1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "elf/external.h"
23 #include "elf/common.h"
34 #include "gdbthread.h"
37 #include "gdb_assert.h"
41 #include "solib-svr4.h"
43 #include "bfd-target.h"
47 #include "exceptions.h"
51 static struct link_map_offsets
*svr4_fetch_link_map_offsets (void);
52 static int svr4_have_link_map_offsets (void);
53 static void svr4_relocate_main_executable (void);
54 static void svr4_free_library_list (void *p_list
);
56 /* Link map info to include in an allocated so_list entry. */
60 /* Amount by which addresses in the binary should be relocated to
61 match the inferior. The direct inferior value is L_ADDR_INFERIOR.
62 When prelinking is involved and the prelink base address changes,
63 we may need a different offset - the recomputed offset is in L_ADDR.
64 It is commonly the same value. It is cached as we want to warn about
65 the difference and compute it only once. L_ADDR is valid
67 CORE_ADDR l_addr
, l_addr_inferior
;
68 unsigned int l_addr_p
: 1;
70 /* The target location of lm. */
73 /* Values read in from inferior's fields of the same name. */
74 CORE_ADDR l_ld
, l_next
, l_prev
, l_name
;
77 /* On SVR4 systems, a list of symbols in the dynamic linker where
78 GDB can try to place a breakpoint to monitor shared library
81 If none of these symbols are found, or other errors occur, then
82 SVR4 systems will fall back to using a symbol as the "startup
83 mapping complete" breakpoint address. */
85 static const char * const solib_break_names
[] =
91 "__dl_rtld_db_dlactivity",
97 static const char * const bkpt_names
[] =
105 static const char * const main_name_list
[] =
111 /* What to do when a probe stop occurs. */
115 /* Something went seriously wrong. Stop using probes and
116 revert to using the older interface. */
117 PROBES_INTERFACE_FAILED
,
119 /* No action is required. The shared object list is still
123 /* The shared object list should be reloaded entirely. */
126 /* Attempt to incrementally update the shared object list. If
127 the update fails or is not possible, fall back to reloading
132 /* A probe's name and its associated action. */
136 /* The name of the probe. */
139 /* What to do when a probe stop occurs. */
140 enum probe_action action
;
143 /* A list of named probes and their associated actions. If all
144 probes are present in the dynamic linker then the probes-based
145 interface will be used. */
147 static const struct probe_info probe_info
[] =
149 { "init_start", DO_NOTHING
},
150 { "init_complete", FULL_RELOAD
},
151 { "map_start", DO_NOTHING
},
152 { "map_failed", DO_NOTHING
},
153 { "reloc_complete", UPDATE_OR_RELOAD
},
154 { "unmap_start", DO_NOTHING
},
155 { "unmap_complete", FULL_RELOAD
},
158 #define NUM_PROBES ARRAY_SIZE (probe_info)
160 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
161 the same shared library. */
164 svr4_same_1 (const char *gdb_so_name
, const char *inferior_so_name
)
166 if (strcmp (gdb_so_name
, inferior_so_name
) == 0)
169 /* On Solaris, when starting inferior we think that dynamic linker is
170 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
171 contains /lib/ld.so.1. Sometimes one file is a link to another, but
172 sometimes they have identical content, but are not linked to each
173 other. We don't restrict this check for Solaris, but the chances
174 of running into this situation elsewhere are very low. */
175 if (strcmp (gdb_so_name
, "/usr/lib/ld.so.1") == 0
176 && strcmp (inferior_so_name
, "/lib/ld.so.1") == 0)
179 /* Similarly, we observed the same issue with sparc64, but with
180 different locations. */
181 if (strcmp (gdb_so_name
, "/usr/lib/sparcv9/ld.so.1") == 0
182 && strcmp (inferior_so_name
, "/lib/sparcv9/ld.so.1") == 0)
189 svr4_same (struct so_list
*gdb
, struct so_list
*inferior
)
191 return (svr4_same_1 (gdb
->so_original_name
, inferior
->so_original_name
));
194 static struct lm_info
*
195 lm_info_read (CORE_ADDR lm_addr
)
197 struct link_map_offsets
*lmo
= svr4_fetch_link_map_offsets ();
199 struct lm_info
*lm_info
;
200 struct cleanup
*back_to
;
202 lm
= xmalloc (lmo
->link_map_size
);
203 back_to
= make_cleanup (xfree
, lm
);
205 if (target_read_memory (lm_addr
, lm
, lmo
->link_map_size
) != 0)
207 warning (_("Error reading shared library list entry at %s"),
208 paddress (target_gdbarch (), lm_addr
)),
213 struct type
*ptr_type
= builtin_type (target_gdbarch ())->builtin_data_ptr
;
215 lm_info
= xzalloc (sizeof (*lm_info
));
216 lm_info
->lm_addr
= lm_addr
;
218 lm_info
->l_addr_inferior
= extract_typed_address (&lm
[lmo
->l_addr_offset
],
220 lm_info
->l_ld
= extract_typed_address (&lm
[lmo
->l_ld_offset
], ptr_type
);
221 lm_info
->l_next
= extract_typed_address (&lm
[lmo
->l_next_offset
],
223 lm_info
->l_prev
= extract_typed_address (&lm
[lmo
->l_prev_offset
],
225 lm_info
->l_name
= extract_typed_address (&lm
[lmo
->l_name_offset
],
229 do_cleanups (back_to
);
235 has_lm_dynamic_from_link_map (void)
237 struct link_map_offsets
*lmo
= svr4_fetch_link_map_offsets ();
239 return lmo
->l_ld_offset
>= 0;
243 lm_addr_check (const struct so_list
*so
, bfd
*abfd
)
245 if (!so
->lm_info
->l_addr_p
)
247 struct bfd_section
*dyninfo_sect
;
248 CORE_ADDR l_addr
, l_dynaddr
, dynaddr
;
250 l_addr
= so
->lm_info
->l_addr_inferior
;
252 if (! abfd
|| ! has_lm_dynamic_from_link_map ())
255 l_dynaddr
= so
->lm_info
->l_ld
;
257 dyninfo_sect
= bfd_get_section_by_name (abfd
, ".dynamic");
258 if (dyninfo_sect
== NULL
)
261 dynaddr
= bfd_section_vma (abfd
, dyninfo_sect
);
263 if (dynaddr
+ l_addr
!= l_dynaddr
)
265 CORE_ADDR align
= 0x1000;
266 CORE_ADDR minpagesize
= align
;
268 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
)
270 Elf_Internal_Ehdr
*ehdr
= elf_tdata (abfd
)->elf_header
;
271 Elf_Internal_Phdr
*phdr
= elf_tdata (abfd
)->phdr
;
276 for (i
= 0; i
< ehdr
->e_phnum
; i
++)
277 if (phdr
[i
].p_type
== PT_LOAD
&& phdr
[i
].p_align
> align
)
278 align
= phdr
[i
].p_align
;
280 minpagesize
= get_elf_backend_data (abfd
)->minpagesize
;
283 /* Turn it into a mask. */
286 /* If the changes match the alignment requirements, we
287 assume we're using a core file that was generated by the
288 same binary, just prelinked with a different base offset.
289 If it doesn't match, we may have a different binary, the
290 same binary with the dynamic table loaded at an unrelated
291 location, or anything, really. To avoid regressions,
292 don't adjust the base offset in the latter case, although
293 odds are that, if things really changed, debugging won't
296 One could expect more the condition
297 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
298 but the one below is relaxed for PPC. The PPC kernel supports
299 either 4k or 64k page sizes. To be prepared for 64k pages,
300 PPC ELF files are built using an alignment requirement of 64k.
301 However, when running on a kernel supporting 4k pages, the memory
302 mapping of the library may not actually happen on a 64k boundary!
304 (In the usual case where (l_addr & align) == 0, this check is
305 equivalent to the possibly expected check above.)
307 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
309 l_addr
= l_dynaddr
- dynaddr
;
311 if ((l_addr
& (minpagesize
- 1)) == 0
312 && (l_addr
& align
) == ((l_dynaddr
- dynaddr
) & align
))
315 printf_unfiltered (_("Using PIC (Position Independent Code) "
316 "prelink displacement %s for \"%s\".\n"),
317 paddress (target_gdbarch (), l_addr
),
322 /* There is no way to verify the library file matches. prelink
323 can during prelinking of an unprelinked file (or unprelinking
324 of a prelinked file) shift the DYNAMIC segment by arbitrary
325 offset without any page size alignment. There is no way to
326 find out the ELF header and/or Program Headers for a limited
327 verification if it they match. One could do a verification
328 of the DYNAMIC segment. Still the found address is the best
329 one GDB could find. */
331 warning (_(".dynamic section for \"%s\" "
332 "is not at the expected address "
333 "(wrong library or version mismatch?)"), so
->so_name
);
338 so
->lm_info
->l_addr
= l_addr
;
339 so
->lm_info
->l_addr_p
= 1;
342 return so
->lm_info
->l_addr
;
345 /* Per pspace SVR4 specific data. */
349 CORE_ADDR debug_base
; /* Base of dynamic linker structures. */
351 /* Validity flag for debug_loader_offset. */
352 int debug_loader_offset_p
;
354 /* Load address for the dynamic linker, inferred. */
355 CORE_ADDR debug_loader_offset
;
357 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
358 char *debug_loader_name
;
360 /* Load map address for the main executable. */
361 CORE_ADDR main_lm_addr
;
363 CORE_ADDR interp_text_sect_low
;
364 CORE_ADDR interp_text_sect_high
;
365 CORE_ADDR interp_plt_sect_low
;
366 CORE_ADDR interp_plt_sect_high
;
368 /* Nonzero if the list of objects was last obtained from the target
369 via qXfer:libraries-svr4:read. */
372 /* Table of struct probe_and_action instances, used by the
373 probes-based interface to map breakpoint addresses to probes
374 and their associated actions. Lookup is performed using
375 probe_and_action->probe->address. */
378 /* List of objects loaded into the inferior, used by the probes-
380 struct so_list
*solib_list
;
383 /* Per-program-space data key. */
384 static const struct program_space_data
*solib_svr4_pspace_data
;
386 /* Free the probes table. */
389 free_probes_table (struct svr4_info
*info
)
391 if (info
->probes_table
== NULL
)
394 htab_delete (info
->probes_table
);
395 info
->probes_table
= NULL
;
398 /* Free the solib list. */
401 free_solib_list (struct svr4_info
*info
)
403 svr4_free_library_list (&info
->solib_list
);
404 info
->solib_list
= NULL
;
408 svr4_pspace_data_cleanup (struct program_space
*pspace
, void *arg
)
410 struct svr4_info
*info
;
412 info
= program_space_data (pspace
, solib_svr4_pspace_data
);
416 free_probes_table (info
);
417 free_solib_list (info
);
422 /* Get the current svr4 data. If none is found yet, add it now. This
423 function always returns a valid object. */
425 static struct svr4_info
*
428 struct svr4_info
*info
;
430 info
= program_space_data (current_program_space
, solib_svr4_pspace_data
);
434 info
= XZALLOC (struct svr4_info
);
435 set_program_space_data (current_program_space
, solib_svr4_pspace_data
, info
);
439 /* Local function prototypes */
441 static int match_main (const char *);
443 /* Read program header TYPE from inferior memory. The header is found
444 by scanning the OS auxillary vector.
446 If TYPE == -1, return the program headers instead of the contents of
449 Return a pointer to allocated memory holding the program header contents,
450 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
451 size of those contents is returned to P_SECT_SIZE. Likewise, the target
452 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
455 read_program_header (int type
, int *p_sect_size
, int *p_arch_size
)
457 enum bfd_endian byte_order
= gdbarch_byte_order (target_gdbarch ());
458 CORE_ADDR at_phdr
, at_phent
, at_phnum
, pt_phdr
= 0;
459 int arch_size
, sect_size
;
464 /* Get required auxv elements from target. */
465 if (target_auxv_search (¤t_target
, AT_PHDR
, &at_phdr
) <= 0)
467 if (target_auxv_search (¤t_target
, AT_PHENT
, &at_phent
) <= 0)
469 if (target_auxv_search (¤t_target
, AT_PHNUM
, &at_phnum
) <= 0)
471 if (!at_phdr
|| !at_phnum
)
474 /* Determine ELF architecture type. */
475 if (at_phent
== sizeof (Elf32_External_Phdr
))
477 else if (at_phent
== sizeof (Elf64_External_Phdr
))
482 /* Find the requested segment. */
486 sect_size
= at_phent
* at_phnum
;
488 else if (arch_size
== 32)
490 Elf32_External_Phdr phdr
;
493 /* Search for requested PHDR. */
494 for (i
= 0; i
< at_phnum
; i
++)
498 if (target_read_memory (at_phdr
+ i
* sizeof (phdr
),
499 (gdb_byte
*)&phdr
, sizeof (phdr
)))
502 p_type
= extract_unsigned_integer ((gdb_byte
*) phdr
.p_type
,
505 if (p_type
== PT_PHDR
)
508 pt_phdr
= extract_unsigned_integer ((gdb_byte
*) phdr
.p_vaddr
,
519 /* Retrieve address and size. */
520 sect_addr
= extract_unsigned_integer ((gdb_byte
*)phdr
.p_vaddr
,
522 sect_size
= extract_unsigned_integer ((gdb_byte
*)phdr
.p_memsz
,
527 Elf64_External_Phdr phdr
;
530 /* Search for requested PHDR. */
531 for (i
= 0; i
< at_phnum
; i
++)
535 if (target_read_memory (at_phdr
+ i
* sizeof (phdr
),
536 (gdb_byte
*)&phdr
, sizeof (phdr
)))
539 p_type
= extract_unsigned_integer ((gdb_byte
*) phdr
.p_type
,
542 if (p_type
== PT_PHDR
)
545 pt_phdr
= extract_unsigned_integer ((gdb_byte
*) phdr
.p_vaddr
,
556 /* Retrieve address and size. */
557 sect_addr
= extract_unsigned_integer ((gdb_byte
*)phdr
.p_vaddr
,
559 sect_size
= extract_unsigned_integer ((gdb_byte
*)phdr
.p_memsz
,
563 /* PT_PHDR is optional, but we really need it
564 for PIE to make this work in general. */
568 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
569 Relocation offset is the difference between the two. */
570 sect_addr
= sect_addr
+ (at_phdr
- pt_phdr
);
573 /* Read in requested program header. */
574 buf
= xmalloc (sect_size
);
575 if (target_read_memory (sect_addr
, buf
, sect_size
))
582 *p_arch_size
= arch_size
;
584 *p_sect_size
= sect_size
;
590 /* Return program interpreter string. */
592 find_program_interpreter (void)
594 gdb_byte
*buf
= NULL
;
596 /* If we have an exec_bfd, use its section table. */
598 && bfd_get_flavour (exec_bfd
) == bfd_target_elf_flavour
)
600 struct bfd_section
*interp_sect
;
602 interp_sect
= bfd_get_section_by_name (exec_bfd
, ".interp");
603 if (interp_sect
!= NULL
)
605 int sect_size
= bfd_section_size (exec_bfd
, interp_sect
);
607 buf
= xmalloc (sect_size
);
608 bfd_get_section_contents (exec_bfd
, interp_sect
, buf
, 0, sect_size
);
612 /* If we didn't find it, use the target auxillary vector. */
614 buf
= read_program_header (PT_INTERP
, NULL
, NULL
);
620 /* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
621 returned and the corresponding PTR is set. */
624 scan_dyntag (int dyntag
, bfd
*abfd
, CORE_ADDR
*ptr
)
626 int arch_size
, step
, sect_size
;
628 CORE_ADDR dyn_ptr
, dyn_addr
;
629 gdb_byte
*bufend
, *bufstart
, *buf
;
630 Elf32_External_Dyn
*x_dynp_32
;
631 Elf64_External_Dyn
*x_dynp_64
;
632 struct bfd_section
*sect
;
633 struct target_section
*target_section
;
638 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
641 arch_size
= bfd_get_arch_size (abfd
);
645 /* Find the start address of the .dynamic section. */
646 sect
= bfd_get_section_by_name (abfd
, ".dynamic");
650 for (target_section
= current_target_sections
->sections
;
651 target_section
< current_target_sections
->sections_end
;
653 if (sect
== target_section
->the_bfd_section
)
655 if (target_section
< current_target_sections
->sections_end
)
656 dyn_addr
= target_section
->addr
;
659 /* ABFD may come from OBJFILE acting only as a symbol file without being
660 loaded into the target (see add_symbol_file_command). This case is
661 such fallback to the file VMA address without the possibility of
662 having the section relocated to its actual in-memory address. */
664 dyn_addr
= bfd_section_vma (abfd
, sect
);
667 /* Read in .dynamic from the BFD. We will get the actual value
668 from memory later. */
669 sect_size
= bfd_section_size (abfd
, sect
);
670 buf
= bufstart
= alloca (sect_size
);
671 if (!bfd_get_section_contents (abfd
, sect
,
675 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
676 step
= (arch_size
== 32) ? sizeof (Elf32_External_Dyn
)
677 : sizeof (Elf64_External_Dyn
);
678 for (bufend
= buf
+ sect_size
;
684 x_dynp_32
= (Elf32_External_Dyn
*) buf
;
685 dyn_tag
= bfd_h_get_32 (abfd
, (bfd_byte
*) x_dynp_32
->d_tag
);
686 dyn_ptr
= bfd_h_get_32 (abfd
, (bfd_byte
*) x_dynp_32
->d_un
.d_ptr
);
690 x_dynp_64
= (Elf64_External_Dyn
*) buf
;
691 dyn_tag
= bfd_h_get_64 (abfd
, (bfd_byte
*) x_dynp_64
->d_tag
);
692 dyn_ptr
= bfd_h_get_64 (abfd
, (bfd_byte
*) x_dynp_64
->d_un
.d_ptr
);
694 if (dyn_tag
== DT_NULL
)
696 if (dyn_tag
== dyntag
)
698 /* If requested, try to read the runtime value of this .dynamic
702 struct type
*ptr_type
;
706 ptr_type
= builtin_type (target_gdbarch ())->builtin_data_ptr
;
707 ptr_addr
= dyn_addr
+ (buf
- bufstart
) + arch_size
/ 8;
708 if (target_read_memory (ptr_addr
, ptr_buf
, arch_size
/ 8) == 0)
709 dyn_ptr
= extract_typed_address (ptr_buf
, ptr_type
);
719 /* Scan for DYNTAG in .dynamic section of the target's main executable,
720 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
721 returned and the corresponding PTR is set. */
724 scan_dyntag_auxv (int dyntag
, CORE_ADDR
*ptr
)
726 enum bfd_endian byte_order
= gdbarch_byte_order (target_gdbarch ());
727 int sect_size
, arch_size
, step
;
730 gdb_byte
*bufend
, *bufstart
, *buf
;
732 /* Read in .dynamic section. */
733 buf
= bufstart
= read_program_header (PT_DYNAMIC
, §_size
, &arch_size
);
737 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
738 step
= (arch_size
== 32) ? sizeof (Elf32_External_Dyn
)
739 : sizeof (Elf64_External_Dyn
);
740 for (bufend
= buf
+ sect_size
;
746 Elf32_External_Dyn
*dynp
= (Elf32_External_Dyn
*) buf
;
748 dyn_tag
= extract_unsigned_integer ((gdb_byte
*) dynp
->d_tag
,
750 dyn_ptr
= extract_unsigned_integer ((gdb_byte
*) dynp
->d_un
.d_ptr
,
755 Elf64_External_Dyn
*dynp
= (Elf64_External_Dyn
*) buf
;
757 dyn_tag
= extract_unsigned_integer ((gdb_byte
*) dynp
->d_tag
,
759 dyn_ptr
= extract_unsigned_integer ((gdb_byte
*) dynp
->d_un
.d_ptr
,
762 if (dyn_tag
== DT_NULL
)
765 if (dyn_tag
== dyntag
)
779 /* Locate the base address of dynamic linker structs for SVR4 elf
782 For SVR4 elf targets the address of the dynamic linker's runtime
783 structure is contained within the dynamic info section in the
784 executable file. The dynamic section is also mapped into the
785 inferior address space. Because the runtime loader fills in the
786 real address before starting the inferior, we have to read in the
787 dynamic info section from the inferior address space.
788 If there are any errors while trying to find the address, we
789 silently return 0, otherwise the found address is returned. */
792 elf_locate_base (void)
794 struct minimal_symbol
*msymbol
;
797 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
798 instead of DT_DEBUG, although they sometimes contain an unused
800 if (scan_dyntag (DT_MIPS_RLD_MAP
, exec_bfd
, &dyn_ptr
)
801 || scan_dyntag_auxv (DT_MIPS_RLD_MAP
, &dyn_ptr
))
803 struct type
*ptr_type
= builtin_type (target_gdbarch ())->builtin_data_ptr
;
805 int pbuf_size
= TYPE_LENGTH (ptr_type
);
807 pbuf
= alloca (pbuf_size
);
808 /* DT_MIPS_RLD_MAP contains a pointer to the address
809 of the dynamic link structure. */
810 if (target_read_memory (dyn_ptr
, pbuf
, pbuf_size
))
812 return extract_typed_address (pbuf
, ptr_type
);
816 if (scan_dyntag (DT_DEBUG
, exec_bfd
, &dyn_ptr
)
817 || scan_dyntag_auxv (DT_DEBUG
, &dyn_ptr
))
820 /* This may be a static executable. Look for the symbol
821 conventionally named _r_debug, as a last resort. */
822 msymbol
= lookup_minimal_symbol ("_r_debug", NULL
, symfile_objfile
);
824 return SYMBOL_VALUE_ADDRESS (msymbol
);
826 /* DT_DEBUG entry not found. */
830 /* Locate the base address of dynamic linker structs.
832 For both the SunOS and SVR4 shared library implementations, if the
833 inferior executable has been linked dynamically, there is a single
834 address somewhere in the inferior's data space which is the key to
835 locating all of the dynamic linker's runtime structures. This
836 address is the value of the debug base symbol. The job of this
837 function is to find and return that address, or to return 0 if there
838 is no such address (the executable is statically linked for example).
840 For SunOS, the job is almost trivial, since the dynamic linker and
841 all of it's structures are statically linked to the executable at
842 link time. Thus the symbol for the address we are looking for has
843 already been added to the minimal symbol table for the executable's
844 objfile at the time the symbol file's symbols were read, and all we
845 have to do is look it up there. Note that we explicitly do NOT want
846 to find the copies in the shared library.
848 The SVR4 version is a bit more complicated because the address
849 is contained somewhere in the dynamic info section. We have to go
850 to a lot more work to discover the address of the debug base symbol.
851 Because of this complexity, we cache the value we find and return that
852 value on subsequent invocations. Note there is no copy in the
853 executable symbol tables. */
856 locate_base (struct svr4_info
*info
)
858 /* Check to see if we have a currently valid address, and if so, avoid
859 doing all this work again and just return the cached address. If
860 we have no cached address, try to locate it in the dynamic info
861 section for ELF executables. There's no point in doing any of this
862 though if we don't have some link map offsets to work with. */
864 if (info
->debug_base
== 0 && svr4_have_link_map_offsets ())
865 info
->debug_base
= elf_locate_base ();
866 return info
->debug_base
;
869 /* Find the first element in the inferior's dynamic link map, and
870 return its address in the inferior. Return zero if the address
871 could not be determined.
873 FIXME: Perhaps we should validate the info somehow, perhaps by
874 checking r_version for a known version number, or r_state for
878 solib_svr4_r_map (struct svr4_info
*info
)
880 struct link_map_offsets
*lmo
= svr4_fetch_link_map_offsets ();
881 struct type
*ptr_type
= builtin_type (target_gdbarch ())->builtin_data_ptr
;
883 volatile struct gdb_exception ex
;
885 TRY_CATCH (ex
, RETURN_MASK_ERROR
)
887 addr
= read_memory_typed_address (info
->debug_base
+ lmo
->r_map_offset
,
890 exception_print (gdb_stderr
, ex
);
894 /* Find r_brk from the inferior's debug base. */
897 solib_svr4_r_brk (struct svr4_info
*info
)
899 struct link_map_offsets
*lmo
= svr4_fetch_link_map_offsets ();
900 struct type
*ptr_type
= builtin_type (target_gdbarch ())->builtin_data_ptr
;
902 return read_memory_typed_address (info
->debug_base
+ lmo
->r_brk_offset
,
906 /* Find the link map for the dynamic linker (if it is not in the
907 normal list of loaded shared objects). */
910 solib_svr4_r_ldsomap (struct svr4_info
*info
)
912 struct link_map_offsets
*lmo
= svr4_fetch_link_map_offsets ();
913 struct type
*ptr_type
= builtin_type (target_gdbarch ())->builtin_data_ptr
;
914 enum bfd_endian byte_order
= gdbarch_byte_order (target_gdbarch ());
917 /* Check version, and return zero if `struct r_debug' doesn't have
918 the r_ldsomap member. */
920 = read_memory_unsigned_integer (info
->debug_base
+ lmo
->r_version_offset
,
921 lmo
->r_version_size
, byte_order
);
922 if (version
< 2 || lmo
->r_ldsomap_offset
== -1)
925 return read_memory_typed_address (info
->debug_base
+ lmo
->r_ldsomap_offset
,
929 /* On Solaris systems with some versions of the dynamic linker,
930 ld.so's l_name pointer points to the SONAME in the string table
931 rather than into writable memory. So that GDB can find shared
932 libraries when loading a core file generated by gcore, ensure that
933 memory areas containing the l_name string are saved in the core
937 svr4_keep_data_in_core (CORE_ADDR vaddr
, unsigned long size
)
939 struct svr4_info
*info
;
942 struct cleanup
*old_chain
;
945 info
= get_svr4_info ();
947 info
->debug_base
= 0;
949 if (!info
->debug_base
)
952 ldsomap
= solib_svr4_r_ldsomap (info
);
956 new = XZALLOC (struct so_list
);
957 old_chain
= make_cleanup (xfree
, new);
958 new->lm_info
= lm_info_read (ldsomap
);
959 make_cleanup (xfree
, new->lm_info
);
960 name_lm
= new->lm_info
? new->lm_info
->l_name
: 0;
961 do_cleanups (old_chain
);
963 return (name_lm
>= vaddr
&& name_lm
< vaddr
+ size
);
966 /* Implement the "open_symbol_file_object" target_so_ops method.
968 If no open symbol file, attempt to locate and open the main symbol
969 file. On SVR4 systems, this is the first link map entry. If its
970 name is here, we can open it. Useful when attaching to a process
971 without first loading its symbol file. */
974 open_symbol_file_object (void *from_ttyp
)
976 CORE_ADDR lm
, l_name
;
979 int from_tty
= *(int *)from_ttyp
;
980 struct link_map_offsets
*lmo
= svr4_fetch_link_map_offsets ();
981 struct type
*ptr_type
= builtin_type (target_gdbarch ())->builtin_data_ptr
;
982 int l_name_size
= TYPE_LENGTH (ptr_type
);
983 gdb_byte
*l_name_buf
= xmalloc (l_name_size
);
984 struct cleanup
*cleanups
= make_cleanup (xfree
, l_name_buf
);
985 struct svr4_info
*info
= get_svr4_info ();
988 if (!query (_("Attempt to reload symbols from process? ")))
990 do_cleanups (cleanups
);
994 /* Always locate the debug struct, in case it has moved. */
995 info
->debug_base
= 0;
996 if (locate_base (info
) == 0)
998 do_cleanups (cleanups
);
999 return 0; /* failed somehow... */
1002 /* First link map member should be the executable. */
1003 lm
= solib_svr4_r_map (info
);
1006 do_cleanups (cleanups
);
1007 return 0; /* failed somehow... */
1010 /* Read address of name from target memory to GDB. */
1011 read_memory (lm
+ lmo
->l_name_offset
, l_name_buf
, l_name_size
);
1013 /* Convert the address to host format. */
1014 l_name
= extract_typed_address (l_name_buf
, ptr_type
);
1018 do_cleanups (cleanups
);
1019 return 0; /* No filename. */
1022 /* Now fetch the filename from target memory. */
1023 target_read_string (l_name
, &filename
, SO_NAME_MAX_PATH_SIZE
- 1, &errcode
);
1024 make_cleanup (xfree
, filename
);
1028 warning (_("failed to read exec filename from attached file: %s"),
1029 safe_strerror (errcode
));
1030 do_cleanups (cleanups
);
1034 /* Have a pathname: read the symbol file. */
1035 symbol_file_add_main (filename
, from_tty
);
1037 do_cleanups (cleanups
);
1041 /* Data exchange structure for the XML parser as returned by
1042 svr4_current_sos_via_xfer_libraries. */
1044 struct svr4_library_list
1046 struct so_list
*head
, **tailp
;
1048 /* Inferior address of struct link_map used for the main executable. It is
1049 NULL if not known. */
1053 /* Implementation for target_so_ops.free_so. */
1056 svr4_free_so (struct so_list
*so
)
1058 xfree (so
->lm_info
);
1061 /* Implement target_so_ops.clear_so. */
1064 svr4_clear_so (struct so_list
*so
)
1066 if (so
->lm_info
!= NULL
)
1067 so
->lm_info
->l_addr_p
= 0;
1070 /* Free so_list built so far (called via cleanup). */
1073 svr4_free_library_list (void *p_list
)
1075 struct so_list
*list
= *(struct so_list
**) p_list
;
1077 while (list
!= NULL
)
1079 struct so_list
*next
= list
->next
;
1086 /* Copy library list. */
1088 static struct so_list
*
1089 svr4_copy_library_list (struct so_list
*src
)
1091 struct so_list
*dst
= NULL
;
1092 struct so_list
**link
= &dst
;
1096 struct so_list
*new;
1098 new = xmalloc (sizeof (struct so_list
));
1099 memcpy (new, src
, sizeof (struct so_list
));
1101 new->lm_info
= xmalloc (sizeof (struct lm_info
));
1102 memcpy (new->lm_info
, src
->lm_info
, sizeof (struct lm_info
));
1114 #ifdef HAVE_LIBEXPAT
1116 #include "xml-support.h"
1118 /* Handle the start of a <library> element. Note: new elements are added
1119 at the tail of the list, keeping the list in order. */
1122 library_list_start_library (struct gdb_xml_parser
*parser
,
1123 const struct gdb_xml_element
*element
,
1124 void *user_data
, VEC(gdb_xml_value_s
) *attributes
)
1126 struct svr4_library_list
*list
= user_data
;
1127 const char *name
= xml_find_attribute (attributes
, "name")->value
;
1128 ULONGEST
*lmp
= xml_find_attribute (attributes
, "lm")->value
;
1129 ULONGEST
*l_addrp
= xml_find_attribute (attributes
, "l_addr")->value
;
1130 ULONGEST
*l_ldp
= xml_find_attribute (attributes
, "l_ld")->value
;
1131 struct so_list
*new_elem
;
1133 new_elem
= XZALLOC (struct so_list
);
1134 new_elem
->lm_info
= XZALLOC (struct lm_info
);
1135 new_elem
->lm_info
->lm_addr
= *lmp
;
1136 new_elem
->lm_info
->l_addr_inferior
= *l_addrp
;
1137 new_elem
->lm_info
->l_ld
= *l_ldp
;
1139 strncpy (new_elem
->so_name
, name
, sizeof (new_elem
->so_name
) - 1);
1140 new_elem
->so_name
[sizeof (new_elem
->so_name
) - 1] = 0;
1141 strcpy (new_elem
->so_original_name
, new_elem
->so_name
);
1143 *list
->tailp
= new_elem
;
1144 list
->tailp
= &new_elem
->next
;
1147 /* Handle the start of a <library-list-svr4> element. */
1150 svr4_library_list_start_list (struct gdb_xml_parser
*parser
,
1151 const struct gdb_xml_element
*element
,
1152 void *user_data
, VEC(gdb_xml_value_s
) *attributes
)
1154 struct svr4_library_list
*list
= user_data
;
1155 const char *version
= xml_find_attribute (attributes
, "version")->value
;
1156 struct gdb_xml_value
*main_lm
= xml_find_attribute (attributes
, "main-lm");
1158 if (strcmp (version
, "1.0") != 0)
1159 gdb_xml_error (parser
,
1160 _("SVR4 Library list has unsupported version \"%s\""),
1164 list
->main_lm
= *(ULONGEST
*) main_lm
->value
;
1167 /* The allowed elements and attributes for an XML library list.
1168 The root element is a <library-list>. */
1170 static const struct gdb_xml_attribute svr4_library_attributes
[] =
1172 { "name", GDB_XML_AF_NONE
, NULL
, NULL
},
1173 { "lm", GDB_XML_AF_NONE
, gdb_xml_parse_attr_ulongest
, NULL
},
1174 { "l_addr", GDB_XML_AF_NONE
, gdb_xml_parse_attr_ulongest
, NULL
},
1175 { "l_ld", GDB_XML_AF_NONE
, gdb_xml_parse_attr_ulongest
, NULL
},
1176 { NULL
, GDB_XML_AF_NONE
, NULL
, NULL
}
1179 static const struct gdb_xml_element svr4_library_list_children
[] =
1182 "library", svr4_library_attributes
, NULL
,
1183 GDB_XML_EF_REPEATABLE
| GDB_XML_EF_OPTIONAL
,
1184 library_list_start_library
, NULL
1186 { NULL
, NULL
, NULL
, GDB_XML_EF_NONE
, NULL
, NULL
}
1189 static const struct gdb_xml_attribute svr4_library_list_attributes
[] =
1191 { "version", GDB_XML_AF_NONE
, NULL
, NULL
},
1192 { "main-lm", GDB_XML_AF_OPTIONAL
, gdb_xml_parse_attr_ulongest
, NULL
},
1193 { NULL
, GDB_XML_AF_NONE
, NULL
, NULL
}
1196 static const struct gdb_xml_element svr4_library_list_elements
[] =
1198 { "library-list-svr4", svr4_library_list_attributes
, svr4_library_list_children
,
1199 GDB_XML_EF_NONE
, svr4_library_list_start_list
, NULL
},
1200 { NULL
, NULL
, NULL
, GDB_XML_EF_NONE
, NULL
, NULL
}
1203 /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1205 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1206 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1207 empty, caller is responsible for freeing all its entries. */
1210 svr4_parse_libraries (const char *document
, struct svr4_library_list
*list
)
1212 struct cleanup
*back_to
= make_cleanup (svr4_free_library_list
,
1215 memset (list
, 0, sizeof (*list
));
1216 list
->tailp
= &list
->head
;
1217 if (gdb_xml_parse_quick (_("target library list"), "library-list.dtd",
1218 svr4_library_list_elements
, document
, list
) == 0)
1220 /* Parsed successfully, keep the result. */
1221 discard_cleanups (back_to
);
1225 do_cleanups (back_to
);
1229 /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
1231 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1232 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1233 empty, caller is responsible for freeing all its entries.
1235 Note that ANNEX must be NULL if the remote does not explicitly allow
1236 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1237 this can be checked using target_augmented_libraries_svr4_read (). */
1240 svr4_current_sos_via_xfer_libraries (struct svr4_library_list
*list
,
1243 char *svr4_library_document
;
1245 struct cleanup
*back_to
;
1247 gdb_assert (annex
== NULL
|| target_augmented_libraries_svr4_read ());
1249 /* Fetch the list of shared libraries. */
1250 svr4_library_document
= target_read_stralloc (¤t_target
,
1251 TARGET_OBJECT_LIBRARIES_SVR4
,
1253 if (svr4_library_document
== NULL
)
1256 back_to
= make_cleanup (xfree
, svr4_library_document
);
1257 result
= svr4_parse_libraries (svr4_library_document
, list
);
1258 do_cleanups (back_to
);
1266 svr4_current_sos_via_xfer_libraries (struct svr4_library_list
*list
,
1274 /* If no shared library information is available from the dynamic
1275 linker, build a fallback list from other sources. */
1277 static struct so_list
*
1278 svr4_default_sos (void)
1280 struct svr4_info
*info
= get_svr4_info ();
1281 struct so_list
*new;
1283 if (!info
->debug_loader_offset_p
)
1286 new = XZALLOC (struct so_list
);
1288 new->lm_info
= xzalloc (sizeof (struct lm_info
));
1290 /* Nothing will ever check the other fields if we set l_addr_p. */
1291 new->lm_info
->l_addr
= info
->debug_loader_offset
;
1292 new->lm_info
->l_addr_p
= 1;
1294 strncpy (new->so_name
, info
->debug_loader_name
, SO_NAME_MAX_PATH_SIZE
- 1);
1295 new->so_name
[SO_NAME_MAX_PATH_SIZE
- 1] = '\0';
1296 strcpy (new->so_original_name
, new->so_name
);
1301 /* Read the whole inferior libraries chain starting at address LM.
1302 Expect the first entry in the chain's previous entry to be PREV_LM.
1303 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1304 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1305 to it. Returns nonzero upon success. If zero is returned the
1306 entries stored to LINK_PTR_PTR are still valid although they may
1307 represent only part of the inferior library list. */
1310 svr4_read_so_list (CORE_ADDR lm
, CORE_ADDR prev_lm
,
1311 struct so_list
***link_ptr_ptr
, int ignore_first
)
1315 for (; lm
!= 0; prev_lm
= lm
, lm
= next_lm
)
1317 struct so_list
*new;
1318 struct cleanup
*old_chain
;
1322 new = XZALLOC (struct so_list
);
1323 old_chain
= make_cleanup_free_so (new);
1325 new->lm_info
= lm_info_read (lm
);
1326 if (new->lm_info
== NULL
)
1328 do_cleanups (old_chain
);
1332 next_lm
= new->lm_info
->l_next
;
1334 if (new->lm_info
->l_prev
!= prev_lm
)
1336 warning (_("Corrupted shared library list: %s != %s"),
1337 paddress (target_gdbarch (), prev_lm
),
1338 paddress (target_gdbarch (), new->lm_info
->l_prev
));
1339 do_cleanups (old_chain
);
1343 /* For SVR4 versions, the first entry in the link map is for the
1344 inferior executable, so we must ignore it. For some versions of
1345 SVR4, it has no name. For others (Solaris 2.3 for example), it
1346 does have a name, so we can no longer use a missing name to
1347 decide when to ignore it. */
1348 if (ignore_first
&& new->lm_info
->l_prev
== 0)
1350 struct svr4_info
*info
= get_svr4_info ();
1352 info
->main_lm_addr
= new->lm_info
->lm_addr
;
1353 do_cleanups (old_chain
);
1357 /* Extract this shared object's name. */
1358 target_read_string (new->lm_info
->l_name
, &buffer
,
1359 SO_NAME_MAX_PATH_SIZE
- 1, &errcode
);
1362 warning (_("Can't read pathname for load map: %s."),
1363 safe_strerror (errcode
));
1364 do_cleanups (old_chain
);
1368 strncpy (new->so_name
, buffer
, SO_NAME_MAX_PATH_SIZE
- 1);
1369 new->so_name
[SO_NAME_MAX_PATH_SIZE
- 1] = '\0';
1370 strcpy (new->so_original_name
, new->so_name
);
1373 /* If this entry has no name, or its name matches the name
1374 for the main executable, don't include it in the list. */
1375 if (! new->so_name
[0] || match_main (new->so_name
))
1377 do_cleanups (old_chain
);
1381 discard_cleanups (old_chain
);
1383 **link_ptr_ptr
= new;
1384 *link_ptr_ptr
= &new->next
;
1390 /* Read the full list of currently loaded shared objects directly
1391 from the inferior, without referring to any libraries read and
1392 stored by the probes interface. Handle special cases relating
1393 to the first elements of the list. */
1395 static struct so_list
*
1396 svr4_current_sos_direct (struct svr4_info
*info
)
1399 struct so_list
*head
= NULL
;
1400 struct so_list
**link_ptr
= &head
;
1401 struct cleanup
*back_to
;
1403 struct svr4_library_list library_list
;
1405 /* Fall back to manual examination of the target if the packet is not
1406 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1407 tests a case where gdbserver cannot find the shared libraries list while
1408 GDB itself is able to find it via SYMFILE_OBJFILE.
1410 Unfortunately statically linked inferiors will also fall back through this
1411 suboptimal code path. */
1413 info
->using_xfer
= svr4_current_sos_via_xfer_libraries (&library_list
,
1415 if (info
->using_xfer
)
1417 if (library_list
.main_lm
)
1418 info
->main_lm_addr
= library_list
.main_lm
;
1420 return library_list
.head
? library_list
.head
: svr4_default_sos ();
1423 /* Always locate the debug struct, in case it has moved. */
1424 info
->debug_base
= 0;
1427 /* If we can't find the dynamic linker's base structure, this
1428 must not be a dynamically linked executable. Hmm. */
1429 if (! info
->debug_base
)
1430 return svr4_default_sos ();
1432 /* Assume that everything is a library if the dynamic loader was loaded
1433 late by a static executable. */
1434 if (exec_bfd
&& bfd_get_section_by_name (exec_bfd
, ".dynamic") == NULL
)
1439 back_to
= make_cleanup (svr4_free_library_list
, &head
);
1441 /* Walk the inferior's link map list, and build our list of
1442 `struct so_list' nodes. */
1443 lm
= solib_svr4_r_map (info
);
1445 svr4_read_so_list (lm
, 0, &link_ptr
, ignore_first
);
1447 /* On Solaris, the dynamic linker is not in the normal list of
1448 shared objects, so make sure we pick it up too. Having
1449 symbol information for the dynamic linker is quite crucial
1450 for skipping dynamic linker resolver code. */
1451 lm
= solib_svr4_r_ldsomap (info
);
1453 svr4_read_so_list (lm
, 0, &link_ptr
, 0);
1455 discard_cleanups (back_to
);
1458 return svr4_default_sos ();
1463 /* Implement the "current_sos" target_so_ops method. */
1465 static struct so_list
*
1466 svr4_current_sos (void)
1468 struct svr4_info
*info
= get_svr4_info ();
1470 /* If the solib list has been read and stored by the probes
1471 interface then we return a copy of the stored list. */
1472 if (info
->solib_list
!= NULL
)
1473 return svr4_copy_library_list (info
->solib_list
);
1475 /* Otherwise obtain the solib list directly from the inferior. */
1476 return svr4_current_sos_direct (info
);
1479 /* Get the address of the link_map for a given OBJFILE. */
1482 svr4_fetch_objfile_link_map (struct objfile
*objfile
)
1485 struct svr4_info
*info
= get_svr4_info ();
1487 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1488 if (info
->main_lm_addr
== 0)
1489 solib_add (NULL
, 0, ¤t_target
, auto_solib_add
);
1491 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1492 if (objfile
== symfile_objfile
)
1493 return info
->main_lm_addr
;
1495 /* The other link map addresses may be found by examining the list
1496 of shared libraries. */
1497 for (so
= master_so_list (); so
; so
= so
->next
)
1498 if (so
->objfile
== objfile
)
1499 return so
->lm_info
->lm_addr
;
1505 /* On some systems, the only way to recognize the link map entry for
1506 the main executable file is by looking at its name. Return
1507 non-zero iff SONAME matches one of the known main executable names. */
1510 match_main (const char *soname
)
1512 const char * const *mainp
;
1514 for (mainp
= main_name_list
; *mainp
!= NULL
; mainp
++)
1516 if (strcmp (soname
, *mainp
) == 0)
1523 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1524 SVR4 run time loader. */
1527 svr4_in_dynsym_resolve_code (CORE_ADDR pc
)
1529 struct svr4_info
*info
= get_svr4_info ();
1531 return ((pc
>= info
->interp_text_sect_low
1532 && pc
< info
->interp_text_sect_high
)
1533 || (pc
>= info
->interp_plt_sect_low
1534 && pc
< info
->interp_plt_sect_high
)
1535 || in_plt_section (pc
, NULL
)
1536 || in_gnu_ifunc_stub (pc
));
1539 /* Given an executable's ABFD and target, compute the entry-point
1543 exec_entry_point (struct bfd
*abfd
, struct target_ops
*targ
)
1547 /* KevinB wrote ... for most targets, the address returned by
1548 bfd_get_start_address() is the entry point for the start
1549 function. But, for some targets, bfd_get_start_address() returns
1550 the address of a function descriptor from which the entry point
1551 address may be extracted. This address is extracted by
1552 gdbarch_convert_from_func_ptr_addr(). The method
1553 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1554 function for targets which don't use function descriptors. */
1555 addr
= gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1556 bfd_get_start_address (abfd
),
1558 return gdbarch_addr_bits_remove (target_gdbarch (), addr
);
1561 /* A probe and its associated action. */
1563 struct probe_and_action
1566 struct probe
*probe
;
1569 enum probe_action action
;
1572 /* Returns a hash code for the probe_and_action referenced by p. */
1575 hash_probe_and_action (const void *p
)
1577 const struct probe_and_action
*pa
= p
;
1579 return (hashval_t
) pa
->probe
->address
;
1582 /* Returns non-zero if the probe_and_actions referenced by p1 and p2
1586 equal_probe_and_action (const void *p1
, const void *p2
)
1588 const struct probe_and_action
*pa1
= p1
;
1589 const struct probe_and_action
*pa2
= p2
;
1591 return pa1
->probe
->address
== pa2
->probe
->address
;
1594 /* Register a solib event probe and its associated action in the
1598 register_solib_event_probe (struct probe
*probe
, enum probe_action action
)
1600 struct svr4_info
*info
= get_svr4_info ();
1601 struct probe_and_action lookup
, *pa
;
1604 /* Create the probes table, if necessary. */
1605 if (info
->probes_table
== NULL
)
1606 info
->probes_table
= htab_create_alloc (1, hash_probe_and_action
,
1607 equal_probe_and_action
,
1608 xfree
, xcalloc
, xfree
);
1610 lookup
.probe
= probe
;
1611 slot
= htab_find_slot (info
->probes_table
, &lookup
, INSERT
);
1612 gdb_assert (*slot
== HTAB_EMPTY_ENTRY
);
1614 pa
= XCNEW (struct probe_and_action
);
1616 pa
->action
= action
;
1621 /* Get the solib event probe at the specified location, and the
1622 action associated with it. Returns NULL if no solib event probe
1625 static struct probe_and_action
*
1626 solib_event_probe_at (struct svr4_info
*info
, CORE_ADDR address
)
1628 struct probe lookup_probe
;
1629 struct probe_and_action lookup
;
1632 lookup_probe
.address
= address
;
1633 lookup
.probe
= &lookup_probe
;
1634 slot
= htab_find_slot (info
->probes_table
, &lookup
, NO_INSERT
);
1639 return (struct probe_and_action
*) *slot
;
1642 /* Decide what action to take when the specified solib event probe is
1645 static enum probe_action
1646 solib_event_probe_action (struct probe_and_action
*pa
)
1648 enum probe_action action
;
1649 unsigned probe_argc
;
1651 action
= pa
->action
;
1652 if (action
== DO_NOTHING
|| action
== PROBES_INTERFACE_FAILED
)
1655 gdb_assert (action
== FULL_RELOAD
|| action
== UPDATE_OR_RELOAD
);
1657 /* Check that an appropriate number of arguments has been supplied.
1659 arg0: Lmid_t lmid (mandatory)
1660 arg1: struct r_debug *debug_base (mandatory)
1661 arg2: struct link_map *new (optional, for incremental updates) */
1662 probe_argc
= get_probe_argument_count (pa
->probe
);
1663 if (probe_argc
== 2)
1664 action
= FULL_RELOAD
;
1665 else if (probe_argc
< 2)
1666 action
= PROBES_INTERFACE_FAILED
;
1671 /* Populate the shared object list by reading the entire list of
1672 shared objects from the inferior. Handle special cases relating
1673 to the first elements of the list. Returns nonzero on success. */
1676 solist_update_full (struct svr4_info
*info
)
1678 free_solib_list (info
);
1679 info
->solib_list
= svr4_current_sos_direct (info
);
1684 /* Update the shared object list starting from the link-map entry
1685 passed by the linker in the probe's third argument. Returns
1686 nonzero if the list was successfully updated, or zero to indicate
1690 solist_update_incremental (struct svr4_info
*info
, CORE_ADDR lm
)
1692 struct so_list
*tail
;
1695 /* svr4_current_sos_direct contains logic to handle a number of
1696 special cases relating to the first elements of the list. To
1697 avoid duplicating this logic we defer to solist_update_full
1698 if the list is empty. */
1699 if (info
->solib_list
== NULL
)
1702 /* Fall back to a full update if we are using a remote target
1703 that does not support incremental transfers. */
1704 if (info
->using_xfer
&& !target_augmented_libraries_svr4_read ())
1707 /* Walk to the end of the list. */
1708 for (tail
= info
->solib_list
; tail
->next
!= NULL
; tail
= tail
->next
)
1710 prev_lm
= tail
->lm_info
->lm_addr
;
1712 /* Read the new objects. */
1713 if (info
->using_xfer
)
1715 struct svr4_library_list library_list
;
1718 xsnprintf (annex
, sizeof (annex
), "start=%s;prev=%s",
1719 phex_nz (lm
, sizeof (lm
)),
1720 phex_nz (prev_lm
, sizeof (prev_lm
)));
1721 if (!svr4_current_sos_via_xfer_libraries (&library_list
, annex
))
1724 tail
->next
= library_list
.head
;
1728 struct so_list
**link
= &tail
->next
;
1730 /* IGNORE_FIRST may safely be set to zero here because the
1731 above check and deferral to solist_update_full ensures
1732 that this call to svr4_read_so_list will never see the
1734 if (!svr4_read_so_list (lm
, prev_lm
, &link
, 0))
1741 /* Disable the probes-based linker interface and revert to the
1742 original interface. We don't reset the breakpoints as the
1743 ones set up for the probes-based interface are adequate. */
1746 disable_probes_interface_cleanup (void *arg
)
1748 struct svr4_info
*info
= get_svr4_info ();
1750 warning (_("Probes-based dynamic linker interface failed.\n"
1751 "Reverting to original interface.\n"));
1753 free_probes_table (info
);
1754 free_solib_list (info
);
1757 /* Update the solib list as appropriate when using the
1758 probes-based linker interface. Do nothing if using the
1759 standard interface. */
1762 svr4_handle_solib_event (void)
1764 struct svr4_info
*info
= get_svr4_info ();
1765 struct probe_and_action
*pa
;
1766 enum probe_action action
;
1767 struct cleanup
*old_chain
, *usm_chain
;
1769 CORE_ADDR pc
, debug_base
, lm
= 0;
1772 /* Do nothing if not using the probes interface. */
1773 if (info
->probes_table
== NULL
)
1776 /* If anything goes wrong we revert to the original linker
1778 old_chain
= make_cleanup (disable_probes_interface_cleanup
, NULL
);
1780 pc
= regcache_read_pc (get_current_regcache ());
1781 pa
= solib_event_probe_at (info
, pc
);
1784 do_cleanups (old_chain
);
1788 action
= solib_event_probe_action (pa
);
1789 if (action
== PROBES_INTERFACE_FAILED
)
1791 do_cleanups (old_chain
);
1795 if (action
== DO_NOTHING
)
1797 discard_cleanups (old_chain
);
1801 /* evaluate_probe_argument looks up symbols in the dynamic linker
1802 using find_pc_section. find_pc_section is accelerated by a cache
1803 called the section map. The section map is invalidated every
1804 time a shared library is loaded or unloaded, and if the inferior
1805 is generating a lot of shared library events then the section map
1806 will be updated every time svr4_handle_solib_event is called.
1807 We called find_pc_section in svr4_create_solib_event_breakpoints,
1808 so we can guarantee that the dynamic linker's sections are in the
1809 section map. We can therefore inhibit section map updates across
1810 these calls to evaluate_probe_argument and save a lot of time. */
1811 inhibit_section_map_updates (current_program_space
);
1812 usm_chain
= make_cleanup (resume_section_map_updates_cleanup
,
1813 current_program_space
);
1815 val
= evaluate_probe_argument (pa
->probe
, 1);
1818 do_cleanups (old_chain
);
1822 debug_base
= value_as_address (val
);
1823 if (debug_base
== 0)
1825 do_cleanups (old_chain
);
1829 /* Always locate the debug struct, in case it moved. */
1830 info
->debug_base
= 0;
1831 if (locate_base (info
) == 0)
1833 do_cleanups (old_chain
);
1837 /* GDB does not currently support libraries loaded via dlmopen
1838 into namespaces other than the initial one. We must ignore
1839 any namespace other than the initial namespace here until
1840 support for this is added to GDB. */
1841 if (debug_base
!= info
->debug_base
)
1842 action
= DO_NOTHING
;
1844 if (action
== UPDATE_OR_RELOAD
)
1846 val
= evaluate_probe_argument (pa
->probe
, 2);
1848 lm
= value_as_address (val
);
1851 action
= FULL_RELOAD
;
1854 /* Resume section map updates. */
1855 do_cleanups (usm_chain
);
1857 if (action
== UPDATE_OR_RELOAD
)
1859 if (!solist_update_incremental (info
, lm
))
1860 action
= FULL_RELOAD
;
1863 if (action
== FULL_RELOAD
)
1865 if (!solist_update_full (info
))
1867 do_cleanups (old_chain
);
1872 discard_cleanups (old_chain
);
1875 /* Helper function for svr4_update_solib_event_breakpoints. */
1878 svr4_update_solib_event_breakpoint (struct breakpoint
*b
, void *arg
)
1880 struct bp_location
*loc
;
1882 if (b
->type
!= bp_shlib_event
)
1884 /* Continue iterating. */
1888 for (loc
= b
->loc
; loc
!= NULL
; loc
= loc
->next
)
1890 struct svr4_info
*info
;
1891 struct probe_and_action
*pa
;
1893 info
= program_space_data (loc
->pspace
, solib_svr4_pspace_data
);
1894 if (info
== NULL
|| info
->probes_table
== NULL
)
1897 pa
= solib_event_probe_at (info
, loc
->address
);
1901 if (pa
->action
== DO_NOTHING
)
1903 if (b
->enable_state
== bp_disabled
&& stop_on_solib_events
)
1904 enable_breakpoint (b
);
1905 else if (b
->enable_state
== bp_enabled
&& !stop_on_solib_events
)
1906 disable_breakpoint (b
);
1912 /* Continue iterating. */
1916 /* Enable or disable optional solib event breakpoints as appropriate.
1917 Called whenever stop_on_solib_events is changed. */
1920 svr4_update_solib_event_breakpoints (void)
1922 iterate_over_breakpoints (svr4_update_solib_event_breakpoint
, NULL
);
1925 /* Create and register solib event breakpoints. PROBES is an array
1926 of NUM_PROBES elements, each of which is vector of probes. A
1927 solib event breakpoint will be created and registered for each
1931 svr4_create_probe_breakpoints (struct gdbarch
*gdbarch
,
1932 VEC (probe_p
) **probes
)
1936 for (i
= 0; i
< NUM_PROBES
; i
++)
1938 enum probe_action action
= probe_info
[i
].action
;
1939 struct probe
*probe
;
1943 VEC_iterate (probe_p
, probes
[i
], ix
, probe
);
1946 create_solib_event_breakpoint (gdbarch
, probe
->address
);
1947 register_solib_event_probe (probe
, action
);
1951 svr4_update_solib_event_breakpoints ();
1954 /* Both the SunOS and the SVR4 dynamic linkers call a marker function
1955 before and after mapping and unmapping shared libraries. The sole
1956 purpose of this method is to allow debuggers to set a breakpoint so
1957 they can track these changes.
1959 Some versions of the glibc dynamic linker contain named probes
1960 to allow more fine grained stopping. Given the address of the
1961 original marker function, this function attempts to find these
1962 probes, and if found, sets breakpoints on those instead. If the
1963 probes aren't found, a single breakpoint is set on the original
1967 svr4_create_solib_event_breakpoints (struct gdbarch
*gdbarch
,
1970 struct obj_section
*os
;
1972 os
= find_pc_section (address
);
1977 for (with_prefix
= 0; with_prefix
<= 1; with_prefix
++)
1979 VEC (probe_p
) *probes
[NUM_PROBES
];
1980 int all_probes_found
= 1;
1983 memset (probes
, 0, sizeof (probes
));
1984 for (i
= 0; i
< NUM_PROBES
; i
++)
1986 const char *name
= probe_info
[i
].name
;
1989 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
1990 shipped with an early version of the probes code in
1991 which the probes' names were prefixed with "rtld_"
1992 and the "map_failed" probe did not exist. The
1993 locations of the probes are otherwise the same, so
1994 we check for probes with prefixed names if probes
1995 with unprefixed names are not present. */
1998 xsnprintf (buf
, sizeof (buf
), "rtld_%s", name
);
2002 probes
[i
] = find_probes_in_objfile (os
->objfile
, "rtld", name
);
2004 /* The "map_failed" probe did not exist in early
2005 versions of the probes code in which the probes'
2006 names were prefixed with "rtld_". */
2007 if (strcmp (name
, "rtld_map_failed") == 0)
2010 if (VEC_empty (probe_p
, probes
[i
]))
2012 all_probes_found
= 0;
2017 if (all_probes_found
)
2018 svr4_create_probe_breakpoints (gdbarch
, probes
);
2020 for (i
= 0; i
< NUM_PROBES
; i
++)
2021 VEC_free (probe_p
, probes
[i
]);
2023 if (all_probes_found
)
2028 create_solib_event_breakpoint (gdbarch
, address
);
2031 /* Helper function for gdb_bfd_lookup_symbol. */
2034 cmp_name_and_sec_flags (asymbol
*sym
, void *data
)
2036 return (strcmp (sym
->name
, (const char *) data
) == 0
2037 && (sym
->section
->flags
& (SEC_CODE
| SEC_DATA
)) != 0);
2039 /* Arrange for dynamic linker to hit breakpoint.
2041 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2042 debugger interface, support for arranging for the inferior to hit
2043 a breakpoint after mapping in the shared libraries. This function
2044 enables that breakpoint.
2046 For SunOS, there is a special flag location (in_debugger) which we
2047 set to 1. When the dynamic linker sees this flag set, it will set
2048 a breakpoint at a location known only to itself, after saving the
2049 original contents of that place and the breakpoint address itself,
2050 in it's own internal structures. When we resume the inferior, it
2051 will eventually take a SIGTRAP when it runs into the breakpoint.
2052 We handle this (in a different place) by restoring the contents of
2053 the breakpointed location (which is only known after it stops),
2054 chasing around to locate the shared libraries that have been
2055 loaded, then resuming.
2057 For SVR4, the debugger interface structure contains a member (r_brk)
2058 which is statically initialized at the time the shared library is
2059 built, to the offset of a function (_r_debug_state) which is guaran-
2060 teed to be called once before mapping in a library, and again when
2061 the mapping is complete. At the time we are examining this member,
2062 it contains only the unrelocated offset of the function, so we have
2063 to do our own relocation. Later, when the dynamic linker actually
2064 runs, it relocates r_brk to be the actual address of _r_debug_state().
2066 The debugger interface structure also contains an enumeration which
2067 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2068 depending upon whether or not the library is being mapped or unmapped,
2069 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
2072 enable_break (struct svr4_info
*info
, int from_tty
)
2074 struct minimal_symbol
*msymbol
;
2075 const char * const *bkpt_namep
;
2076 asection
*interp_sect
;
2080 info
->interp_text_sect_low
= info
->interp_text_sect_high
= 0;
2081 info
->interp_plt_sect_low
= info
->interp_plt_sect_high
= 0;
2083 /* If we already have a shared library list in the target, and
2084 r_debug contains r_brk, set the breakpoint there - this should
2085 mean r_brk has already been relocated. Assume the dynamic linker
2086 is the object containing r_brk. */
2088 solib_add (NULL
, from_tty
, ¤t_target
, auto_solib_add
);
2090 if (info
->debug_base
&& solib_svr4_r_map (info
) != 0)
2091 sym_addr
= solib_svr4_r_brk (info
);
2095 struct obj_section
*os
;
2097 sym_addr
= gdbarch_addr_bits_remove
2098 (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2102 /* On at least some versions of Solaris there's a dynamic relocation
2103 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2104 we get control before the dynamic linker has self-relocated.
2105 Check if SYM_ADDR is in a known section, if it is assume we can
2106 trust its value. This is just a heuristic though, it could go away
2107 or be replaced if it's getting in the way.
2109 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2110 however it's spelled in your particular system) is ARM or Thumb.
2111 That knowledge is encoded in the address, if it's Thumb the low bit
2112 is 1. However, we've stripped that info above and it's not clear
2113 what all the consequences are of passing a non-addr_bits_remove'd
2114 address to svr4_create_solib_event_breakpoints. The call to
2115 find_pc_section verifies we know about the address and have some
2116 hope of computing the right kind of breakpoint to use (via
2117 symbol info). It does mean that GDB needs to be pointed at a
2118 non-stripped version of the dynamic linker in order to obtain
2119 information it already knows about. Sigh. */
2121 os
= find_pc_section (sym_addr
);
2124 /* Record the relocated start and end address of the dynamic linker
2125 text and plt section for svr4_in_dynsym_resolve_code. */
2127 CORE_ADDR load_addr
;
2129 tmp_bfd
= os
->objfile
->obfd
;
2130 load_addr
= ANOFFSET (os
->objfile
->section_offsets
,
2131 SECT_OFF_TEXT (os
->objfile
));
2133 interp_sect
= bfd_get_section_by_name (tmp_bfd
, ".text");
2136 info
->interp_text_sect_low
=
2137 bfd_section_vma (tmp_bfd
, interp_sect
) + load_addr
;
2138 info
->interp_text_sect_high
=
2139 info
->interp_text_sect_low
2140 + bfd_section_size (tmp_bfd
, interp_sect
);
2142 interp_sect
= bfd_get_section_by_name (tmp_bfd
, ".plt");
2145 info
->interp_plt_sect_low
=
2146 bfd_section_vma (tmp_bfd
, interp_sect
) + load_addr
;
2147 info
->interp_plt_sect_high
=
2148 info
->interp_plt_sect_low
2149 + bfd_section_size (tmp_bfd
, interp_sect
);
2152 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr
);
2157 /* Find the program interpreter; if not found, warn the user and drop
2158 into the old breakpoint at symbol code. */
2159 interp_name
= find_program_interpreter ();
2162 CORE_ADDR load_addr
= 0;
2163 int load_addr_found
= 0;
2164 int loader_found_in_list
= 0;
2166 bfd
*tmp_bfd
= NULL
;
2167 struct target_ops
*tmp_bfd_target
;
2168 volatile struct gdb_exception ex
;
2172 /* Now we need to figure out where the dynamic linker was
2173 loaded so that we can load its symbols and place a breakpoint
2174 in the dynamic linker itself.
2176 This address is stored on the stack. However, I've been unable
2177 to find any magic formula to find it for Solaris (appears to
2178 be trivial on GNU/Linux). Therefore, we have to try an alternate
2179 mechanism to find the dynamic linker's base address. */
2181 TRY_CATCH (ex
, RETURN_MASK_ALL
)
2183 tmp_bfd
= solib_bfd_open (interp_name
);
2185 if (tmp_bfd
== NULL
)
2186 goto bkpt_at_symbol
;
2188 /* Now convert the TMP_BFD into a target. That way target, as
2189 well as BFD operations can be used. */
2190 tmp_bfd_target
= target_bfd_reopen (tmp_bfd
);
2191 /* target_bfd_reopen acquired its own reference, so we can
2192 release ours now. */
2193 gdb_bfd_unref (tmp_bfd
);
2195 /* On a running target, we can get the dynamic linker's base
2196 address from the shared library table. */
2197 so
= master_so_list ();
2200 if (svr4_same_1 (interp_name
, so
->so_original_name
))
2202 load_addr_found
= 1;
2203 loader_found_in_list
= 1;
2204 load_addr
= lm_addr_check (so
, tmp_bfd
);
2210 /* If we were not able to find the base address of the loader
2211 from our so_list, then try using the AT_BASE auxilliary entry. */
2212 if (!load_addr_found
)
2213 if (target_auxv_search (¤t_target
, AT_BASE
, &load_addr
) > 0)
2215 int addr_bit
= gdbarch_addr_bit (target_gdbarch ());
2217 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2218 that `+ load_addr' will overflow CORE_ADDR width not creating
2219 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2222 if (addr_bit
< (sizeof (CORE_ADDR
) * HOST_CHAR_BIT
))
2224 CORE_ADDR space_size
= (CORE_ADDR
) 1 << addr_bit
;
2225 CORE_ADDR tmp_entry_point
= exec_entry_point (tmp_bfd
,
2228 gdb_assert (load_addr
< space_size
);
2230 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2231 64bit ld.so with 32bit executable, it should not happen. */
2233 if (tmp_entry_point
< space_size
2234 && tmp_entry_point
+ load_addr
>= space_size
)
2235 load_addr
-= space_size
;
2238 load_addr_found
= 1;
2241 /* Otherwise we find the dynamic linker's base address by examining
2242 the current pc (which should point at the entry point for the
2243 dynamic linker) and subtracting the offset of the entry point.
2245 This is more fragile than the previous approaches, but is a good
2246 fallback method because it has actually been working well in
2248 if (!load_addr_found
)
2250 struct regcache
*regcache
2251 = get_thread_arch_regcache (inferior_ptid
, target_gdbarch ());
2253 load_addr
= (regcache_read_pc (regcache
)
2254 - exec_entry_point (tmp_bfd
, tmp_bfd_target
));
2257 if (!loader_found_in_list
)
2259 info
->debug_loader_name
= xstrdup (interp_name
);
2260 info
->debug_loader_offset_p
= 1;
2261 info
->debug_loader_offset
= load_addr
;
2262 solib_add (NULL
, from_tty
, ¤t_target
, auto_solib_add
);
2265 /* Record the relocated start and end address of the dynamic linker
2266 text and plt section for svr4_in_dynsym_resolve_code. */
2267 interp_sect
= bfd_get_section_by_name (tmp_bfd
, ".text");
2270 info
->interp_text_sect_low
=
2271 bfd_section_vma (tmp_bfd
, interp_sect
) + load_addr
;
2272 info
->interp_text_sect_high
=
2273 info
->interp_text_sect_low
2274 + bfd_section_size (tmp_bfd
, interp_sect
);
2276 interp_sect
= bfd_get_section_by_name (tmp_bfd
, ".plt");
2279 info
->interp_plt_sect_low
=
2280 bfd_section_vma (tmp_bfd
, interp_sect
) + load_addr
;
2281 info
->interp_plt_sect_high
=
2282 info
->interp_plt_sect_low
2283 + bfd_section_size (tmp_bfd
, interp_sect
);
2286 /* Now try to set a breakpoint in the dynamic linker. */
2287 for (bkpt_namep
= solib_break_names
; *bkpt_namep
!= NULL
; bkpt_namep
++)
2289 sym_addr
= gdb_bfd_lookup_symbol (tmp_bfd
, cmp_name_and_sec_flags
,
2290 (void *) *bkpt_namep
);
2296 /* Convert 'sym_addr' from a function pointer to an address.
2297 Because we pass tmp_bfd_target instead of the current
2298 target, this will always produce an unrelocated value. */
2299 sym_addr
= gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2303 /* We're done with both the temporary bfd and target. Closing
2304 the target closes the underlying bfd, because it holds the
2305 only remaining reference. */
2306 target_close (tmp_bfd_target
);
2310 svr4_create_solib_event_breakpoints (target_gdbarch (),
2311 load_addr
+ sym_addr
);
2312 xfree (interp_name
);
2316 /* For whatever reason we couldn't set a breakpoint in the dynamic
2317 linker. Warn and drop into the old code. */
2319 xfree (interp_name
);
2320 warning (_("Unable to find dynamic linker breakpoint function.\n"
2321 "GDB will be unable to debug shared library initializers\n"
2322 "and track explicitly loaded dynamic code."));
2325 /* Scan through the lists of symbols, trying to look up the symbol and
2326 set a breakpoint there. Terminate loop when we/if we succeed. */
2328 for (bkpt_namep
= solib_break_names
; *bkpt_namep
!= NULL
; bkpt_namep
++)
2330 msymbol
= lookup_minimal_symbol (*bkpt_namep
, NULL
, symfile_objfile
);
2331 if ((msymbol
!= NULL
) && (SYMBOL_VALUE_ADDRESS (msymbol
) != 0))
2333 sym_addr
= SYMBOL_VALUE_ADDRESS (msymbol
);
2334 sym_addr
= gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2337 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr
);
2342 if (interp_name
!= NULL
&& !current_inferior ()->attach_flag
)
2344 for (bkpt_namep
= bkpt_names
; *bkpt_namep
!= NULL
; bkpt_namep
++)
2346 msymbol
= lookup_minimal_symbol (*bkpt_namep
, NULL
, symfile_objfile
);
2347 if ((msymbol
!= NULL
) && (SYMBOL_VALUE_ADDRESS (msymbol
) != 0))
2349 sym_addr
= SYMBOL_VALUE_ADDRESS (msymbol
);
2350 sym_addr
= gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2353 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr
);
2361 /* Implement the "special_symbol_handling" target_so_ops method. */
2364 svr4_special_symbol_handling (void)
2366 /* Nothing to do. */
2369 /* Read the ELF program headers from ABFD. Return the contents and
2370 set *PHDRS_SIZE to the size of the program headers. */
2373 read_program_headers_from_bfd (bfd
*abfd
, int *phdrs_size
)
2375 Elf_Internal_Ehdr
*ehdr
;
2378 ehdr
= elf_elfheader (abfd
);
2380 *phdrs_size
= ehdr
->e_phnum
* ehdr
->e_phentsize
;
2381 if (*phdrs_size
== 0)
2384 buf
= xmalloc (*phdrs_size
);
2385 if (bfd_seek (abfd
, ehdr
->e_phoff
, SEEK_SET
) != 0
2386 || bfd_bread (buf
, *phdrs_size
, abfd
) != *phdrs_size
)
2395 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2396 exec_bfd. Otherwise return 0.
2398 We relocate all of the sections by the same amount. This
2399 behavior is mandated by recent editions of the System V ABI.
2400 According to the System V Application Binary Interface,
2401 Edition 4.1, page 5-5:
2403 ... Though the system chooses virtual addresses for
2404 individual processes, it maintains the segments' relative
2405 positions. Because position-independent code uses relative
2406 addressesing between segments, the difference between
2407 virtual addresses in memory must match the difference
2408 between virtual addresses in the file. The difference
2409 between the virtual address of any segment in memory and
2410 the corresponding virtual address in the file is thus a
2411 single constant value for any one executable or shared
2412 object in a given process. This difference is the base
2413 address. One use of the base address is to relocate the
2414 memory image of the program during dynamic linking.
2416 The same language also appears in Edition 4.0 of the System V
2417 ABI and is left unspecified in some of the earlier editions.
2419 Decide if the objfile needs to be relocated. As indicated above, we will
2420 only be here when execution is stopped. But during attachment PC can be at
2421 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2422 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2423 regcache_read_pc would point to the interpreter and not the main executable.
2425 So, to summarize, relocations are necessary when the start address obtained
2426 from the executable is different from the address in auxv AT_ENTRY entry.
2428 [ The astute reader will note that we also test to make sure that
2429 the executable in question has the DYNAMIC flag set. It is my
2430 opinion that this test is unnecessary (undesirable even). It
2431 was added to avoid inadvertent relocation of an executable
2432 whose e_type member in the ELF header is not ET_DYN. There may
2433 be a time in the future when it is desirable to do relocations
2434 on other types of files as well in which case this condition
2435 should either be removed or modified to accomodate the new file
2436 type. - Kevin, Nov 2000. ] */
2439 svr4_exec_displacement (CORE_ADDR
*displacementp
)
2441 /* ENTRY_POINT is a possible function descriptor - before
2442 a call to gdbarch_convert_from_func_ptr_addr. */
2443 CORE_ADDR entry_point
, displacement
;
2445 if (exec_bfd
== NULL
)
2448 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2449 being executed themselves and PIE (Position Independent Executable)
2450 executables are ET_DYN. */
2452 if ((bfd_get_file_flags (exec_bfd
) & DYNAMIC
) == 0)
2455 if (target_auxv_search (¤t_target
, AT_ENTRY
, &entry_point
) <= 0)
2458 displacement
= entry_point
- bfd_get_start_address (exec_bfd
);
2460 /* Verify the DISPLACEMENT candidate complies with the required page
2461 alignment. It is cheaper than the program headers comparison below. */
2463 if (bfd_get_flavour (exec_bfd
) == bfd_target_elf_flavour
)
2465 const struct elf_backend_data
*elf
= get_elf_backend_data (exec_bfd
);
2467 /* p_align of PT_LOAD segments does not specify any alignment but
2468 only congruency of addresses:
2469 p_offset % p_align == p_vaddr % p_align
2470 Kernel is free to load the executable with lower alignment. */
2472 if ((displacement
& (elf
->minpagesize
- 1)) != 0)
2476 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2477 comparing their program headers. If the program headers in the auxilliary
2478 vector do not match the program headers in the executable, then we are
2479 looking at a different file than the one used by the kernel - for
2480 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2482 if (bfd_get_flavour (exec_bfd
) == bfd_target_elf_flavour
)
2484 /* Be optimistic and clear OK only if GDB was able to verify the headers
2485 really do not match. */
2486 int phdrs_size
, phdrs2_size
, ok
= 1;
2487 gdb_byte
*buf
, *buf2
;
2490 buf
= read_program_header (-1, &phdrs_size
, &arch_size
);
2491 buf2
= read_program_headers_from_bfd (exec_bfd
, &phdrs2_size
);
2492 if (buf
!= NULL
&& buf2
!= NULL
)
2494 enum bfd_endian byte_order
= gdbarch_byte_order (target_gdbarch ());
2496 /* We are dealing with three different addresses. EXEC_BFD
2497 represents current address in on-disk file. target memory content
2498 may be different from EXEC_BFD as the file may have been prelinked
2499 to a different address after the executable has been loaded.
2500 Moreover the address of placement in target memory can be
2501 different from what the program headers in target memory say -
2502 this is the goal of PIE.
2504 Detected DISPLACEMENT covers both the offsets of PIE placement and
2505 possible new prelink performed after start of the program. Here
2506 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2507 content offset for the verification purpose. */
2509 if (phdrs_size
!= phdrs2_size
2510 || bfd_get_arch_size (exec_bfd
) != arch_size
)
2512 else if (arch_size
== 32
2513 && phdrs_size
>= sizeof (Elf32_External_Phdr
)
2514 && phdrs_size
% sizeof (Elf32_External_Phdr
) == 0)
2516 Elf_Internal_Ehdr
*ehdr2
= elf_tdata (exec_bfd
)->elf_header
;
2517 Elf_Internal_Phdr
*phdr2
= elf_tdata (exec_bfd
)->phdr
;
2518 CORE_ADDR displacement
= 0;
2521 /* DISPLACEMENT could be found more easily by the difference of
2522 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2523 already have enough information to compute that displacement
2524 with what we've read. */
2526 for (i
= 0; i
< ehdr2
->e_phnum
; i
++)
2527 if (phdr2
[i
].p_type
== PT_LOAD
)
2529 Elf32_External_Phdr
*phdrp
;
2530 gdb_byte
*buf_vaddr_p
, *buf_paddr_p
;
2531 CORE_ADDR vaddr
, paddr
;
2532 CORE_ADDR displacement_vaddr
= 0;
2533 CORE_ADDR displacement_paddr
= 0;
2535 phdrp
= &((Elf32_External_Phdr
*) buf
)[i
];
2536 buf_vaddr_p
= (gdb_byte
*) &phdrp
->p_vaddr
;
2537 buf_paddr_p
= (gdb_byte
*) &phdrp
->p_paddr
;
2539 vaddr
= extract_unsigned_integer (buf_vaddr_p
, 4,
2541 displacement_vaddr
= vaddr
- phdr2
[i
].p_vaddr
;
2543 paddr
= extract_unsigned_integer (buf_paddr_p
, 4,
2545 displacement_paddr
= paddr
- phdr2
[i
].p_paddr
;
2547 if (displacement_vaddr
== displacement_paddr
)
2548 displacement
= displacement_vaddr
;
2553 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2555 for (i
= 0; i
< phdrs_size
/ sizeof (Elf32_External_Phdr
); i
++)
2557 Elf32_External_Phdr
*phdrp
;
2558 Elf32_External_Phdr
*phdr2p
;
2559 gdb_byte
*buf_vaddr_p
, *buf_paddr_p
;
2560 CORE_ADDR vaddr
, paddr
;
2561 asection
*plt2_asect
;
2563 phdrp
= &((Elf32_External_Phdr
*) buf
)[i
];
2564 buf_vaddr_p
= (gdb_byte
*) &phdrp
->p_vaddr
;
2565 buf_paddr_p
= (gdb_byte
*) &phdrp
->p_paddr
;
2566 phdr2p
= &((Elf32_External_Phdr
*) buf2
)[i
];
2568 /* PT_GNU_STACK is an exception by being never relocated by
2569 prelink as its addresses are always zero. */
2571 if (memcmp (phdrp
, phdr2p
, sizeof (*phdrp
)) == 0)
2574 /* Check also other adjustment combinations - PR 11786. */
2576 vaddr
= extract_unsigned_integer (buf_vaddr_p
, 4,
2578 vaddr
-= displacement
;
2579 store_unsigned_integer (buf_vaddr_p
, 4, byte_order
, vaddr
);
2581 paddr
= extract_unsigned_integer (buf_paddr_p
, 4,
2583 paddr
-= displacement
;
2584 store_unsigned_integer (buf_paddr_p
, 4, byte_order
, paddr
);
2586 if (memcmp (phdrp
, phdr2p
, sizeof (*phdrp
)) == 0)
2589 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2590 plt2_asect
= bfd_get_section_by_name (exec_bfd
, ".plt");
2594 gdb_byte
*buf_filesz_p
= (gdb_byte
*) &phdrp
->p_filesz
;
2597 content2
= (bfd_get_section_flags (exec_bfd
, plt2_asect
)
2598 & SEC_HAS_CONTENTS
) != 0;
2600 filesz
= extract_unsigned_integer (buf_filesz_p
, 4,
2603 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2604 FILESZ is from the in-memory image. */
2606 filesz
+= bfd_get_section_size (plt2_asect
);
2608 filesz
-= bfd_get_section_size (plt2_asect
);
2610 store_unsigned_integer (buf_filesz_p
, 4, byte_order
,
2613 if (memcmp (phdrp
, phdr2p
, sizeof (*phdrp
)) == 0)
2621 else if (arch_size
== 64
2622 && phdrs_size
>= sizeof (Elf64_External_Phdr
)
2623 && phdrs_size
% sizeof (Elf64_External_Phdr
) == 0)
2625 Elf_Internal_Ehdr
*ehdr2
= elf_tdata (exec_bfd
)->elf_header
;
2626 Elf_Internal_Phdr
*phdr2
= elf_tdata (exec_bfd
)->phdr
;
2627 CORE_ADDR displacement
= 0;
2630 /* DISPLACEMENT could be found more easily by the difference of
2631 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2632 already have enough information to compute that displacement
2633 with what we've read. */
2635 for (i
= 0; i
< ehdr2
->e_phnum
; i
++)
2636 if (phdr2
[i
].p_type
== PT_LOAD
)
2638 Elf64_External_Phdr
*phdrp
;
2639 gdb_byte
*buf_vaddr_p
, *buf_paddr_p
;
2640 CORE_ADDR vaddr
, paddr
;
2641 CORE_ADDR displacement_vaddr
= 0;
2642 CORE_ADDR displacement_paddr
= 0;
2644 phdrp
= &((Elf64_External_Phdr
*) buf
)[i
];
2645 buf_vaddr_p
= (gdb_byte
*) &phdrp
->p_vaddr
;
2646 buf_paddr_p
= (gdb_byte
*) &phdrp
->p_paddr
;
2648 vaddr
= extract_unsigned_integer (buf_vaddr_p
, 8,
2650 displacement_vaddr
= vaddr
- phdr2
[i
].p_vaddr
;
2652 paddr
= extract_unsigned_integer (buf_paddr_p
, 8,
2654 displacement_paddr
= paddr
- phdr2
[i
].p_paddr
;
2656 if (displacement_vaddr
== displacement_paddr
)
2657 displacement
= displacement_vaddr
;
2662 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2664 for (i
= 0; i
< phdrs_size
/ sizeof (Elf64_External_Phdr
); i
++)
2666 Elf64_External_Phdr
*phdrp
;
2667 Elf64_External_Phdr
*phdr2p
;
2668 gdb_byte
*buf_vaddr_p
, *buf_paddr_p
;
2669 CORE_ADDR vaddr
, paddr
;
2670 asection
*plt2_asect
;
2672 phdrp
= &((Elf64_External_Phdr
*) buf
)[i
];
2673 buf_vaddr_p
= (gdb_byte
*) &phdrp
->p_vaddr
;
2674 buf_paddr_p
= (gdb_byte
*) &phdrp
->p_paddr
;
2675 phdr2p
= &((Elf64_External_Phdr
*) buf2
)[i
];
2677 /* PT_GNU_STACK is an exception by being never relocated by
2678 prelink as its addresses are always zero. */
2680 if (memcmp (phdrp
, phdr2p
, sizeof (*phdrp
)) == 0)
2683 /* Check also other adjustment combinations - PR 11786. */
2685 vaddr
= extract_unsigned_integer (buf_vaddr_p
, 8,
2687 vaddr
-= displacement
;
2688 store_unsigned_integer (buf_vaddr_p
, 8, byte_order
, vaddr
);
2690 paddr
= extract_unsigned_integer (buf_paddr_p
, 8,
2692 paddr
-= displacement
;
2693 store_unsigned_integer (buf_paddr_p
, 8, byte_order
, paddr
);
2695 if (memcmp (phdrp
, phdr2p
, sizeof (*phdrp
)) == 0)
2698 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2699 plt2_asect
= bfd_get_section_by_name (exec_bfd
, ".plt");
2703 gdb_byte
*buf_filesz_p
= (gdb_byte
*) &phdrp
->p_filesz
;
2706 content2
= (bfd_get_section_flags (exec_bfd
, plt2_asect
)
2707 & SEC_HAS_CONTENTS
) != 0;
2709 filesz
= extract_unsigned_integer (buf_filesz_p
, 8,
2712 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2713 FILESZ is from the in-memory image. */
2715 filesz
+= bfd_get_section_size (plt2_asect
);
2717 filesz
-= bfd_get_section_size (plt2_asect
);
2719 store_unsigned_integer (buf_filesz_p
, 8, byte_order
,
2722 if (memcmp (phdrp
, phdr2p
, sizeof (*phdrp
)) == 0)
2743 /* It can be printed repeatedly as there is no easy way to check
2744 the executable symbols/file has been already relocated to
2747 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2748 "displacement %s for \"%s\".\n"),
2749 paddress (target_gdbarch (), displacement
),
2750 bfd_get_filename (exec_bfd
));
2753 *displacementp
= displacement
;
2757 /* Relocate the main executable. This function should be called upon
2758 stopping the inferior process at the entry point to the program.
2759 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2760 different, the main executable is relocated by the proper amount. */
2763 svr4_relocate_main_executable (void)
2765 CORE_ADDR displacement
;
2767 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2768 probably contains the offsets computed using the PIE displacement
2769 from the previous run, which of course are irrelevant for this run.
2770 So we need to determine the new PIE displacement and recompute the
2771 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2772 already contains pre-computed offsets.
2774 If we cannot compute the PIE displacement, either:
2776 - The executable is not PIE.
2778 - SYMFILE_OBJFILE does not match the executable started in the target.
2779 This can happen for main executable symbols loaded at the host while
2780 `ld.so --ld-args main-executable' is loaded in the target.
2782 Then we leave the section offsets untouched and use them as is for
2785 - These section offsets were properly reset earlier, and thus
2786 already contain the correct values. This can happen for instance
2787 when reconnecting via the remote protocol to a target that supports
2788 the `qOffsets' packet.
2790 - The section offsets were not reset earlier, and the best we can
2791 hope is that the old offsets are still applicable to the new run. */
2793 if (! svr4_exec_displacement (&displacement
))
2796 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2799 if (symfile_objfile
)
2801 struct section_offsets
*new_offsets
;
2804 new_offsets
= alloca (symfile_objfile
->num_sections
2805 * sizeof (*new_offsets
));
2807 for (i
= 0; i
< symfile_objfile
->num_sections
; i
++)
2808 new_offsets
->offsets
[i
] = displacement
;
2810 objfile_relocate (symfile_objfile
, new_offsets
);
2816 for (asect
= exec_bfd
->sections
; asect
!= NULL
; asect
= asect
->next
)
2817 exec_set_section_address (bfd_get_filename (exec_bfd
), asect
->index
,
2818 (bfd_section_vma (exec_bfd
, asect
)
2823 /* Implement the "create_inferior_hook" target_solib_ops method.
2825 For SVR4 executables, this first instruction is either the first
2826 instruction in the dynamic linker (for dynamically linked
2827 executables) or the instruction at "start" for statically linked
2828 executables. For dynamically linked executables, the system
2829 first exec's /lib/libc.so.N, which contains the dynamic linker,
2830 and starts it running. The dynamic linker maps in any needed
2831 shared libraries, maps in the actual user executable, and then
2832 jumps to "start" in the user executable.
2834 We can arrange to cooperate with the dynamic linker to discover the
2835 names of shared libraries that are dynamically linked, and the base
2836 addresses to which they are linked.
2838 This function is responsible for discovering those names and
2839 addresses, and saving sufficient information about them to allow
2840 their symbols to be read at a later time. */
2843 svr4_solib_create_inferior_hook (int from_tty
)
2845 struct svr4_info
*info
;
2847 info
= get_svr4_info ();
2849 /* Clear the probes-based interface's state. */
2850 free_probes_table (info
);
2851 free_solib_list (info
);
2853 /* Relocate the main executable if necessary. */
2854 svr4_relocate_main_executable ();
2856 /* No point setting a breakpoint in the dynamic linker if we can't
2857 hit it (e.g., a core file, or a trace file). */
2858 if (!target_has_execution
)
2861 if (!svr4_have_link_map_offsets ())
2864 if (!enable_break (info
, from_tty
))
2869 svr4_clear_solib (void)
2871 struct svr4_info
*info
;
2873 info
= get_svr4_info ();
2874 info
->debug_base
= 0;
2875 info
->debug_loader_offset_p
= 0;
2876 info
->debug_loader_offset
= 0;
2877 xfree (info
->debug_loader_name
);
2878 info
->debug_loader_name
= NULL
;
2881 /* Clear any bits of ADDR that wouldn't fit in a target-format
2882 data pointer. "Data pointer" here refers to whatever sort of
2883 address the dynamic linker uses to manage its sections. At the
2884 moment, we don't support shared libraries on any processors where
2885 code and data pointers are different sizes.
2887 This isn't really the right solution. What we really need here is
2888 a way to do arithmetic on CORE_ADDR values that respects the
2889 natural pointer/address correspondence. (For example, on the MIPS,
2890 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2891 sign-extend the value. There, simply truncating the bits above
2892 gdbarch_ptr_bit, as we do below, is no good.) This should probably
2893 be a new gdbarch method or something. */
2895 svr4_truncate_ptr (CORE_ADDR addr
)
2897 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR
) * 8)
2898 /* We don't need to truncate anything, and the bit twiddling below
2899 will fail due to overflow problems. */
2902 return addr
& (((CORE_ADDR
) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
2907 svr4_relocate_section_addresses (struct so_list
*so
,
2908 struct target_section
*sec
)
2910 sec
->addr
= svr4_truncate_ptr (sec
->addr
+ lm_addr_check (so
,
2912 sec
->endaddr
= svr4_truncate_ptr (sec
->endaddr
+ lm_addr_check (so
,
2917 /* Architecture-specific operations. */
2919 /* Per-architecture data key. */
2920 static struct gdbarch_data
*solib_svr4_data
;
2922 struct solib_svr4_ops
2924 /* Return a description of the layout of `struct link_map'. */
2925 struct link_map_offsets
*(*fetch_link_map_offsets
)(void);
2928 /* Return a default for the architecture-specific operations. */
2931 solib_svr4_init (struct obstack
*obstack
)
2933 struct solib_svr4_ops
*ops
;
2935 ops
= OBSTACK_ZALLOC (obstack
, struct solib_svr4_ops
);
2936 ops
->fetch_link_map_offsets
= NULL
;
2940 /* Set the architecture-specific `struct link_map_offsets' fetcher for
2941 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
2944 set_solib_svr4_fetch_link_map_offsets (struct gdbarch
*gdbarch
,
2945 struct link_map_offsets
*(*flmo
) (void))
2947 struct solib_svr4_ops
*ops
= gdbarch_data (gdbarch
, solib_svr4_data
);
2949 ops
->fetch_link_map_offsets
= flmo
;
2951 set_solib_ops (gdbarch
, &svr4_so_ops
);
2954 /* Fetch a link_map_offsets structure using the architecture-specific
2955 `struct link_map_offsets' fetcher. */
2957 static struct link_map_offsets
*
2958 svr4_fetch_link_map_offsets (void)
2960 struct solib_svr4_ops
*ops
= gdbarch_data (target_gdbarch (), solib_svr4_data
);
2962 gdb_assert (ops
->fetch_link_map_offsets
);
2963 return ops
->fetch_link_map_offsets ();
2966 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
2969 svr4_have_link_map_offsets (void)
2971 struct solib_svr4_ops
*ops
= gdbarch_data (target_gdbarch (), solib_svr4_data
);
2973 return (ops
->fetch_link_map_offsets
!= NULL
);
2977 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
2978 `struct r_debug' and a `struct link_map' that are binary compatible
2979 with the origional SVR4 implementation. */
2981 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2982 for an ILP32 SVR4 system. */
2984 struct link_map_offsets
*
2985 svr4_ilp32_fetch_link_map_offsets (void)
2987 static struct link_map_offsets lmo
;
2988 static struct link_map_offsets
*lmp
= NULL
;
2994 lmo
.r_version_offset
= 0;
2995 lmo
.r_version_size
= 4;
2996 lmo
.r_map_offset
= 4;
2997 lmo
.r_brk_offset
= 8;
2998 lmo
.r_ldsomap_offset
= 20;
3000 /* Everything we need is in the first 20 bytes. */
3001 lmo
.link_map_size
= 20;
3002 lmo
.l_addr_offset
= 0;
3003 lmo
.l_name_offset
= 4;
3004 lmo
.l_ld_offset
= 8;
3005 lmo
.l_next_offset
= 12;
3006 lmo
.l_prev_offset
= 16;
3012 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3013 for an LP64 SVR4 system. */
3015 struct link_map_offsets
*
3016 svr4_lp64_fetch_link_map_offsets (void)
3018 static struct link_map_offsets lmo
;
3019 static struct link_map_offsets
*lmp
= NULL
;
3025 lmo
.r_version_offset
= 0;
3026 lmo
.r_version_size
= 4;
3027 lmo
.r_map_offset
= 8;
3028 lmo
.r_brk_offset
= 16;
3029 lmo
.r_ldsomap_offset
= 40;
3031 /* Everything we need is in the first 40 bytes. */
3032 lmo
.link_map_size
= 40;
3033 lmo
.l_addr_offset
= 0;
3034 lmo
.l_name_offset
= 8;
3035 lmo
.l_ld_offset
= 16;
3036 lmo
.l_next_offset
= 24;
3037 lmo
.l_prev_offset
= 32;
3044 struct target_so_ops svr4_so_ops
;
3046 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3047 different rule for symbol lookup. The lookup begins here in the DSO, not in
3048 the main executable. */
3050 static struct symbol
*
3051 elf_lookup_lib_symbol (const struct objfile
*objfile
,
3053 const domain_enum domain
)
3057 if (objfile
== symfile_objfile
)
3061 /* OBJFILE should have been passed as the non-debug one. */
3062 gdb_assert (objfile
->separate_debug_objfile_backlink
== NULL
);
3064 abfd
= objfile
->obfd
;
3067 if (abfd
== NULL
|| scan_dyntag (DT_SYMBOLIC
, abfd
, NULL
) != 1)
3070 return lookup_global_symbol_from_objfile (objfile
, name
, domain
);
3073 extern initialize_file_ftype _initialize_svr4_solib
; /* -Wmissing-prototypes */
3076 _initialize_svr4_solib (void)
3078 solib_svr4_data
= gdbarch_data_register_pre_init (solib_svr4_init
);
3079 solib_svr4_pspace_data
3080 = register_program_space_data_with_cleanup (NULL
, svr4_pspace_data_cleanup
);
3082 svr4_so_ops
.relocate_section_addresses
= svr4_relocate_section_addresses
;
3083 svr4_so_ops
.free_so
= svr4_free_so
;
3084 svr4_so_ops
.clear_so
= svr4_clear_so
;
3085 svr4_so_ops
.clear_solib
= svr4_clear_solib
;
3086 svr4_so_ops
.solib_create_inferior_hook
= svr4_solib_create_inferior_hook
;
3087 svr4_so_ops
.special_symbol_handling
= svr4_special_symbol_handling
;
3088 svr4_so_ops
.current_sos
= svr4_current_sos
;
3089 svr4_so_ops
.open_symbol_file_object
= open_symbol_file_object
;
3090 svr4_so_ops
.in_dynsym_resolve_code
= svr4_in_dynsym_resolve_code
;
3091 svr4_so_ops
.bfd_open
= solib_bfd_open
;
3092 svr4_so_ops
.lookup_lib_global_symbol
= elf_lookup_lib_symbol
;
3093 svr4_so_ops
.same
= svr4_same
;
3094 svr4_so_ops
.keep_data_in_core
= svr4_keep_data_in_core
;
3095 svr4_so_ops
.update_breakpoints
= svr4_update_solib_event_breakpoints
;
3096 svr4_so_ops
.handle_event
= svr4_handle_solib_event
;