1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
25 #include "elf/external.h"
26 #include "elf/common.h"
38 #include "solib-svr4.h"
40 #ifndef SVR4_FETCH_LINK_MAP_OFFSETS
41 #define SVR4_FETCH_LINK_MAP_OFFSETS() svr4_fetch_link_map_offsets ()
44 static struct link_map_offsets
*svr4_fetch_link_map_offsets (void);
45 static struct link_map_offsets
*legacy_fetch_link_map_offsets (void);
46 static int svr4_have_link_map_offsets (void);
48 /* fetch_link_map_offsets_gdbarch_data is a handle used to obtain the
49 architecture specific link map offsets fetching function. */
51 static struct gdbarch_data
*fetch_link_map_offsets_gdbarch_data
;
53 /* legacy_svr4_fetch_link_map_offsets_hook is a pointer to a function
54 which is used to fetch link map offsets. It will only be set
55 by solib-legacy.c, if at all. */
57 struct link_map_offsets
*(*legacy_svr4_fetch_link_map_offsets_hook
)(void) = 0;
59 /* Link map info to include in an allocated so_list entry */
63 /* Pointer to copy of link map from inferior. The type is char *
64 rather than void *, so that we may use byte offsets to find the
65 various fields without the need for a cast. */
69 /* On SVR4 systems, a list of symbols in the dynamic linker where
70 GDB can try to place a breakpoint to monitor shared library
73 If none of these symbols are found, or other errors occur, then
74 SVR4 systems will fall back to using a symbol as the "startup
75 mapping complete" breakpoint address. */
77 static char *solib_break_names
[] =
85 /* On the 64-bit PowerPC, the linker symbol with the same name as
86 the C function points to a function descriptor, not to the entry
87 point. The linker symbol whose name is the C function name
88 prefixed with a '.' points to the function's entry point. So
89 when we look through this table, we ignore symbols that point
90 into the data section (thus skipping the descriptor's symbol),
91 and eventually try this one, giving us the real entry point
98 #define BKPT_AT_SYMBOL 1
100 #if defined (BKPT_AT_SYMBOL)
101 static char *bkpt_names
[] =
103 #ifdef SOLIB_BKPT_NAME
104 SOLIB_BKPT_NAME
, /* Prefer configured name if it exists. */
113 static char *main_name_list
[] =
119 /* Macro to extract an address from a solib structure. When GDB is
120 configured for some 32-bit targets (e.g. Solaris 2.7 sparc), BFD is
121 configured to handle 64-bit targets, so CORE_ADDR is 64 bits. We
122 have to extract only the significant bits of addresses to get the
123 right address when accessing the core file BFD.
125 Assume that the address is unsigned. */
127 #define SOLIB_EXTRACT_ADDRESS(MEMBER) \
128 extract_unsigned_integer (&(MEMBER), sizeof (MEMBER))
130 /* local data declarations */
132 /* link map access functions */
135 LM_ADDR (struct so_list
*so
)
137 struct link_map_offsets
*lmo
= SVR4_FETCH_LINK_MAP_OFFSETS ();
139 return (CORE_ADDR
) extract_signed_integer (so
->lm_info
->lm
+ lmo
->l_addr_offset
,
144 LM_NEXT (struct so_list
*so
)
146 struct link_map_offsets
*lmo
= SVR4_FETCH_LINK_MAP_OFFSETS ();
148 /* Assume that the address is unsigned. */
149 return extract_unsigned_integer (so
->lm_info
->lm
+ lmo
->l_next_offset
,
154 LM_NAME (struct so_list
*so
)
156 struct link_map_offsets
*lmo
= SVR4_FETCH_LINK_MAP_OFFSETS ();
158 /* Assume that the address is unsigned. */
159 return extract_unsigned_integer (so
->lm_info
->lm
+ lmo
->l_name_offset
,
164 IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list
*so
)
166 struct link_map_offsets
*lmo
= SVR4_FETCH_LINK_MAP_OFFSETS ();
168 /* Assume that the address is unsigned. */
169 return extract_unsigned_integer (so
->lm_info
->lm
+ lmo
->l_prev_offset
,
170 lmo
->l_prev_size
) == 0;
173 static CORE_ADDR debug_base
; /* Base of dynamic linker structures */
174 static CORE_ADDR breakpoint_addr
; /* Address where end bkpt is set */
176 /* Local function prototypes */
178 static int match_main (char *);
180 static CORE_ADDR
bfd_lookup_symbol (bfd
*, char *, flagword
);
186 bfd_lookup_symbol -- lookup the value for a specific symbol
190 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags)
194 An expensive way to lookup the value of a single symbol for
195 bfd's that are only temporary anyway. This is used by the
196 shared library support to find the address of the debugger
197 interface structures in the shared library.
199 If SECT_FLAGS is non-zero, only match symbols in sections whose
200 flags include all those in SECT_FLAGS.
202 Note that 0 is specifically allowed as an error return (no
207 bfd_lookup_symbol (bfd
*abfd
, char *symname
, flagword sect_flags
)
211 asymbol
**symbol_table
;
212 unsigned int number_of_symbols
;
214 struct cleanup
*back_to
;
215 CORE_ADDR symaddr
= 0;
217 storage_needed
= bfd_get_symtab_upper_bound (abfd
);
219 if (storage_needed
> 0)
221 symbol_table
= (asymbol
**) xmalloc (storage_needed
);
222 back_to
= make_cleanup (xfree
, symbol_table
);
223 number_of_symbols
= bfd_canonicalize_symtab (abfd
, symbol_table
);
225 for (i
= 0; i
< number_of_symbols
; i
++)
227 sym
= *symbol_table
++;
228 if (STREQ (sym
->name
, symname
)
229 && (sym
->section
->flags
& sect_flags
) == sect_flags
)
231 /* Bfd symbols are section relative. */
232 symaddr
= sym
->value
+ sym
->section
->vma
;
236 do_cleanups (back_to
);
242 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
243 have to check the dynamic string table too. */
245 storage_needed
= bfd_get_dynamic_symtab_upper_bound (abfd
);
247 if (storage_needed
> 0)
249 symbol_table
= (asymbol
**) xmalloc (storage_needed
);
250 back_to
= make_cleanup (xfree
, symbol_table
);
251 number_of_symbols
= bfd_canonicalize_dynamic_symtab (abfd
, symbol_table
);
253 for (i
= 0; i
< number_of_symbols
; i
++)
255 sym
= *symbol_table
++;
257 if (STREQ (sym
->name
, symname
)
258 && (sym
->section
->flags
& sect_flags
) == sect_flags
)
260 /* Bfd symbols are section relative. */
261 symaddr
= sym
->value
+ sym
->section
->vma
;
265 do_cleanups (back_to
);
271 #ifdef HANDLE_SVR4_EXEC_EMULATORS
274 Solaris BCP (the part of Solaris which allows it to run SunOS4
275 a.out files) throws in another wrinkle. Solaris does not fill
276 in the usual a.out link map structures when running BCP programs,
277 the only way to get at them is via groping around in the dynamic
279 The dynamic linker and it's structures are located in the shared
280 C library, which gets run as the executable's "interpreter" by
283 Note that we can assume nothing about the process state at the time
284 we need to find these structures. We may be stopped on the first
285 instruction of the interpreter (C shared library), the first
286 instruction of the executable itself, or somewhere else entirely
287 (if we attached to the process for example).
290 static char *debug_base_symbols
[] =
292 "r_debug", /* Solaris 2.3 */
293 "_r_debug", /* Solaris 2.1, 2.2 */
297 static int look_for_base (int, CORE_ADDR
);
303 look_for_base -- examine file for each mapped address segment
307 static int look_for_base (int fd, CORE_ADDR baseaddr)
311 This function is passed to proc_iterate_over_mappings, which
312 causes it to get called once for each mapped address space, with
313 an open file descriptor for the file mapped to that space, and the
314 base address of that mapped space.
316 Our job is to find the debug base symbol in the file that this
317 fd is open on, if it exists, and if so, initialize the dynamic
318 linker structure base address debug_base.
320 Note that this is a computationally expensive proposition, since
321 we basically have to open a bfd on every call, so we specifically
322 avoid opening the exec file.
326 look_for_base (int fd
, CORE_ADDR baseaddr
)
329 CORE_ADDR address
= 0;
332 /* If the fd is -1, then there is no file that corresponds to this
333 mapped memory segment, so skip it. Also, if the fd corresponds
334 to the exec file, skip it as well. */
338 && fdmatch (fileno ((FILE *) (exec_bfd
->iostream
)), fd
)))
343 /* Try to open whatever random file this fd corresponds to. Note that
344 we have no way currently to find the filename. Don't gripe about
345 any problems we might have, just fail. */
347 if ((interp_bfd
= bfd_fdopenr ("unnamed", gnutarget
, fd
)) == NULL
)
351 if (!bfd_check_format (interp_bfd
, bfd_object
))
353 /* FIXME-leak: on failure, might not free all memory associated with
355 bfd_close (interp_bfd
);
359 /* Now try to find our debug base symbol in this file, which we at
360 least know to be a valid ELF executable or shared library. */
362 for (symbolp
= debug_base_symbols
; *symbolp
!= NULL
; symbolp
++)
364 address
= bfd_lookup_symbol (interp_bfd
, *symbolp
, 0);
372 /* FIXME-leak: on failure, might not free all memory associated with
374 bfd_close (interp_bfd
);
378 /* Eureka! We found the symbol. But now we may need to relocate it
379 by the base address. If the symbol's value is less than the base
380 address of the shared library, then it hasn't yet been relocated
381 by the dynamic linker, and we have to do it ourself. FIXME: Note
382 that we make the assumption that the first segment that corresponds
383 to the shared library has the base address to which the library
386 if (address
< baseaddr
)
390 debug_base
= address
;
391 /* FIXME-leak: on failure, might not free all memory associated with
393 bfd_close (interp_bfd
);
396 #endif /* HANDLE_SVR4_EXEC_EMULATORS */
402 elf_locate_base -- locate the base address of dynamic linker structs
403 for SVR4 elf targets.
407 CORE_ADDR elf_locate_base (void)
411 For SVR4 elf targets the address of the dynamic linker's runtime
412 structure is contained within the dynamic info section in the
413 executable file. The dynamic section is also mapped into the
414 inferior address space. Because the runtime loader fills in the
415 real address before starting the inferior, we have to read in the
416 dynamic info section from the inferior address space.
417 If there are any errors while trying to find the address, we
418 silently return 0, otherwise the found address is returned.
423 elf_locate_base (void)
425 sec_ptr dyninfo_sect
;
426 int dyninfo_sect_size
;
427 CORE_ADDR dyninfo_addr
;
432 /* Find the start address of the .dynamic section. */
433 dyninfo_sect
= bfd_get_section_by_name (exec_bfd
, ".dynamic");
434 if (dyninfo_sect
== NULL
)
436 dyninfo_addr
= bfd_section_vma (exec_bfd
, dyninfo_sect
);
438 /* Read in .dynamic section, silently ignore errors. */
439 dyninfo_sect_size
= bfd_section_size (exec_bfd
, dyninfo_sect
);
440 buf
= alloca (dyninfo_sect_size
);
441 if (target_read_memory (dyninfo_addr
, buf
, dyninfo_sect_size
))
444 /* Find the DT_DEBUG entry in the the .dynamic section.
445 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
446 no DT_DEBUG entries. */
448 arch_size
= bfd_get_arch_size (exec_bfd
);
449 if (arch_size
== -1) /* failure */
454 for (bufend
= buf
+ dyninfo_sect_size
;
456 buf
+= sizeof (Elf32_External_Dyn
))
458 Elf32_External_Dyn
*x_dynp
= (Elf32_External_Dyn
*) buf
;
462 dyn_tag
= bfd_h_get_32 (exec_bfd
, (bfd_byte
*) x_dynp
->d_tag
);
463 if (dyn_tag
== DT_NULL
)
465 else if (dyn_tag
== DT_DEBUG
)
467 dyn_ptr
= bfd_h_get_32 (exec_bfd
,
468 (bfd_byte
*) x_dynp
->d_un
.d_ptr
);
471 else if (dyn_tag
== DT_MIPS_RLD_MAP
)
474 int pbuf_size
= TARGET_PTR_BIT
/ HOST_CHAR_BIT
;
476 pbuf
= alloca (pbuf_size
);
477 /* DT_MIPS_RLD_MAP contains a pointer to the address
478 of the dynamic link structure. */
479 dyn_ptr
= bfd_h_get_32 (exec_bfd
,
480 (bfd_byte
*) x_dynp
->d_un
.d_ptr
);
481 if (target_read_memory (dyn_ptr
, pbuf
, pbuf_size
))
483 return extract_unsigned_integer (pbuf
, pbuf_size
);
487 else /* 64-bit elf */
489 for (bufend
= buf
+ dyninfo_sect_size
;
491 buf
+= sizeof (Elf64_External_Dyn
))
493 Elf64_External_Dyn
*x_dynp
= (Elf64_External_Dyn
*) buf
;
497 dyn_tag
= bfd_h_get_64 (exec_bfd
, (bfd_byte
*) x_dynp
->d_tag
);
498 if (dyn_tag
== DT_NULL
)
500 else if (dyn_tag
== DT_DEBUG
)
502 dyn_ptr
= bfd_h_get_64 (exec_bfd
,
503 (bfd_byte
*) x_dynp
->d_un
.d_ptr
);
506 else if (dyn_tag
== DT_MIPS_RLD_MAP
)
509 int pbuf_size
= TARGET_PTR_BIT
/ HOST_CHAR_BIT
;
511 pbuf
= alloca (pbuf_size
);
512 /* DT_MIPS_RLD_MAP contains a pointer to the address
513 of the dynamic link structure. */
514 dyn_ptr
= bfd_h_get_64 (exec_bfd
,
515 (bfd_byte
*) x_dynp
->d_un
.d_ptr
);
516 if (target_read_memory (dyn_ptr
, pbuf
, pbuf_size
))
518 return extract_unsigned_integer (pbuf
, pbuf_size
);
523 /* DT_DEBUG entry not found. */
531 locate_base -- locate the base address of dynamic linker structs
535 CORE_ADDR locate_base (void)
539 For both the SunOS and SVR4 shared library implementations, if the
540 inferior executable has been linked dynamically, there is a single
541 address somewhere in the inferior's data space which is the key to
542 locating all of the dynamic linker's runtime structures. This
543 address is the value of the debug base symbol. The job of this
544 function is to find and return that address, or to return 0 if there
545 is no such address (the executable is statically linked for example).
547 For SunOS, the job is almost trivial, since the dynamic linker and
548 all of it's structures are statically linked to the executable at
549 link time. Thus the symbol for the address we are looking for has
550 already been added to the minimal symbol table for the executable's
551 objfile at the time the symbol file's symbols were read, and all we
552 have to do is look it up there. Note that we explicitly do NOT want
553 to find the copies in the shared library.
555 The SVR4 version is a bit more complicated because the address
556 is contained somewhere in the dynamic info section. We have to go
557 to a lot more work to discover the address of the debug base symbol.
558 Because of this complexity, we cache the value we find and return that
559 value on subsequent invocations. Note there is no copy in the
560 executable symbol tables.
567 /* Check to see if we have a currently valid address, and if so, avoid
568 doing all this work again and just return the cached address. If
569 we have no cached address, try to locate it in the dynamic info
570 section for ELF executables. There's no point in doing any of this
571 though if we don't have some link map offsets to work with. */
573 if (debug_base
== 0 && svr4_have_link_map_offsets ())
576 && bfd_get_flavour (exec_bfd
) == bfd_target_elf_flavour
)
577 debug_base
= elf_locate_base ();
578 #ifdef HANDLE_SVR4_EXEC_EMULATORS
579 /* Try it the hard way for emulated executables. */
580 else if (!ptid_equal (inferior_ptid
, null_ptid
) && target_has_execution
)
581 proc_iterate_over_mappings (look_for_base
);
591 first_link_map_member -- locate first member in dynamic linker's map
595 static CORE_ADDR first_link_map_member (void)
599 Find the first element in the inferior's dynamic link map, and
600 return its address in the inferior. This function doesn't copy the
601 link map entry itself into our address space; current_sos actually
605 first_link_map_member (void)
608 struct link_map_offsets
*lmo
= SVR4_FETCH_LINK_MAP_OFFSETS ();
609 char *r_map_buf
= xmalloc (lmo
->r_map_size
);
610 struct cleanup
*cleanups
= make_cleanup (xfree
, r_map_buf
);
612 read_memory (debug_base
+ lmo
->r_map_offset
, r_map_buf
, lmo
->r_map_size
);
614 /* Assume that the address is unsigned. */
615 lm
= extract_unsigned_integer (r_map_buf
, lmo
->r_map_size
);
617 /* FIXME: Perhaps we should validate the info somehow, perhaps by
618 checking r_version for a known version number, or r_state for
621 do_cleanups (cleanups
);
630 open_symbol_file_object
634 void open_symbol_file_object (void *from_tty)
638 If no open symbol file, attempt to locate and open the main symbol
639 file. On SVR4 systems, this is the first link map entry. If its
640 name is here, we can open it. Useful when attaching to a process
641 without first loading its symbol file.
643 If FROM_TTYP dereferences to a non-zero integer, allow messages to
644 be printed. This parameter is a pointer rather than an int because
645 open_symbol_file_object() is called via catch_errors() and
646 catch_errors() requires a pointer argument. */
649 open_symbol_file_object (void *from_ttyp
)
651 CORE_ADDR lm
, l_name
;
654 int from_tty
= *(int *)from_ttyp
;
655 struct link_map_offsets
*lmo
= SVR4_FETCH_LINK_MAP_OFFSETS ();
656 char *l_name_buf
= xmalloc (lmo
->l_name_size
);
657 struct cleanup
*cleanups
= make_cleanup (xfree
, l_name_buf
);
660 if (!query ("Attempt to reload symbols from process? "))
663 if ((debug_base
= locate_base ()) == 0)
664 return 0; /* failed somehow... */
666 /* First link map member should be the executable. */
667 if ((lm
= first_link_map_member ()) == 0)
668 return 0; /* failed somehow... */
670 /* Read address of name from target memory to GDB. */
671 read_memory (lm
+ lmo
->l_name_offset
, l_name_buf
, lmo
->l_name_size
);
673 /* Convert the address to host format. Assume that the address is
675 l_name
= extract_unsigned_integer (l_name_buf
, lmo
->l_name_size
);
677 /* Free l_name_buf. */
678 do_cleanups (cleanups
);
681 return 0; /* No filename. */
683 /* Now fetch the filename from target memory. */
684 target_read_string (l_name
, &filename
, SO_NAME_MAX_PATH_SIZE
- 1, &errcode
);
688 warning ("failed to read exec filename from attached file: %s",
689 safe_strerror (errcode
));
693 make_cleanup (xfree
, filename
);
694 /* Have a pathname: read the symbol file. */
695 symbol_file_add_main (filename
, from_tty
);
702 current_sos -- build a list of currently loaded shared objects
706 struct so_list *current_sos ()
710 Build a list of `struct so_list' objects describing the shared
711 objects currently loaded in the inferior. This list does not
712 include an entry for the main executable file.
714 Note that we only gather information directly available from the
715 inferior --- we don't examine any of the shared library files
716 themselves. The declaration of `struct so_list' says which fields
717 we provide values for. */
719 static struct so_list
*
720 svr4_current_sos (void)
723 struct so_list
*head
= 0;
724 struct so_list
**link_ptr
= &head
;
726 /* Make sure we've looked up the inferior's dynamic linker's base
730 debug_base
= locate_base ();
732 /* If we can't find the dynamic linker's base structure, this
733 must not be a dynamically linked executable. Hmm. */
738 /* Walk the inferior's link map list, and build our list of
739 `struct so_list' nodes. */
740 lm
= first_link_map_member ();
743 struct link_map_offsets
*lmo
= SVR4_FETCH_LINK_MAP_OFFSETS ();
745 = (struct so_list
*) xmalloc (sizeof (struct so_list
));
746 struct cleanup
*old_chain
= make_cleanup (xfree
, new);
748 memset (new, 0, sizeof (*new));
750 new->lm_info
= xmalloc (sizeof (struct lm_info
));
751 make_cleanup (xfree
, new->lm_info
);
753 new->lm_info
->lm
= xmalloc (lmo
->link_map_size
);
754 make_cleanup (xfree
, new->lm_info
->lm
);
755 memset (new->lm_info
->lm
, 0, lmo
->link_map_size
);
757 read_memory (lm
, new->lm_info
->lm
, lmo
->link_map_size
);
761 /* For SVR4 versions, the first entry in the link map is for the
762 inferior executable, so we must ignore it. For some versions of
763 SVR4, it has no name. For others (Solaris 2.3 for example), it
764 does have a name, so we can no longer use a missing name to
765 decide when to ignore it. */
766 if (IGNORE_FIRST_LINK_MAP_ENTRY (new))
773 /* Extract this shared object's name. */
774 target_read_string (LM_NAME (new), &buffer
,
775 SO_NAME_MAX_PATH_SIZE
- 1, &errcode
);
778 warning ("current_sos: Can't read pathname for load map: %s\n",
779 safe_strerror (errcode
));
783 strncpy (new->so_name
, buffer
, SO_NAME_MAX_PATH_SIZE
- 1);
784 new->so_name
[SO_NAME_MAX_PATH_SIZE
- 1] = '\0';
786 strcpy (new->so_original_name
, new->so_name
);
789 /* If this entry has no name, or its name matches the name
790 for the main executable, don't include it in the list. */
791 if (! new->so_name
[0]
792 || match_main (new->so_name
))
798 link_ptr
= &new->next
;
802 discard_cleanups (old_chain
);
808 /* Get the address of the link_map for a given OBJFILE. Loop through
809 the link maps, and return the address of the one corresponding to
810 the given objfile. Note that this function takes into account that
811 objfile can be the main executable, not just a shared library. The
812 main executable has always an empty name field in the linkmap. */
815 svr4_fetch_objfile_link_map (struct objfile
*objfile
)
819 if ((debug_base
= locate_base ()) == 0)
820 return 0; /* failed somehow... */
822 /* Position ourselves on the first link map. */
823 lm
= first_link_map_member ();
826 /* Get info on the layout of the r_debug and link_map structures. */
827 struct link_map_offsets
*lmo
= SVR4_FETCH_LINK_MAP_OFFSETS ();
830 struct lm_info objfile_lm_info
;
831 struct cleanup
*old_chain
;
832 CORE_ADDR name_address
;
833 char *l_name_buf
= xmalloc (lmo
->l_name_size
);
834 old_chain
= make_cleanup (xfree
, l_name_buf
);
836 /* Set up the buffer to contain the portion of the link_map
837 structure that gdb cares about. Note that this is not the
838 whole link_map structure. */
839 objfile_lm_info
.lm
= xmalloc (lmo
->link_map_size
);
840 make_cleanup (xfree
, objfile_lm_info
.lm
);
841 memset (objfile_lm_info
.lm
, 0, lmo
->link_map_size
);
843 /* Read the link map into our internal structure. */
844 read_memory (lm
, objfile_lm_info
.lm
, lmo
->link_map_size
);
846 /* Read address of name from target memory to GDB. */
847 read_memory (lm
+ lmo
->l_name_offset
, l_name_buf
, lmo
->l_name_size
);
849 /* Extract this object's name. Assume that the address is
851 name_address
= extract_unsigned_integer (l_name_buf
, lmo
->l_name_size
);
852 target_read_string (name_address
, &buffer
,
853 SO_NAME_MAX_PATH_SIZE
- 1, &errcode
);
854 make_cleanup (xfree
, buffer
);
857 warning ("svr4_fetch_objfile_link_map: Can't read pathname for load map: %s\n",
858 safe_strerror (errcode
));
862 /* Is this the linkmap for the file we want? */
863 /* If the file is not a shared library and has no name,
864 we are sure it is the main executable, so we return that. */
865 if ((buffer
&& strcmp (buffer
, objfile
->name
) == 0)
866 || (!(objfile
->flags
& OBJF_SHARED
) && (strcmp (buffer
, "") == 0)))
868 do_cleanups (old_chain
);
872 /* Not the file we wanted, continue checking. Assume that the
873 address is unsigned. */
874 lm
= extract_unsigned_integer (objfile_lm_info
.lm
+ lmo
->l_next_offset
,
876 do_cleanups (old_chain
);
881 /* On some systems, the only way to recognize the link map entry for
882 the main executable file is by looking at its name. Return
883 non-zero iff SONAME matches one of the known main executable names. */
886 match_main (char *soname
)
890 for (mainp
= main_name_list
; *mainp
!= NULL
; mainp
++)
892 if (strcmp (soname
, *mainp
) == 0)
899 /* Return 1 if PC lies in the dynamic symbol resolution code of the
900 SVR4 run time loader. */
901 static CORE_ADDR interp_text_sect_low
;
902 static CORE_ADDR interp_text_sect_high
;
903 static CORE_ADDR interp_plt_sect_low
;
904 static CORE_ADDR interp_plt_sect_high
;
907 svr4_in_dynsym_resolve_code (CORE_ADDR pc
)
909 return ((pc
>= interp_text_sect_low
&& pc
< interp_text_sect_high
)
910 || (pc
>= interp_plt_sect_low
&& pc
< interp_plt_sect_high
)
911 || in_plt_section (pc
, NULL
));
919 enable_break -- arrange for dynamic linker to hit breakpoint
923 int enable_break (void)
927 Both the SunOS and the SVR4 dynamic linkers have, as part of their
928 debugger interface, support for arranging for the inferior to hit
929 a breakpoint after mapping in the shared libraries. This function
930 enables that breakpoint.
932 For SunOS, there is a special flag location (in_debugger) which we
933 set to 1. When the dynamic linker sees this flag set, it will set
934 a breakpoint at a location known only to itself, after saving the
935 original contents of that place and the breakpoint address itself,
936 in it's own internal structures. When we resume the inferior, it
937 will eventually take a SIGTRAP when it runs into the breakpoint.
938 We handle this (in a different place) by restoring the contents of
939 the breakpointed location (which is only known after it stops),
940 chasing around to locate the shared libraries that have been
941 loaded, then resuming.
943 For SVR4, the debugger interface structure contains a member (r_brk)
944 which is statically initialized at the time the shared library is
945 built, to the offset of a function (_r_debug_state) which is guaran-
946 teed to be called once before mapping in a library, and again when
947 the mapping is complete. At the time we are examining this member,
948 it contains only the unrelocated offset of the function, so we have
949 to do our own relocation. Later, when the dynamic linker actually
950 runs, it relocates r_brk to be the actual address of _r_debug_state().
952 The debugger interface structure also contains an enumeration which
953 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
954 depending upon whether or not the library is being mapped or unmapped,
955 and then set to RT_CONSISTENT after the library is mapped/unmapped.
963 #ifdef BKPT_AT_SYMBOL
965 struct minimal_symbol
*msymbol
;
967 asection
*interp_sect
;
969 /* First, remove all the solib event breakpoints. Their addresses
970 may have changed since the last time we ran the program. */
971 remove_solib_event_breakpoints ();
973 interp_text_sect_low
= interp_text_sect_high
= 0;
974 interp_plt_sect_low
= interp_plt_sect_high
= 0;
976 /* Find the .interp section; if not found, warn the user and drop
977 into the old breakpoint at symbol code. */
978 interp_sect
= bfd_get_section_by_name (exec_bfd
, ".interp");
981 unsigned int interp_sect_size
;
983 CORE_ADDR load_addr
= 0;
984 int load_addr_found
= 0;
985 struct so_list
*inferior_sos
;
988 char *tmp_pathname
= NULL
;
989 CORE_ADDR sym_addr
= 0;
991 /* Read the contents of the .interp section into a local buffer;
992 the contents specify the dynamic linker this program uses. */
993 interp_sect_size
= bfd_section_size (exec_bfd
, interp_sect
);
994 buf
= alloca (interp_sect_size
);
995 bfd_get_section_contents (exec_bfd
, interp_sect
,
996 buf
, 0, interp_sect_size
);
998 /* Now we need to figure out where the dynamic linker was
999 loaded so that we can load its symbols and place a breakpoint
1000 in the dynamic linker itself.
1002 This address is stored on the stack. However, I've been unable
1003 to find any magic formula to find it for Solaris (appears to
1004 be trivial on GNU/Linux). Therefore, we have to try an alternate
1005 mechanism to find the dynamic linker's base address. */
1007 tmp_fd
= solib_open (buf
, &tmp_pathname
);
1009 tmp_bfd
= bfd_fdopenr (tmp_pathname
, gnutarget
, tmp_fd
);
1011 if (tmp_bfd
== NULL
)
1012 goto bkpt_at_symbol
;
1014 /* Make sure the dynamic linker's really a useful object. */
1015 if (!bfd_check_format (tmp_bfd
, bfd_object
))
1017 warning ("Unable to grok dynamic linker %s as an object file", buf
);
1018 bfd_close (tmp_bfd
);
1019 goto bkpt_at_symbol
;
1022 /* If the entry in _DYNAMIC for the dynamic linker has already
1023 been filled in, we can read its base address from there. */
1024 inferior_sos
= svr4_current_sos ();
1027 /* Connected to a running target. Update our shared library table. */
1028 solib_add (NULL
, 0, NULL
, auto_solib_add
);
1030 while (inferior_sos
)
1032 if (strcmp (buf
, inferior_sos
->so_original_name
) == 0)
1034 load_addr_found
= 1;
1035 load_addr
= LM_ADDR (inferior_sos
);
1038 inferior_sos
= inferior_sos
->next
;
1041 /* Otherwise we find the dynamic linker's base address by examining
1042 the current pc (which should point at the entry point for the
1043 dynamic linker) and subtracting the offset of the entry point. */
1044 if (!load_addr_found
)
1045 load_addr
= read_pc () - tmp_bfd
->start_address
;
1047 /* Record the relocated start and end address of the dynamic linker
1048 text and plt section for svr4_in_dynsym_resolve_code. */
1049 interp_sect
= bfd_get_section_by_name (tmp_bfd
, ".text");
1052 interp_text_sect_low
=
1053 bfd_section_vma (tmp_bfd
, interp_sect
) + load_addr
;
1054 interp_text_sect_high
=
1055 interp_text_sect_low
+ bfd_section_size (tmp_bfd
, interp_sect
);
1057 interp_sect
= bfd_get_section_by_name (tmp_bfd
, ".plt");
1060 interp_plt_sect_low
=
1061 bfd_section_vma (tmp_bfd
, interp_sect
) + load_addr
;
1062 interp_plt_sect_high
=
1063 interp_plt_sect_low
+ bfd_section_size (tmp_bfd
, interp_sect
);
1066 /* Now try to set a breakpoint in the dynamic linker. */
1067 for (bkpt_namep
= solib_break_names
; *bkpt_namep
!= NULL
; bkpt_namep
++)
1069 /* On ABI's that use function descriptors, there are usually
1070 two linker symbols associated with each C function: one
1071 pointing at the actual entry point of the machine code,
1072 and one pointing at the function's descriptor. The
1073 latter symbol has the same name as the C function.
1075 What we're looking for here is the machine code entry
1076 point, so we are only interested in symbols in code
1078 sym_addr
= bfd_lookup_symbol (tmp_bfd
, *bkpt_namep
, SEC_CODE
);
1083 /* We're done with the temporary bfd. */
1084 bfd_close (tmp_bfd
);
1088 create_solib_event_breakpoint (load_addr
+ sym_addr
);
1092 /* For whatever reason we couldn't set a breakpoint in the dynamic
1093 linker. Warn and drop into the old code. */
1095 warning ("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code.");
1098 /* Scan through the list of symbols, trying to look up the symbol and
1099 set a breakpoint there. Terminate loop when we/if we succeed. */
1101 breakpoint_addr
= 0;
1102 for (bkpt_namep
= bkpt_names
; *bkpt_namep
!= NULL
; bkpt_namep
++)
1104 msymbol
= lookup_minimal_symbol (*bkpt_namep
, NULL
, symfile_objfile
);
1105 if ((msymbol
!= NULL
) && (SYMBOL_VALUE_ADDRESS (msymbol
) != 0))
1107 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol
));
1112 /* Nothing good happened. */
1115 #endif /* BKPT_AT_SYMBOL */
1124 special_symbol_handling -- additional shared library symbol handling
1128 void special_symbol_handling ()
1132 Once the symbols from a shared object have been loaded in the usual
1133 way, we are called to do any system specific symbol handling that
1136 For SunOS4, this consisted of grunging around in the dynamic
1137 linkers structures to find symbol definitions for "common" symbols
1138 and adding them to the minimal symbol table for the runtime common
1141 However, for SVR4, there's nothing to do.
1146 svr4_special_symbol_handling (void)
1150 /* Relocate the main executable. This function should be called upon
1151 stopping the inferior process at the entry point to the program.
1152 The entry point from BFD is compared to the PC and if they are
1153 different, the main executable is relocated by the proper amount.
1155 As written it will only attempt to relocate executables which
1156 lack interpreter sections. It seems likely that only dynamic
1157 linker executables will get relocated, though it should work
1158 properly for a position-independent static executable as well. */
1161 svr4_relocate_main_executable (void)
1163 asection
*interp_sect
;
1164 CORE_ADDR pc
= read_pc ();
1166 /* Decide if the objfile needs to be relocated. As indicated above,
1167 we will only be here when execution is stopped at the beginning
1168 of the program. Relocation is necessary if the address at which
1169 we are presently stopped differs from the start address stored in
1170 the executable AND there's no interpreter section. The condition
1171 regarding the interpreter section is very important because if
1172 there *is* an interpreter section, execution will begin there
1173 instead. When there is an interpreter section, the start address
1174 is (presumably) used by the interpreter at some point to start
1175 execution of the program.
1177 If there is an interpreter, it is normal for it to be set to an
1178 arbitrary address at the outset. The job of finding it is
1179 handled in enable_break().
1181 So, to summarize, relocations are necessary when there is no
1182 interpreter section and the start address obtained from the
1183 executable is different from the address at which GDB is
1186 [ The astute reader will note that we also test to make sure that
1187 the executable in question has the DYNAMIC flag set. It is my
1188 opinion that this test is unnecessary (undesirable even). It
1189 was added to avoid inadvertent relocation of an executable
1190 whose e_type member in the ELF header is not ET_DYN. There may
1191 be a time in the future when it is desirable to do relocations
1192 on other types of files as well in which case this condition
1193 should either be removed or modified to accomodate the new file
1194 type. (E.g, an ET_EXEC executable which has been built to be
1195 position-independent could safely be relocated by the OS if
1196 desired. It is true that this violates the ABI, but the ABI
1197 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1200 interp_sect
= bfd_get_section_by_name (exec_bfd
, ".interp");
1201 if (interp_sect
== NULL
1202 && (bfd_get_file_flags (exec_bfd
) & DYNAMIC
) != 0
1203 && bfd_get_start_address (exec_bfd
) != pc
)
1205 struct cleanup
*old_chain
;
1206 struct section_offsets
*new_offsets
;
1208 CORE_ADDR displacement
;
1210 /* It is necessary to relocate the objfile. The amount to
1211 relocate by is simply the address at which we are stopped
1212 minus the starting address from the executable.
1214 We relocate all of the sections by the same amount. This
1215 behavior is mandated by recent editions of the System V ABI.
1216 According to the System V Application Binary Interface,
1217 Edition 4.1, page 5-5:
1219 ... Though the system chooses virtual addresses for
1220 individual processes, it maintains the segments' relative
1221 positions. Because position-independent code uses relative
1222 addressesing between segments, the difference between
1223 virtual addresses in memory must match the difference
1224 between virtual addresses in the file. The difference
1225 between the virtual address of any segment in memory and
1226 the corresponding virtual address in the file is thus a
1227 single constant value for any one executable or shared
1228 object in a given process. This difference is the base
1229 address. One use of the base address is to relocate the
1230 memory image of the program during dynamic linking.
1232 The same language also appears in Edition 4.0 of the System V
1233 ABI and is left unspecified in some of the earlier editions. */
1235 displacement
= pc
- bfd_get_start_address (exec_bfd
);
1238 new_offsets
= xcalloc (symfile_objfile
->num_sections
,
1239 sizeof (struct section_offsets
));
1240 old_chain
= make_cleanup (xfree
, new_offsets
);
1242 for (i
= 0; i
< symfile_objfile
->num_sections
; i
++)
1244 if (displacement
!= ANOFFSET (symfile_objfile
->section_offsets
, i
))
1246 new_offsets
->offsets
[i
] = displacement
;
1250 objfile_relocate (symfile_objfile
, new_offsets
);
1252 do_cleanups (old_chain
);
1260 svr4_solib_create_inferior_hook -- shared library startup support
1264 void svr4_solib_create_inferior_hook()
1268 When gdb starts up the inferior, it nurses it along (through the
1269 shell) until it is ready to execute it's first instruction. At this
1270 point, this function gets called via expansion of the macro
1271 SOLIB_CREATE_INFERIOR_HOOK.
1273 For SunOS executables, this first instruction is typically the
1274 one at "_start", or a similar text label, regardless of whether
1275 the executable is statically or dynamically linked. The runtime
1276 startup code takes care of dynamically linking in any shared
1277 libraries, once gdb allows the inferior to continue.
1279 For SVR4 executables, this first instruction is either the first
1280 instruction in the dynamic linker (for dynamically linked
1281 executables) or the instruction at "start" for statically linked
1282 executables. For dynamically linked executables, the system
1283 first exec's /lib/libc.so.N, which contains the dynamic linker,
1284 and starts it running. The dynamic linker maps in any needed
1285 shared libraries, maps in the actual user executable, and then
1286 jumps to "start" in the user executable.
1288 For both SunOS shared libraries, and SVR4 shared libraries, we
1289 can arrange to cooperate with the dynamic linker to discover the
1290 names of shared libraries that are dynamically linked, and the
1291 base addresses to which they are linked.
1293 This function is responsible for discovering those names and
1294 addresses, and saving sufficient information about them to allow
1295 their symbols to be read at a later time.
1299 Between enable_break() and disable_break(), this code does not
1300 properly handle hitting breakpoints which the user might have
1301 set in the startup code or in the dynamic linker itself. Proper
1302 handling will probably have to wait until the implementation is
1303 changed to use the "breakpoint handler function" method.
1305 Also, what if child has exit()ed? Must exit loop somehow.
1309 svr4_solib_create_inferior_hook (void)
1311 /* Relocate the main executable if necessary. */
1312 svr4_relocate_main_executable ();
1314 if (!svr4_have_link_map_offsets ())
1316 warning ("no shared library support for this OS / ABI");
1321 if (!enable_break ())
1323 warning ("shared library handler failed to enable breakpoint");
1327 #if defined(_SCO_DS)
1328 /* SCO needs the loop below, other systems should be using the
1329 special shared library breakpoints and the shared library breakpoint
1332 Now run the target. It will eventually hit the breakpoint, at
1333 which point all of the libraries will have been mapped in and we
1334 can go groveling around in the dynamic linker structures to find
1335 out what we need to know about them. */
1337 clear_proceed_status ();
1338 stop_soon
= STOP_QUIETLY
;
1339 stop_signal
= TARGET_SIGNAL_0
;
1342 target_resume (pid_to_ptid (-1), 0, stop_signal
);
1343 wait_for_inferior ();
1345 while (stop_signal
!= TARGET_SIGNAL_TRAP
);
1346 stop_soon
= NO_STOP_QUIETLY
;
1347 #endif /* defined(_SCO_DS) */
1351 svr4_clear_solib (void)
1357 svr4_free_so (struct so_list
*so
)
1359 xfree (so
->lm_info
->lm
);
1360 xfree (so
->lm_info
);
1364 /* Clear any bits of ADDR that wouldn't fit in a target-format
1365 data pointer. "Data pointer" here refers to whatever sort of
1366 address the dynamic linker uses to manage its sections. At the
1367 moment, we don't support shared libraries on any processors where
1368 code and data pointers are different sizes.
1370 This isn't really the right solution. What we really need here is
1371 a way to do arithmetic on CORE_ADDR values that respects the
1372 natural pointer/address correspondence. (For example, on the MIPS,
1373 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1374 sign-extend the value. There, simply truncating the bits above
1375 TARGET_PTR_BIT, as we do below, is no good.) This should probably
1376 be a new gdbarch method or something. */
1378 svr4_truncate_ptr (CORE_ADDR addr
)
1380 if (TARGET_PTR_BIT
== sizeof (CORE_ADDR
) * 8)
1381 /* We don't need to truncate anything, and the bit twiddling below
1382 will fail due to overflow problems. */
1385 return addr
& (((CORE_ADDR
) 1 << TARGET_PTR_BIT
) - 1);
1390 svr4_relocate_section_addresses (struct so_list
*so
,
1391 struct section_table
*sec
)
1393 sec
->addr
= svr4_truncate_ptr (sec
->addr
+ LM_ADDR (so
));
1394 sec
->endaddr
= svr4_truncate_ptr (sec
->endaddr
+ LM_ADDR (so
));
1398 /* Fetch a link_map_offsets structure for native targets using struct
1399 definitions from link.h. See solib-legacy.c for the function
1400 which does the actual work.
1402 Note: For non-native targets (i.e. cross-debugging situations),
1403 a target specific fetch_link_map_offsets() function should be
1404 defined and registered via set_solib_svr4_fetch_link_map_offsets(). */
1406 static struct link_map_offsets
*
1407 legacy_fetch_link_map_offsets (void)
1409 if (legacy_svr4_fetch_link_map_offsets_hook
)
1410 return legacy_svr4_fetch_link_map_offsets_hook ();
1413 internal_error (__FILE__
, __LINE__
,
1414 "legacy_fetch_link_map_offsets called without legacy "
1415 "link_map support enabled.");
1420 /* Fetch a link_map_offsets structure using the method registered in the
1421 architecture vector. */
1423 static struct link_map_offsets
*
1424 svr4_fetch_link_map_offsets (void)
1426 struct link_map_offsets
*(*flmo
)(void) =
1427 gdbarch_data (current_gdbarch
, fetch_link_map_offsets_gdbarch_data
);
1431 internal_error (__FILE__
, __LINE__
,
1432 "svr4_fetch_link_map_offsets: fetch_link_map_offsets "
1433 "method not defined for this architecture.");
1440 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1442 svr4_have_link_map_offsets (void)
1444 struct link_map_offsets
*(*flmo
)(void) =
1445 gdbarch_data (current_gdbarch
, fetch_link_map_offsets_gdbarch_data
);
1447 || (flmo
== legacy_fetch_link_map_offsets
1448 && legacy_svr4_fetch_link_map_offsets_hook
== NULL
))
1454 /* set_solib_svr4_fetch_link_map_offsets() is intended to be called by
1455 a <arch>_gdbarch_init() function. It is used to establish an
1456 architecture specific link_map_offsets fetcher for the architecture
1460 set_solib_svr4_fetch_link_map_offsets (struct gdbarch
*gdbarch
,
1461 struct link_map_offsets
*(*flmo
) (void))
1463 set_gdbarch_data (gdbarch
, fetch_link_map_offsets_gdbarch_data
, flmo
);
1466 /* Initialize the architecture-specific link_map_offsets fetcher.
1467 This is called after <arch>_gdbarch_init() has set up its `struct
1468 gdbarch' for the new architecture, and is only called if the
1469 link_map_offsets fetcher isn't already initialized (which is
1470 usually done by calling set_solib_svr4_fetch_link_map_offsets()
1471 above in <arch>_gdbarch_init()). Therefore we attempt to provide a
1472 reasonable alternative (for native targets anyway) if the
1473 <arch>_gdbarch_init() fails to call
1474 set_solib_svr4_fetch_link_map_offsets(). */
1477 init_fetch_link_map_offsets (struct gdbarch
*gdbarch
)
1479 return legacy_fetch_link_map_offsets
;
1482 static struct target_so_ops svr4_so_ops
;
1484 extern initialize_file_ftype _initialize_svr4_solib
; /* -Wmissing-prototypes */
1487 _initialize_svr4_solib (void)
1489 fetch_link_map_offsets_gdbarch_data
=
1490 register_gdbarch_data (init_fetch_link_map_offsets
);
1492 svr4_so_ops
.relocate_section_addresses
= svr4_relocate_section_addresses
;
1493 svr4_so_ops
.free_so
= svr4_free_so
;
1494 svr4_so_ops
.clear_solib
= svr4_clear_solib
;
1495 svr4_so_ops
.solib_create_inferior_hook
= svr4_solib_create_inferior_hook
;
1496 svr4_so_ops
.special_symbol_handling
= svr4_special_symbol_handling
;
1497 svr4_so_ops
.current_sos
= svr4_current_sos
;
1498 svr4_so_ops
.open_symbol_file_object
= open_symbol_file_object
;
1499 svr4_so_ops
.in_dynsym_resolve_code
= svr4_in_dynsym_resolve_code
;
1501 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
1502 current_target_so_ops
= &svr4_so_ops
;