6e834fb5d7b6a995387841a2b7e995bb719767e9
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "elf/external.h"
23 #include "elf/common.h"
24 #include "elf/mips.h"
25
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbcore.h"
31 #include "target.h"
32 #include "inferior.h"
33 #include "infrun.h"
34 #include "regcache.h"
35 #include "gdbthread.h"
36 #include "observer.h"
37
38 #include "solist.h"
39 #include "solib.h"
40 #include "solib-svr4.h"
41
42 #include "bfd-target.h"
43 #include "elf-bfd.h"
44 #include "exec.h"
45 #include "auxv.h"
46 #include "gdb_bfd.h"
47 #include "probe.h"
48
49 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
50 static int svr4_have_link_map_offsets (void);
51 static void svr4_relocate_main_executable (void);
52 static void svr4_free_library_list (void *p_list);
53
54 /* On SVR4 systems, a list of symbols in the dynamic linker where
55 GDB can try to place a breakpoint to monitor shared library
56 events.
57
58 If none of these symbols are found, or other errors occur, then
59 SVR4 systems will fall back to using a symbol as the "startup
60 mapping complete" breakpoint address. */
61
62 static const char * const solib_break_names[] =
63 {
64 "r_debug_state",
65 "_r_debug_state",
66 "_dl_debug_state",
67 "rtld_db_dlactivity",
68 "__dl_rtld_db_dlactivity",
69 "_rtld_debug_state",
70
71 NULL
72 };
73
74 static const char * const bkpt_names[] =
75 {
76 "_start",
77 "__start",
78 "main",
79 NULL
80 };
81
82 static const char * const main_name_list[] =
83 {
84 "main_$main",
85 NULL
86 };
87
88 /* What to do when a probe stop occurs. */
89
90 enum probe_action
91 {
92 /* Something went seriously wrong. Stop using probes and
93 revert to using the older interface. */
94 PROBES_INTERFACE_FAILED,
95
96 /* No action is required. The shared object list is still
97 valid. */
98 DO_NOTHING,
99
100 /* The shared object list should be reloaded entirely. */
101 FULL_RELOAD,
102
103 /* Attempt to incrementally update the shared object list. If
104 the update fails or is not possible, fall back to reloading
105 the list in full. */
106 UPDATE_OR_RELOAD,
107 };
108
109 /* A probe's name and its associated action. */
110
111 struct probe_info
112 {
113 /* The name of the probe. */
114 const char *name;
115
116 /* What to do when a probe stop occurs. */
117 enum probe_action action;
118 };
119
120 /* A list of named probes and their associated actions. If all
121 probes are present in the dynamic linker then the probes-based
122 interface will be used. */
123
124 static const struct probe_info probe_info[] =
125 {
126 { "init_start", DO_NOTHING },
127 { "init_complete", FULL_RELOAD },
128 { "map_start", DO_NOTHING },
129 { "map_failed", DO_NOTHING },
130 { "reloc_complete", UPDATE_OR_RELOAD },
131 { "unmap_start", DO_NOTHING },
132 { "unmap_complete", FULL_RELOAD },
133 };
134
135 #define NUM_PROBES ARRAY_SIZE (probe_info)
136
137 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
138 the same shared library. */
139
140 static int
141 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
142 {
143 if (strcmp (gdb_so_name, inferior_so_name) == 0)
144 return 1;
145
146 /* On Solaris, when starting inferior we think that dynamic linker is
147 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
148 contains /lib/ld.so.1. Sometimes one file is a link to another, but
149 sometimes they have identical content, but are not linked to each
150 other. We don't restrict this check for Solaris, but the chances
151 of running into this situation elsewhere are very low. */
152 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
153 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
154 return 1;
155
156 /* Similarly, we observed the same issue with sparc64, but with
157 different locations. */
158 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
159 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
160 return 1;
161
162 return 0;
163 }
164
165 static int
166 svr4_same (struct so_list *gdb, struct so_list *inferior)
167 {
168 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
169 }
170
171 static lm_info_svr4 *
172 lm_info_read (CORE_ADDR lm_addr)
173 {
174 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
175 gdb_byte *lm;
176 lm_info_svr4 *lm_info;
177 struct cleanup *back_to;
178
179 lm = (gdb_byte *) xmalloc (lmo->link_map_size);
180 back_to = make_cleanup (xfree, lm);
181
182 if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
183 {
184 warning (_("Error reading shared library list entry at %s"),
185 paddress (target_gdbarch (), lm_addr)),
186 lm_info = NULL;
187 }
188 else
189 {
190 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
191
192 lm_info = new lm_info_svr4;
193 lm_info->lm_addr = lm_addr;
194
195 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
196 ptr_type);
197 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
198 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
199 ptr_type);
200 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
201 ptr_type);
202 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
203 ptr_type);
204 }
205
206 do_cleanups (back_to);
207
208 return lm_info;
209 }
210
211 static int
212 has_lm_dynamic_from_link_map (void)
213 {
214 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
215
216 return lmo->l_ld_offset >= 0;
217 }
218
219 static CORE_ADDR
220 lm_addr_check (const struct so_list *so, bfd *abfd)
221 {
222 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
223
224 if (!li->l_addr_p)
225 {
226 struct bfd_section *dyninfo_sect;
227 CORE_ADDR l_addr, l_dynaddr, dynaddr;
228
229 l_addr = li->l_addr_inferior;
230
231 if (! abfd || ! has_lm_dynamic_from_link_map ())
232 goto set_addr;
233
234 l_dynaddr = li->l_ld;
235
236 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
237 if (dyninfo_sect == NULL)
238 goto set_addr;
239
240 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
241
242 if (dynaddr + l_addr != l_dynaddr)
243 {
244 CORE_ADDR align = 0x1000;
245 CORE_ADDR minpagesize = align;
246
247 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
248 {
249 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
250 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
251 int i;
252
253 align = 1;
254
255 for (i = 0; i < ehdr->e_phnum; i++)
256 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
257 align = phdr[i].p_align;
258
259 minpagesize = get_elf_backend_data (abfd)->minpagesize;
260 }
261
262 /* Turn it into a mask. */
263 align--;
264
265 /* If the changes match the alignment requirements, we
266 assume we're using a core file that was generated by the
267 same binary, just prelinked with a different base offset.
268 If it doesn't match, we may have a different binary, the
269 same binary with the dynamic table loaded at an unrelated
270 location, or anything, really. To avoid regressions,
271 don't adjust the base offset in the latter case, although
272 odds are that, if things really changed, debugging won't
273 quite work.
274
275 One could expect more the condition
276 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
277 but the one below is relaxed for PPC. The PPC kernel supports
278 either 4k or 64k page sizes. To be prepared for 64k pages,
279 PPC ELF files are built using an alignment requirement of 64k.
280 However, when running on a kernel supporting 4k pages, the memory
281 mapping of the library may not actually happen on a 64k boundary!
282
283 (In the usual case where (l_addr & align) == 0, this check is
284 equivalent to the possibly expected check above.)
285
286 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
287
288 l_addr = l_dynaddr - dynaddr;
289
290 if ((l_addr & (minpagesize - 1)) == 0
291 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
292 {
293 if (info_verbose)
294 printf_unfiltered (_("Using PIC (Position Independent Code) "
295 "prelink displacement %s for \"%s\".\n"),
296 paddress (target_gdbarch (), l_addr),
297 so->so_name);
298 }
299 else
300 {
301 /* There is no way to verify the library file matches. prelink
302 can during prelinking of an unprelinked file (or unprelinking
303 of a prelinked file) shift the DYNAMIC segment by arbitrary
304 offset without any page size alignment. There is no way to
305 find out the ELF header and/or Program Headers for a limited
306 verification if it they match. One could do a verification
307 of the DYNAMIC segment. Still the found address is the best
308 one GDB could find. */
309
310 warning (_(".dynamic section for \"%s\" "
311 "is not at the expected address "
312 "(wrong library or version mismatch?)"), so->so_name);
313 }
314 }
315
316 set_addr:
317 li->l_addr = l_addr;
318 li->l_addr_p = 1;
319 }
320
321 return li->l_addr;
322 }
323
324 /* Per pspace SVR4 specific data. */
325
326 struct svr4_info
327 {
328 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
329
330 /* Validity flag for debug_loader_offset. */
331 int debug_loader_offset_p;
332
333 /* Load address for the dynamic linker, inferred. */
334 CORE_ADDR debug_loader_offset;
335
336 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
337 char *debug_loader_name;
338
339 /* Load map address for the main executable. */
340 CORE_ADDR main_lm_addr;
341
342 CORE_ADDR interp_text_sect_low;
343 CORE_ADDR interp_text_sect_high;
344 CORE_ADDR interp_plt_sect_low;
345 CORE_ADDR interp_plt_sect_high;
346
347 /* Nonzero if the list of objects was last obtained from the target
348 via qXfer:libraries-svr4:read. */
349 int using_xfer;
350
351 /* Table of struct probe_and_action instances, used by the
352 probes-based interface to map breakpoint addresses to probes
353 and their associated actions. Lookup is performed using
354 probe_and_action->prob->address. */
355 htab_t probes_table;
356
357 /* List of objects loaded into the inferior, used by the probes-
358 based interface. */
359 struct so_list *solib_list;
360 };
361
362 /* Per-program-space data key. */
363 static const struct program_space_data *solib_svr4_pspace_data;
364
365 /* Free the probes table. */
366
367 static void
368 free_probes_table (struct svr4_info *info)
369 {
370 if (info->probes_table == NULL)
371 return;
372
373 htab_delete (info->probes_table);
374 info->probes_table = NULL;
375 }
376
377 /* Free the solib list. */
378
379 static void
380 free_solib_list (struct svr4_info *info)
381 {
382 svr4_free_library_list (&info->solib_list);
383 info->solib_list = NULL;
384 }
385
386 static void
387 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
388 {
389 struct svr4_info *info = (struct svr4_info *) arg;
390
391 free_probes_table (info);
392 free_solib_list (info);
393
394 xfree (info);
395 }
396
397 /* Get the current svr4 data. If none is found yet, add it now. This
398 function always returns a valid object. */
399
400 static struct svr4_info *
401 get_svr4_info (void)
402 {
403 struct svr4_info *info;
404
405 info = (struct svr4_info *) program_space_data (current_program_space,
406 solib_svr4_pspace_data);
407 if (info != NULL)
408 return info;
409
410 info = XCNEW (struct svr4_info);
411 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
412 return info;
413 }
414
415 /* Local function prototypes */
416
417 static int match_main (const char *);
418
419 /* Read program header TYPE from inferior memory. The header is found
420 by scanning the OS auxillary vector.
421
422 If TYPE == -1, return the program headers instead of the contents of
423 one program header.
424
425 Return a pointer to allocated memory holding the program header contents,
426 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
427 size of those contents is returned to P_SECT_SIZE. Likewise, the target
428 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE and
429 the base address of the section is returned in BASE_ADDR. */
430
431 static gdb_byte *
432 read_program_header (int type, int *p_sect_size, int *p_arch_size,
433 CORE_ADDR *base_addr)
434 {
435 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
436 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
437 int arch_size, sect_size;
438 CORE_ADDR sect_addr;
439 gdb_byte *buf;
440 int pt_phdr_p = 0;
441
442 /* Get required auxv elements from target. */
443 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
444 return 0;
445 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
446 return 0;
447 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
448 return 0;
449 if (!at_phdr || !at_phnum)
450 return 0;
451
452 /* Determine ELF architecture type. */
453 if (at_phent == sizeof (Elf32_External_Phdr))
454 arch_size = 32;
455 else if (at_phent == sizeof (Elf64_External_Phdr))
456 arch_size = 64;
457 else
458 return 0;
459
460 /* Find the requested segment. */
461 if (type == -1)
462 {
463 sect_addr = at_phdr;
464 sect_size = at_phent * at_phnum;
465 }
466 else if (arch_size == 32)
467 {
468 Elf32_External_Phdr phdr;
469 int i;
470
471 /* Search for requested PHDR. */
472 for (i = 0; i < at_phnum; i++)
473 {
474 int p_type;
475
476 if (target_read_memory (at_phdr + i * sizeof (phdr),
477 (gdb_byte *)&phdr, sizeof (phdr)))
478 return 0;
479
480 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
481 4, byte_order);
482
483 if (p_type == PT_PHDR)
484 {
485 pt_phdr_p = 1;
486 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
487 4, byte_order);
488 }
489
490 if (p_type == type)
491 break;
492 }
493
494 if (i == at_phnum)
495 return 0;
496
497 /* Retrieve address and size. */
498 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
499 4, byte_order);
500 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
501 4, byte_order);
502 }
503 else
504 {
505 Elf64_External_Phdr phdr;
506 int i;
507
508 /* Search for requested PHDR. */
509 for (i = 0; i < at_phnum; i++)
510 {
511 int p_type;
512
513 if (target_read_memory (at_phdr + i * sizeof (phdr),
514 (gdb_byte *)&phdr, sizeof (phdr)))
515 return 0;
516
517 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
518 4, byte_order);
519
520 if (p_type == PT_PHDR)
521 {
522 pt_phdr_p = 1;
523 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
524 8, byte_order);
525 }
526
527 if (p_type == type)
528 break;
529 }
530
531 if (i == at_phnum)
532 return 0;
533
534 /* Retrieve address and size. */
535 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
536 8, byte_order);
537 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
538 8, byte_order);
539 }
540
541 /* PT_PHDR is optional, but we really need it
542 for PIE to make this work in general. */
543
544 if (pt_phdr_p)
545 {
546 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
547 Relocation offset is the difference between the two. */
548 sect_addr = sect_addr + (at_phdr - pt_phdr);
549 }
550
551 /* Read in requested program header. */
552 buf = (gdb_byte *) xmalloc (sect_size);
553 if (target_read_memory (sect_addr, buf, sect_size))
554 {
555 xfree (buf);
556 return NULL;
557 }
558
559 if (p_arch_size)
560 *p_arch_size = arch_size;
561 if (p_sect_size)
562 *p_sect_size = sect_size;
563 if (base_addr)
564 *base_addr = sect_addr;
565
566 return buf;
567 }
568
569
570 /* Return program interpreter string. */
571 static char *
572 find_program_interpreter (void)
573 {
574 gdb_byte *buf = NULL;
575
576 /* If we have an exec_bfd, use its section table. */
577 if (exec_bfd
578 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
579 {
580 struct bfd_section *interp_sect;
581
582 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
583 if (interp_sect != NULL)
584 {
585 int sect_size = bfd_section_size (exec_bfd, interp_sect);
586
587 buf = (gdb_byte *) xmalloc (sect_size);
588 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
589 }
590 }
591
592 /* If we didn't find it, use the target auxillary vector. */
593 if (!buf)
594 buf = read_program_header (PT_INTERP, NULL, NULL, NULL);
595
596 return (char *) buf;
597 }
598
599
600 /* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
601 found, 1 is returned and the corresponding PTR is set. */
602
603 static int
604 scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
605 CORE_ADDR *ptr_addr)
606 {
607 int arch_size, step, sect_size;
608 long current_dyntag;
609 CORE_ADDR dyn_ptr, dyn_addr;
610 gdb_byte *bufend, *bufstart, *buf;
611 Elf32_External_Dyn *x_dynp_32;
612 Elf64_External_Dyn *x_dynp_64;
613 struct bfd_section *sect;
614 struct target_section *target_section;
615
616 if (abfd == NULL)
617 return 0;
618
619 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
620 return 0;
621
622 arch_size = bfd_get_arch_size (abfd);
623 if (arch_size == -1)
624 return 0;
625
626 /* Find the start address of the .dynamic section. */
627 sect = bfd_get_section_by_name (abfd, ".dynamic");
628 if (sect == NULL)
629 return 0;
630
631 for (target_section = current_target_sections->sections;
632 target_section < current_target_sections->sections_end;
633 target_section++)
634 if (sect == target_section->the_bfd_section)
635 break;
636 if (target_section < current_target_sections->sections_end)
637 dyn_addr = target_section->addr;
638 else
639 {
640 /* ABFD may come from OBJFILE acting only as a symbol file without being
641 loaded into the target (see add_symbol_file_command). This case is
642 such fallback to the file VMA address without the possibility of
643 having the section relocated to its actual in-memory address. */
644
645 dyn_addr = bfd_section_vma (abfd, sect);
646 }
647
648 /* Read in .dynamic from the BFD. We will get the actual value
649 from memory later. */
650 sect_size = bfd_section_size (abfd, sect);
651 buf = bufstart = (gdb_byte *) alloca (sect_size);
652 if (!bfd_get_section_contents (abfd, sect,
653 buf, 0, sect_size))
654 return 0;
655
656 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
657 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
658 : sizeof (Elf64_External_Dyn);
659 for (bufend = buf + sect_size;
660 buf < bufend;
661 buf += step)
662 {
663 if (arch_size == 32)
664 {
665 x_dynp_32 = (Elf32_External_Dyn *) buf;
666 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
667 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
668 }
669 else
670 {
671 x_dynp_64 = (Elf64_External_Dyn *) buf;
672 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
673 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
674 }
675 if (current_dyntag == DT_NULL)
676 return 0;
677 if (current_dyntag == desired_dyntag)
678 {
679 /* If requested, try to read the runtime value of this .dynamic
680 entry. */
681 if (ptr)
682 {
683 struct type *ptr_type;
684 gdb_byte ptr_buf[8];
685 CORE_ADDR ptr_addr_1;
686
687 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
688 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
689 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
690 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
691 *ptr = dyn_ptr;
692 if (ptr_addr)
693 *ptr_addr = dyn_addr + (buf - bufstart);
694 }
695 return 1;
696 }
697 }
698
699 return 0;
700 }
701
702 /* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
703 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
704 is returned and the corresponding PTR is set. */
705
706 static int
707 scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
708 CORE_ADDR *ptr_addr)
709 {
710 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
711 int sect_size, arch_size, step;
712 long current_dyntag;
713 CORE_ADDR dyn_ptr;
714 CORE_ADDR base_addr;
715 gdb_byte *bufend, *bufstart, *buf;
716
717 /* Read in .dynamic section. */
718 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size,
719 &base_addr);
720 if (!buf)
721 return 0;
722
723 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
724 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
725 : sizeof (Elf64_External_Dyn);
726 for (bufend = buf + sect_size;
727 buf < bufend;
728 buf += step)
729 {
730 if (arch_size == 32)
731 {
732 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
733
734 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
735 4, byte_order);
736 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
737 4, byte_order);
738 }
739 else
740 {
741 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
742
743 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
744 8, byte_order);
745 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
746 8, byte_order);
747 }
748 if (current_dyntag == DT_NULL)
749 break;
750
751 if (current_dyntag == desired_dyntag)
752 {
753 if (ptr)
754 *ptr = dyn_ptr;
755
756 if (ptr_addr)
757 *ptr_addr = base_addr + buf - bufstart;
758
759 xfree (bufstart);
760 return 1;
761 }
762 }
763
764 xfree (bufstart);
765 return 0;
766 }
767
768 /* Locate the base address of dynamic linker structs for SVR4 elf
769 targets.
770
771 For SVR4 elf targets the address of the dynamic linker's runtime
772 structure is contained within the dynamic info section in the
773 executable file. The dynamic section is also mapped into the
774 inferior address space. Because the runtime loader fills in the
775 real address before starting the inferior, we have to read in the
776 dynamic info section from the inferior address space.
777 If there are any errors while trying to find the address, we
778 silently return 0, otherwise the found address is returned. */
779
780 static CORE_ADDR
781 elf_locate_base (void)
782 {
783 struct bound_minimal_symbol msymbol;
784 CORE_ADDR dyn_ptr, dyn_ptr_addr;
785
786 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
787 instead of DT_DEBUG, although they sometimes contain an unused
788 DT_DEBUG. */
789 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
790 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
791 {
792 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
793 gdb_byte *pbuf;
794 int pbuf_size = TYPE_LENGTH (ptr_type);
795
796 pbuf = (gdb_byte *) alloca (pbuf_size);
797 /* DT_MIPS_RLD_MAP contains a pointer to the address
798 of the dynamic link structure. */
799 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
800 return 0;
801 return extract_typed_address (pbuf, ptr_type);
802 }
803
804 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
805 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
806 in non-PIE. */
807 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
808 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
809 {
810 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
811 gdb_byte *pbuf;
812 int pbuf_size = TYPE_LENGTH (ptr_type);
813
814 pbuf = (gdb_byte *) alloca (pbuf_size);
815 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
816 DT slot to the address of the dynamic link structure. */
817 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
818 return 0;
819 return extract_typed_address (pbuf, ptr_type);
820 }
821
822 /* Find DT_DEBUG. */
823 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
824 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
825 return dyn_ptr;
826
827 /* This may be a static executable. Look for the symbol
828 conventionally named _r_debug, as a last resort. */
829 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
830 if (msymbol.minsym != NULL)
831 return BMSYMBOL_VALUE_ADDRESS (msymbol);
832
833 /* DT_DEBUG entry not found. */
834 return 0;
835 }
836
837 /* Locate the base address of dynamic linker structs.
838
839 For both the SunOS and SVR4 shared library implementations, if the
840 inferior executable has been linked dynamically, there is a single
841 address somewhere in the inferior's data space which is the key to
842 locating all of the dynamic linker's runtime structures. This
843 address is the value of the debug base symbol. The job of this
844 function is to find and return that address, or to return 0 if there
845 is no such address (the executable is statically linked for example).
846
847 For SunOS, the job is almost trivial, since the dynamic linker and
848 all of it's structures are statically linked to the executable at
849 link time. Thus the symbol for the address we are looking for has
850 already been added to the minimal symbol table for the executable's
851 objfile at the time the symbol file's symbols were read, and all we
852 have to do is look it up there. Note that we explicitly do NOT want
853 to find the copies in the shared library.
854
855 The SVR4 version is a bit more complicated because the address
856 is contained somewhere in the dynamic info section. We have to go
857 to a lot more work to discover the address of the debug base symbol.
858 Because of this complexity, we cache the value we find and return that
859 value on subsequent invocations. Note there is no copy in the
860 executable symbol tables. */
861
862 static CORE_ADDR
863 locate_base (struct svr4_info *info)
864 {
865 /* Check to see if we have a currently valid address, and if so, avoid
866 doing all this work again and just return the cached address. If
867 we have no cached address, try to locate it in the dynamic info
868 section for ELF executables. There's no point in doing any of this
869 though if we don't have some link map offsets to work with. */
870
871 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
872 info->debug_base = elf_locate_base ();
873 return info->debug_base;
874 }
875
876 /* Find the first element in the inferior's dynamic link map, and
877 return its address in the inferior. Return zero if the address
878 could not be determined.
879
880 FIXME: Perhaps we should validate the info somehow, perhaps by
881 checking r_version for a known version number, or r_state for
882 RT_CONSISTENT. */
883
884 static CORE_ADDR
885 solib_svr4_r_map (struct svr4_info *info)
886 {
887 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
888 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
889 CORE_ADDR addr = 0;
890
891 TRY
892 {
893 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
894 ptr_type);
895 }
896 CATCH (ex, RETURN_MASK_ERROR)
897 {
898 exception_print (gdb_stderr, ex);
899 }
900 END_CATCH
901
902 return addr;
903 }
904
905 /* Find r_brk from the inferior's debug base. */
906
907 static CORE_ADDR
908 solib_svr4_r_brk (struct svr4_info *info)
909 {
910 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
911 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
912
913 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
914 ptr_type);
915 }
916
917 /* Find the link map for the dynamic linker (if it is not in the
918 normal list of loaded shared objects). */
919
920 static CORE_ADDR
921 solib_svr4_r_ldsomap (struct svr4_info *info)
922 {
923 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
924 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
925 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
926 ULONGEST version = 0;
927
928 TRY
929 {
930 /* Check version, and return zero if `struct r_debug' doesn't have
931 the r_ldsomap member. */
932 version
933 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
934 lmo->r_version_size, byte_order);
935 }
936 CATCH (ex, RETURN_MASK_ERROR)
937 {
938 exception_print (gdb_stderr, ex);
939 }
940 END_CATCH
941
942 if (version < 2 || lmo->r_ldsomap_offset == -1)
943 return 0;
944
945 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
946 ptr_type);
947 }
948
949 /* On Solaris systems with some versions of the dynamic linker,
950 ld.so's l_name pointer points to the SONAME in the string table
951 rather than into writable memory. So that GDB can find shared
952 libraries when loading a core file generated by gcore, ensure that
953 memory areas containing the l_name string are saved in the core
954 file. */
955
956 static int
957 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
958 {
959 struct svr4_info *info;
960 CORE_ADDR ldsomap;
961 struct so_list *newobj;
962 struct cleanup *old_chain;
963 CORE_ADDR name_lm;
964
965 info = get_svr4_info ();
966
967 info->debug_base = 0;
968 locate_base (info);
969 if (!info->debug_base)
970 return 0;
971
972 ldsomap = solib_svr4_r_ldsomap (info);
973 if (!ldsomap)
974 return 0;
975
976 newobj = XCNEW (struct so_list);
977 old_chain = make_cleanup (xfree, newobj);
978 lm_info_svr4 *li = lm_info_read (ldsomap);
979 newobj->lm_info = li;
980 make_cleanup (xfree, newobj->lm_info);
981 name_lm = li != NULL ? li->l_name : 0;
982 do_cleanups (old_chain);
983
984 return (name_lm >= vaddr && name_lm < vaddr + size);
985 }
986
987 /* See solist.h. */
988
989 static int
990 open_symbol_file_object (int from_tty)
991 {
992 CORE_ADDR lm, l_name;
993 char *filename;
994 int errcode;
995 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
996 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
997 int l_name_size = TYPE_LENGTH (ptr_type);
998 gdb_byte *l_name_buf = (gdb_byte *) xmalloc (l_name_size);
999 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
1000 struct svr4_info *info = get_svr4_info ();
1001 symfile_add_flags add_flags = 0;
1002
1003 if (from_tty)
1004 add_flags |= SYMFILE_VERBOSE;
1005
1006 if (symfile_objfile)
1007 if (!query (_("Attempt to reload symbols from process? ")))
1008 {
1009 do_cleanups (cleanups);
1010 return 0;
1011 }
1012
1013 /* Always locate the debug struct, in case it has moved. */
1014 info->debug_base = 0;
1015 if (locate_base (info) == 0)
1016 {
1017 do_cleanups (cleanups);
1018 return 0; /* failed somehow... */
1019 }
1020
1021 /* First link map member should be the executable. */
1022 lm = solib_svr4_r_map (info);
1023 if (lm == 0)
1024 {
1025 do_cleanups (cleanups);
1026 return 0; /* failed somehow... */
1027 }
1028
1029 /* Read address of name from target memory to GDB. */
1030 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
1031
1032 /* Convert the address to host format. */
1033 l_name = extract_typed_address (l_name_buf, ptr_type);
1034
1035 if (l_name == 0)
1036 {
1037 do_cleanups (cleanups);
1038 return 0; /* No filename. */
1039 }
1040
1041 /* Now fetch the filename from target memory. */
1042 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1043 make_cleanup (xfree, filename);
1044
1045 if (errcode)
1046 {
1047 warning (_("failed to read exec filename from attached file: %s"),
1048 safe_strerror (errcode));
1049 do_cleanups (cleanups);
1050 return 0;
1051 }
1052
1053 /* Have a pathname: read the symbol file. */
1054 symbol_file_add_main (filename, add_flags);
1055
1056 do_cleanups (cleanups);
1057 return 1;
1058 }
1059
1060 /* Data exchange structure for the XML parser as returned by
1061 svr4_current_sos_via_xfer_libraries. */
1062
1063 struct svr4_library_list
1064 {
1065 struct so_list *head, **tailp;
1066
1067 /* Inferior address of struct link_map used for the main executable. It is
1068 NULL if not known. */
1069 CORE_ADDR main_lm;
1070 };
1071
1072 /* Implementation for target_so_ops.free_so. */
1073
1074 static void
1075 svr4_free_so (struct so_list *so)
1076 {
1077 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1078
1079 delete li;
1080 }
1081
1082 /* Implement target_so_ops.clear_so. */
1083
1084 static void
1085 svr4_clear_so (struct so_list *so)
1086 {
1087 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1088
1089 if (li != NULL)
1090 li->l_addr_p = 0;
1091 }
1092
1093 /* Free so_list built so far (called via cleanup). */
1094
1095 static void
1096 svr4_free_library_list (void *p_list)
1097 {
1098 struct so_list *list = *(struct so_list **) p_list;
1099
1100 while (list != NULL)
1101 {
1102 struct so_list *next = list->next;
1103
1104 free_so (list);
1105 list = next;
1106 }
1107 }
1108
1109 /* Copy library list. */
1110
1111 static struct so_list *
1112 svr4_copy_library_list (struct so_list *src)
1113 {
1114 struct so_list *dst = NULL;
1115 struct so_list **link = &dst;
1116
1117 while (src != NULL)
1118 {
1119 struct so_list *newobj;
1120
1121 newobj = XNEW (struct so_list);
1122 memcpy (newobj, src, sizeof (struct so_list));
1123
1124 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1125 newobj->lm_info = new lm_info_svr4 (*src_li);
1126
1127 newobj->next = NULL;
1128 *link = newobj;
1129 link = &newobj->next;
1130
1131 src = src->next;
1132 }
1133
1134 return dst;
1135 }
1136
1137 #ifdef HAVE_LIBEXPAT
1138
1139 #include "xml-support.h"
1140
1141 /* Handle the start of a <library> element. Note: new elements are added
1142 at the tail of the list, keeping the list in order. */
1143
1144 static void
1145 library_list_start_library (struct gdb_xml_parser *parser,
1146 const struct gdb_xml_element *element,
1147 void *user_data, VEC(gdb_xml_value_s) *attributes)
1148 {
1149 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1150 const char *name
1151 = (const char *) xml_find_attribute (attributes, "name")->value;
1152 ULONGEST *lmp
1153 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value;
1154 ULONGEST *l_addrp
1155 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value;
1156 ULONGEST *l_ldp
1157 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value;
1158 struct so_list *new_elem;
1159
1160 new_elem = XCNEW (struct so_list);
1161 lm_info_svr4 *li = new lm_info_svr4;
1162 new_elem->lm_info = li;
1163 li->lm_addr = *lmp;
1164 li->l_addr_inferior = *l_addrp;
1165 li->l_ld = *l_ldp;
1166
1167 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1168 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1169 strcpy (new_elem->so_original_name, new_elem->so_name);
1170
1171 *list->tailp = new_elem;
1172 list->tailp = &new_elem->next;
1173 }
1174
1175 /* Handle the start of a <library-list-svr4> element. */
1176
1177 static void
1178 svr4_library_list_start_list (struct gdb_xml_parser *parser,
1179 const struct gdb_xml_element *element,
1180 void *user_data, VEC(gdb_xml_value_s) *attributes)
1181 {
1182 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1183 const char *version
1184 = (const char *) xml_find_attribute (attributes, "version")->value;
1185 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1186
1187 if (strcmp (version, "1.0") != 0)
1188 gdb_xml_error (parser,
1189 _("SVR4 Library list has unsupported version \"%s\""),
1190 version);
1191
1192 if (main_lm)
1193 list->main_lm = *(ULONGEST *) main_lm->value;
1194 }
1195
1196 /* The allowed elements and attributes for an XML library list.
1197 The root element is a <library-list>. */
1198
1199 static const struct gdb_xml_attribute svr4_library_attributes[] =
1200 {
1201 { "name", GDB_XML_AF_NONE, NULL, NULL },
1202 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1203 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1204 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1205 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1206 };
1207
1208 static const struct gdb_xml_element svr4_library_list_children[] =
1209 {
1210 {
1211 "library", svr4_library_attributes, NULL,
1212 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1213 library_list_start_library, NULL
1214 },
1215 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1216 };
1217
1218 static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1219 {
1220 { "version", GDB_XML_AF_NONE, NULL, NULL },
1221 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1222 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1223 };
1224
1225 static const struct gdb_xml_element svr4_library_list_elements[] =
1226 {
1227 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1228 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1229 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1230 };
1231
1232 /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1233
1234 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1235 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1236 empty, caller is responsible for freeing all its entries. */
1237
1238 static int
1239 svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1240 {
1241 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1242 &list->head);
1243
1244 memset (list, 0, sizeof (*list));
1245 list->tailp = &list->head;
1246 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
1247 svr4_library_list_elements, document, list) == 0)
1248 {
1249 /* Parsed successfully, keep the result. */
1250 discard_cleanups (back_to);
1251 return 1;
1252 }
1253
1254 do_cleanups (back_to);
1255 return 0;
1256 }
1257
1258 /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
1259
1260 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1261 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1262 empty, caller is responsible for freeing all its entries.
1263
1264 Note that ANNEX must be NULL if the remote does not explicitly allow
1265 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1266 this can be checked using target_augmented_libraries_svr4_read (). */
1267
1268 static int
1269 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1270 const char *annex)
1271 {
1272 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1273
1274 /* Fetch the list of shared libraries. */
1275 gdb::unique_xmalloc_ptr<char> svr4_library_document
1276 = target_read_stralloc (&current_target, TARGET_OBJECT_LIBRARIES_SVR4,
1277 annex);
1278 if (svr4_library_document == NULL)
1279 return 0;
1280
1281 return svr4_parse_libraries (svr4_library_document.get (), list);
1282 }
1283
1284 #else
1285
1286 static int
1287 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1288 const char *annex)
1289 {
1290 return 0;
1291 }
1292
1293 #endif
1294
1295 /* If no shared library information is available from the dynamic
1296 linker, build a fallback list from other sources. */
1297
1298 static struct so_list *
1299 svr4_default_sos (void)
1300 {
1301 struct svr4_info *info = get_svr4_info ();
1302 struct so_list *newobj;
1303
1304 if (!info->debug_loader_offset_p)
1305 return NULL;
1306
1307 newobj = XCNEW (struct so_list);
1308 lm_info_svr4 *li = new lm_info_svr4;
1309 newobj->lm_info = li;
1310
1311 /* Nothing will ever check the other fields if we set l_addr_p. */
1312 li->l_addr = info->debug_loader_offset;
1313 li->l_addr_p = 1;
1314
1315 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1316 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1317 strcpy (newobj->so_original_name, newobj->so_name);
1318
1319 return newobj;
1320 }
1321
1322 /* Read the whole inferior libraries chain starting at address LM.
1323 Expect the first entry in the chain's previous entry to be PREV_LM.
1324 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1325 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1326 to it. Returns nonzero upon success. If zero is returned the
1327 entries stored to LINK_PTR_PTR are still valid although they may
1328 represent only part of the inferior library list. */
1329
1330 static int
1331 svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1332 struct so_list ***link_ptr_ptr, int ignore_first)
1333 {
1334 CORE_ADDR first_l_name = 0;
1335 CORE_ADDR next_lm;
1336
1337 for (; lm != 0; prev_lm = lm, lm = next_lm)
1338 {
1339 int errcode;
1340 char *buffer;
1341
1342 so_list_up newobj (XCNEW (struct so_list));
1343
1344 lm_info_svr4 *li = lm_info_read (lm);
1345 newobj->lm_info = li;
1346 if (li == NULL)
1347 return 0;
1348
1349 next_lm = li->l_next;
1350
1351 if (li->l_prev != prev_lm)
1352 {
1353 warning (_("Corrupted shared library list: %s != %s"),
1354 paddress (target_gdbarch (), prev_lm),
1355 paddress (target_gdbarch (), li->l_prev));
1356 return 0;
1357 }
1358
1359 /* For SVR4 versions, the first entry in the link map is for the
1360 inferior executable, so we must ignore it. For some versions of
1361 SVR4, it has no name. For others (Solaris 2.3 for example), it
1362 does have a name, so we can no longer use a missing name to
1363 decide when to ignore it. */
1364 if (ignore_first && li->l_prev == 0)
1365 {
1366 struct svr4_info *info = get_svr4_info ();
1367
1368 first_l_name = li->l_name;
1369 info->main_lm_addr = li->lm_addr;
1370 continue;
1371 }
1372
1373 /* Extract this shared object's name. */
1374 target_read_string (li->l_name, &buffer, SO_NAME_MAX_PATH_SIZE - 1,
1375 &errcode);
1376 if (errcode != 0)
1377 {
1378 /* If this entry's l_name address matches that of the
1379 inferior executable, then this is not a normal shared
1380 object, but (most likely) a vDSO. In this case, silently
1381 skip it; otherwise emit a warning. */
1382 if (first_l_name == 0 || li->l_name != first_l_name)
1383 warning (_("Can't read pathname for load map: %s."),
1384 safe_strerror (errcode));
1385 continue;
1386 }
1387
1388 strncpy (newobj->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1389 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1390 strcpy (newobj->so_original_name, newobj->so_name);
1391 xfree (buffer);
1392
1393 /* If this entry has no name, or its name matches the name
1394 for the main executable, don't include it in the list. */
1395 if (! newobj->so_name[0] || match_main (newobj->so_name))
1396 continue;
1397
1398 newobj->next = 0;
1399 /* Don't free it now. */
1400 **link_ptr_ptr = newobj.release ();
1401 *link_ptr_ptr = &(**link_ptr_ptr)->next;
1402 }
1403
1404 return 1;
1405 }
1406
1407 /* Read the full list of currently loaded shared objects directly
1408 from the inferior, without referring to any libraries read and
1409 stored by the probes interface. Handle special cases relating
1410 to the first elements of the list. */
1411
1412 static struct so_list *
1413 svr4_current_sos_direct (struct svr4_info *info)
1414 {
1415 CORE_ADDR lm;
1416 struct so_list *head = NULL;
1417 struct so_list **link_ptr = &head;
1418 struct cleanup *back_to;
1419 int ignore_first;
1420 struct svr4_library_list library_list;
1421
1422 /* Fall back to manual examination of the target if the packet is not
1423 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1424 tests a case where gdbserver cannot find the shared libraries list while
1425 GDB itself is able to find it via SYMFILE_OBJFILE.
1426
1427 Unfortunately statically linked inferiors will also fall back through this
1428 suboptimal code path. */
1429
1430 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1431 NULL);
1432 if (info->using_xfer)
1433 {
1434 if (library_list.main_lm)
1435 info->main_lm_addr = library_list.main_lm;
1436
1437 return library_list.head ? library_list.head : svr4_default_sos ();
1438 }
1439
1440 /* Always locate the debug struct, in case it has moved. */
1441 info->debug_base = 0;
1442 locate_base (info);
1443
1444 /* If we can't find the dynamic linker's base structure, this
1445 must not be a dynamically linked executable. Hmm. */
1446 if (! info->debug_base)
1447 return svr4_default_sos ();
1448
1449 /* Assume that everything is a library if the dynamic loader was loaded
1450 late by a static executable. */
1451 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1452 ignore_first = 0;
1453 else
1454 ignore_first = 1;
1455
1456 back_to = make_cleanup (svr4_free_library_list, &head);
1457
1458 /* Walk the inferior's link map list, and build our list of
1459 `struct so_list' nodes. */
1460 lm = solib_svr4_r_map (info);
1461 if (lm)
1462 svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
1463
1464 /* On Solaris, the dynamic linker is not in the normal list of
1465 shared objects, so make sure we pick it up too. Having
1466 symbol information for the dynamic linker is quite crucial
1467 for skipping dynamic linker resolver code. */
1468 lm = solib_svr4_r_ldsomap (info);
1469 if (lm)
1470 svr4_read_so_list (lm, 0, &link_ptr, 0);
1471
1472 discard_cleanups (back_to);
1473
1474 if (head == NULL)
1475 return svr4_default_sos ();
1476
1477 return head;
1478 }
1479
1480 /* Implement the main part of the "current_sos" target_so_ops
1481 method. */
1482
1483 static struct so_list *
1484 svr4_current_sos_1 (void)
1485 {
1486 struct svr4_info *info = get_svr4_info ();
1487
1488 /* If the solib list has been read and stored by the probes
1489 interface then we return a copy of the stored list. */
1490 if (info->solib_list != NULL)
1491 return svr4_copy_library_list (info->solib_list);
1492
1493 /* Otherwise obtain the solib list directly from the inferior. */
1494 return svr4_current_sos_direct (info);
1495 }
1496
1497 /* Implement the "current_sos" target_so_ops method. */
1498
1499 static struct so_list *
1500 svr4_current_sos (void)
1501 {
1502 struct so_list *so_head = svr4_current_sos_1 ();
1503 struct mem_range vsyscall_range;
1504
1505 /* Filter out the vDSO module, if present. Its symbol file would
1506 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1507 managed by symfile-mem.c:add_vsyscall_page. */
1508 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1509 && vsyscall_range.length != 0)
1510 {
1511 struct so_list **sop;
1512
1513 sop = &so_head;
1514 while (*sop != NULL)
1515 {
1516 struct so_list *so = *sop;
1517
1518 /* We can't simply match the vDSO by starting address alone,
1519 because lm_info->l_addr_inferior (and also l_addr) do not
1520 necessarily represent the real starting address of the
1521 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1522 field (the ".dynamic" section of the shared object)
1523 always points at the absolute/resolved address though.
1524 So check whether that address is inside the vDSO's
1525 mapping instead.
1526
1527 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1528 0-based ELF, and we see:
1529
1530 (gdb) info auxv
1531 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1532 (gdb) p/x *_r_debug.r_map.l_next
1533 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1534
1535 And on Linux 2.6.32 (x86_64) we see:
1536
1537 (gdb) info auxv
1538 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1539 (gdb) p/x *_r_debug.r_map.l_next
1540 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1541
1542 Dumping that vDSO shows:
1543
1544 (gdb) info proc mappings
1545 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1546 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1547 # readelf -Wa vdso.bin
1548 [...]
1549 Entry point address: 0xffffffffff700700
1550 [...]
1551 Section Headers:
1552 [Nr] Name Type Address Off Size
1553 [ 0] NULL 0000000000000000 000000 000000
1554 [ 1] .hash HASH ffffffffff700120 000120 000038
1555 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1556 [...]
1557 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1558 */
1559
1560 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1561
1562 if (address_in_mem_range (li->l_ld, &vsyscall_range))
1563 {
1564 *sop = so->next;
1565 free_so (so);
1566 break;
1567 }
1568
1569 sop = &so->next;
1570 }
1571 }
1572
1573 return so_head;
1574 }
1575
1576 /* Get the address of the link_map for a given OBJFILE. */
1577
1578 CORE_ADDR
1579 svr4_fetch_objfile_link_map (struct objfile *objfile)
1580 {
1581 struct so_list *so;
1582 struct svr4_info *info = get_svr4_info ();
1583
1584 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1585 if (info->main_lm_addr == 0)
1586 solib_add (NULL, 0, auto_solib_add);
1587
1588 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1589 if (objfile == symfile_objfile)
1590 return info->main_lm_addr;
1591
1592 /* The other link map addresses may be found by examining the list
1593 of shared libraries. */
1594 for (so = master_so_list (); so; so = so->next)
1595 if (so->objfile == objfile)
1596 {
1597 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1598
1599 return li->lm_addr;
1600 }
1601
1602 /* Not found! */
1603 return 0;
1604 }
1605
1606 /* On some systems, the only way to recognize the link map entry for
1607 the main executable file is by looking at its name. Return
1608 non-zero iff SONAME matches one of the known main executable names. */
1609
1610 static int
1611 match_main (const char *soname)
1612 {
1613 const char * const *mainp;
1614
1615 for (mainp = main_name_list; *mainp != NULL; mainp++)
1616 {
1617 if (strcmp (soname, *mainp) == 0)
1618 return (1);
1619 }
1620
1621 return (0);
1622 }
1623
1624 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1625 SVR4 run time loader. */
1626
1627 int
1628 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1629 {
1630 struct svr4_info *info = get_svr4_info ();
1631
1632 return ((pc >= info->interp_text_sect_low
1633 && pc < info->interp_text_sect_high)
1634 || (pc >= info->interp_plt_sect_low
1635 && pc < info->interp_plt_sect_high)
1636 || in_plt_section (pc)
1637 || in_gnu_ifunc_stub (pc));
1638 }
1639
1640 /* Given an executable's ABFD and target, compute the entry-point
1641 address. */
1642
1643 static CORE_ADDR
1644 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1645 {
1646 CORE_ADDR addr;
1647
1648 /* KevinB wrote ... for most targets, the address returned by
1649 bfd_get_start_address() is the entry point for the start
1650 function. But, for some targets, bfd_get_start_address() returns
1651 the address of a function descriptor from which the entry point
1652 address may be extracted. This address is extracted by
1653 gdbarch_convert_from_func_ptr_addr(). The method
1654 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1655 function for targets which don't use function descriptors. */
1656 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1657 bfd_get_start_address (abfd),
1658 targ);
1659 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
1660 }
1661
1662 /* A probe and its associated action. */
1663
1664 struct probe_and_action
1665 {
1666 /* The probe. */
1667 probe *prob;
1668
1669 /* The relocated address of the probe. */
1670 CORE_ADDR address;
1671
1672 /* The action. */
1673 enum probe_action action;
1674 };
1675
1676 /* Returns a hash code for the probe_and_action referenced by p. */
1677
1678 static hashval_t
1679 hash_probe_and_action (const void *p)
1680 {
1681 const struct probe_and_action *pa = (const struct probe_and_action *) p;
1682
1683 return (hashval_t) pa->address;
1684 }
1685
1686 /* Returns non-zero if the probe_and_actions referenced by p1 and p2
1687 are equal. */
1688
1689 static int
1690 equal_probe_and_action (const void *p1, const void *p2)
1691 {
1692 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1693 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
1694
1695 return pa1->address == pa2->address;
1696 }
1697
1698 /* Register a solib event probe and its associated action in the
1699 probes table. */
1700
1701 static void
1702 register_solib_event_probe (probe *prob, CORE_ADDR address,
1703 enum probe_action action)
1704 {
1705 struct svr4_info *info = get_svr4_info ();
1706 struct probe_and_action lookup, *pa;
1707 void **slot;
1708
1709 /* Create the probes table, if necessary. */
1710 if (info->probes_table == NULL)
1711 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1712 equal_probe_and_action,
1713 xfree, xcalloc, xfree);
1714
1715 lookup.prob = prob;
1716 lookup.address = address;
1717 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1718 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1719
1720 pa = XCNEW (struct probe_and_action);
1721 pa->prob = prob;
1722 pa->address = address;
1723 pa->action = action;
1724
1725 *slot = pa;
1726 }
1727
1728 /* Get the solib event probe at the specified location, and the
1729 action associated with it. Returns NULL if no solib event probe
1730 was found. */
1731
1732 static struct probe_and_action *
1733 solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1734 {
1735 struct probe_and_action lookup;
1736 void **slot;
1737
1738 lookup.address = address;
1739 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1740
1741 if (slot == NULL)
1742 return NULL;
1743
1744 return (struct probe_and_action *) *slot;
1745 }
1746
1747 /* Decide what action to take when the specified solib event probe is
1748 hit. */
1749
1750 static enum probe_action
1751 solib_event_probe_action (struct probe_and_action *pa)
1752 {
1753 enum probe_action action;
1754 unsigned probe_argc = 0;
1755 struct frame_info *frame = get_current_frame ();
1756
1757 action = pa->action;
1758 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1759 return action;
1760
1761 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1762
1763 /* Check that an appropriate number of arguments has been supplied.
1764 We expect:
1765 arg0: Lmid_t lmid (mandatory)
1766 arg1: struct r_debug *debug_base (mandatory)
1767 arg2: struct link_map *new (optional, for incremental updates) */
1768 TRY
1769 {
1770 probe_argc = pa->prob->get_argument_count (frame);
1771 }
1772 CATCH (ex, RETURN_MASK_ERROR)
1773 {
1774 exception_print (gdb_stderr, ex);
1775 probe_argc = 0;
1776 }
1777 END_CATCH
1778
1779 /* If get_argument_count throws an exception, probe_argc will be set
1780 to zero. However, if pa->prob does not have arguments, then
1781 get_argument_count will succeed but probe_argc will also be zero.
1782 Both cases happen because of different things, but they are
1783 treated equally here: action will be set to
1784 PROBES_INTERFACE_FAILED. */
1785 if (probe_argc == 2)
1786 action = FULL_RELOAD;
1787 else if (probe_argc < 2)
1788 action = PROBES_INTERFACE_FAILED;
1789
1790 return action;
1791 }
1792
1793 /* Populate the shared object list by reading the entire list of
1794 shared objects from the inferior. Handle special cases relating
1795 to the first elements of the list. Returns nonzero on success. */
1796
1797 static int
1798 solist_update_full (struct svr4_info *info)
1799 {
1800 free_solib_list (info);
1801 info->solib_list = svr4_current_sos_direct (info);
1802
1803 return 1;
1804 }
1805
1806 /* Update the shared object list starting from the link-map entry
1807 passed by the linker in the probe's third argument. Returns
1808 nonzero if the list was successfully updated, or zero to indicate
1809 failure. */
1810
1811 static int
1812 solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1813 {
1814 struct so_list *tail;
1815 CORE_ADDR prev_lm;
1816
1817 /* svr4_current_sos_direct contains logic to handle a number of
1818 special cases relating to the first elements of the list. To
1819 avoid duplicating this logic we defer to solist_update_full
1820 if the list is empty. */
1821 if (info->solib_list == NULL)
1822 return 0;
1823
1824 /* Fall back to a full update if we are using a remote target
1825 that does not support incremental transfers. */
1826 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1827 return 0;
1828
1829 /* Walk to the end of the list. */
1830 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1831 /* Nothing. */;
1832
1833 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1834 prev_lm = li->lm_addr;
1835
1836 /* Read the new objects. */
1837 if (info->using_xfer)
1838 {
1839 struct svr4_library_list library_list;
1840 char annex[64];
1841
1842 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1843 phex_nz (lm, sizeof (lm)),
1844 phex_nz (prev_lm, sizeof (prev_lm)));
1845 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1846 return 0;
1847
1848 tail->next = library_list.head;
1849 }
1850 else
1851 {
1852 struct so_list **link = &tail->next;
1853
1854 /* IGNORE_FIRST may safely be set to zero here because the
1855 above check and deferral to solist_update_full ensures
1856 that this call to svr4_read_so_list will never see the
1857 first element. */
1858 if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1859 return 0;
1860 }
1861
1862 return 1;
1863 }
1864
1865 /* Disable the probes-based linker interface and revert to the
1866 original interface. We don't reset the breakpoints as the
1867 ones set up for the probes-based interface are adequate. */
1868
1869 static void
1870 disable_probes_interface_cleanup (void *arg)
1871 {
1872 struct svr4_info *info = get_svr4_info ();
1873
1874 warning (_("Probes-based dynamic linker interface failed.\n"
1875 "Reverting to original interface.\n"));
1876
1877 free_probes_table (info);
1878 free_solib_list (info);
1879 }
1880
1881 /* Update the solib list as appropriate when using the
1882 probes-based linker interface. Do nothing if using the
1883 standard interface. */
1884
1885 static void
1886 svr4_handle_solib_event (void)
1887 {
1888 struct svr4_info *info = get_svr4_info ();
1889 struct probe_and_action *pa;
1890 enum probe_action action;
1891 struct cleanup *old_chain, *usm_chain;
1892 struct value *val = NULL;
1893 CORE_ADDR pc, debug_base, lm = 0;
1894 struct frame_info *frame = get_current_frame ();
1895
1896 /* Do nothing if not using the probes interface. */
1897 if (info->probes_table == NULL)
1898 return;
1899
1900 /* If anything goes wrong we revert to the original linker
1901 interface. */
1902 old_chain = make_cleanup (disable_probes_interface_cleanup, NULL);
1903
1904 pc = regcache_read_pc (get_current_regcache ());
1905 pa = solib_event_probe_at (info, pc);
1906 if (pa == NULL)
1907 {
1908 do_cleanups (old_chain);
1909 return;
1910 }
1911
1912 action = solib_event_probe_action (pa);
1913 if (action == PROBES_INTERFACE_FAILED)
1914 {
1915 do_cleanups (old_chain);
1916 return;
1917 }
1918
1919 if (action == DO_NOTHING)
1920 {
1921 discard_cleanups (old_chain);
1922 return;
1923 }
1924
1925 /* evaluate_argument looks up symbols in the dynamic linker
1926 using find_pc_section. find_pc_section is accelerated by a cache
1927 called the section map. The section map is invalidated every
1928 time a shared library is loaded or unloaded, and if the inferior
1929 is generating a lot of shared library events then the section map
1930 will be updated every time svr4_handle_solib_event is called.
1931 We called find_pc_section in svr4_create_solib_event_breakpoints,
1932 so we can guarantee that the dynamic linker's sections are in the
1933 section map. We can therefore inhibit section map updates across
1934 these calls to evaluate_argument and save a lot of time. */
1935 inhibit_section_map_updates (current_program_space);
1936 usm_chain = make_cleanup (resume_section_map_updates_cleanup,
1937 current_program_space);
1938
1939 TRY
1940 {
1941 val = pa->prob->evaluate_argument (1, frame);
1942 }
1943 CATCH (ex, RETURN_MASK_ERROR)
1944 {
1945 exception_print (gdb_stderr, ex);
1946 val = NULL;
1947 }
1948 END_CATCH
1949
1950 if (val == NULL)
1951 {
1952 do_cleanups (old_chain);
1953 return;
1954 }
1955
1956 debug_base = value_as_address (val);
1957 if (debug_base == 0)
1958 {
1959 do_cleanups (old_chain);
1960 return;
1961 }
1962
1963 /* Always locate the debug struct, in case it moved. */
1964 info->debug_base = 0;
1965 if (locate_base (info) == 0)
1966 {
1967 do_cleanups (old_chain);
1968 return;
1969 }
1970
1971 /* GDB does not currently support libraries loaded via dlmopen
1972 into namespaces other than the initial one. We must ignore
1973 any namespace other than the initial namespace here until
1974 support for this is added to GDB. */
1975 if (debug_base != info->debug_base)
1976 action = DO_NOTHING;
1977
1978 if (action == UPDATE_OR_RELOAD)
1979 {
1980 TRY
1981 {
1982 val = pa->prob->evaluate_argument (2, frame);
1983 }
1984 CATCH (ex, RETURN_MASK_ERROR)
1985 {
1986 exception_print (gdb_stderr, ex);
1987 do_cleanups (old_chain);
1988 return;
1989 }
1990 END_CATCH
1991
1992 if (val != NULL)
1993 lm = value_as_address (val);
1994
1995 if (lm == 0)
1996 action = FULL_RELOAD;
1997 }
1998
1999 /* Resume section map updates. */
2000 do_cleanups (usm_chain);
2001
2002 if (action == UPDATE_OR_RELOAD)
2003 {
2004 if (!solist_update_incremental (info, lm))
2005 action = FULL_RELOAD;
2006 }
2007
2008 if (action == FULL_RELOAD)
2009 {
2010 if (!solist_update_full (info))
2011 {
2012 do_cleanups (old_chain);
2013 return;
2014 }
2015 }
2016
2017 discard_cleanups (old_chain);
2018 }
2019
2020 /* Helper function for svr4_update_solib_event_breakpoints. */
2021
2022 static int
2023 svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
2024 {
2025 struct bp_location *loc;
2026
2027 if (b->type != bp_shlib_event)
2028 {
2029 /* Continue iterating. */
2030 return 0;
2031 }
2032
2033 for (loc = b->loc; loc != NULL; loc = loc->next)
2034 {
2035 struct svr4_info *info;
2036 struct probe_and_action *pa;
2037
2038 info = ((struct svr4_info *)
2039 program_space_data (loc->pspace, solib_svr4_pspace_data));
2040 if (info == NULL || info->probes_table == NULL)
2041 continue;
2042
2043 pa = solib_event_probe_at (info, loc->address);
2044 if (pa == NULL)
2045 continue;
2046
2047 if (pa->action == DO_NOTHING)
2048 {
2049 if (b->enable_state == bp_disabled && stop_on_solib_events)
2050 enable_breakpoint (b);
2051 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2052 disable_breakpoint (b);
2053 }
2054
2055 break;
2056 }
2057
2058 /* Continue iterating. */
2059 return 0;
2060 }
2061
2062 /* Enable or disable optional solib event breakpoints as appropriate.
2063 Called whenever stop_on_solib_events is changed. */
2064
2065 static void
2066 svr4_update_solib_event_breakpoints (void)
2067 {
2068 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
2069 }
2070
2071 /* Create and register solib event breakpoints. PROBES is an array
2072 of NUM_PROBES elements, each of which is vector of probes. A
2073 solib event breakpoint will be created and registered for each
2074 probe. */
2075
2076 static void
2077 svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
2078 const std::vector<probe *> *probes,
2079 struct objfile *objfile)
2080 {
2081 for (int i = 0; i < NUM_PROBES; i++)
2082 {
2083 enum probe_action action = probe_info[i].action;
2084
2085 for (probe *p : probes[i])
2086 {
2087 CORE_ADDR address = p->get_relocated_address (objfile);
2088
2089 create_solib_event_breakpoint (gdbarch, address);
2090 register_solib_event_probe (p, address, action);
2091 }
2092 }
2093
2094 svr4_update_solib_event_breakpoints ();
2095 }
2096
2097 /* Both the SunOS and the SVR4 dynamic linkers call a marker function
2098 before and after mapping and unmapping shared libraries. The sole
2099 purpose of this method is to allow debuggers to set a breakpoint so
2100 they can track these changes.
2101
2102 Some versions of the glibc dynamic linker contain named probes
2103 to allow more fine grained stopping. Given the address of the
2104 original marker function, this function attempts to find these
2105 probes, and if found, sets breakpoints on those instead. If the
2106 probes aren't found, a single breakpoint is set on the original
2107 marker function. */
2108
2109 static void
2110 svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
2111 CORE_ADDR address)
2112 {
2113 struct obj_section *os;
2114
2115 os = find_pc_section (address);
2116 if (os != NULL)
2117 {
2118 int with_prefix;
2119
2120 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
2121 {
2122 std::vector<probe *> probes[NUM_PROBES];
2123 int all_probes_found = 1;
2124 int checked_can_use_probe_arguments = 0;
2125
2126 for (int i = 0; i < NUM_PROBES; i++)
2127 {
2128 const char *name = probe_info[i].name;
2129 probe *p;
2130 char buf[32];
2131
2132 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
2133 shipped with an early version of the probes code in
2134 which the probes' names were prefixed with "rtld_"
2135 and the "map_failed" probe did not exist. The
2136 locations of the probes are otherwise the same, so
2137 we check for probes with prefixed names if probes
2138 with unprefixed names are not present. */
2139 if (with_prefix)
2140 {
2141 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2142 name = buf;
2143 }
2144
2145 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2146
2147 /* The "map_failed" probe did not exist in early
2148 versions of the probes code in which the probes'
2149 names were prefixed with "rtld_". */
2150 if (strcmp (name, "rtld_map_failed") == 0)
2151 continue;
2152
2153 if (probes[i].empty ())
2154 {
2155 all_probes_found = 0;
2156 break;
2157 }
2158
2159 /* Ensure probe arguments can be evaluated. */
2160 if (!checked_can_use_probe_arguments)
2161 {
2162 p = probes[i][0];
2163 if (!p->can_evaluate_arguments ())
2164 {
2165 all_probes_found = 0;
2166 break;
2167 }
2168 checked_can_use_probe_arguments = 1;
2169 }
2170 }
2171
2172 if (all_probes_found)
2173 svr4_create_probe_breakpoints (gdbarch, probes, os->objfile);
2174
2175 if (all_probes_found)
2176 return;
2177 }
2178 }
2179
2180 create_solib_event_breakpoint (gdbarch, address);
2181 }
2182
2183 /* Helper function for gdb_bfd_lookup_symbol. */
2184
2185 static int
2186 cmp_name_and_sec_flags (const asymbol *sym, const void *data)
2187 {
2188 return (strcmp (sym->name, (const char *) data) == 0
2189 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2190 }
2191 /* Arrange for dynamic linker to hit breakpoint.
2192
2193 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2194 debugger interface, support for arranging for the inferior to hit
2195 a breakpoint after mapping in the shared libraries. This function
2196 enables that breakpoint.
2197
2198 For SunOS, there is a special flag location (in_debugger) which we
2199 set to 1. When the dynamic linker sees this flag set, it will set
2200 a breakpoint at a location known only to itself, after saving the
2201 original contents of that place and the breakpoint address itself,
2202 in it's own internal structures. When we resume the inferior, it
2203 will eventually take a SIGTRAP when it runs into the breakpoint.
2204 We handle this (in a different place) by restoring the contents of
2205 the breakpointed location (which is only known after it stops),
2206 chasing around to locate the shared libraries that have been
2207 loaded, then resuming.
2208
2209 For SVR4, the debugger interface structure contains a member (r_brk)
2210 which is statically initialized at the time the shared library is
2211 built, to the offset of a function (_r_debug_state) which is guaran-
2212 teed to be called once before mapping in a library, and again when
2213 the mapping is complete. At the time we are examining this member,
2214 it contains only the unrelocated offset of the function, so we have
2215 to do our own relocation. Later, when the dynamic linker actually
2216 runs, it relocates r_brk to be the actual address of _r_debug_state().
2217
2218 The debugger interface structure also contains an enumeration which
2219 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2220 depending upon whether or not the library is being mapped or unmapped,
2221 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
2222
2223 static int
2224 enable_break (struct svr4_info *info, int from_tty)
2225 {
2226 struct bound_minimal_symbol msymbol;
2227 const char * const *bkpt_namep;
2228 asection *interp_sect;
2229 char *interp_name;
2230 CORE_ADDR sym_addr;
2231
2232 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2233 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
2234
2235 /* If we already have a shared library list in the target, and
2236 r_debug contains r_brk, set the breakpoint there - this should
2237 mean r_brk has already been relocated. Assume the dynamic linker
2238 is the object containing r_brk. */
2239
2240 solib_add (NULL, from_tty, auto_solib_add);
2241 sym_addr = 0;
2242 if (info->debug_base && solib_svr4_r_map (info) != 0)
2243 sym_addr = solib_svr4_r_brk (info);
2244
2245 if (sym_addr != 0)
2246 {
2247 struct obj_section *os;
2248
2249 sym_addr = gdbarch_addr_bits_remove
2250 (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2251 sym_addr,
2252 &current_target));
2253
2254 /* On at least some versions of Solaris there's a dynamic relocation
2255 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2256 we get control before the dynamic linker has self-relocated.
2257 Check if SYM_ADDR is in a known section, if it is assume we can
2258 trust its value. This is just a heuristic though, it could go away
2259 or be replaced if it's getting in the way.
2260
2261 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2262 however it's spelled in your particular system) is ARM or Thumb.
2263 That knowledge is encoded in the address, if it's Thumb the low bit
2264 is 1. However, we've stripped that info above and it's not clear
2265 what all the consequences are of passing a non-addr_bits_remove'd
2266 address to svr4_create_solib_event_breakpoints. The call to
2267 find_pc_section verifies we know about the address and have some
2268 hope of computing the right kind of breakpoint to use (via
2269 symbol info). It does mean that GDB needs to be pointed at a
2270 non-stripped version of the dynamic linker in order to obtain
2271 information it already knows about. Sigh. */
2272
2273 os = find_pc_section (sym_addr);
2274 if (os != NULL)
2275 {
2276 /* Record the relocated start and end address of the dynamic linker
2277 text and plt section for svr4_in_dynsym_resolve_code. */
2278 bfd *tmp_bfd;
2279 CORE_ADDR load_addr;
2280
2281 tmp_bfd = os->objfile->obfd;
2282 load_addr = ANOFFSET (os->objfile->section_offsets,
2283 SECT_OFF_TEXT (os->objfile));
2284
2285 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2286 if (interp_sect)
2287 {
2288 info->interp_text_sect_low =
2289 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2290 info->interp_text_sect_high =
2291 info->interp_text_sect_low
2292 + bfd_section_size (tmp_bfd, interp_sect);
2293 }
2294 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2295 if (interp_sect)
2296 {
2297 info->interp_plt_sect_low =
2298 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2299 info->interp_plt_sect_high =
2300 info->interp_plt_sect_low
2301 + bfd_section_size (tmp_bfd, interp_sect);
2302 }
2303
2304 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2305 return 1;
2306 }
2307 }
2308
2309 /* Find the program interpreter; if not found, warn the user and drop
2310 into the old breakpoint at symbol code. */
2311 interp_name = find_program_interpreter ();
2312 if (interp_name)
2313 {
2314 CORE_ADDR load_addr = 0;
2315 int load_addr_found = 0;
2316 int loader_found_in_list = 0;
2317 struct so_list *so;
2318 struct target_ops *tmp_bfd_target;
2319
2320 sym_addr = 0;
2321
2322 /* Now we need to figure out where the dynamic linker was
2323 loaded so that we can load its symbols and place a breakpoint
2324 in the dynamic linker itself.
2325
2326 This address is stored on the stack. However, I've been unable
2327 to find any magic formula to find it for Solaris (appears to
2328 be trivial on GNU/Linux). Therefore, we have to try an alternate
2329 mechanism to find the dynamic linker's base address. */
2330
2331 gdb_bfd_ref_ptr tmp_bfd;
2332 TRY
2333 {
2334 tmp_bfd = solib_bfd_open (interp_name);
2335 }
2336 CATCH (ex, RETURN_MASK_ALL)
2337 {
2338 }
2339 END_CATCH
2340
2341 if (tmp_bfd == NULL)
2342 goto bkpt_at_symbol;
2343
2344 /* Now convert the TMP_BFD into a target. That way target, as
2345 well as BFD operations can be used. target_bfd_reopen
2346 acquires its own reference. */
2347 tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ());
2348
2349 /* On a running target, we can get the dynamic linker's base
2350 address from the shared library table. */
2351 so = master_so_list ();
2352 while (so)
2353 {
2354 if (svr4_same_1 (interp_name, so->so_original_name))
2355 {
2356 load_addr_found = 1;
2357 loader_found_in_list = 1;
2358 load_addr = lm_addr_check (so, tmp_bfd.get ());
2359 break;
2360 }
2361 so = so->next;
2362 }
2363
2364 /* If we were not able to find the base address of the loader
2365 from our so_list, then try using the AT_BASE auxilliary entry. */
2366 if (!load_addr_found)
2367 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
2368 {
2369 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
2370
2371 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2372 that `+ load_addr' will overflow CORE_ADDR width not creating
2373 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2374 GDB. */
2375
2376 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
2377 {
2378 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
2379 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
2380 tmp_bfd_target);
2381
2382 gdb_assert (load_addr < space_size);
2383
2384 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2385 64bit ld.so with 32bit executable, it should not happen. */
2386
2387 if (tmp_entry_point < space_size
2388 && tmp_entry_point + load_addr >= space_size)
2389 load_addr -= space_size;
2390 }
2391
2392 load_addr_found = 1;
2393 }
2394
2395 /* Otherwise we find the dynamic linker's base address by examining
2396 the current pc (which should point at the entry point for the
2397 dynamic linker) and subtracting the offset of the entry point.
2398
2399 This is more fragile than the previous approaches, but is a good
2400 fallback method because it has actually been working well in
2401 most cases. */
2402 if (!load_addr_found)
2403 {
2404 struct regcache *regcache
2405 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
2406
2407 load_addr = (regcache_read_pc (regcache)
2408 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
2409 }
2410
2411 if (!loader_found_in_list)
2412 {
2413 info->debug_loader_name = xstrdup (interp_name);
2414 info->debug_loader_offset_p = 1;
2415 info->debug_loader_offset = load_addr;
2416 solib_add (NULL, from_tty, auto_solib_add);
2417 }
2418
2419 /* Record the relocated start and end address of the dynamic linker
2420 text and plt section for svr4_in_dynsym_resolve_code. */
2421 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
2422 if (interp_sect)
2423 {
2424 info->interp_text_sect_low =
2425 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
2426 info->interp_text_sect_high =
2427 info->interp_text_sect_low
2428 + bfd_section_size (tmp_bfd.get (), interp_sect);
2429 }
2430 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
2431 if (interp_sect)
2432 {
2433 info->interp_plt_sect_low =
2434 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
2435 info->interp_plt_sect_high =
2436 info->interp_plt_sect_low
2437 + bfd_section_size (tmp_bfd.get (), interp_sect);
2438 }
2439
2440 /* Now try to set a breakpoint in the dynamic linker. */
2441 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2442 {
2443 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2444 cmp_name_and_sec_flags,
2445 *bkpt_namep);
2446 if (sym_addr != 0)
2447 break;
2448 }
2449
2450 if (sym_addr != 0)
2451 /* Convert 'sym_addr' from a function pointer to an address.
2452 Because we pass tmp_bfd_target instead of the current
2453 target, this will always produce an unrelocated value. */
2454 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2455 sym_addr,
2456 tmp_bfd_target);
2457
2458 /* We're done with both the temporary bfd and target. Closing
2459 the target closes the underlying bfd, because it holds the
2460 only remaining reference. */
2461 target_close (tmp_bfd_target);
2462
2463 if (sym_addr != 0)
2464 {
2465 svr4_create_solib_event_breakpoints (target_gdbarch (),
2466 load_addr + sym_addr);
2467 xfree (interp_name);
2468 return 1;
2469 }
2470
2471 /* For whatever reason we couldn't set a breakpoint in the dynamic
2472 linker. Warn and drop into the old code. */
2473 bkpt_at_symbol:
2474 xfree (interp_name);
2475 warning (_("Unable to find dynamic linker breakpoint function.\n"
2476 "GDB will be unable to debug shared library initializers\n"
2477 "and track explicitly loaded dynamic code."));
2478 }
2479
2480 /* Scan through the lists of symbols, trying to look up the symbol and
2481 set a breakpoint there. Terminate loop when we/if we succeed. */
2482
2483 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2484 {
2485 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2486 if ((msymbol.minsym != NULL)
2487 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2488 {
2489 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2490 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2491 sym_addr,
2492 &current_target);
2493 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2494 return 1;
2495 }
2496 }
2497
2498 if (interp_name != NULL && !current_inferior ()->attach_flag)
2499 {
2500 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
2501 {
2502 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2503 if ((msymbol.minsym != NULL)
2504 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2505 {
2506 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2507 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2508 sym_addr,
2509 &current_target);
2510 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2511 return 1;
2512 }
2513 }
2514 }
2515 return 0;
2516 }
2517
2518 /* Read the ELF program headers from ABFD. Return the contents and
2519 set *PHDRS_SIZE to the size of the program headers. */
2520
2521 static gdb_byte *
2522 read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
2523 {
2524 Elf_Internal_Ehdr *ehdr;
2525 gdb_byte *buf;
2526
2527 ehdr = elf_elfheader (abfd);
2528
2529 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2530 if (*phdrs_size == 0)
2531 return NULL;
2532
2533 buf = (gdb_byte *) xmalloc (*phdrs_size);
2534 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2535 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
2536 {
2537 xfree (buf);
2538 return NULL;
2539 }
2540
2541 return buf;
2542 }
2543
2544 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2545 exec_bfd. Otherwise return 0.
2546
2547 We relocate all of the sections by the same amount. This
2548 behavior is mandated by recent editions of the System V ABI.
2549 According to the System V Application Binary Interface,
2550 Edition 4.1, page 5-5:
2551
2552 ... Though the system chooses virtual addresses for
2553 individual processes, it maintains the segments' relative
2554 positions. Because position-independent code uses relative
2555 addressesing between segments, the difference between
2556 virtual addresses in memory must match the difference
2557 between virtual addresses in the file. The difference
2558 between the virtual address of any segment in memory and
2559 the corresponding virtual address in the file is thus a
2560 single constant value for any one executable or shared
2561 object in a given process. This difference is the base
2562 address. One use of the base address is to relocate the
2563 memory image of the program during dynamic linking.
2564
2565 The same language also appears in Edition 4.0 of the System V
2566 ABI and is left unspecified in some of the earlier editions.
2567
2568 Decide if the objfile needs to be relocated. As indicated above, we will
2569 only be here when execution is stopped. But during attachment PC can be at
2570 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2571 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2572 regcache_read_pc would point to the interpreter and not the main executable.
2573
2574 So, to summarize, relocations are necessary when the start address obtained
2575 from the executable is different from the address in auxv AT_ENTRY entry.
2576
2577 [ The astute reader will note that we also test to make sure that
2578 the executable in question has the DYNAMIC flag set. It is my
2579 opinion that this test is unnecessary (undesirable even). It
2580 was added to avoid inadvertent relocation of an executable
2581 whose e_type member in the ELF header is not ET_DYN. There may
2582 be a time in the future when it is desirable to do relocations
2583 on other types of files as well in which case this condition
2584 should either be removed or modified to accomodate the new file
2585 type. - Kevin, Nov 2000. ] */
2586
2587 static int
2588 svr4_exec_displacement (CORE_ADDR *displacementp)
2589 {
2590 /* ENTRY_POINT is a possible function descriptor - before
2591 a call to gdbarch_convert_from_func_ptr_addr. */
2592 CORE_ADDR entry_point, exec_displacement;
2593
2594 if (exec_bfd == NULL)
2595 return 0;
2596
2597 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2598 being executed themselves and PIE (Position Independent Executable)
2599 executables are ET_DYN. */
2600
2601 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2602 return 0;
2603
2604 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
2605 return 0;
2606
2607 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
2608
2609 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
2610 alignment. It is cheaper than the program headers comparison below. */
2611
2612 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2613 {
2614 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2615
2616 /* p_align of PT_LOAD segments does not specify any alignment but
2617 only congruency of addresses:
2618 p_offset % p_align == p_vaddr % p_align
2619 Kernel is free to load the executable with lower alignment. */
2620
2621 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
2622 return 0;
2623 }
2624
2625 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2626 comparing their program headers. If the program headers in the auxilliary
2627 vector do not match the program headers in the executable, then we are
2628 looking at a different file than the one used by the kernel - for
2629 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2630
2631 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2632 {
2633 /* Be optimistic and clear OK only if GDB was able to verify the headers
2634 really do not match. */
2635 int phdrs_size, phdrs2_size, ok = 1;
2636 gdb_byte *buf, *buf2;
2637 int arch_size;
2638
2639 buf = read_program_header (-1, &phdrs_size, &arch_size, NULL);
2640 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
2641 if (buf != NULL && buf2 != NULL)
2642 {
2643 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2644
2645 /* We are dealing with three different addresses. EXEC_BFD
2646 represents current address in on-disk file. target memory content
2647 may be different from EXEC_BFD as the file may have been prelinked
2648 to a different address after the executable has been loaded.
2649 Moreover the address of placement in target memory can be
2650 different from what the program headers in target memory say -
2651 this is the goal of PIE.
2652
2653 Detected DISPLACEMENT covers both the offsets of PIE placement and
2654 possible new prelink performed after start of the program. Here
2655 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2656 content offset for the verification purpose. */
2657
2658 if (phdrs_size != phdrs2_size
2659 || bfd_get_arch_size (exec_bfd) != arch_size)
2660 ok = 0;
2661 else if (arch_size == 32
2662 && phdrs_size >= sizeof (Elf32_External_Phdr)
2663 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
2664 {
2665 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2666 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2667 CORE_ADDR displacement = 0;
2668 int i;
2669
2670 /* DISPLACEMENT could be found more easily by the difference of
2671 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2672 already have enough information to compute that displacement
2673 with what we've read. */
2674
2675 for (i = 0; i < ehdr2->e_phnum; i++)
2676 if (phdr2[i].p_type == PT_LOAD)
2677 {
2678 Elf32_External_Phdr *phdrp;
2679 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2680 CORE_ADDR vaddr, paddr;
2681 CORE_ADDR displacement_vaddr = 0;
2682 CORE_ADDR displacement_paddr = 0;
2683
2684 phdrp = &((Elf32_External_Phdr *) buf)[i];
2685 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2686 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2687
2688 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2689 byte_order);
2690 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2691
2692 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2693 byte_order);
2694 displacement_paddr = paddr - phdr2[i].p_paddr;
2695
2696 if (displacement_vaddr == displacement_paddr)
2697 displacement = displacement_vaddr;
2698
2699 break;
2700 }
2701
2702 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2703
2704 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
2705 {
2706 Elf32_External_Phdr *phdrp;
2707 Elf32_External_Phdr *phdr2p;
2708 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2709 CORE_ADDR vaddr, paddr;
2710 asection *plt2_asect;
2711
2712 phdrp = &((Elf32_External_Phdr *) buf)[i];
2713 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2714 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2715 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
2716
2717 /* PT_GNU_STACK is an exception by being never relocated by
2718 prelink as its addresses are always zero. */
2719
2720 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2721 continue;
2722
2723 /* Check also other adjustment combinations - PR 11786. */
2724
2725 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2726 byte_order);
2727 vaddr -= displacement;
2728 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2729
2730 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2731 byte_order);
2732 paddr -= displacement;
2733 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2734
2735 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2736 continue;
2737
2738 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2739 CentOS-5 has problems with filesz, memsz as well.
2740 See PR 11786. */
2741 if (phdr2[i].p_type == PT_GNU_RELRO)
2742 {
2743 Elf32_External_Phdr tmp_phdr = *phdrp;
2744 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2745
2746 memset (tmp_phdr.p_filesz, 0, 4);
2747 memset (tmp_phdr.p_memsz, 0, 4);
2748 memset (tmp_phdr.p_flags, 0, 4);
2749 memset (tmp_phdr.p_align, 0, 4);
2750 memset (tmp_phdr2.p_filesz, 0, 4);
2751 memset (tmp_phdr2.p_memsz, 0, 4);
2752 memset (tmp_phdr2.p_flags, 0, 4);
2753 memset (tmp_phdr2.p_align, 0, 4);
2754
2755 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2756 == 0)
2757 continue;
2758 }
2759
2760 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2761 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2762 if (plt2_asect)
2763 {
2764 int content2;
2765 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2766 CORE_ADDR filesz;
2767
2768 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2769 & SEC_HAS_CONTENTS) != 0;
2770
2771 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2772 byte_order);
2773
2774 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2775 FILESZ is from the in-memory image. */
2776 if (content2)
2777 filesz += bfd_get_section_size (plt2_asect);
2778 else
2779 filesz -= bfd_get_section_size (plt2_asect);
2780
2781 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2782 filesz);
2783
2784 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2785 continue;
2786 }
2787
2788 ok = 0;
2789 break;
2790 }
2791 }
2792 else if (arch_size == 64
2793 && phdrs_size >= sizeof (Elf64_External_Phdr)
2794 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
2795 {
2796 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2797 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2798 CORE_ADDR displacement = 0;
2799 int i;
2800
2801 /* DISPLACEMENT could be found more easily by the difference of
2802 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2803 already have enough information to compute that displacement
2804 with what we've read. */
2805
2806 for (i = 0; i < ehdr2->e_phnum; i++)
2807 if (phdr2[i].p_type == PT_LOAD)
2808 {
2809 Elf64_External_Phdr *phdrp;
2810 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2811 CORE_ADDR vaddr, paddr;
2812 CORE_ADDR displacement_vaddr = 0;
2813 CORE_ADDR displacement_paddr = 0;
2814
2815 phdrp = &((Elf64_External_Phdr *) buf)[i];
2816 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2817 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2818
2819 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2820 byte_order);
2821 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2822
2823 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2824 byte_order);
2825 displacement_paddr = paddr - phdr2[i].p_paddr;
2826
2827 if (displacement_vaddr == displacement_paddr)
2828 displacement = displacement_vaddr;
2829
2830 break;
2831 }
2832
2833 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2834
2835 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2836 {
2837 Elf64_External_Phdr *phdrp;
2838 Elf64_External_Phdr *phdr2p;
2839 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2840 CORE_ADDR vaddr, paddr;
2841 asection *plt2_asect;
2842
2843 phdrp = &((Elf64_External_Phdr *) buf)[i];
2844 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2845 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2846 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2847
2848 /* PT_GNU_STACK is an exception by being never relocated by
2849 prelink as its addresses are always zero. */
2850
2851 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2852 continue;
2853
2854 /* Check also other adjustment combinations - PR 11786. */
2855
2856 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2857 byte_order);
2858 vaddr -= displacement;
2859 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2860
2861 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2862 byte_order);
2863 paddr -= displacement;
2864 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2865
2866 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2867 continue;
2868
2869 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2870 CentOS-5 has problems with filesz, memsz as well.
2871 See PR 11786. */
2872 if (phdr2[i].p_type == PT_GNU_RELRO)
2873 {
2874 Elf64_External_Phdr tmp_phdr = *phdrp;
2875 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2876
2877 memset (tmp_phdr.p_filesz, 0, 8);
2878 memset (tmp_phdr.p_memsz, 0, 8);
2879 memset (tmp_phdr.p_flags, 0, 4);
2880 memset (tmp_phdr.p_align, 0, 8);
2881 memset (tmp_phdr2.p_filesz, 0, 8);
2882 memset (tmp_phdr2.p_memsz, 0, 8);
2883 memset (tmp_phdr2.p_flags, 0, 4);
2884 memset (tmp_phdr2.p_align, 0, 8);
2885
2886 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2887 == 0)
2888 continue;
2889 }
2890
2891 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2892 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2893 if (plt2_asect)
2894 {
2895 int content2;
2896 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2897 CORE_ADDR filesz;
2898
2899 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2900 & SEC_HAS_CONTENTS) != 0;
2901
2902 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2903 byte_order);
2904
2905 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2906 FILESZ is from the in-memory image. */
2907 if (content2)
2908 filesz += bfd_get_section_size (plt2_asect);
2909 else
2910 filesz -= bfd_get_section_size (plt2_asect);
2911
2912 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2913 filesz);
2914
2915 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2916 continue;
2917 }
2918
2919 ok = 0;
2920 break;
2921 }
2922 }
2923 else
2924 ok = 0;
2925 }
2926
2927 xfree (buf);
2928 xfree (buf2);
2929
2930 if (!ok)
2931 return 0;
2932 }
2933
2934 if (info_verbose)
2935 {
2936 /* It can be printed repeatedly as there is no easy way to check
2937 the executable symbols/file has been already relocated to
2938 displacement. */
2939
2940 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2941 "displacement %s for \"%s\".\n"),
2942 paddress (target_gdbarch (), exec_displacement),
2943 bfd_get_filename (exec_bfd));
2944 }
2945
2946 *displacementp = exec_displacement;
2947 return 1;
2948 }
2949
2950 /* Relocate the main executable. This function should be called upon
2951 stopping the inferior process at the entry point to the program.
2952 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2953 different, the main executable is relocated by the proper amount. */
2954
2955 static void
2956 svr4_relocate_main_executable (void)
2957 {
2958 CORE_ADDR displacement;
2959
2960 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2961 probably contains the offsets computed using the PIE displacement
2962 from the previous run, which of course are irrelevant for this run.
2963 So we need to determine the new PIE displacement and recompute the
2964 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2965 already contains pre-computed offsets.
2966
2967 If we cannot compute the PIE displacement, either:
2968
2969 - The executable is not PIE.
2970
2971 - SYMFILE_OBJFILE does not match the executable started in the target.
2972 This can happen for main executable symbols loaded at the host while
2973 `ld.so --ld-args main-executable' is loaded in the target.
2974
2975 Then we leave the section offsets untouched and use them as is for
2976 this run. Either:
2977
2978 - These section offsets were properly reset earlier, and thus
2979 already contain the correct values. This can happen for instance
2980 when reconnecting via the remote protocol to a target that supports
2981 the `qOffsets' packet.
2982
2983 - The section offsets were not reset earlier, and the best we can
2984 hope is that the old offsets are still applicable to the new run. */
2985
2986 if (! svr4_exec_displacement (&displacement))
2987 return;
2988
2989 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2990 addresses. */
2991
2992 if (symfile_objfile)
2993 {
2994 struct section_offsets *new_offsets;
2995 int i;
2996
2997 new_offsets = XALLOCAVEC (struct section_offsets,
2998 symfile_objfile->num_sections);
2999
3000 for (i = 0; i < symfile_objfile->num_sections; i++)
3001 new_offsets->offsets[i] = displacement;
3002
3003 objfile_relocate (symfile_objfile, new_offsets);
3004 }
3005 else if (exec_bfd)
3006 {
3007 asection *asect;
3008
3009 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
3010 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
3011 (bfd_section_vma (exec_bfd, asect)
3012 + displacement));
3013 }
3014 }
3015
3016 /* Implement the "create_inferior_hook" target_solib_ops method.
3017
3018 For SVR4 executables, this first instruction is either the first
3019 instruction in the dynamic linker (for dynamically linked
3020 executables) or the instruction at "start" for statically linked
3021 executables. For dynamically linked executables, the system
3022 first exec's /lib/libc.so.N, which contains the dynamic linker,
3023 and starts it running. The dynamic linker maps in any needed
3024 shared libraries, maps in the actual user executable, and then
3025 jumps to "start" in the user executable.
3026
3027 We can arrange to cooperate with the dynamic linker to discover the
3028 names of shared libraries that are dynamically linked, and the base
3029 addresses to which they are linked.
3030
3031 This function is responsible for discovering those names and
3032 addresses, and saving sufficient information about them to allow
3033 their symbols to be read at a later time. */
3034
3035 static void
3036 svr4_solib_create_inferior_hook (int from_tty)
3037 {
3038 struct svr4_info *info;
3039
3040 info = get_svr4_info ();
3041
3042 /* Clear the probes-based interface's state. */
3043 free_probes_table (info);
3044 free_solib_list (info);
3045
3046 /* Relocate the main executable if necessary. */
3047 svr4_relocate_main_executable ();
3048
3049 /* No point setting a breakpoint in the dynamic linker if we can't
3050 hit it (e.g., a core file, or a trace file). */
3051 if (!target_has_execution)
3052 return;
3053
3054 if (!svr4_have_link_map_offsets ())
3055 return;
3056
3057 if (!enable_break (info, from_tty))
3058 return;
3059 }
3060
3061 static void
3062 svr4_clear_solib (void)
3063 {
3064 struct svr4_info *info;
3065
3066 info = get_svr4_info ();
3067 info->debug_base = 0;
3068 info->debug_loader_offset_p = 0;
3069 info->debug_loader_offset = 0;
3070 xfree (info->debug_loader_name);
3071 info->debug_loader_name = NULL;
3072 }
3073
3074 /* Clear any bits of ADDR that wouldn't fit in a target-format
3075 data pointer. "Data pointer" here refers to whatever sort of
3076 address the dynamic linker uses to manage its sections. At the
3077 moment, we don't support shared libraries on any processors where
3078 code and data pointers are different sizes.
3079
3080 This isn't really the right solution. What we really need here is
3081 a way to do arithmetic on CORE_ADDR values that respects the
3082 natural pointer/address correspondence. (For example, on the MIPS,
3083 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3084 sign-extend the value. There, simply truncating the bits above
3085 gdbarch_ptr_bit, as we do below, is no good.) This should probably
3086 be a new gdbarch method or something. */
3087 static CORE_ADDR
3088 svr4_truncate_ptr (CORE_ADDR addr)
3089 {
3090 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
3091 /* We don't need to truncate anything, and the bit twiddling below
3092 will fail due to overflow problems. */
3093 return addr;
3094 else
3095 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
3096 }
3097
3098
3099 static void
3100 svr4_relocate_section_addresses (struct so_list *so,
3101 struct target_section *sec)
3102 {
3103 bfd *abfd = sec->the_bfd_section->owner;
3104
3105 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3106 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
3107 }
3108 \f
3109
3110 /* Architecture-specific operations. */
3111
3112 /* Per-architecture data key. */
3113 static struct gdbarch_data *solib_svr4_data;
3114
3115 struct solib_svr4_ops
3116 {
3117 /* Return a description of the layout of `struct link_map'. */
3118 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3119 };
3120
3121 /* Return a default for the architecture-specific operations. */
3122
3123 static void *
3124 solib_svr4_init (struct obstack *obstack)
3125 {
3126 struct solib_svr4_ops *ops;
3127
3128 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
3129 ops->fetch_link_map_offsets = NULL;
3130 return ops;
3131 }
3132
3133 /* Set the architecture-specific `struct link_map_offsets' fetcher for
3134 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
3135
3136 void
3137 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3138 struct link_map_offsets *(*flmo) (void))
3139 {
3140 struct solib_svr4_ops *ops
3141 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
3142
3143 ops->fetch_link_map_offsets = flmo;
3144
3145 set_solib_ops (gdbarch, &svr4_so_ops);
3146 }
3147
3148 /* Fetch a link_map_offsets structure using the architecture-specific
3149 `struct link_map_offsets' fetcher. */
3150
3151 static struct link_map_offsets *
3152 svr4_fetch_link_map_offsets (void)
3153 {
3154 struct solib_svr4_ops *ops
3155 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3156 solib_svr4_data);
3157
3158 gdb_assert (ops->fetch_link_map_offsets);
3159 return ops->fetch_link_map_offsets ();
3160 }
3161
3162 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3163
3164 static int
3165 svr4_have_link_map_offsets (void)
3166 {
3167 struct solib_svr4_ops *ops
3168 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3169 solib_svr4_data);
3170
3171 return (ops->fetch_link_map_offsets != NULL);
3172 }
3173 \f
3174
3175 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
3176 `struct r_debug' and a `struct link_map' that are binary compatible
3177 with the origional SVR4 implementation. */
3178
3179 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3180 for an ILP32 SVR4 system. */
3181
3182 struct link_map_offsets *
3183 svr4_ilp32_fetch_link_map_offsets (void)
3184 {
3185 static struct link_map_offsets lmo;
3186 static struct link_map_offsets *lmp = NULL;
3187
3188 if (lmp == NULL)
3189 {
3190 lmp = &lmo;
3191
3192 lmo.r_version_offset = 0;
3193 lmo.r_version_size = 4;
3194 lmo.r_map_offset = 4;
3195 lmo.r_brk_offset = 8;
3196 lmo.r_ldsomap_offset = 20;
3197
3198 /* Everything we need is in the first 20 bytes. */
3199 lmo.link_map_size = 20;
3200 lmo.l_addr_offset = 0;
3201 lmo.l_name_offset = 4;
3202 lmo.l_ld_offset = 8;
3203 lmo.l_next_offset = 12;
3204 lmo.l_prev_offset = 16;
3205 }
3206
3207 return lmp;
3208 }
3209
3210 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3211 for an LP64 SVR4 system. */
3212
3213 struct link_map_offsets *
3214 svr4_lp64_fetch_link_map_offsets (void)
3215 {
3216 static struct link_map_offsets lmo;
3217 static struct link_map_offsets *lmp = NULL;
3218
3219 if (lmp == NULL)
3220 {
3221 lmp = &lmo;
3222
3223 lmo.r_version_offset = 0;
3224 lmo.r_version_size = 4;
3225 lmo.r_map_offset = 8;
3226 lmo.r_brk_offset = 16;
3227 lmo.r_ldsomap_offset = 40;
3228
3229 /* Everything we need is in the first 40 bytes. */
3230 lmo.link_map_size = 40;
3231 lmo.l_addr_offset = 0;
3232 lmo.l_name_offset = 8;
3233 lmo.l_ld_offset = 16;
3234 lmo.l_next_offset = 24;
3235 lmo.l_prev_offset = 32;
3236 }
3237
3238 return lmp;
3239 }
3240 \f
3241
3242 struct target_so_ops svr4_so_ops;
3243
3244 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3245 different rule for symbol lookup. The lookup begins here in the DSO, not in
3246 the main executable. */
3247
3248 static struct block_symbol
3249 elf_lookup_lib_symbol (struct objfile *objfile,
3250 const char *name,
3251 const domain_enum domain)
3252 {
3253 bfd *abfd;
3254
3255 if (objfile == symfile_objfile)
3256 abfd = exec_bfd;
3257 else
3258 {
3259 /* OBJFILE should have been passed as the non-debug one. */
3260 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3261
3262 abfd = objfile->obfd;
3263 }
3264
3265 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL, NULL) != 1)
3266 return (struct block_symbol) {NULL, NULL};
3267
3268 return lookup_global_symbol_from_objfile (objfile, name, domain);
3269 }
3270
3271 void
3272 _initialize_svr4_solib (void)
3273 {
3274 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3275 solib_svr4_pspace_data
3276 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
3277
3278 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
3279 svr4_so_ops.free_so = svr4_free_so;
3280 svr4_so_ops.clear_so = svr4_clear_so;
3281 svr4_so_ops.clear_solib = svr4_clear_solib;
3282 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3283 svr4_so_ops.current_sos = svr4_current_sos;
3284 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
3285 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
3286 svr4_so_ops.bfd_open = solib_bfd_open;
3287 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
3288 svr4_so_ops.same = svr4_same;
3289 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
3290 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3291 svr4_so_ops.handle_event = svr4_handle_solib_event;
3292 }
This page took 0.127229 seconds and 4 git commands to generate.