gdb
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23
24 #include "elf/external.h"
25 #include "elf/common.h"
26 #include "elf/mips.h"
27
28 #include "symtab.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbcore.h"
33 #include "target.h"
34 #include "inferior.h"
35 #include "regcache.h"
36 #include "gdbthread.h"
37 #include "observer.h"
38
39 #include "gdb_assert.h"
40
41 #include "solist.h"
42 #include "solib.h"
43 #include "solib-svr4.h"
44
45 #include "bfd-target.h"
46 #include "elf-bfd.h"
47 #include "exec.h"
48 #include "auxv.h"
49 #include "exceptions.h"
50
51 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
52 static int svr4_have_link_map_offsets (void);
53 static void svr4_relocate_main_executable (void);
54
55 /* Link map info to include in an allocated so_list entry */
56
57 struct lm_info
58 {
59 /* Pointer to copy of link map from inferior. The type is char *
60 rather than void *, so that we may use byte offsets to find the
61 various fields without the need for a cast. */
62 gdb_byte *lm;
63
64 /* Amount by which addresses in the binary should be relocated to
65 match the inferior. This could most often be taken directly
66 from lm, but when prelinking is involved and the prelink base
67 address changes, we may need a different offset, we want to
68 warn about the difference and compute it only once. */
69 CORE_ADDR l_addr;
70
71 /* The target location of lm. */
72 CORE_ADDR lm_addr;
73 };
74
75 /* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
83 static char *solib_break_names[] =
84 {
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
89 "__dl_rtld_db_dlactivity",
90 "_rtld_debug_state",
91
92 NULL
93 };
94
95 static char *bkpt_names[] =
96 {
97 "_start",
98 "__start",
99 "main",
100 NULL
101 };
102
103 static char *main_name_list[] =
104 {
105 "main_$main",
106 NULL
107 };
108
109 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
110 the same shared library. */
111
112 static int
113 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
114 {
115 if (strcmp (gdb_so_name, inferior_so_name) == 0)
116 return 1;
117
118 /* On Solaris, when starting inferior we think that dynamic linker is
119 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
120 contains /lib/ld.so.1. Sometimes one file is a link to another, but
121 sometimes they have identical content, but are not linked to each
122 other. We don't restrict this check for Solaris, but the chances
123 of running into this situation elsewhere are very low. */
124 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
125 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
126 return 1;
127
128 /* Similarly, we observed the same issue with sparc64, but with
129 different locations. */
130 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
131 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
132 return 1;
133
134 return 0;
135 }
136
137 static int
138 svr4_same (struct so_list *gdb, struct so_list *inferior)
139 {
140 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
141 }
142
143 /* link map access functions */
144
145 static CORE_ADDR
146 LM_ADDR_FROM_LINK_MAP (struct so_list *so)
147 {
148 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
149 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
150
151 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
152 ptr_type);
153 }
154
155 static int
156 HAS_LM_DYNAMIC_FROM_LINK_MAP (void)
157 {
158 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
159
160 return lmo->l_ld_offset >= 0;
161 }
162
163 static CORE_ADDR
164 LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
165 {
166 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
167 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
168
169 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
170 ptr_type);
171 }
172
173 static CORE_ADDR
174 LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
175 {
176 if (so->lm_info->l_addr == (CORE_ADDR)-1)
177 {
178 struct bfd_section *dyninfo_sect;
179 CORE_ADDR l_addr, l_dynaddr, dynaddr;
180
181 l_addr = LM_ADDR_FROM_LINK_MAP (so);
182
183 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
184 goto set_addr;
185
186 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
187
188 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
189 if (dyninfo_sect == NULL)
190 goto set_addr;
191
192 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
193
194 if (dynaddr + l_addr != l_dynaddr)
195 {
196 CORE_ADDR align = 0x1000;
197 CORE_ADDR minpagesize = align;
198
199 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
200 {
201 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
202 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
203 int i;
204
205 align = 1;
206
207 for (i = 0; i < ehdr->e_phnum; i++)
208 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
209 align = phdr[i].p_align;
210
211 minpagesize = get_elf_backend_data (abfd)->minpagesize;
212 }
213
214 /* Turn it into a mask. */
215 align--;
216
217 /* If the changes match the alignment requirements, we
218 assume we're using a core file that was generated by the
219 same binary, just prelinked with a different base offset.
220 If it doesn't match, we may have a different binary, the
221 same binary with the dynamic table loaded at an unrelated
222 location, or anything, really. To avoid regressions,
223 don't adjust the base offset in the latter case, although
224 odds are that, if things really changed, debugging won't
225 quite work.
226
227 One could expect more the condition
228 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
229 but the one below is relaxed for PPC. The PPC kernel supports
230 either 4k or 64k page sizes. To be prepared for 64k pages,
231 PPC ELF files are built using an alignment requirement of 64k.
232 However, when running on a kernel supporting 4k pages, the memory
233 mapping of the library may not actually happen on a 64k boundary!
234
235 (In the usual case where (l_addr & align) == 0, this check is
236 equivalent to the possibly expected check above.)
237
238 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
239
240 if ((l_addr & (minpagesize - 1)) == 0
241 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
242 {
243 l_addr = l_dynaddr - dynaddr;
244
245 if (info_verbose)
246 {
247 warning (_(".dynamic section for \"%s\" "
248 "is not at the expected address"), so->so_name);
249 warning (_("difference appears to be caused by prelink, "
250 "adjusting expectations"));
251 }
252 }
253 else
254 warning (_(".dynamic section for \"%s\" "
255 "is not at the expected address "
256 "(wrong library or version mismatch?)"), so->so_name);
257 }
258
259 set_addr:
260 so->lm_info->l_addr = l_addr;
261 }
262
263 return so->lm_info->l_addr;
264 }
265
266 static CORE_ADDR
267 LM_NEXT (struct so_list *so)
268 {
269 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
270 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
271
272 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
273 ptr_type);
274 }
275
276 static CORE_ADDR
277 LM_NAME (struct so_list *so)
278 {
279 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
280 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
281
282 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
283 ptr_type);
284 }
285
286 static int
287 IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
288 {
289 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
290 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
291
292 /* Assume that everything is a library if the dynamic loader was loaded
293 late by a static executable. */
294 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
295 return 0;
296
297 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
298 ptr_type) == 0;
299 }
300
301 /* Per pspace SVR4 specific data. */
302
303 struct svr4_info
304 {
305 CORE_ADDR debug_base; /* Base of dynamic linker structures */
306
307 /* Validity flag for debug_loader_offset. */
308 int debug_loader_offset_p;
309
310 /* Load address for the dynamic linker, inferred. */
311 CORE_ADDR debug_loader_offset;
312
313 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
314 char *debug_loader_name;
315
316 /* Load map address for the main executable. */
317 CORE_ADDR main_lm_addr;
318
319 CORE_ADDR interp_text_sect_low;
320 CORE_ADDR interp_text_sect_high;
321 CORE_ADDR interp_plt_sect_low;
322 CORE_ADDR interp_plt_sect_high;
323 };
324
325 /* Per-program-space data key. */
326 static const struct program_space_data *solib_svr4_pspace_data;
327
328 static void
329 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
330 {
331 struct svr4_info *info;
332
333 info = program_space_data (pspace, solib_svr4_pspace_data);
334 xfree (info);
335 }
336
337 /* Get the current svr4 data. If none is found yet, add it now. This
338 function always returns a valid object. */
339
340 static struct svr4_info *
341 get_svr4_info (void)
342 {
343 struct svr4_info *info;
344
345 info = program_space_data (current_program_space, solib_svr4_pspace_data);
346 if (info != NULL)
347 return info;
348
349 info = XZALLOC (struct svr4_info);
350 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
351 return info;
352 }
353
354 /* Local function prototypes */
355
356 static int match_main (char *);
357
358 static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
359
360 /*
361
362 LOCAL FUNCTION
363
364 bfd_lookup_symbol -- lookup the value for a specific symbol
365
366 SYNOPSIS
367
368 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
369
370 DESCRIPTION
371
372 An expensive way to lookup the value of a single symbol for
373 bfd's that are only temporary anyway. This is used by the
374 shared library support to find the address of the debugger
375 notification routine in the shared library.
376
377 The returned symbol may be in a code or data section; functions
378 will normally be in a code section, but may be in a data section
379 if this architecture uses function descriptors.
380
381 Note that 0 is specifically allowed as an error return (no
382 such symbol).
383 */
384
385 static CORE_ADDR
386 bfd_lookup_symbol (bfd *abfd, char *symname)
387 {
388 long storage_needed;
389 asymbol *sym;
390 asymbol **symbol_table;
391 unsigned int number_of_symbols;
392 unsigned int i;
393 struct cleanup *back_to;
394 CORE_ADDR symaddr = 0;
395
396 storage_needed = bfd_get_symtab_upper_bound (abfd);
397
398 if (storage_needed > 0)
399 {
400 symbol_table = (asymbol **) xmalloc (storage_needed);
401 back_to = make_cleanup (xfree, symbol_table);
402 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
403
404 for (i = 0; i < number_of_symbols; i++)
405 {
406 sym = *symbol_table++;
407 if (strcmp (sym->name, symname) == 0
408 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
409 {
410 /* BFD symbols are section relative. */
411 symaddr = sym->value + sym->section->vma;
412 break;
413 }
414 }
415 do_cleanups (back_to);
416 }
417
418 if (symaddr)
419 return symaddr;
420
421 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
422 have to check the dynamic string table too. */
423
424 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
425
426 if (storage_needed > 0)
427 {
428 symbol_table = (asymbol **) xmalloc (storage_needed);
429 back_to = make_cleanup (xfree, symbol_table);
430 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
431
432 for (i = 0; i < number_of_symbols; i++)
433 {
434 sym = *symbol_table++;
435
436 if (strcmp (sym->name, symname) == 0
437 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
438 {
439 /* BFD symbols are section relative. */
440 symaddr = sym->value + sym->section->vma;
441 break;
442 }
443 }
444 do_cleanups (back_to);
445 }
446
447 return symaddr;
448 }
449
450
451 /* Read program header TYPE from inferior memory. The header is found
452 by scanning the OS auxillary vector.
453
454 Return a pointer to allocated memory holding the program header contents,
455 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
456 size of those contents is returned to P_SECT_SIZE. Likewise, the target
457 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
458
459 static gdb_byte *
460 read_program_header (int type, int *p_sect_size, int *p_arch_size)
461 {
462 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
463 CORE_ADDR at_phdr, at_phent, at_phnum;
464 int arch_size, sect_size;
465 CORE_ADDR sect_addr;
466 gdb_byte *buf;
467
468 /* Get required auxv elements from target. */
469 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
470 return 0;
471 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
472 return 0;
473 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
474 return 0;
475 if (!at_phdr || !at_phnum)
476 return 0;
477
478 /* Determine ELF architecture type. */
479 if (at_phent == sizeof (Elf32_External_Phdr))
480 arch_size = 32;
481 else if (at_phent == sizeof (Elf64_External_Phdr))
482 arch_size = 64;
483 else
484 return 0;
485
486 /* Find .dynamic section via the PT_DYNAMIC PHDR. */
487 if (arch_size == 32)
488 {
489 Elf32_External_Phdr phdr;
490 int i;
491
492 /* Search for requested PHDR. */
493 for (i = 0; i < at_phnum; i++)
494 {
495 if (target_read_memory (at_phdr + i * sizeof (phdr),
496 (gdb_byte *)&phdr, sizeof (phdr)))
497 return 0;
498
499 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
500 4, byte_order) == type)
501 break;
502 }
503
504 if (i == at_phnum)
505 return 0;
506
507 /* Retrieve address and size. */
508 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
509 4, byte_order);
510 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
511 4, byte_order);
512 }
513 else
514 {
515 Elf64_External_Phdr phdr;
516 int i;
517
518 /* Search for requested PHDR. */
519 for (i = 0; i < at_phnum; i++)
520 {
521 if (target_read_memory (at_phdr + i * sizeof (phdr),
522 (gdb_byte *)&phdr, sizeof (phdr)))
523 return 0;
524
525 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
526 4, byte_order) == type)
527 break;
528 }
529
530 if (i == at_phnum)
531 return 0;
532
533 /* Retrieve address and size. */
534 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
535 8, byte_order);
536 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
537 8, byte_order);
538 }
539
540 /* Read in requested program header. */
541 buf = xmalloc (sect_size);
542 if (target_read_memory (sect_addr, buf, sect_size))
543 {
544 xfree (buf);
545 return NULL;
546 }
547
548 if (p_arch_size)
549 *p_arch_size = arch_size;
550 if (p_sect_size)
551 *p_sect_size = sect_size;
552
553 return buf;
554 }
555
556
557 /* Return program interpreter string. */
558 static gdb_byte *
559 find_program_interpreter (void)
560 {
561 gdb_byte *buf = NULL;
562
563 /* If we have an exec_bfd, use its section table. */
564 if (exec_bfd
565 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
566 {
567 struct bfd_section *interp_sect;
568
569 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
570 if (interp_sect != NULL)
571 {
572 CORE_ADDR sect_addr = bfd_section_vma (exec_bfd, interp_sect);
573 int sect_size = bfd_section_size (exec_bfd, interp_sect);
574
575 buf = xmalloc (sect_size);
576 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
577 }
578 }
579
580 /* If we didn't find it, use the target auxillary vector. */
581 if (!buf)
582 buf = read_program_header (PT_INTERP, NULL, NULL);
583
584 return buf;
585 }
586
587
588 /* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
589 returned and the corresponding PTR is set. */
590
591 static int
592 scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
593 {
594 int arch_size, step, sect_size;
595 long dyn_tag;
596 CORE_ADDR dyn_ptr, dyn_addr;
597 gdb_byte *bufend, *bufstart, *buf;
598 Elf32_External_Dyn *x_dynp_32;
599 Elf64_External_Dyn *x_dynp_64;
600 struct bfd_section *sect;
601 struct target_section *target_section;
602
603 if (abfd == NULL)
604 return 0;
605
606 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
607 return 0;
608
609 arch_size = bfd_get_arch_size (abfd);
610 if (arch_size == -1)
611 return 0;
612
613 /* Find the start address of the .dynamic section. */
614 sect = bfd_get_section_by_name (abfd, ".dynamic");
615 if (sect == NULL)
616 return 0;
617
618 for (target_section = current_target_sections->sections;
619 target_section < current_target_sections->sections_end;
620 target_section++)
621 if (sect == target_section->the_bfd_section)
622 break;
623 if (target_section < current_target_sections->sections_end)
624 dyn_addr = target_section->addr;
625 else
626 {
627 /* ABFD may come from OBJFILE acting only as a symbol file without being
628 loaded into the target (see add_symbol_file_command). This case is
629 such fallback to the file VMA address without the possibility of
630 having the section relocated to its actual in-memory address. */
631
632 dyn_addr = bfd_section_vma (abfd, sect);
633 }
634
635 /* Read in .dynamic from the BFD. We will get the actual value
636 from memory later. */
637 sect_size = bfd_section_size (abfd, sect);
638 buf = bufstart = alloca (sect_size);
639 if (!bfd_get_section_contents (abfd, sect,
640 buf, 0, sect_size))
641 return 0;
642
643 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
644 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
645 : sizeof (Elf64_External_Dyn);
646 for (bufend = buf + sect_size;
647 buf < bufend;
648 buf += step)
649 {
650 if (arch_size == 32)
651 {
652 x_dynp_32 = (Elf32_External_Dyn *) buf;
653 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
654 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
655 }
656 else
657 {
658 x_dynp_64 = (Elf64_External_Dyn *) buf;
659 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
660 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
661 }
662 if (dyn_tag == DT_NULL)
663 return 0;
664 if (dyn_tag == dyntag)
665 {
666 /* If requested, try to read the runtime value of this .dynamic
667 entry. */
668 if (ptr)
669 {
670 struct type *ptr_type;
671 gdb_byte ptr_buf[8];
672 CORE_ADDR ptr_addr;
673
674 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
675 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
676 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
677 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
678 *ptr = dyn_ptr;
679 }
680 return 1;
681 }
682 }
683
684 return 0;
685 }
686
687 /* Scan for DYNTAG in .dynamic section of the target's main executable,
688 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
689 returned and the corresponding PTR is set. */
690
691 static int
692 scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
693 {
694 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
695 int sect_size, arch_size, step;
696 long dyn_tag;
697 CORE_ADDR dyn_ptr;
698 gdb_byte *bufend, *bufstart, *buf;
699
700 /* Read in .dynamic section. */
701 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
702 if (!buf)
703 return 0;
704
705 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
706 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
707 : sizeof (Elf64_External_Dyn);
708 for (bufend = buf + sect_size;
709 buf < bufend;
710 buf += step)
711 {
712 if (arch_size == 32)
713 {
714 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
715 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
716 4, byte_order);
717 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
718 4, byte_order);
719 }
720 else
721 {
722 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
723 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
724 8, byte_order);
725 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
726 8, byte_order);
727 }
728 if (dyn_tag == DT_NULL)
729 break;
730
731 if (dyn_tag == dyntag)
732 {
733 if (ptr)
734 *ptr = dyn_ptr;
735
736 xfree (bufstart);
737 return 1;
738 }
739 }
740
741 xfree (bufstart);
742 return 0;
743 }
744
745
746 /*
747
748 LOCAL FUNCTION
749
750 elf_locate_base -- locate the base address of dynamic linker structs
751 for SVR4 elf targets.
752
753 SYNOPSIS
754
755 CORE_ADDR elf_locate_base (void)
756
757 DESCRIPTION
758
759 For SVR4 elf targets the address of the dynamic linker's runtime
760 structure is contained within the dynamic info section in the
761 executable file. The dynamic section is also mapped into the
762 inferior address space. Because the runtime loader fills in the
763 real address before starting the inferior, we have to read in the
764 dynamic info section from the inferior address space.
765 If there are any errors while trying to find the address, we
766 silently return 0, otherwise the found address is returned.
767
768 */
769
770 static CORE_ADDR
771 elf_locate_base (void)
772 {
773 struct minimal_symbol *msymbol;
774 CORE_ADDR dyn_ptr;
775
776 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
777 instead of DT_DEBUG, although they sometimes contain an unused
778 DT_DEBUG. */
779 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
780 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
781 {
782 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
783 gdb_byte *pbuf;
784 int pbuf_size = TYPE_LENGTH (ptr_type);
785 pbuf = alloca (pbuf_size);
786 /* DT_MIPS_RLD_MAP contains a pointer to the address
787 of the dynamic link structure. */
788 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
789 return 0;
790 return extract_typed_address (pbuf, ptr_type);
791 }
792
793 /* Find DT_DEBUG. */
794 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
795 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
796 return dyn_ptr;
797
798 /* This may be a static executable. Look for the symbol
799 conventionally named _r_debug, as a last resort. */
800 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
801 if (msymbol != NULL)
802 return SYMBOL_VALUE_ADDRESS (msymbol);
803
804 /* DT_DEBUG entry not found. */
805 return 0;
806 }
807
808 /*
809
810 LOCAL FUNCTION
811
812 locate_base -- locate the base address of dynamic linker structs
813
814 SYNOPSIS
815
816 CORE_ADDR locate_base (struct svr4_info *)
817
818 DESCRIPTION
819
820 For both the SunOS and SVR4 shared library implementations, if the
821 inferior executable has been linked dynamically, there is a single
822 address somewhere in the inferior's data space which is the key to
823 locating all of the dynamic linker's runtime structures. This
824 address is the value of the debug base symbol. The job of this
825 function is to find and return that address, or to return 0 if there
826 is no such address (the executable is statically linked for example).
827
828 For SunOS, the job is almost trivial, since the dynamic linker and
829 all of it's structures are statically linked to the executable at
830 link time. Thus the symbol for the address we are looking for has
831 already been added to the minimal symbol table for the executable's
832 objfile at the time the symbol file's symbols were read, and all we
833 have to do is look it up there. Note that we explicitly do NOT want
834 to find the copies in the shared library.
835
836 The SVR4 version is a bit more complicated because the address
837 is contained somewhere in the dynamic info section. We have to go
838 to a lot more work to discover the address of the debug base symbol.
839 Because of this complexity, we cache the value we find and return that
840 value on subsequent invocations. Note there is no copy in the
841 executable symbol tables.
842
843 */
844
845 static CORE_ADDR
846 locate_base (struct svr4_info *info)
847 {
848 /* Check to see if we have a currently valid address, and if so, avoid
849 doing all this work again and just return the cached address. If
850 we have no cached address, try to locate it in the dynamic info
851 section for ELF executables. There's no point in doing any of this
852 though if we don't have some link map offsets to work with. */
853
854 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
855 info->debug_base = elf_locate_base ();
856 return info->debug_base;
857 }
858
859 /* Find the first element in the inferior's dynamic link map, and
860 return its address in the inferior.
861
862 FIXME: Perhaps we should validate the info somehow, perhaps by
863 checking r_version for a known version number, or r_state for
864 RT_CONSISTENT. */
865
866 static CORE_ADDR
867 solib_svr4_r_map (struct svr4_info *info)
868 {
869 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
870 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
871
872 return read_memory_typed_address (info->debug_base + lmo->r_map_offset,
873 ptr_type);
874 }
875
876 /* Find r_brk from the inferior's debug base. */
877
878 static CORE_ADDR
879 solib_svr4_r_brk (struct svr4_info *info)
880 {
881 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
882 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
883
884 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
885 ptr_type);
886 }
887
888 /* Find the link map for the dynamic linker (if it is not in the
889 normal list of loaded shared objects). */
890
891 static CORE_ADDR
892 solib_svr4_r_ldsomap (struct svr4_info *info)
893 {
894 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
895 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
896 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
897 ULONGEST version;
898
899 /* Check version, and return zero if `struct r_debug' doesn't have
900 the r_ldsomap member. */
901 version
902 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
903 lmo->r_version_size, byte_order);
904 if (version < 2 || lmo->r_ldsomap_offset == -1)
905 return 0;
906
907 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
908 ptr_type);
909 }
910
911 /* On Solaris systems with some versions of the dynamic linker,
912 ld.so's l_name pointer points to the SONAME in the string table
913 rather than into writable memory. So that GDB can find shared
914 libraries when loading a core file generated by gcore, ensure that
915 memory areas containing the l_name string are saved in the core
916 file. */
917
918 static int
919 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
920 {
921 struct svr4_info *info;
922 CORE_ADDR ldsomap;
923 struct so_list *new;
924 struct cleanup *old_chain;
925 struct link_map_offsets *lmo;
926 CORE_ADDR lm_name;
927
928 info = get_svr4_info ();
929
930 info->debug_base = 0;
931 locate_base (info);
932 if (!info->debug_base)
933 return 0;
934
935 ldsomap = solib_svr4_r_ldsomap (info);
936 if (!ldsomap)
937 return 0;
938
939 lmo = svr4_fetch_link_map_offsets ();
940 new = XZALLOC (struct so_list);
941 old_chain = make_cleanup (xfree, new);
942 new->lm_info = xmalloc (sizeof (struct lm_info));
943 make_cleanup (xfree, new->lm_info);
944 new->lm_info->l_addr = (CORE_ADDR)-1;
945 new->lm_info->lm_addr = ldsomap;
946 new->lm_info->lm = xzalloc (lmo->link_map_size);
947 make_cleanup (xfree, new->lm_info->lm);
948 read_memory (ldsomap, new->lm_info->lm, lmo->link_map_size);
949 lm_name = LM_NAME (new);
950 do_cleanups (old_chain);
951
952 return (lm_name >= vaddr && lm_name < vaddr + size);
953 }
954
955 /*
956
957 LOCAL FUNCTION
958
959 open_symbol_file_object
960
961 SYNOPSIS
962
963 void open_symbol_file_object (void *from_tty)
964
965 DESCRIPTION
966
967 If no open symbol file, attempt to locate and open the main symbol
968 file. On SVR4 systems, this is the first link map entry. If its
969 name is here, we can open it. Useful when attaching to a process
970 without first loading its symbol file.
971
972 If FROM_TTYP dereferences to a non-zero integer, allow messages to
973 be printed. This parameter is a pointer rather than an int because
974 open_symbol_file_object() is called via catch_errors() and
975 catch_errors() requires a pointer argument. */
976
977 static int
978 open_symbol_file_object (void *from_ttyp)
979 {
980 CORE_ADDR lm, l_name;
981 char *filename;
982 int errcode;
983 int from_tty = *(int *)from_ttyp;
984 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
985 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
986 int l_name_size = TYPE_LENGTH (ptr_type);
987 gdb_byte *l_name_buf = xmalloc (l_name_size);
988 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
989 struct svr4_info *info = get_svr4_info ();
990
991 if (symfile_objfile)
992 if (!query (_("Attempt to reload symbols from process? ")))
993 return 0;
994
995 /* Always locate the debug struct, in case it has moved. */
996 info->debug_base = 0;
997 if (locate_base (info) == 0)
998 return 0; /* failed somehow... */
999
1000 /* First link map member should be the executable. */
1001 lm = solib_svr4_r_map (info);
1002 if (lm == 0)
1003 return 0; /* failed somehow... */
1004
1005 /* Read address of name from target memory to GDB. */
1006 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
1007
1008 /* Convert the address to host format. */
1009 l_name = extract_typed_address (l_name_buf, ptr_type);
1010
1011 /* Free l_name_buf. */
1012 do_cleanups (cleanups);
1013
1014 if (l_name == 0)
1015 return 0; /* No filename. */
1016
1017 /* Now fetch the filename from target memory. */
1018 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1019 make_cleanup (xfree, filename);
1020
1021 if (errcode)
1022 {
1023 warning (_("failed to read exec filename from attached file: %s"),
1024 safe_strerror (errcode));
1025 return 0;
1026 }
1027
1028 /* Have a pathname: read the symbol file. */
1029 symbol_file_add_main (filename, from_tty);
1030
1031 return 1;
1032 }
1033
1034 /* If no shared library information is available from the dynamic
1035 linker, build a fallback list from other sources. */
1036
1037 static struct so_list *
1038 svr4_default_sos (void)
1039 {
1040 struct svr4_info *info = get_svr4_info ();
1041
1042 struct so_list *head = NULL;
1043 struct so_list **link_ptr = &head;
1044
1045 if (info->debug_loader_offset_p)
1046 {
1047 struct so_list *new = XZALLOC (struct so_list);
1048
1049 new->lm_info = xmalloc (sizeof (struct lm_info));
1050
1051 /* Nothing will ever check the cached copy of the link
1052 map if we set l_addr. */
1053 new->lm_info->l_addr = info->debug_loader_offset;
1054 new->lm_info->lm_addr = 0;
1055 new->lm_info->lm = NULL;
1056
1057 strncpy (new->so_name, info->debug_loader_name,
1058 SO_NAME_MAX_PATH_SIZE - 1);
1059 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1060 strcpy (new->so_original_name, new->so_name);
1061
1062 *link_ptr = new;
1063 link_ptr = &new->next;
1064 }
1065
1066 return head;
1067 }
1068
1069 /* LOCAL FUNCTION
1070
1071 current_sos -- build a list of currently loaded shared objects
1072
1073 SYNOPSIS
1074
1075 struct so_list *current_sos ()
1076
1077 DESCRIPTION
1078
1079 Build a list of `struct so_list' objects describing the shared
1080 objects currently loaded in the inferior. This list does not
1081 include an entry for the main executable file.
1082
1083 Note that we only gather information directly available from the
1084 inferior --- we don't examine any of the shared library files
1085 themselves. The declaration of `struct so_list' says which fields
1086 we provide values for. */
1087
1088 static struct so_list *
1089 svr4_current_sos (void)
1090 {
1091 CORE_ADDR lm;
1092 struct so_list *head = 0;
1093 struct so_list **link_ptr = &head;
1094 CORE_ADDR ldsomap = 0;
1095 struct svr4_info *info;
1096
1097 info = get_svr4_info ();
1098
1099 /* Always locate the debug struct, in case it has moved. */
1100 info->debug_base = 0;
1101 locate_base (info);
1102
1103 /* If we can't find the dynamic linker's base structure, this
1104 must not be a dynamically linked executable. Hmm. */
1105 if (! info->debug_base)
1106 return svr4_default_sos ();
1107
1108 /* Walk the inferior's link map list, and build our list of
1109 `struct so_list' nodes. */
1110 lm = solib_svr4_r_map (info);
1111
1112 while (lm)
1113 {
1114 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
1115 struct so_list *new = XZALLOC (struct so_list);
1116 struct cleanup *old_chain = make_cleanup (xfree, new);
1117
1118 new->lm_info = xmalloc (sizeof (struct lm_info));
1119 make_cleanup (xfree, new->lm_info);
1120
1121 new->lm_info->l_addr = (CORE_ADDR)-1;
1122 new->lm_info->lm_addr = lm;
1123 new->lm_info->lm = xzalloc (lmo->link_map_size);
1124 make_cleanup (xfree, new->lm_info->lm);
1125
1126 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1127
1128 lm = LM_NEXT (new);
1129
1130 /* For SVR4 versions, the first entry in the link map is for the
1131 inferior executable, so we must ignore it. For some versions of
1132 SVR4, it has no name. For others (Solaris 2.3 for example), it
1133 does have a name, so we can no longer use a missing name to
1134 decide when to ignore it. */
1135 if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
1136 {
1137 info->main_lm_addr = new->lm_info->lm_addr;
1138 free_so (new);
1139 }
1140 else
1141 {
1142 int errcode;
1143 char *buffer;
1144
1145 /* Extract this shared object's name. */
1146 target_read_string (LM_NAME (new), &buffer,
1147 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1148 if (errcode != 0)
1149 warning (_("Can't read pathname for load map: %s."),
1150 safe_strerror (errcode));
1151 else
1152 {
1153 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1154 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1155 strcpy (new->so_original_name, new->so_name);
1156 }
1157 xfree (buffer);
1158
1159 /* If this entry has no name, or its name matches the name
1160 for the main executable, don't include it in the list. */
1161 if (! new->so_name[0]
1162 || match_main (new->so_name))
1163 free_so (new);
1164 else
1165 {
1166 new->next = 0;
1167 *link_ptr = new;
1168 link_ptr = &new->next;
1169 }
1170 }
1171
1172 /* On Solaris, the dynamic linker is not in the normal list of
1173 shared objects, so make sure we pick it up too. Having
1174 symbol information for the dynamic linker is quite crucial
1175 for skipping dynamic linker resolver code. */
1176 if (lm == 0 && ldsomap == 0)
1177 lm = ldsomap = solib_svr4_r_ldsomap (info);
1178
1179 discard_cleanups (old_chain);
1180 }
1181
1182 if (head == NULL)
1183 return svr4_default_sos ();
1184
1185 return head;
1186 }
1187
1188 /* Get the address of the link_map for a given OBJFILE. */
1189
1190 CORE_ADDR
1191 svr4_fetch_objfile_link_map (struct objfile *objfile)
1192 {
1193 struct so_list *so;
1194 struct svr4_info *info = get_svr4_info ();
1195
1196 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1197 if (info->main_lm_addr == 0)
1198 solib_add (NULL, 0, &current_target, auto_solib_add);
1199
1200 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1201 if (objfile == symfile_objfile)
1202 return info->main_lm_addr;
1203
1204 /* The other link map addresses may be found by examining the list
1205 of shared libraries. */
1206 for (so = master_so_list (); so; so = so->next)
1207 if (so->objfile == objfile)
1208 return so->lm_info->lm_addr;
1209
1210 /* Not found! */
1211 return 0;
1212 }
1213
1214 /* On some systems, the only way to recognize the link map entry for
1215 the main executable file is by looking at its name. Return
1216 non-zero iff SONAME matches one of the known main executable names. */
1217
1218 static int
1219 match_main (char *soname)
1220 {
1221 char **mainp;
1222
1223 for (mainp = main_name_list; *mainp != NULL; mainp++)
1224 {
1225 if (strcmp (soname, *mainp) == 0)
1226 return (1);
1227 }
1228
1229 return (0);
1230 }
1231
1232 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1233 SVR4 run time loader. */
1234
1235 int
1236 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1237 {
1238 struct svr4_info *info = get_svr4_info ();
1239
1240 return ((pc >= info->interp_text_sect_low
1241 && pc < info->interp_text_sect_high)
1242 || (pc >= info->interp_plt_sect_low
1243 && pc < info->interp_plt_sect_high)
1244 || in_plt_section (pc, NULL));
1245 }
1246
1247 /* Given an executable's ABFD and target, compute the entry-point
1248 address. */
1249
1250 static CORE_ADDR
1251 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1252 {
1253 /* KevinB wrote ... for most targets, the address returned by
1254 bfd_get_start_address() is the entry point for the start
1255 function. But, for some targets, bfd_get_start_address() returns
1256 the address of a function descriptor from which the entry point
1257 address may be extracted. This address is extracted by
1258 gdbarch_convert_from_func_ptr_addr(). The method
1259 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1260 function for targets which don't use function descriptors. */
1261 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1262 bfd_get_start_address (abfd),
1263 targ);
1264 }
1265
1266 /*
1267
1268 LOCAL FUNCTION
1269
1270 enable_break -- arrange for dynamic linker to hit breakpoint
1271
1272 SYNOPSIS
1273
1274 int enable_break (void)
1275
1276 DESCRIPTION
1277
1278 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1279 debugger interface, support for arranging for the inferior to hit
1280 a breakpoint after mapping in the shared libraries. This function
1281 enables that breakpoint.
1282
1283 For SunOS, there is a special flag location (in_debugger) which we
1284 set to 1. When the dynamic linker sees this flag set, it will set
1285 a breakpoint at a location known only to itself, after saving the
1286 original contents of that place and the breakpoint address itself,
1287 in it's own internal structures. When we resume the inferior, it
1288 will eventually take a SIGTRAP when it runs into the breakpoint.
1289 We handle this (in a different place) by restoring the contents of
1290 the breakpointed location (which is only known after it stops),
1291 chasing around to locate the shared libraries that have been
1292 loaded, then resuming.
1293
1294 For SVR4, the debugger interface structure contains a member (r_brk)
1295 which is statically initialized at the time the shared library is
1296 built, to the offset of a function (_r_debug_state) which is guaran-
1297 teed to be called once before mapping in a library, and again when
1298 the mapping is complete. At the time we are examining this member,
1299 it contains only the unrelocated offset of the function, so we have
1300 to do our own relocation. Later, when the dynamic linker actually
1301 runs, it relocates r_brk to be the actual address of _r_debug_state().
1302
1303 The debugger interface structure also contains an enumeration which
1304 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1305 depending upon whether or not the library is being mapped or unmapped,
1306 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1307 */
1308
1309 static int
1310 enable_break (struct svr4_info *info, int from_tty)
1311 {
1312 struct minimal_symbol *msymbol;
1313 char **bkpt_namep;
1314 asection *interp_sect;
1315 gdb_byte *interp_name;
1316 CORE_ADDR sym_addr;
1317
1318 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1319 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
1320
1321 /* If we already have a shared library list in the target, and
1322 r_debug contains r_brk, set the breakpoint there - this should
1323 mean r_brk has already been relocated. Assume the dynamic linker
1324 is the object containing r_brk. */
1325
1326 solib_add (NULL, from_tty, &current_target, auto_solib_add);
1327 sym_addr = 0;
1328 if (info->debug_base && solib_svr4_r_map (info) != 0)
1329 sym_addr = solib_svr4_r_brk (info);
1330
1331 if (sym_addr != 0)
1332 {
1333 struct obj_section *os;
1334
1335 sym_addr = gdbarch_addr_bits_remove
1336 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1337 sym_addr,
1338 &current_target));
1339
1340 /* On at least some versions of Solaris there's a dynamic relocation
1341 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
1342 we get control before the dynamic linker has self-relocated.
1343 Check if SYM_ADDR is in a known section, if it is assume we can
1344 trust its value. This is just a heuristic though, it could go away
1345 or be replaced if it's getting in the way.
1346
1347 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
1348 however it's spelled in your particular system) is ARM or Thumb.
1349 That knowledge is encoded in the address, if it's Thumb the low bit
1350 is 1. However, we've stripped that info above and it's not clear
1351 what all the consequences are of passing a non-addr_bits_remove'd
1352 address to create_solib_event_breakpoint. The call to
1353 find_pc_section verifies we know about the address and have some
1354 hope of computing the right kind of breakpoint to use (via
1355 symbol info). It does mean that GDB needs to be pointed at a
1356 non-stripped version of the dynamic linker in order to obtain
1357 information it already knows about. Sigh. */
1358
1359 os = find_pc_section (sym_addr);
1360 if (os != NULL)
1361 {
1362 /* Record the relocated start and end address of the dynamic linker
1363 text and plt section for svr4_in_dynsym_resolve_code. */
1364 bfd *tmp_bfd;
1365 CORE_ADDR load_addr;
1366
1367 tmp_bfd = os->objfile->obfd;
1368 load_addr = ANOFFSET (os->objfile->section_offsets,
1369 os->objfile->sect_index_text);
1370
1371 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1372 if (interp_sect)
1373 {
1374 info->interp_text_sect_low =
1375 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1376 info->interp_text_sect_high =
1377 info->interp_text_sect_low
1378 + bfd_section_size (tmp_bfd, interp_sect);
1379 }
1380 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1381 if (interp_sect)
1382 {
1383 info->interp_plt_sect_low =
1384 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1385 info->interp_plt_sect_high =
1386 info->interp_plt_sect_low
1387 + bfd_section_size (tmp_bfd, interp_sect);
1388 }
1389
1390 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1391 return 1;
1392 }
1393 }
1394
1395 /* Find the program interpreter; if not found, warn the user and drop
1396 into the old breakpoint at symbol code. */
1397 interp_name = find_program_interpreter ();
1398 if (interp_name)
1399 {
1400 CORE_ADDR load_addr = 0;
1401 int load_addr_found = 0;
1402 int loader_found_in_list = 0;
1403 struct so_list *so;
1404 bfd *tmp_bfd = NULL;
1405 struct target_ops *tmp_bfd_target;
1406 volatile struct gdb_exception ex;
1407
1408 sym_addr = 0;
1409
1410 /* Now we need to figure out where the dynamic linker was
1411 loaded so that we can load its symbols and place a breakpoint
1412 in the dynamic linker itself.
1413
1414 This address is stored on the stack. However, I've been unable
1415 to find any magic formula to find it for Solaris (appears to
1416 be trivial on GNU/Linux). Therefore, we have to try an alternate
1417 mechanism to find the dynamic linker's base address. */
1418
1419 TRY_CATCH (ex, RETURN_MASK_ALL)
1420 {
1421 tmp_bfd = solib_bfd_open (interp_name);
1422 }
1423 if (tmp_bfd == NULL)
1424 goto bkpt_at_symbol;
1425
1426 /* Now convert the TMP_BFD into a target. That way target, as
1427 well as BFD operations can be used. Note that closing the
1428 target will also close the underlying bfd. */
1429 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1430
1431 /* On a running target, we can get the dynamic linker's base
1432 address from the shared library table. */
1433 so = master_so_list ();
1434 while (so)
1435 {
1436 if (svr4_same_1 (interp_name, so->so_original_name))
1437 {
1438 load_addr_found = 1;
1439 loader_found_in_list = 1;
1440 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
1441 break;
1442 }
1443 so = so->next;
1444 }
1445
1446 /* If we were not able to find the base address of the loader
1447 from our so_list, then try using the AT_BASE auxilliary entry. */
1448 if (!load_addr_found)
1449 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
1450 {
1451 int addr_bit = gdbarch_addr_bit (target_gdbarch);
1452
1453 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
1454 that `+ load_addr' will overflow CORE_ADDR width not creating
1455 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
1456 GDB. */
1457
1458 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
1459 {
1460 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
1461 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
1462 tmp_bfd_target);
1463
1464 gdb_assert (load_addr < space_size);
1465
1466 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
1467 64bit ld.so with 32bit executable, it should not happen. */
1468
1469 if (tmp_entry_point < space_size
1470 && tmp_entry_point + load_addr >= space_size)
1471 load_addr -= space_size;
1472 }
1473
1474 load_addr_found = 1;
1475 }
1476
1477 /* Otherwise we find the dynamic linker's base address by examining
1478 the current pc (which should point at the entry point for the
1479 dynamic linker) and subtracting the offset of the entry point.
1480
1481 This is more fragile than the previous approaches, but is a good
1482 fallback method because it has actually been working well in
1483 most cases. */
1484 if (!load_addr_found)
1485 {
1486 struct regcache *regcache
1487 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1488 load_addr = (regcache_read_pc (regcache)
1489 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1490 }
1491
1492 if (!loader_found_in_list)
1493 {
1494 info->debug_loader_name = xstrdup (interp_name);
1495 info->debug_loader_offset_p = 1;
1496 info->debug_loader_offset = load_addr;
1497 solib_add (NULL, from_tty, &current_target, auto_solib_add);
1498 }
1499
1500 /* Record the relocated start and end address of the dynamic linker
1501 text and plt section for svr4_in_dynsym_resolve_code. */
1502 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1503 if (interp_sect)
1504 {
1505 info->interp_text_sect_low =
1506 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1507 info->interp_text_sect_high =
1508 info->interp_text_sect_low
1509 + bfd_section_size (tmp_bfd, interp_sect);
1510 }
1511 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1512 if (interp_sect)
1513 {
1514 info->interp_plt_sect_low =
1515 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1516 info->interp_plt_sect_high =
1517 info->interp_plt_sect_low
1518 + bfd_section_size (tmp_bfd, interp_sect);
1519 }
1520
1521 /* Now try to set a breakpoint in the dynamic linker. */
1522 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1523 {
1524 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1525 if (sym_addr != 0)
1526 break;
1527 }
1528
1529 if (sym_addr != 0)
1530 /* Convert 'sym_addr' from a function pointer to an address.
1531 Because we pass tmp_bfd_target instead of the current
1532 target, this will always produce an unrelocated value. */
1533 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1534 sym_addr,
1535 tmp_bfd_target);
1536
1537 /* We're done with both the temporary bfd and target. Remember,
1538 closing the target closes the underlying bfd. */
1539 target_close (tmp_bfd_target, 0);
1540
1541 if (sym_addr != 0)
1542 {
1543 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
1544 xfree (interp_name);
1545 return 1;
1546 }
1547
1548 /* For whatever reason we couldn't set a breakpoint in the dynamic
1549 linker. Warn and drop into the old code. */
1550 bkpt_at_symbol:
1551 xfree (interp_name);
1552 warning (_("Unable to find dynamic linker breakpoint function.\n"
1553 "GDB will be unable to debug shared library initializers\n"
1554 "and track explicitly loaded dynamic code."));
1555 }
1556
1557 /* Scan through the lists of symbols, trying to look up the symbol and
1558 set a breakpoint there. Terminate loop when we/if we succeed. */
1559
1560 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1561 {
1562 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1563 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1564 {
1565 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1566 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1567 sym_addr,
1568 &current_target);
1569 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1570 return 1;
1571 }
1572 }
1573
1574 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1575 {
1576 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1577 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1578 {
1579 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1580 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1581 sym_addr,
1582 &current_target);
1583 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1584 return 1;
1585 }
1586 }
1587 return 0;
1588 }
1589
1590 /*
1591
1592 LOCAL FUNCTION
1593
1594 special_symbol_handling -- additional shared library symbol handling
1595
1596 SYNOPSIS
1597
1598 void special_symbol_handling ()
1599
1600 DESCRIPTION
1601
1602 Once the symbols from a shared object have been loaded in the usual
1603 way, we are called to do any system specific symbol handling that
1604 is needed.
1605
1606 For SunOS4, this consisted of grunging around in the dynamic
1607 linkers structures to find symbol definitions for "common" symbols
1608 and adding them to the minimal symbol table for the runtime common
1609 objfile.
1610
1611 However, for SVR4, there's nothing to do.
1612
1613 */
1614
1615 static void
1616 svr4_special_symbol_handling (void)
1617 {
1618 svr4_relocate_main_executable ();
1619 }
1620
1621 /* Decide if the objfile needs to be relocated. As indicated above,
1622 we will only be here when execution is stopped at the beginning
1623 of the program. Relocation is necessary if the address at which
1624 we are presently stopped differs from the start address stored in
1625 the executable AND there's no interpreter section. The condition
1626 regarding the interpreter section is very important because if
1627 there *is* an interpreter section, execution will begin there
1628 instead. When there is an interpreter section, the start address
1629 is (presumably) used by the interpreter at some point to start
1630 execution of the program.
1631
1632 If there is an interpreter, it is normal for it to be set to an
1633 arbitrary address at the outset. The job of finding it is
1634 handled in enable_break().
1635
1636 So, to summarize, relocations are necessary when there is no
1637 interpreter section and the start address obtained from the
1638 executable is different from the address at which GDB is
1639 currently stopped.
1640
1641 [ The astute reader will note that we also test to make sure that
1642 the executable in question has the DYNAMIC flag set. It is my
1643 opinion that this test is unnecessary (undesirable even). It
1644 was added to avoid inadvertent relocation of an executable
1645 whose e_type member in the ELF header is not ET_DYN. There may
1646 be a time in the future when it is desirable to do relocations
1647 on other types of files as well in which case this condition
1648 should either be removed or modified to accomodate the new file
1649 type. (E.g, an ET_EXEC executable which has been built to be
1650 position-independent could safely be relocated by the OS if
1651 desired. It is true that this violates the ABI, but the ABI
1652 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1653 */
1654
1655 static CORE_ADDR
1656 svr4_static_exec_displacement (void)
1657 {
1658 asection *interp_sect;
1659 struct regcache *regcache
1660 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1661 CORE_ADDR pc = regcache_read_pc (regcache);
1662
1663 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1664 if (interp_sect == NULL
1665 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
1666 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
1667 return pc - exec_entry_point (exec_bfd, &exec_ops);
1668
1669 return 0;
1670 }
1671
1672 /* We relocate all of the sections by the same amount. This
1673 behavior is mandated by recent editions of the System V ABI.
1674 According to the System V Application Binary Interface,
1675 Edition 4.1, page 5-5:
1676
1677 ... Though the system chooses virtual addresses for
1678 individual processes, it maintains the segments' relative
1679 positions. Because position-independent code uses relative
1680 addressesing between segments, the difference between
1681 virtual addresses in memory must match the difference
1682 between virtual addresses in the file. The difference
1683 between the virtual address of any segment in memory and
1684 the corresponding virtual address in the file is thus a
1685 single constant value for any one executable or shared
1686 object in a given process. This difference is the base
1687 address. One use of the base address is to relocate the
1688 memory image of the program during dynamic linking.
1689
1690 The same language also appears in Edition 4.0 of the System V
1691 ABI and is left unspecified in some of the earlier editions. */
1692
1693 static CORE_ADDR
1694 svr4_exec_displacement (void)
1695 {
1696 int found;
1697 /* ENTRY_POINT is a possible function descriptor - before
1698 a call to gdbarch_convert_from_func_ptr_addr. */
1699 CORE_ADDR entry_point;
1700
1701 if (exec_bfd == NULL)
1702 return 0;
1703
1704 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) == 1)
1705 return entry_point - bfd_get_start_address (exec_bfd);
1706
1707 return svr4_static_exec_displacement ();
1708 }
1709
1710 /* Relocate the main executable. This function should be called upon
1711 stopping the inferior process at the entry point to the program.
1712 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
1713 different, the main executable is relocated by the proper amount. */
1714
1715 static void
1716 svr4_relocate_main_executable (void)
1717 {
1718 CORE_ADDR displacement = svr4_exec_displacement ();
1719
1720 /* Even if DISPLACEMENT is 0 still try to relocate it as this is a new
1721 difference of in-memory vs. in-file addresses and we could already
1722 relocate the executable at this function to improper address before. */
1723
1724 if (symfile_objfile)
1725 {
1726 struct section_offsets *new_offsets;
1727 int i;
1728
1729 new_offsets = alloca (symfile_objfile->num_sections
1730 * sizeof (*new_offsets));
1731
1732 for (i = 0; i < symfile_objfile->num_sections; i++)
1733 new_offsets->offsets[i] = displacement;
1734
1735 objfile_relocate (symfile_objfile, new_offsets);
1736 }
1737 else if (exec_bfd)
1738 {
1739 asection *asect;
1740
1741 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
1742 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
1743 (bfd_section_vma (exec_bfd, asect)
1744 + displacement));
1745 }
1746 }
1747
1748 /*
1749
1750 GLOBAL FUNCTION
1751
1752 svr4_solib_create_inferior_hook -- shared library startup support
1753
1754 SYNOPSIS
1755
1756 void svr4_solib_create_inferior_hook (int from_tty)
1757
1758 DESCRIPTION
1759
1760 When gdb starts up the inferior, it nurses it along (through the
1761 shell) until it is ready to execute it's first instruction. At this
1762 point, this function gets called via expansion of the macro
1763 SOLIB_CREATE_INFERIOR_HOOK.
1764
1765 For SunOS executables, this first instruction is typically the
1766 one at "_start", or a similar text label, regardless of whether
1767 the executable is statically or dynamically linked. The runtime
1768 startup code takes care of dynamically linking in any shared
1769 libraries, once gdb allows the inferior to continue.
1770
1771 For SVR4 executables, this first instruction is either the first
1772 instruction in the dynamic linker (for dynamically linked
1773 executables) or the instruction at "start" for statically linked
1774 executables. For dynamically linked executables, the system
1775 first exec's /lib/libc.so.N, which contains the dynamic linker,
1776 and starts it running. The dynamic linker maps in any needed
1777 shared libraries, maps in the actual user executable, and then
1778 jumps to "start" in the user executable.
1779
1780 For both SunOS shared libraries, and SVR4 shared libraries, we
1781 can arrange to cooperate with the dynamic linker to discover the
1782 names of shared libraries that are dynamically linked, and the
1783 base addresses to which they are linked.
1784
1785 This function is responsible for discovering those names and
1786 addresses, and saving sufficient information about them to allow
1787 their symbols to be read at a later time.
1788
1789 FIXME
1790
1791 Between enable_break() and disable_break(), this code does not
1792 properly handle hitting breakpoints which the user might have
1793 set in the startup code or in the dynamic linker itself. Proper
1794 handling will probably have to wait until the implementation is
1795 changed to use the "breakpoint handler function" method.
1796
1797 Also, what if child has exit()ed? Must exit loop somehow.
1798 */
1799
1800 static void
1801 svr4_solib_create_inferior_hook (int from_tty)
1802 {
1803 struct inferior *inf;
1804 struct thread_info *tp;
1805 struct svr4_info *info;
1806
1807 info = get_svr4_info ();
1808
1809 /* Relocate the main executable if necessary. */
1810 if (current_inferior ()->attach_flag == 0)
1811 svr4_relocate_main_executable ();
1812
1813 if (!svr4_have_link_map_offsets ())
1814 return;
1815
1816 if (!enable_break (info, from_tty))
1817 return;
1818
1819 #if defined(_SCO_DS)
1820 /* SCO needs the loop below, other systems should be using the
1821 special shared library breakpoints and the shared library breakpoint
1822 service routine.
1823
1824 Now run the target. It will eventually hit the breakpoint, at
1825 which point all of the libraries will have been mapped in and we
1826 can go groveling around in the dynamic linker structures to find
1827 out what we need to know about them. */
1828
1829 inf = current_inferior ();
1830 tp = inferior_thread ();
1831
1832 clear_proceed_status ();
1833 inf->stop_soon = STOP_QUIETLY;
1834 tp->stop_signal = TARGET_SIGNAL_0;
1835 do
1836 {
1837 target_resume (pid_to_ptid (-1), 0, tp->stop_signal);
1838 wait_for_inferior (0);
1839 }
1840 while (tp->stop_signal != TARGET_SIGNAL_TRAP);
1841 inf->stop_soon = NO_STOP_QUIETLY;
1842 #endif /* defined(_SCO_DS) */
1843 }
1844
1845 static void
1846 svr4_clear_solib (void)
1847 {
1848 struct svr4_info *info;
1849
1850 info = get_svr4_info ();
1851 info->debug_base = 0;
1852 info->debug_loader_offset_p = 0;
1853 info->debug_loader_offset = 0;
1854 xfree (info->debug_loader_name);
1855 info->debug_loader_name = NULL;
1856 }
1857
1858 static void
1859 svr4_free_so (struct so_list *so)
1860 {
1861 xfree (so->lm_info->lm);
1862 xfree (so->lm_info);
1863 }
1864
1865
1866 /* Clear any bits of ADDR that wouldn't fit in a target-format
1867 data pointer. "Data pointer" here refers to whatever sort of
1868 address the dynamic linker uses to manage its sections. At the
1869 moment, we don't support shared libraries on any processors where
1870 code and data pointers are different sizes.
1871
1872 This isn't really the right solution. What we really need here is
1873 a way to do arithmetic on CORE_ADDR values that respects the
1874 natural pointer/address correspondence. (For example, on the MIPS,
1875 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1876 sign-extend the value. There, simply truncating the bits above
1877 gdbarch_ptr_bit, as we do below, is no good.) This should probably
1878 be a new gdbarch method or something. */
1879 static CORE_ADDR
1880 svr4_truncate_ptr (CORE_ADDR addr)
1881 {
1882 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
1883 /* We don't need to truncate anything, and the bit twiddling below
1884 will fail due to overflow problems. */
1885 return addr;
1886 else
1887 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
1888 }
1889
1890
1891 static void
1892 svr4_relocate_section_addresses (struct so_list *so,
1893 struct target_section *sec)
1894 {
1895 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
1896 sec->bfd));
1897 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
1898 sec->bfd));
1899 }
1900 \f
1901
1902 /* Architecture-specific operations. */
1903
1904 /* Per-architecture data key. */
1905 static struct gdbarch_data *solib_svr4_data;
1906
1907 struct solib_svr4_ops
1908 {
1909 /* Return a description of the layout of `struct link_map'. */
1910 struct link_map_offsets *(*fetch_link_map_offsets)(void);
1911 };
1912
1913 /* Return a default for the architecture-specific operations. */
1914
1915 static void *
1916 solib_svr4_init (struct obstack *obstack)
1917 {
1918 struct solib_svr4_ops *ops;
1919
1920 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
1921 ops->fetch_link_map_offsets = NULL;
1922 return ops;
1923 }
1924
1925 /* Set the architecture-specific `struct link_map_offsets' fetcher for
1926 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1927
1928 void
1929 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1930 struct link_map_offsets *(*flmo) (void))
1931 {
1932 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
1933
1934 ops->fetch_link_map_offsets = flmo;
1935
1936 set_solib_ops (gdbarch, &svr4_so_ops);
1937 }
1938
1939 /* Fetch a link_map_offsets structure using the architecture-specific
1940 `struct link_map_offsets' fetcher. */
1941
1942 static struct link_map_offsets *
1943 svr4_fetch_link_map_offsets (void)
1944 {
1945 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
1946
1947 gdb_assert (ops->fetch_link_map_offsets);
1948 return ops->fetch_link_map_offsets ();
1949 }
1950
1951 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1952
1953 static int
1954 svr4_have_link_map_offsets (void)
1955 {
1956 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
1957 return (ops->fetch_link_map_offsets != NULL);
1958 }
1959 \f
1960
1961 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
1962 `struct r_debug' and a `struct link_map' that are binary compatible
1963 with the origional SVR4 implementation. */
1964
1965 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1966 for an ILP32 SVR4 system. */
1967
1968 struct link_map_offsets *
1969 svr4_ilp32_fetch_link_map_offsets (void)
1970 {
1971 static struct link_map_offsets lmo;
1972 static struct link_map_offsets *lmp = NULL;
1973
1974 if (lmp == NULL)
1975 {
1976 lmp = &lmo;
1977
1978 lmo.r_version_offset = 0;
1979 lmo.r_version_size = 4;
1980 lmo.r_map_offset = 4;
1981 lmo.r_brk_offset = 8;
1982 lmo.r_ldsomap_offset = 20;
1983
1984 /* Everything we need is in the first 20 bytes. */
1985 lmo.link_map_size = 20;
1986 lmo.l_addr_offset = 0;
1987 lmo.l_name_offset = 4;
1988 lmo.l_ld_offset = 8;
1989 lmo.l_next_offset = 12;
1990 lmo.l_prev_offset = 16;
1991 }
1992
1993 return lmp;
1994 }
1995
1996 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1997 for an LP64 SVR4 system. */
1998
1999 struct link_map_offsets *
2000 svr4_lp64_fetch_link_map_offsets (void)
2001 {
2002 static struct link_map_offsets lmo;
2003 static struct link_map_offsets *lmp = NULL;
2004
2005 if (lmp == NULL)
2006 {
2007 lmp = &lmo;
2008
2009 lmo.r_version_offset = 0;
2010 lmo.r_version_size = 4;
2011 lmo.r_map_offset = 8;
2012 lmo.r_brk_offset = 16;
2013 lmo.r_ldsomap_offset = 40;
2014
2015 /* Everything we need is in the first 40 bytes. */
2016 lmo.link_map_size = 40;
2017 lmo.l_addr_offset = 0;
2018 lmo.l_name_offset = 8;
2019 lmo.l_ld_offset = 16;
2020 lmo.l_next_offset = 24;
2021 lmo.l_prev_offset = 32;
2022 }
2023
2024 return lmp;
2025 }
2026 \f
2027
2028 struct target_so_ops svr4_so_ops;
2029
2030 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
2031 different rule for symbol lookup. The lookup begins here in the DSO, not in
2032 the main executable. */
2033
2034 static struct symbol *
2035 elf_lookup_lib_symbol (const struct objfile *objfile,
2036 const char *name,
2037 const char *linkage_name,
2038 const domain_enum domain)
2039 {
2040 bfd *abfd;
2041
2042 if (objfile == symfile_objfile)
2043 abfd = exec_bfd;
2044 else
2045 {
2046 /* OBJFILE should have been passed as the non-debug one. */
2047 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
2048
2049 abfd = objfile->obfd;
2050 }
2051
2052 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
2053 return NULL;
2054
2055 return lookup_global_symbol_from_objfile
2056 (objfile, name, linkage_name, domain);
2057 }
2058
2059 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
2060
2061 void
2062 _initialize_svr4_solib (void)
2063 {
2064 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
2065 solib_svr4_pspace_data
2066 = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
2067
2068 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
2069 svr4_so_ops.free_so = svr4_free_so;
2070 svr4_so_ops.clear_solib = svr4_clear_solib;
2071 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
2072 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
2073 svr4_so_ops.current_sos = svr4_current_sos;
2074 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
2075 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
2076 svr4_so_ops.bfd_open = solib_bfd_open;
2077 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
2078 svr4_so_ops.same = svr4_same;
2079 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
2080 }
This page took 0.096671 seconds and 4 git commands to generate.