
315 CORE_ADDR debug_loader_offset;
316
317 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
318 char *debug_loader_name;
319
320 /* Load map address for the main executable. */
321 CORE_ADDR main_lm_addr;
322
323 CORE_ADDR interp_text_sect_low;
324 CORE_ADDR interp_text_sect_high;
325 CORE_ADDR interp_plt_sect_low;
326 CORE_ADDR interp_plt_sect_high;
327 };
328
329 /* Per-program-space data key. */
330 static const struct program_space_data *solib_svr4_pspace_data;
331
332 static void
333 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
334 {
335 struct svr4_info *info;
336
337 info = program_space_data (pspace, solib_svr4_pspace_data);
338 xfree (info);
339 }
340
341 /* Get the current svr4 data. If none is found yet, add it now. This
342 function always returns a valid object. */
343
344 static struct svr4_info *
345 get_svr4_info (void)
346 {
347 struct svr4_info *info;
348
349 info = program_space_data (current_program_space, solib_svr4_pspace_data);
350 if (info != NULL)
351 return info;
352
353 info = XZALLOC (struct svr4_info);
354 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
355 return info;
356 }
357
358 /* Local function prototypes */
359
360 static int match_main (char *);
361
362 static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
363
364 /*
365
366 LOCAL FUNCTION
367
368 bfd_lookup_symbol -- lookup the value for a specific symbol
369
370 SYNOPSIS
371
372 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
373
374 DESCRIPTION
375
376 An expensive way to lookup the value of a single symbol for
377 bfd's that are only temporary anyway. This is used by the
378 shared library support to find the address of the debugger
379 notification routine in the shared library.
380
381 The returned symbol may be in a code or data section; functions
382 will normally be in a code section, but may be in a data section
383 if this architecture uses function descriptors.
384
385 Note that 0 is specifically allowed as an error return (no
386 such symbol).
387 */
388
389 static CORE_ADDR
390 bfd_lookup_symbol (bfd *abfd, char *symname)
391 {
392 long storage_needed;
393 asymbol *sym;
394 asymbol **symbol_table;
395 unsigned int number_of_symbols;
396 unsigned int i;
397 struct cleanup *back_to;
398 CORE_ADDR symaddr = 0;
399
400 storage_needed = bfd_get_symtab_upper_bound (abfd);
401
402 if (storage_needed > 0)
403 {
404 symbol_table = (asymbol **) xmalloc (storage_needed);
405 back_to = make_cleanup (xfree, symbol_table);
406 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
407
408 for (i = 0; i < number_of_symbols; i++)
409 {
410 sym = *symbol_table++;
411 if (strcmp (sym->name, symname) == 0
412 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
413 {
414 /* BFD symbols are section relative. */
415 symaddr = sym->value + sym->section->vma;
416 break;
417 }
418 }
419 do_cleanups (back_to);
420 }
421
422 if (symaddr)
423 return symaddr;
424
425 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
426 have to check the dynamic string table too. */
427
428 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
429
430 if (storage_needed > 0)
431 {
432 symbol_table = (asymbol **) xmalloc (storage_needed);
433 back_to = make_cleanup (xfree, symbol_table);
434 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
435
436 for (i = 0; i < number_of_symbols; i++)
437 {
438 sym = *symbol_table++;
439
440 if (strcmp (sym->name, symname) == 0
441 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
442 {
443 /* BFD symbols are section relative. */
444 symaddr = sym->value + sym->section->vma;
445 break;
446 }
447 }
448 do_cleanups (back_to);
449 }
450
451 return symaddr;
452 }
453
454
455 /* Read program header TYPE from inferior memory. The header is found
456 by scanning the OS auxillary vector.
457
458 If TYPE == -1, return the program headers instead of the contents of
459 one program header.
460
461 Return a pointer to allocated memory holding the program header contents,
462 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
463 size of those contents is returned to P_SECT_SIZE. Likewise, the target
464 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
465
466 static gdb_byte *
467 read_program_header (int type, int *p_sect_size, int *p_arch_size)
468 {
469 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
470 CORE_ADDR at_phdr, at_phent, at_phnum;
471 int arch_size, sect_size;
472 CORE_ADDR sect_addr;
473 gdb_byte *buf;
474
475 /* Get required auxv elements from target. */
476 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
477 return 0;
478 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
479 return 0;
480 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
481 return 0;
482 if (!at_phdr || !at_phnum)
483 return 0;
484
485 /* Determine ELF architecture type. */
486 if (at_phent == sizeof (Elf32_External_Phdr))
487 arch_size = 32;
488 else if (at_phent == sizeof (Elf64_External_Phdr))
489 arch_size = 64;
490 else
491 return 0;
492
493 /* Find the requested segment. */
494 if (type == -1)
495 {
496 sect_addr = at_phdr;
497 sect_size = at_phent * at_phnum;
498 }
499 else if (arch_size == 32)
500 {
501 Elf32_External_Phdr phdr;
502 int i;
503
504 /* Search for requested PHDR. */
505 for (i = 0; i < at_phnum; i++)
506 {
507 if (target_read_memory (at_phdr + i * sizeof (phdr),
508 (gdb_byte *)&phdr, sizeof (phdr)))
509 return 0;
510
511 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
512 4, byte_order) == type)
513 break;
514 }
515
516 if (i == at_phnum)
517 return 0;
518
519 /* Retrieve address and size. */
520 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
521 4, byte_order);
522 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
523 4, byte_order);
524 }
525 else
526 {
527 Elf64_External_Phdr phdr;
528 int i;
529
530 /* Search for requested PHDR. */
531 for (i = 0; i < at_phnum; i++)
532 {
533 if (target_read_memory (at_phdr + i * sizeof (phdr),
534 (gdb_byte *)&phdr, sizeof (phdr)))
535 return 0;
536
537 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
538 4, byte_order) == type)
539 break;
540 }
541
542 if (i == at_phnum)
543 return 0;
544
545 /* Retrieve address and size. */
546 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
547 8, byte_order);
548 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
549 8, byte_order);
550 }
551
552 /* Read in requested program header. */
553 buf = xmalloc (sect_size);
554 if (target_read_memory (sect_addr, buf, sect_size))
555 {
556 xfree (buf);
557 return NULL;
558 }
559
560 if (p_arch_size)
561 *p_arch_size = arch_size;
562 if (p_sect_size)
563 *p_sect_size = sect_size;
564
565 return buf;
566 }
567
568
569 /* Return program interpreter string. */
570 static gdb_byte *
571 find_program_interpreter (void)
572 {
573 gdb_byte *buf = NULL;
574
575 /* If we have an exec_bfd, use its section table. */
576 if (exec_bfd
577 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
578 {
579 struct bfd_section *interp_sect;
580
581 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
582 if (interp_sect != NULL)
583 {
584 int sect_size = bfd_section_size (exec_bfd, interp_sect);
585
586 buf = xmalloc (sect_size);
587 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
588 }
589 }
590
591 /* If we didn't find it, use the target auxillary vector. */
592 if (!buf)
593 buf = read_program_header (PT_INTERP, NULL, NULL);
594
595 return buf;
596 }
597
598
599 /* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
600 returned and the corresponding PTR is set. */
601
602 static int
603 scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
604 {
605 int arch_size, step, sect_size;
606 long dyn_tag;
607 CORE_ADDR dyn_ptr, dyn_addr;
608 gdb_byte *bufend, *bufstart, *buf;
609 Elf32_External_Dyn *x_dynp_32;
610 Elf64_External_Dyn *x_dynp_64;
611 struct bfd_section *sect;
612 struct target_section *target_section;
613
614 if (abfd == NULL)
615 return 0;
616
617 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
618 return 0;
619
620 arch_size = bfd_get_arch_size (abfd);
621 if (arch_size == -1)
622 return 0;
623
624 /* Find the start address of the .dynamic section. */
625 sect = bfd_get_section_by_name (abfd, ".dynamic");
626 if (sect == NULL)
627 return 0;
628
629 for (target_section = current_target_sections->sections;
630 target_section < current_target_sections->sections_end;
631 target_section++)
632 if (sect == target_section->the_bfd_section)
633 break;
634 if (target_section < current_target_sections->sections_end)
635 dyn_addr = target_section->addr;
636 else
637 {
638 /* ABFD may come from OBJFILE acting only as a symbol file without being
639 loaded into the target (see add_symbol_file_command). This case is
640 such fallback to the file VMA address without the possibility of
641 having the section relocated to its actual in-memory address. */
642
643 dyn_addr = bfd_section_vma (abfd, sect);
644 }
645
646 /* Read in .dynamic from the BFD. We will get the actual value
647 from memory later. */
648 sect_size = bfd_section_size (abfd, sect);
649 buf = bufstart = alloca (sect_size);
650 if (!bfd_get_section_contents (abfd, sect,
651 buf, 0, sect_size))
652 return 0;
653
654 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
655 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
656 : sizeof (Elf64_External_Dyn);
657 for (bufend = buf + sect_size;
658 buf < bufend;
659 buf += step)
660 {
661 if (arch_size == 32)
662 {
663 x_dynp_32 = (Elf32_External_Dyn *) buf;
664 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
665 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
666 }
667 else
668 {
669 x_dynp_64 = (Elf64_External_Dyn *) buf;
670 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
671 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
672 }
673 if (dyn_tag == DT_NULL)
674 return 0;
675 if (dyn_tag == dyntag)
676 {
677 /* If requested, try to read the runtime value of this .dynamic
678 entry. */
679 if (ptr)
680 {
681 struct type *ptr_type;
682 gdb_byte ptr_buf[8];
683 CORE_ADDR ptr_addr;
684
685 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
686 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
687 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
688 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
689 *ptr = dyn_ptr;
690 }
691 return 1;
692 }
693 }
694
695 return 0;
696 }
697
698 /* Scan for DYNTAG in .dynamic section of the target's main executable,
699 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
700 returned and the corresponding PTR is set. */
701
702 static int
703 scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
704 {
705 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
706 int sect_size, arch_size, step;
707 long dyn_tag;
708 CORE_ADDR dyn_ptr;
709 gdb_byte *bufend, *bufstart, *buf;
710
711 /* Read in .dynamic section. */
712 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
713 if (!buf)
714 return 0;
715
716 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
717 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
718 : sizeof (Elf64_External_Dyn);
719 for (bufend = buf + sect_size;
720 buf < bufend;
721 buf += step)
722 {
723 if (arch_size == 32)
724 {
725 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
726
727 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
728 4, byte_order);
729 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
730 4, byte_order);
731 }
732 else
733 {
734 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
735
736 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
737 8, byte_order);
738 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
739 8, byte_order);
740 }
741 if (dyn_tag == DT_NULL)
742 break;
743
744 if (dyn_tag == dyntag)
745 {
746 if (ptr)
747 *ptr = dyn_ptr;
748
749 xfree (bufstart);
750 return 1;
751 }
752 }
753
754 xfree (bufstart);
755 return 0;
756 }
757
758
759 /*
760
761 LOCAL FUNCTION
762
763 elf_locate_base -- locate the base address of dynamic linker structs
764 for SVR4 elf targets.
765
766 SYNOPSIS
767
768 CORE_ADDR elf_locate_base (void)
769
770 DESCRIPTION
771
772 For SVR4 elf targets the address of the dynamic linker's runtime
773 structure is contained within the dynamic info section in the
774 executable file. The dynamic section is also mapped into the
775 inferior address space. Because the runtime loader fills in the
776 real address before starting the inferior, we have to read in the
777 dynamic info section from the inferior address space.
778 If there are any errors while trying to find the address, we
779 silently return 0, otherwise the found address is returned.
780
781 */
782
783 static CORE_ADDR
784 elf_locate_base (void)
785 {
786 struct minimal_symbol *msymbol;
787 CORE_ADDR dyn_ptr;
788
789 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
790 instead of DT_DEBUG, although they sometimes contain an unused
791 DT_DEBUG. */
792 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
793 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
794 {
795 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
796 gdb_byte *pbuf;
797 int pbuf_size = TYPE_LENGTH (ptr_type);
798
799 pbuf = alloca (pbuf_size);
800 /* DT_MIPS_RLD_MAP contains a pointer to the address
801 of the dynamic link structure. */
802 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
803 return 0;
804 return extract_typed_address (pbuf, ptr_type);
805 }
806
807 /* Find DT_DEBUG. */
808 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
809 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
810 return dyn_ptr;
811
812 /* This may be a static executable. Look for the symbol
813 conventionally named _r_debug, as a last resort. */
814 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
815 if (msymbol != NULL)
816 return SYMBOL_VALUE_ADDRESS (msymbol);
817
818 /* DT_DEBUG entry not found. */
819 return 0;
820 }
821
822 /*
823
824 LOCAL FUNCTION
825
826 locate_base -- locate the base address of dynamic linker structs
827
828 SYNOPSIS
829
830 CORE_ADDR locate_base (struct svr4_info *)
831
832 DESCRIPTION
833
834 For both the SunOS and SVR4 shared library implementations, if the
835 inferior executable has been linked dynamically, there is a single
836 address somewhere in the inferior's data space which is the key to
837 locating all of the dynamic linker's runtime structures. This
838 address is the value of the debug base symbol. The job of this
839 function is to find and return that address, or to return 0 if there
840 is no such address (the executable is statically linked for example).
841
842 For SunOS, the job is almost trivial, since the dynamic linker and
843 all of it's structures are statically linked to the executable at
844 link time. Thus the symbol for the address we are looking for has
845 already been added to the minimal symbol table for the executable's
846 objfile at the time the symbol file's symbols were read, and all we
847 have to do is look it up there. Note that we explicitly do NOT want
848 to find the copies in the shared library.
849
850 The SVR4 version is a bit more complicated because the address
851 is contained somewhere in the dynamic info section. We have to go
852 to a lot more work to discover the address of the debug base symbol.
853 Because of this complexity, we cache the value we find and return that
854 value on subsequent invocations. Note there is no copy in the
855 executable symbol tables.
856
857 */
858
859 static CORE_ADDR
860 locate_base (struct svr4_info *info)
861 {
862 /* Check to see if we have a currently valid address, and if so, avoid
863 doing all this work again and just return the cached address. If
864 we have no cached address, try to locate it in the dynamic info
865 section for ELF executables. There's no point in doing any of this
866 though if we don't have some link map offsets to work with. */
867
868 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
869 info->debug_base = elf_locate_base ();
870 return info->debug_base;
871 }
872
873 /* Find the first element in the inferior's dynamic link map, and
874 return its address in the inferior. Return zero if the address
875 could not be determined.
876
877 FIXME: Perhaps we should validate the info somehow, perhaps by
878 checking r_version for a known version number, or r_state for
879 RT_CONSISTENT. */
880
881 static CORE_ADDR
882 solib_svr4_r_map (struct svr4_info *info)
883 {
884 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
885 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
886 CORE_ADDR addr = 0;
887 volatile struct gdb_exception ex;
888
889 TRY_CATCH (ex, RETURN_MASK_ERROR)
890 {
891 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
892 ptr_type);
893 }
894 exception_print (gdb_stderr, ex);
895 return addr;
896 }
897
898 /* Find r_brk from the inferior's debug base. */
899
900 static CORE_ADDR
901 solib_svr4_r_brk (struct svr4_info *info)
902 {
903 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
904 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
905
906 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
907 ptr_type);
908 }
909
910 /* Find the link map for the dynamic linker (if it is not in the
911 normal list of loaded shared objects). */
912
913 static CORE_ADDR
914 solib_svr4_r_ldsomap (struct svr4_info *info)
915 {
916 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
917 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
918 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
919 ULONGEST version;
920
921 /* Check version, and return zero if `struct r_debug' doesn't have
922 the r_ldsomap member. */
923 version
924 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
925 lmo->r_version_size, byte_order);
926 if (version < 2 || lmo->r_ldsomap_offset == -1)
927 return 0;
928
929 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
930 ptr_type);
931 }
932
933 /* On Solaris systems with some versions of the dynamic linker,
934 ld.so's l_name pointer points to the SONAME in the string table
935 rather than into writable memory. So that GDB can find shared
936 libraries when loading a core file generated by gcore, ensure that
937 memory areas containing the l_name string are saved in the core
938 file. */
939
940 static int
941 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
942 {
943 struct svr4_info *info;
944 CORE_ADDR ldsomap;
945 struct so_list *new;
946 struct cleanup *old_chain;
947 struct link_map_offsets *lmo;
948 CORE_ADDR lm_name;
949
950 info = get_svr4_info ();
951
952 info->debug_base = 0;
953 locate_base (info);
954 if (!info->debug_base)
955 return 0;
956
957 ldsomap = solib_svr4_r_ldsomap (info);
958 if (!ldsomap)
959 return 0;
960
961 lmo = svr4_fetch_link_map_offsets ();
962 new = XZALLOC (struct so_list);
963 old_chain = make_cleanup (xfree, new);
964 new->lm_info = xmalloc (sizeof (struct lm_info));
965 make_cleanup (xfree, new->lm_info);
966 new->lm_info->l_addr = (CORE_ADDR)-1;
967 new->lm_info->lm_addr = ldsomap;
968 new->lm_info->lm = xzalloc (lmo->link_map_size);
969 make_cleanup (xfree, new->lm_info->lm);
970 read_memory (ldsomap, new->lm_info->lm, lmo->link_map_size);
971 lm_name = LM_NAME (new);
972 do_cleanups (old_chain);
973
974 return (lm_name >= vaddr && lm_name < vaddr + size);
975 }
976
977 /*
978
979 LOCAL FUNCTION
980
981 open_symbol_file_object
982
983 SYNOPSIS
984
985 void open_symbol_file_object (void *from_tty)
986
987 DESCRIPTION
988
989 If no open symbol file, attempt to locate and open the main symbol
990 file. On SVR4 systems, this is the first link map entry. If its
991 name is here, we can open it. Useful when attaching to a process
992 without first loading its symbol file.
993
994 If FROM_TTYP dereferences to a non-zero integer, allow messages to
995 be printed. This parameter is a pointer rather than an int because
996 open_symbol_file_object() is called via catch_errors() and
997 catch_errors() requires a pointer argument. */
998
999 static int
1000 open_symbol_file_object (void *from_ttyp)
1001 {
1002 CORE_ADDR lm, l_name;
1003 char *filename;
1004 int errcode;
1005 int from_tty = *(int *)from_ttyp;
1006 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
1007 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
1008 int l_name_size = TYPE_LENGTH (ptr_type);
1009 gdb_byte *l_name_buf = xmalloc (l_name_size);
1010 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
1011 struct svr4_info *info = get_svr4_info ();
1012
1013 if (symfile_objfile)
1014 if (!query (_("Attempt to reload symbols from process? ")))
1015 return 0;
1016
1017 /* Always locate the debug struct, in case it has moved. */
1018 info->debug_base = 0;
1019 if (locate_base (info) == 0)
1020 return 0; /* failed somehow... */
1021
1022 /* First link map member should be the executable. */
1023 lm = solib_svr4_r_map (info);
1024 if (lm == 0)
1025 return 0; /* failed somehow... */
1026
1027 /* Read address of name from target memory to GDB. */
1028 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
1029
1030 /* Convert the address to host format. */
1031 l_name = extract_typed_address (l_name_buf, ptr_type);
1032
1033 /* Free l_name_buf. */
1034 do_cleanups (cleanups);
1035
1036 if (l_name == 0)
1037 return 0; /* No filename. */
1038
1039 /* Now fetch the filename from target memory. */
1040 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1041 make_cleanup (xfree, filename);
1042
1043 if (errcode)
1044 {
1045 warning (_("failed to read exec filename from attached file: %s"),
1046 safe_strerror (errcode));
1047 return 0;
1048 }
1049
1050 /* Have a pathname: read the symbol file. */
1051 symbol_file_add_main (filename, from_tty);
1052
1053 return 1;
1054 }
1055
1056 /* If no shared library information is available from the dynamic
1057 linker, build a fallback list from other sources. */
1058
1059 static struct so_list *
1060 svr4_default_sos (void)
1061 {
1062 struct svr4_info *info = get_svr4_info ();
1063
1064 struct so_list *head = NULL;
1065 struct so_list **link_ptr = &head;
1066
1067 if (info->debug_loader_offset_p)
1068 {
1069 struct so_list *new = XZALLOC (struct so_list);
1070
1071 new->lm_info = xmalloc (sizeof (struct lm_info));
1072
1073 /* Nothing will ever check the cached copy of the link
1074 map if we set l_addr. */
1075 new->lm_info->l_addr = info->debug_loader_offset;
1076 new->lm_info->lm_addr = 0;
1077 new->lm_info->lm = NULL;
1078
1079 strncpy (new->so_name, info->debug_loader_name,
1080 SO_NAME_MAX_PATH_SIZE - 1);
1081 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1082 strcpy (new->so_original_name, new->so_name);
1083
1084 *link_ptr = new;
1085 link_ptr = &new->next;
1086 }
1087
1088 return head;
1089 }
1090
1091 /* LOCAL FUNCTION
1092
1093 current_sos -- build a list of currently loaded shared objects
1094
1095 SYNOPSIS
1096
1097 struct so_list *current_sos ()
1098
1099 DESCRIPTION
1100
1101 Build a list of `struct so_list' objects describing the shared
1102 objects currently loaded in the inferior. This list does not
1103 include an entry for the main executable file.
1104
1105 Note that we only gather information directly available from the
1106 inferior --- we don't examine any of the shared library files
1107 themselves. The declaration of `struct so_list' says which fields
1108 we provide values for. */
1109
1110 static struct so_list *
1111 svr4_current_sos (void)
1112 {
1113 CORE_ADDR lm, prev_lm;
1114 struct so_list *head = 0;
1115 struct so_list **link_ptr = &head;
1116 CORE_ADDR ldsomap = 0;
1117 struct svr4_info *info;
1118
1119 info = get_svr4_info ();
1120
1121 /* Always locate the debug struct, in case it has moved. */
1122 info->debug_base = 0;
1123 locate_base (info);
1124
1125 /* If we can't find the dynamic linker's base structure, this
1126 must not be a dynamically linked executable. Hmm. */
1127 if (! info->debug_base)
1128 return svr4_default_sos ();
1129
1130 /* Walk the inferior's link map list, and build our list of
1131 `struct so_list' nodes. */
1132 prev_lm = 0;
1133 lm = solib_svr4_r_map (info);
1134
1135 while (lm)
1136 {
1137 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
1138 struct so_list *new = XZALLOC (struct so_list);
1139 struct cleanup *old_chain = make_cleanup (xfree, new);
1140 CORE_ADDR next_lm;
1141
1142 new->lm_info = xmalloc (sizeof (struct lm_info));
1143 make_cleanup (xfree, new->lm_info);
1144
1145 new->lm_info->l_addr = (CORE_ADDR)-1;
1146 new->lm_info->lm_addr = lm;
1147 new->lm_info->lm = xzalloc (lmo->link_map_size);
1148 make_cleanup (xfree, new->lm_info->lm);
1149
1150 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1151
1152 next_lm = LM_NEXT (new);
1153
1154 if (LM_PREV (new) != prev_lm)
1155 {
1156 warning (_("Corrupted shared library list"));
1157 free_so (new);
1158 next_lm = 0;
1159 }
1160
1161 /* For SVR4 versions, the first entry in the link map is for the
1162 inferior executable, so we must ignore it. For some versions of
1163 SVR4, it has no name. For others (Solaris 2.3 for example), it
1164 does have a name, so we can no longer use a missing name to
1165 decide when to ignore it. */
1166 else if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
1167 {
1168 info->main_lm_addr = new->lm_info->lm_addr;
1169 free_so (new);
1170 }
1171 else
1172 {
1173 int errcode;
1174 char *buffer;
1175
1176 /* Extract this shared object's name. */
1177 target_read_string (LM_NAME (new), &buffer,
1178 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1179 if (errcode != 0)
1180 warning (_("Can't read pathname for load map: %s."),
1181 safe_strerror (errcode));
1182 else
1183 {
1184 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1185 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1186 strcpy (new->so_original_name, new->so_name);
1187 }
1188 xfree (buffer);
1189
1190 /* If this entry has no name, or its name matches the name
1191 for the main executable, don't include it in the list. */
1192 if (! new->so_name[0]
1193 || match_main (new->so_name))
1194 free_so (new);
1195 else
1196 {
1197 new->next = 0;
1198 *link_ptr = new;
1199 link_ptr = &new->next;
1200 }
1201 }
1202
1203 prev_lm = lm;
1204 lm = next_lm;
1205
1206 /* On Solaris, the dynamic linker is not in the normal list of
1207 shared objects, so make sure we pick it up too. Having
1208 symbol information for the dynamic linker is quite crucial
1209 for skipping dynamic linker resolver code. */
1210 if (lm == 0 && ldsomap == 0)
1211 {
1212 lm = ldsomap = solib_svr4_r_ldsomap (info);
1213 prev_lm = 0;
1214 }
1215
1216 discard_cleanups (old_chain);
1217 }
1218
1219 if (head == NULL)
1220 return svr4_default_sos ();
1221
1222 return head;
1223 }
1224
1225 /* Get the address of the link_map for a given OBJFILE. */
1226
1227 CORE_ADDR
1228 svr4_fetch_objfile_link_map (struct objfile *objfile)
1229 {
1230 struct so_list *so;
1231 struct svr4_info *info = get_svr4_info ();
1232
1233 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1234 if (info->main_lm_addr == 0)
1235 solib_add (NULL, 0, &current_target, auto_solib_add);
1236
1237 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1238 if (objfile == symfile_objfile)
1239 return info->main_lm_addr;
1240
1241 /* The other link map addresses may be found by examining the list
1242 of shared libraries. */
1243 for (so = master_so_list (); so; so = so->next)
1244 if (so->objfile == objfile)
1245 return so->lm_info->lm_addr;
1246
1247 /* Not found! */
1248 return 0;
1249 }
1250
1251 /* On some systems, the only way to recognize the link map entry for
1252 the main executable file is by looking at its name. Return
1253 non-zero iff SONAME matches one of the known main executable names. */
1254
1255 static int
1256 match_main (char *soname)
1257 {
1258 char **mainp;
1259
1260 for (mainp = main_name_list; *mainp != NULL; mainp++)
1261 {
1262 if (strcmp (soname, *mainp) == 0)
1263 return (1);
1264 }
1265
1266 return (0);
1267 }
1268
1269 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1270 SVR4 run time loader. */
1271
1272 int
1273 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1274 {
1275 struct svr4_info *info = get_svr4_info ();
1276
1277 return ((pc >= info->interp_text_sect_low
1278 && pc < info->interp_text_sect_high)
1279 || (pc >= info->interp_plt_sect_low
1280 && pc < info->interp_plt_sect_high)
1281 || in_plt_section (pc, NULL));
1282 }
1283
1284 /* Given an executable's ABFD and target, compute the entry-point
1285 address. */
1286
1287 static CORE_ADDR
1288 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1289 {
1290 /* KevinB wrote ... for most targets, the address returned by
1291 bfd_get_start_address() is the entry point for the start
1292 function. But, for some targets, bfd_get_start_address() returns
1293 the address of a function descriptor from which the entry point
1294 address may be extracted. This address is extracted by
1295 gdbarch_convert_from_func_ptr_addr(). The method
1296 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1297 function for targets which don't use function descriptors. */
1298 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1299 bfd_get_start_address (abfd),
1300 targ);
1301 }
1302
1303 /*
1304
1305 LOCAL FUNCTION
1306
1307 enable_break -- arrange for dynamic linker to hit breakpoint
1308
1309 SYNOPSIS
1310
1311 int enable_break (void)
1312
1313 DESCRIPTION
1314
1315 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1316 debugger interface, support for arranging for the inferior to hit
1317 a breakpoint after mapping in the shared libraries. This function
1318 enables that breakpoint.
1319
1320 For SunOS, there is a special flag location (in_debugger) which we
1321 set to 1. When the dynamic linker sees this flag set, it will set
1322 a breakpoint at a location known only to itself, after saving the
1323 original contents of that place and the breakpoint address itself,
1324 in it's own internal structures. When we resume the inferior, it
1325 will eventually take a SIGTRAP when it runs into the breakpoint.
1326 We handle this (in a different place) by restoring the contents of
1327 the breakpointed location (which is only known after it stops),
1328 chasing around to locate the shared libraries that have been
1329 loaded, then resuming.
1330
1331 For SVR4, the debugger interface structure contains a member (r_brk)
1332 which is statically initialized at the time the shared library is
1333 built, to the offset of a function (_r_debug_state) which is guaran-
1334 teed to be called once before mapping in a library, and again when
1335 the mapping is complete. At the time we are examining this member,
1336 it contains only the unrelocated offset of the function, so we have
1337 to do our own relocation. Later, when the dynamic linker actually
1338 runs, it relocates r_brk to be the actual address of _r_debug_state().
1339
1340 The debugger interface structure also contains an enumeration which
1341 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1342 depending upon whether or not the library is being mapped or unmapped,
1343 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1344 */
1345
1346 static int
1347 enable_break (struct svr4_info *info, int from_tty)
1348 {
1349 struct minimal_symbol *msymbol;
1350 char **bkpt_namep;
1351 asection *interp_sect;
1352 gdb_byte *interp_name;
1353 CORE_ADDR sym_addr;
1354
1355 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1356 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
1357
1358 /* If we already have a shared library list in the target, and
1359 r_debug contains r_brk, set the breakpoint there - this should
1360 mean r_brk has already been relocated. Assume the dynamic linker
1361 is the object containing r_brk. */
1362
1363 solib_add (NULL, from_tty, &current_target, auto_solib_add);
1364 sym_addr = 0;
1365 if (info->debug_base && solib_svr4_r_map (info) != 0)
1366 sym_addr = solib_svr4_r_brk (info);
1367
1368 if (sym_addr != 0)
1369 {
1370 struct obj_section *os;
1371
1372 sym_addr = gdbarch_addr_bits_remove
1373 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1374 sym_addr,
1375 &current_target));
1376
1377 /* On at least some versions of Solaris there's a dynamic relocation
1378 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
1379 we get control before the dynamic linker has self-relocated.
1380 Check if SYM_ADDR is in a known section, if it is assume we can
1381 trust its value. This is just a heuristic though, it could go away
1382 or be replaced if it's getting in the way.
1383
1384 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
1385 however it's spelled in your particular system) is ARM or Thumb.
1386 That knowledge is encoded in the address, if it's Thumb the low bit
1387 is 1. However, we've stripped that info above and it's not clear
1388 what all the consequences are of passing a non-addr_bits_remove'd
1389 address to create_solib_event_breakpoint. The call to
1390 find_pc_section verifies we know about the address and have some
1391 hope of computing the right kind of breakpoint to use (via
1392 symbol info). It does mean that GDB needs to be pointed at a
1393 non-stripped version of the dynamic linker in order to obtain
1394 information it already knows about. Sigh. */
1395
1396 os = find_pc_section (sym_addr);
1397 if (os != NULL)
1398 {
1399 /* Record the relocated start and end address of the dynamic linker
1400 text and plt section for svr4_in_dynsym_resolve_code. */
1401 bfd *tmp_bfd;
1402 CORE_ADDR load_addr;
1403
1404 tmp_bfd = os->objfile->obfd;
1405 load_addr = ANOFFSET (os->objfile->section_offsets,
1406 os->objfile->sect_index_text);
1407
1408 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1409 if (interp_sect)
1410 {
1411 info->interp_text_sect_low =
1412 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1413 info->interp_text_sect_high =
1414 info->interp_text_sect_low
1415 + bfd_section_size (tmp_bfd, interp_sect);
1416 }
1417 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1418 if (interp_sect)
1419 {
1420 info->interp_plt_sect_low =
1421 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1422 info->interp_plt_sect_high =
1423 info->interp_plt_sect_low
1424 + bfd_section_size (tmp_bfd, interp_sect);
1425 }
1426
1427 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1428 return 1;
1429 }
1430 }
1431
1432 /* Find the program interpreter; if not found, warn the user and drop
1433 into the old breakpoint at symbol code. */
1434 interp_name = find_program_interpreter ();
1435 if (interp_name)
1436 {
1437 CORE_ADDR load_addr = 0;
1438 int load_addr_found = 0;
1439 int loader_found_in_list = 0;
1440 struct so_list *so;
1441 bfd *tmp_bfd = NULL;
1442 struct target_ops *tmp_bfd_target;
1443 volatile struct gdb_exception ex;
1444
1445 sym_addr = 0;
1446
1447 /* Now we need to figure out where the dynamic linker was
1448 loaded so that we can load its symbols and place a breakpoint
1449 in the dynamic linker itself.
1450
1451 This address is stored on the stack. However, I've been unable
1452 to find any magic formula to find it for Solaris (appears to
1453 be trivial on GNU/Linux). Therefore, we have to try an alternate
1454 mechanism to find the dynamic linker's base address. */
1455
1456 TRY_CATCH (ex, RETURN_MASK_ALL)
1457 {
1458 tmp_bfd = solib_bfd_open (interp_name);
1459 }
1460 if (tmp_bfd == NULL)
1461 goto bkpt_at_symbol;
1462
1463 /* Now convert the TMP_BFD into a target. That way target, as
1464 well as BFD operations can be used. Note that closing the
1465 target will also close the underlying bfd. */
1466 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1467
1468 /* On a running target, we can get the dynamic linker's base
1469 address from the shared library table. */
1470 so = master_so_list ();
1471 while (so)
1472 {
1473 if (svr4_same_1 (interp_name, so->so_original_name))
1474 {
1475 load_addr_found = 1;
1476 loader_found_in_list = 1;
1477 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
1478 break;
1479 }
1480 so = so->next;
1481 }
1482
1483 /* If we were not able to find the base address of the loader
1484 from our so_list, then try using the AT_BASE auxilliary entry. */
1485 if (!load_addr_found)
1486 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
1487 {
1488 int addr_bit = gdbarch_addr_bit (target_gdbarch);
1489
1490 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
1491 that `+ load_addr' will overflow CORE_ADDR width not creating
1492 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
1493 GDB. */
1494
1495 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
1496 {
1497 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
1498 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
1499 tmp_bfd_target);
1500
1501 gdb_assert (load_addr < space_size);
1502
1503 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
1504 64bit ld.so with 32bit executable, it should not happen. */
1505
1506 if (tmp_entry_point < space_size
1507 && tmp_entry_point + load_addr >= space_size)
1508 load_addr -= space_size;
1509 }
1510
1511 load_addr_found = 1;
1512 }
1513
1514 /* Otherwise we find the dynamic linker's base address by examining
1515 the current pc (which should point at the entry point for the
1516 dynamic linker) and subtracting the offset of the entry point.
1517
1518 This is more fragile than the previous approaches, but is a good
1519 fallback method because it has actually been working well in
1520 most cases. */
1521 if (!load_addr_found)
1522 {
1523 struct regcache *regcache
1524 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1525
1526 load_addr = (regcache_read_pc (regcache)
1527 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1528 }
1529
1530 if (!loader_found_in_list)
1531 {
1532 info->debug_loader_name = xstrdup (interp_name);
1533 info->debug_loader_offset_p = 1;
1534 info->debug_loader_offset = load_addr;
1535 solib_add (NULL, from_tty, &current_target, auto_solib_add);
1536 }
1537
1538 /* Record the relocated start and end address of the dynamic linker
1539 text and plt section for svr4_in_dynsym_resolve_code. */
1540 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1541 if (interp_sect)
1542 {
1543 info->interp_text_sect_low =
1544 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1545 info->interp_text_sect_high =
1546 info->interp_text_sect_low
1547 + bfd_section_size (tmp_bfd, interp_sect);
1548 }
1549 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1550 if (interp_sect)
1551 {
1552 info->interp_plt_sect_low =
1553 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1554 info->interp_plt_sect_high =
1555 info->interp_plt_sect_low
1556 + bfd_section_size (tmp_bfd, interp_sect);
1557 }
1558
1559 /* Now try to set a breakpoint in the dynamic linker. */
1560 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1561 {
1562 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1563 if (sym_addr != 0)
1564 break;
1565 }
1566
1567 if (sym_addr != 0)
1568 /* Convert 'sym_addr' from a function pointer to an address.
1569 Because we pass tmp_bfd_target instead of the current
1570 target, this will always produce an unrelocated value. */
1571 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1572 sym_addr,
1573 tmp_bfd_target);
1574
1575 /* We're done with both the temporary bfd and target. Remember,
1576 closing the target closes the underlying bfd. */
1577 target_close (tmp_bfd_target, 0);
1578
1579 if (sym_addr != 0)
1580 {
1581 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
1582 xfree (interp_name);
1583 return 1;
1584 }
1585
1586 /* For whatever reason we couldn't set a breakpoint in the dynamic
1587 linker. Warn and drop into the old code. */
1588 bkpt_at_symbol:
1589 xfree (interp_name);
1590 warning (_("Unable to find dynamic linker breakpoint function.\n"
1591 "GDB will be unable to debug shared library initializers\n"
1592 "and track explicitly loaded dynamic code."));
1593 }
1594
1595 /* Scan through the lists of symbols, trying to look up the symbol and
1596 set a breakpoint there. Terminate loop when we/if we succeed. */
1597
1598 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1599 {
1600 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1601 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1602 {
1603 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1604 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1605 sym_addr,
1606 &current_target);
1607 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1608 return 1;
1609 }
1610 }
1611
1612 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1613 {
1614 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1615 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1616 {
1617 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1618 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1619 sym_addr,
1620 &current_target);
1621 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1622 return 1;
1623 }
1624 }
1625 return 0;
1626 }
1627
1628 /*
1629
1630 LOCAL FUNCTION
1631
1632 special_symbol_handling -- additional shared library symbol handling
1633
1634 SYNOPSIS
1635
1636 void special_symbol_handling ()
1637
1638 DESCRIPTION
1639
1640 Once the symbols from a shared object have been loaded in the usual
1641 way, we are called to do any system specific symbol handling that
1642 is needed.
1643
1644 For SunOS4, this consisted of grunging around in the dynamic
1645 linkers structures to find symbol definitions for "common" symbols
1646 and adding them to the minimal symbol table for the runtime common
1647 objfile.
1648
1649 However, for SVR4, there's nothing to do.
1650
1651 */
1652
1653 static void
1654 svr4_special_symbol_handling (void)
1655 {
1656 }
1657
1658 /* Read the ELF program headers from ABFD. Return the contents and
1659 set *PHDRS_SIZE to the size of the program headers. */
1660
1661 static gdb_byte *
1662 read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
1663 {
1664 Elf_Internal_Ehdr *ehdr;
1665 gdb_byte *buf;
1666
1667 ehdr = elf_elfheader (abfd);
1668
1669 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
1670 if (*phdrs_size == 0)
1671 return NULL;
1672
1673 buf = xmalloc (*phdrs_size);
1674 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
1675 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
1676 {
1677 xfree (buf);
1678 return NULL;
1679 }
1680
1681 return buf;
1682 }
1683
1684 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
1685 exec_bfd. Otherwise return 0.
1686
1687 We relocate all of the sections by the same amount. This
1688 behavior is mandated by recent editions of the System V ABI.
1689 According to the System V Application Binary Interface,
1690 Edition 4.1, page 5-5:
1691
1692 ... Though the system chooses virtual addresses for
1693 individual processes, it maintains the segments' relative
1694 positions. Because position-independent code uses relative
1695 addressesing between segments, the difference between
1696 virtual addresses in memory must match the difference
1697 between virtual addresses in the file. The difference
1698 between the virtual address of any segment in memory and
1699 the corresponding virtual address in the file is thus a
1700 single constant value for any one executable or shared
1701 object in a given process. This difference is the base
1702 address. One use of the base address is to relocate the
1703 memory image of the program during dynamic linking.
1704
1705 The same language also appears in Edition 4.0 of the System V
1706 ABI and is left unspecified in some of the earlier editions.
1707
1708 Decide if the objfile needs to be relocated. As indicated above, we will
1709 only be here when execution is stopped. But during attachment PC can be at
1710 arbitrary address therefore regcache_read_pc can be misleading (contrary to
1711 the auxv AT_ENTRY value). Moreover for executable with interpreter section
1712 regcache_read_pc would point to the interpreter and not the main executable.
1713
1714 So, to summarize, relocations are necessary when the start address obtained
1715 from the executable is different from the address in auxv AT_ENTRY entry.
1716
1717 [ The astute reader will note that we also test to make sure that
1718 the executable in question has the DYNAMIC flag set. It is my
1719 opinion that this test is unnecessary (undesirable even). It
1720 was added to avoid inadvertent relocation of an executable
1721 whose e_type member in the ELF header is not ET_DYN. There may
1722 be a time in the future when it is desirable to do relocations
1723 on other types of files as well in which case this condition
1724 should either be removed or modified to accomodate the new file
1725 type. - Kevin, Nov 2000. ] */
1726
1727 static int
1728 svr4_exec_displacement (CORE_ADDR *displacementp)
1729 {
1730 /* ENTRY_POINT is a possible function descriptor - before
1731 a call to gdbarch_convert_from_func_ptr_addr. */
1732 CORE_ADDR entry_point, displacement;
1733
1734 if (exec_bfd == NULL)
1735 return 0;
1736
1737 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
1738 being executed themselves and PIE (Position Independent Executable)
1739 executables are ET_DYN. */
1740
1741 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
1742 return 0;
1743
1744 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
1745 return 0;
1746
1747 displacement = entry_point - bfd_get_start_address (exec_bfd);
1748
1749 /* Verify the DISPLACEMENT candidate complies with the required page
1750 alignment. It is cheaper than the program headers comparison below. */
1751
1752 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1753 {
1754 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
1755
1756 /* p_align of PT_LOAD segments does not specify any alignment but
1757 only congruency of addresses:
1758 p_offset % p_align == p_vaddr % p_align
1759 Kernel is free to load the executable with lower alignment. */
1760
1761 if ((displacement & (elf->minpagesize - 1)) != 0)
1762 return 0;
1763 }
1764
1765 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
1766 comparing their program headers. If the program headers in the auxilliary
1767 vector do not match the program headers in the executable, then we are
1768 looking at a different file than the one used by the kernel - for
1769 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
1770
1771 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1772 {
1773 /* Be optimistic and clear OK only if GDB was able to verify the headers
1774 really do not match. */
1775 int phdrs_size, phdrs2_size, ok = 1;
1776 gdb_byte *buf, *buf2;
1777 int arch_size;
1778
1779 buf = read_program_header (-1, &phdrs_size, &arch_size);
1780 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
1781 if (buf != NULL && buf2 != NULL)
1782 {
1783 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1784
1785 /* We are dealing with three different addresses. EXEC_BFD
1786 represents current address in on-disk file. target memory content
1787 may be different from EXEC_BFD as the file may have been prelinked
1788 to a different address after the executable has been loaded.
1789 Moreover the address of placement in target memory can be
1790 different from what the program headers in target memory say - this
1791 is the goal of PIE.
1792
1793 Detected DISPLACEMENT covers both the offsets of PIE placement and
1794 possible new prelink performed after start of the program. Here
1795 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
1796 content offset for the verification purpose. */
1797
1798 if (phdrs_size != phdrs2_size
1799 || bfd_get_arch_size (exec_bfd) != arch_size)
1800 ok = 0;
1801 else if (arch_size == 32 && phdrs_size >= sizeof (Elf32_External_Phdr)
1802 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
1803 {
1804 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1805 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1806 CORE_ADDR displacement = 0;
1807 int i;
1808
1809 /* DISPLACEMENT could be found more easily by the difference of
1810 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1811 already have enough information to compute that displacement
1812 with what we've read. */
1813
1814 for (i = 0; i < ehdr2->e_phnum; i++)
1815 if (phdr2[i].p_type == PT_LOAD)
1816 {
1817 Elf32_External_Phdr *phdrp;
1818 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1819 CORE_ADDR vaddr, paddr;
1820 CORE_ADDR displacement_vaddr = 0;
1821 CORE_ADDR displacement_paddr = 0;
1822
1823 phdrp = &((Elf32_External_Phdr *) buf)[i];
1824 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1825 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1826
1827 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1828 byte_order);
1829 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1830
1831 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1832 byte_order);
1833 displacement_paddr = paddr - phdr2[i].p_paddr;
1834
1835 if (displacement_vaddr == displacement_paddr)
1836 displacement = displacement_vaddr;
1837
1838 break;
1839 }
1840
1841 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1842
1843 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
1844 {
1845 Elf32_External_Phdr *phdrp;
1846 Elf32_External_Phdr *phdr2p;
1847 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1848 CORE_ADDR vaddr, paddr;
1849
1850 phdrp = &((Elf32_External_Phdr *) buf)[i];
1851 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1852 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1853 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
1854
1855 /* PT_GNU_STACK is an exception by being never relocated by
1856 prelink as its addresses are always zero. */
1857
1858 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1859 continue;
1860
1861 /* Check also other adjustment combinations - PR 11786. */
1862
1863 vaddr = extract_unsigned_integer (buf_vaddr_p, 4, byte_order);
1864 vaddr -= displacement;
1865 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
1866
1867 paddr = extract_unsigned_integer (buf_paddr_p, 4, byte_order);
1868 paddr -= displacement;
1869 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
1870
1871 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1872 continue;
1873
1874 ok = 0;
1875 break;
1876 }
1877 }
1878 else if (arch_size == 64 && phdrs_size >= sizeof (Elf64_External_Phdr)
1879 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
1880 {
1881 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1882 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1883 CORE_ADDR displacement = 0;
1884 int i;
1885
1886 /* DISPLACEMENT could be found more easily by the difference of
1887 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1888 already have enough information to compute that displacement
1889 with what we've read. */
1890
1891 for (i = 0; i < ehdr2->e_phnum; i++)
1892 if (phdr2[i].p_type == PT_LOAD)
1893 {
1894 Elf64_External_Phdr *phdrp;
1895 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1896 CORE_ADDR vaddr, paddr;
1897 CORE_ADDR displacement_vaddr = 0;
1898 CORE_ADDR displacement_paddr = 0;
1899
1900 phdrp = &((Elf64_External_Phdr *) buf)[i];
1901 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1902 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1903
1904 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
1905 byte_order);
1906 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1907
1908 paddr = extract_unsigned_integer (buf_paddr_p, 8,
1909 byte_order);
1910 displacement_paddr = paddr - phdr2[i].p_paddr;
1911
1912 if (displacement_vaddr == displacement_paddr)
1913 displacement = displacement_vaddr;
1914
1915 break;
1916 }
1917
1918 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1919
1920 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
1921 {
1922 Elf64_External_Phdr *phdrp;
1923 Elf64_External_Phdr *phdr2p;
1924 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1925 CORE_ADDR vaddr, paddr;
1926
1927 phdrp = &((Elf64_External_Phdr *) buf)[i];
1928 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1929 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1930 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
1931
1932 /* PT_GNU_STACK is an exception by being never relocated by
1933 prelink as its addresses are always zero. */
1934
1935 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1936 continue;
1937
1938 /* Check also other adjustment combinations - PR 11786. */
1939
1940 vaddr = extract_unsigned_integer (buf_vaddr_p, 8, byte_order);
1941 vaddr -= displacement;
1942 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
1943
1944 paddr = extract_unsigned_integer (buf_paddr_p, 8, byte_order);
1945 paddr -= displacement;
1946 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
1947
1948 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1949 continue;
1950
1951 ok = 0;
1952 break;
1953 }
1954 }
1955 else
1956 ok = 0;
1957 }
1958
1959 xfree (buf);
1960 xfree (buf2);
1961
1962 if (!ok)
1963 return 0;
1964 }
1965
1966 if (info_verbose)
1967 {
1968 /* It can be printed repeatedly as there is no easy way to check
1969 the executable symbols/file has been already relocated to
1970 displacement. */
1971
1972 printf_unfiltered (_("Using PIE (Position Independent Executable) "
1973 "displacement %s for \"%s\".\n"),
1974 paddress (target_gdbarch, displacement),
1975 bfd_get_filename (exec_bfd));
1976 }
1977
1978 *displacementp = displacement;
1979 return 1;
1980 }
1981
1982 /* Relocate the main executable. This function should be called upon
1983 stopping the inferior process at the entry point to the program.
1984 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
1985 different, the main executable is relocated by the proper amount. */
1986
1987 static void
1988 svr4_relocate_main_executable (void)
1989 {
1990 CORE_ADDR displacement;
1991
1992 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
1993 probably contains the offsets computed using the PIE displacement
1994 from the previous run, which of course are irrelevant for this run.
1995 So we need to determine the new PIE displacement and recompute the
1996 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
1997 already contains pre-computed offsets.
1998
1999 If we cannot compute the PIE displacement, either:
2000
2001 - The executable is not PIE.
2002
2003 - SYMFILE_OBJFILE does not match the executable started in the target.
2004 This can happen for main executable symbols loaded at the host while
2005 `ld.so --ld-args main-executable' is loaded in the target.
2006
2007 Then we leave the section offsets untouched and use them as is for
2008 this run. Either:
2009
2010 - These section offsets were properly reset earlier, and thus
2011 already contain the correct values. This can happen for instance
2012 when reconnecting via the remote protocol to a target that supports
2013 the `qOffsets' packet.
2014
2015 - The section offsets were not reset earlier, and the best we can
2016 hope is that the old offsets are still applicable to the new run.
2017 */
2018
2019 if (! svr4_exec_displacement (&displacement))
2020 return;
2021
2022 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2023 addresses. */
2024
2025 if (symfile_objfile)
2026 {
2027 struct section_offsets *new_offsets;
2028 int i;
2029
2030 new_offsets = alloca (symfile_objfile->num_sections
2031 * sizeof (*new_offsets));
2032
2033 for (i = 0; i < symfile_objfile->num_sections; i++)
2034 new_offsets->offsets[i] = displacement;
2035
2036 objfile_relocate (symfile_objfile, new_offsets);
2037 }
2038 else if (exec_bfd)
2039 {
2040 asection *asect;
2041
2042 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2043 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2044 (bfd_section_vma (exec_bfd, asect)
2045 + displacement));
2046 }
2047 }
2048
2049 /*
2050
2051 GLOBAL FUNCTION
2052
2053 svr4_solib_create_inferior_hook -- shared library startup support
2054
2055 SYNOPSIS
2056
2057 void svr4_solib_create_inferior_hook (int from_tty)
2058
2059 DESCRIPTION
2060
2061 When gdb starts up the inferior, it nurses it along (through the
2062 shell) until it is ready to execute it's first instruction. At this
2063 point, this function gets called via expansion of the macro
2064 SOLIB_CREATE_INFERIOR_HOOK.
2065
2066 For SunOS executables, this first instruction is typically the
2067 one at "_start", or a similar text label, regardless of whether
2068 the executable is statically or dynamically linked. The runtime
2069 startup code takes care of dynamically linking in any shared
2070 libraries, once gdb allows the inferior to continue.
2071
2072 For SVR4 executables, this first instruction is either the first
2073 instruction in the dynamic linker (for dynamically linked
2074 executables) or the instruction at "start" for statically linked
2075 executables. For dynamically linked executables, the system
2076 first exec's /lib/libc.so.N, which contains the dynamic linker,
2077 and starts it running. The dynamic linker maps in any needed
2078 shared libraries, maps in the actual user executable, and then
2079 jumps to "start" in the user executable.
2080
2081 For both SunOS shared libraries, and SVR4 shared libraries, we
2082 can arrange to cooperate with the dynamic linker to discover the
2083 names of shared libraries that are dynamically linked, and the
2084 base addresses to which they are linked.
2085
2086 This function is responsible for discovering those names and
2087 addresses, and saving sufficient information about them to allow
2088 their symbols to be read at a later time.
2089
2090 FIXME
2091
2092 Between enable_break() and disable_break(), this code does not
2093 properly handle hitting breakpoints which the user might have
2094 set in the startup code or in the dynamic linker itself. Proper
2095 handling will probably have to wait until the implementation is
2096 changed to use the "breakpoint handler function" method.
2097
2098 Also, what if child has exit()ed? Must exit loop somehow.
2099 */
2100
2101 static void
2102 svr4_solib_create_inferior_hook (int from_tty)
2103 {
2104 #if defined(_SCO_DS)
2105 struct inferior *inf;
2106 struct thread_info *tp;
2107 #endif /* defined(_SCO_DS) */
2108 struct svr4_info *info;
2109
2110 info = get_svr4_info ();
2111
2112 /* Relocate the main executable if necessary. */
2113 svr4_relocate_main_executable ();
2114
2115 if (!svr4_have_link_map_offsets ())
2116 return;
2117
2118 if (!enable_break (info, from_tty))
2119 return;
2120
2121 #if defined(_SCO_DS)
2122 /* SCO needs the loop below, other systems should be using the
2123 special shared library breakpoints and the shared library breakpoint
2124 service routine.
2125
2126 Now run the target. It will eventually hit the breakpoint, at
2127 which point all of the libraries will have been mapped in and we
2128 can go groveling around in the dynamic linker structures to find
2129 out what we need to know about them. */
2130
2131 inf = current_inferior ();
2132 tp = inferior_thread ();
2133
2134 clear_proceed_status ();
2135 inf->stop_soon = STOP_QUIETLY;
2136 tp->stop_signal = TARGET_SIGNAL_0;
2137 do
2138 {
2139 target_resume (pid_to_ptid (-1), 0, tp->stop_signal);
2140 wait_for_inferior (0);
2141 }
2142 while (tp->stop_signal != TARGET_SIGNAL_TRAP);
2143 inf->stop_soon = NO_STOP_QUIETLY;
2144 #endif /* defined(_SCO_DS) */
2145 }
2146
2147 static void
2148 svr4_clear_solib (void)
2149 {
2150 struct svr4_info *info;
2151
2152 info = get_svr4_info ();
2153 info->debug_base = 0;
2154 info->debug_loader_offset_p = 0;
2155 info->debug_loader_offset = 0;
2156 xfree (info->debug_loader_name);
2157 info->debug_loader_name = NULL;
2158 }
2159
2160 static void
2161 svr4_free_so (struct so_list *so)
2162 {
2163 xfree (so->lm_info->lm);
2164 xfree (so->lm_info);
2165 }
2166
2167
2168 /* Clear any bits of ADDR that wouldn't fit in a target-format
2169 data pointer. "Data pointer" here refers to whatever sort of
2170 address the dynamic linker uses to manage its sections. At the
2171 moment, we don't support shared libraries on any processors where
2172 code and data pointers are different sizes.
2173
2174 This isn't really the right solution. What we really need here is
2175 a way to do arithmetic on CORE_ADDR values that respects the
2176 natural pointer/address correspondence. (For example, on the MIPS,
2177 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2178 sign-extend the value. There, simply truncating the bits above
2179 gdbarch_ptr_bit, as we do below, is no good.) This should probably
2180 be a new gdbarch method or something. */
2181 static CORE_ADDR
2182 svr4_truncate_ptr (CORE_ADDR addr)
2183 {
2184 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
2185 /* We don't need to truncate anything, and the bit twiddling below
2186 will fail due to overflow problems. */
2187 return addr;
2188 else
2189 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
2190 }
2191
2192
2193 static void
2194 svr4_relocate_section_addresses (struct so_list *so,
2195 struct target_section *sec)
2196 {
2197 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
2198 sec->bfd));
2199 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
2200 sec->bfd));
2201 }
2202 \f
2203
2204 /* Architecture-specific operations. */
2205
2206 /* Per-architecture data key. */
2207 static struct gdbarch_data *solib_svr4_data;
2208
2209 struct solib_svr4_ops
2210 {
2211 /* Return a description of the layout of `struct link_map'. */
2212 struct link_map_offsets *(*fetch_link_map_offsets)(void);
2213 };
2214
2215 /* Return a default for the architecture-specific operations. */
2216
2217 static void *
2218 solib_svr4_init (struct obstack *obstack)
2219 {
2220 struct solib_svr4_ops *ops;
2221
2222 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
2223 ops->fetch_link_map_offsets = NULL;
2224 return ops;
2225 }
2226
2227 /* Set the architecture-specific `struct link_map_offsets' fetcher for
2228 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
2229
2230 void
2231 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
2232 struct link_map_offsets *(*flmo) (void))
2233 {
2234 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
2235
2236 ops->fetch_link_map_offsets = flmo;
2237
2238 set_solib_ops (gdbarch, &svr4_so_ops);
2239 }
2240
2241 /* Fetch a link_map_offsets structure using the architecture-specific
2242 `struct link_map_offsets' fetcher. */
2243
2244 static struct link_map_offsets *
2245 svr4_fetch_link_map_offsets (void)
2246 {
2247 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
2248
2249 gdb_assert (ops->fetch_link_map_offsets);
2250 return ops->fetch_link_map_offsets ();
2251 }
2252
2253 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
2254
2255 static int
2256 svr4_have_link_map_offsets (void)
2257 {
2258 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
2259
2260 return (ops->fetch_link_map_offsets != NULL);
2261 }
2262 \f
2263
2264 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
2265 `struct r_debug' and a `struct link_map' that are binary compatible
2266 with the origional SVR4 implementation. */
2267
2268 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2269 for an ILP32 SVR4 system. */
2270
2271 struct link_map_offsets *
2272 svr4_ilp32_fetch_link_map_offsets (void)
2273 {
2274 static struct link_map_offsets lmo;
2275 static struct link_map_offsets *lmp = NULL;
2276
2277 if (lmp == NULL)
2278 {
2279 lmp = &lmo;
2280
2281 lmo.r_version_offset = 0;
2282 lmo.r_version_size = 4;
2283 lmo.r_map_offset = 4;
2284 lmo.r_brk_offset = 8;
2285 lmo.r_ldsomap_offset = 20;
2286
2287 /* Everything we need is in the first 20 bytes. */
2288 lmo.link_map_size = 20;
2289 lmo.l_addr_offset = 0;
2290 lmo.l_name_offset = 4;
2291 lmo.l_ld_offset = 8;
2292 lmo.l_next_offset = 12;
2293 lmo.l_prev_offset = 16;
2294 }
2295
2296 return lmp;
2297 }
2298
2299 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2300 for an LP64 SVR4 system. */
2301
2302 struct link_map_offsets *
2303 svr4_lp64_fetch_link_map_offsets (void)
2304 {
2305 static struct link_map_offsets lmo;
2306 static struct link_map_offsets *lmp = NULL;
2307
2308 if (lmp == NULL)
2309 {
2310 lmp = &lmo;
2311
2312 lmo.r_version_offset = 0;
2313 lmo.r_version_size = 4;
2314 lmo.r_map_offset = 8;
2315 lmo.r_brk_offset = 16;
2316 lmo.r_ldsomap_offset = 40;
2317
2318 /* Everything we need is in the first 40 bytes. */
2319 lmo.link_map_size = 40;
2320 lmo.l_addr_offset = 0;
2321 lmo.l_name_offset = 8;
2322 lmo.l_ld_offset = 16;
2323 lmo.l_next_offset = 24;
2324 lmo.l_prev_offset = 32;
2325 }
2326
2327 return lmp;
2328 }
2329 \f
2330
2331 struct target_so_ops svr4_so_ops;
2332
2333 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
2334 different rule for symbol lookup. The lookup begins here in the DSO, not in
2335 the main executable. */
2336
2337 static struct symbol *
2338 elf_lookup_lib_symbol (const struct objfile *objfile,
2339 const char *name,
2340 const domain_enum domain)
2341 {
2342 bfd *abfd;
2343
2344 if (objfile == symfile_objfile)
2345 abfd = exec_bfd;
2346 else
2347 {
2348 /* OBJFILE should have been passed as the non-debug one. */
2349 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
2350
2351 abfd = objfile->obfd;
2352 }
2353
2354 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
2355 return NULL;
2356
2357 return lookup_global_symbol_from_objfile (objfile, name, domain);
2358 }
2359
2360 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
2361
2362 void
2363 _initialize_svr4_solib (void)
2364 {
2365 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
2366 solib_svr4_pspace_data
2367 = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
2368
2369 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
2370 svr4_so_ops.free_so = svr4_free_so;
2371 svr4_so_ops.clear_solib = svr4_clear_solib;
2372 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
2373 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
2374 svr4_so_ops.current_sos = svr4_current_sos;
2375 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
2376 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
2377 svr4_so_ops.bfd_open = solib_bfd_open;
2378 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
2379 svr4_so_ops.same = svr4_same;
2380 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
2381 }
This page took 0.086901 seconds and 4 git commands to generate.