84693c17666b9b76fd3a4250fb29f0bca8f7b8a7
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "elf/external.h"
23 #include "elf/common.h"
24 #include "elf/mips.h"
25
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbcore.h"
31 #include "target.h"
32 #include "inferior.h"
33 #include "infrun.h"
34 #include "regcache.h"
35 #include "gdbthread.h"
36 #include "observable.h"
37
38 #include "solist.h"
39 #include "solib.h"
40 #include "solib-svr4.h"
41
42 #include "bfd-target.h"
43 #include "elf-bfd.h"
44 #include "exec.h"
45 #include "auxv.h"
46 #include "gdb_bfd.h"
47 #include "probe.h"
48
49 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
50 static int svr4_have_link_map_offsets (void);
51 static void svr4_relocate_main_executable (void);
52 static void svr4_free_library_list (void *p_list);
53
54 /* On SVR4 systems, a list of symbols in the dynamic linker where
55 GDB can try to place a breakpoint to monitor shared library
56 events.
57
58 If none of these symbols are found, or other errors occur, then
59 SVR4 systems will fall back to using a symbol as the "startup
60 mapping complete" breakpoint address. */
61
62 static const char * const solib_break_names[] =
63 {
64 "r_debug_state",
65 "_r_debug_state",
66 "_dl_debug_state",
67 "rtld_db_dlactivity",
68 "__dl_rtld_db_dlactivity",
69 "_rtld_debug_state",
70
71 NULL
72 };
73
74 static const char * const bkpt_names[] =
75 {
76 "_start",
77 "__start",
78 "main",
79 NULL
80 };
81
82 static const char * const main_name_list[] =
83 {
84 "main_$main",
85 NULL
86 };
87
88 /* What to do when a probe stop occurs. */
89
90 enum probe_action
91 {
92 /* Something went seriously wrong. Stop using probes and
93 revert to using the older interface. */
94 PROBES_INTERFACE_FAILED,
95
96 /* No action is required. The shared object list is still
97 valid. */
98 DO_NOTHING,
99
100 /* The shared object list should be reloaded entirely. */
101 FULL_RELOAD,
102
103 /* Attempt to incrementally update the shared object list. If
104 the update fails or is not possible, fall back to reloading
105 the list in full. */
106 UPDATE_OR_RELOAD,
107 };
108
109 /* A probe's name and its associated action. */
110
111 struct probe_info
112 {
113 /* The name of the probe. */
114 const char *name;
115
116 /* What to do when a probe stop occurs. */
117 enum probe_action action;
118 };
119
120 /* A list of named probes and their associated actions. If all
121 probes are present in the dynamic linker then the probes-based
122 interface will be used. */
123
124 static const struct probe_info probe_info[] =
125 {
126 { "init_start", DO_NOTHING },
127 { "init_complete", FULL_RELOAD },
128 { "map_start", DO_NOTHING },
129 { "map_failed", DO_NOTHING },
130 { "reloc_complete", UPDATE_OR_RELOAD },
131 { "unmap_start", DO_NOTHING },
132 { "unmap_complete", FULL_RELOAD },
133 };
134
135 #define NUM_PROBES ARRAY_SIZE (probe_info)
136
137 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
138 the same shared library. */
139
140 static int
141 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
142 {
143 if (strcmp (gdb_so_name, inferior_so_name) == 0)
144 return 1;
145
146 /* On Solaris, when starting inferior we think that dynamic linker is
147 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
148 contains /lib/ld.so.1. Sometimes one file is a link to another, but
149 sometimes they have identical content, but are not linked to each
150 other. We don't restrict this check for Solaris, but the chances
151 of running into this situation elsewhere are very low. */
152 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
153 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
154 return 1;
155
156 /* Similarly, we observed the same issue with amd64 and sparcv9, but with
157 different locations. */
158 if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0
159 && strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0)
160 return 1;
161
162 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
163 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
164 return 1;
165
166 return 0;
167 }
168
169 static int
170 svr4_same (struct so_list *gdb, struct so_list *inferior)
171 {
172 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
173 }
174
175 static std::unique_ptr<lm_info_svr4>
176 lm_info_read (CORE_ADDR lm_addr)
177 {
178 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
179 std::unique_ptr<lm_info_svr4> lm_info;
180
181 gdb::byte_vector lm (lmo->link_map_size);
182
183 if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
184 warning (_("Error reading shared library list entry at %s"),
185 paddress (target_gdbarch (), lm_addr));
186 else
187 {
188 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
189
190 lm_info.reset (new lm_info_svr4);
191 lm_info->lm_addr = lm_addr;
192
193 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
194 ptr_type);
195 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
196 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
197 ptr_type);
198 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
199 ptr_type);
200 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
201 ptr_type);
202 }
203
204 return lm_info;
205 }
206
207 static int
208 has_lm_dynamic_from_link_map (void)
209 {
210 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
211
212 return lmo->l_ld_offset >= 0;
213 }
214
215 static CORE_ADDR
216 lm_addr_check (const struct so_list *so, bfd *abfd)
217 {
218 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
219
220 if (!li->l_addr_p)
221 {
222 struct bfd_section *dyninfo_sect;
223 CORE_ADDR l_addr, l_dynaddr, dynaddr;
224
225 l_addr = li->l_addr_inferior;
226
227 if (! abfd || ! has_lm_dynamic_from_link_map ())
228 goto set_addr;
229
230 l_dynaddr = li->l_ld;
231
232 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
233 if (dyninfo_sect == NULL)
234 goto set_addr;
235
236 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
237
238 if (dynaddr + l_addr != l_dynaddr)
239 {
240 CORE_ADDR align = 0x1000;
241 CORE_ADDR minpagesize = align;
242
243 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
244 {
245 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
246 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
247 int i;
248
249 align = 1;
250
251 for (i = 0; i < ehdr->e_phnum; i++)
252 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
253 align = phdr[i].p_align;
254
255 minpagesize = get_elf_backend_data (abfd)->minpagesize;
256 }
257
258 /* Turn it into a mask. */
259 align--;
260
261 /* If the changes match the alignment requirements, we
262 assume we're using a core file that was generated by the
263 same binary, just prelinked with a different base offset.
264 If it doesn't match, we may have a different binary, the
265 same binary with the dynamic table loaded at an unrelated
266 location, or anything, really. To avoid regressions,
267 don't adjust the base offset in the latter case, although
268 odds are that, if things really changed, debugging won't
269 quite work.
270
271 One could expect more the condition
272 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
273 but the one below is relaxed for PPC. The PPC kernel supports
274 either 4k or 64k page sizes. To be prepared for 64k pages,
275 PPC ELF files are built using an alignment requirement of 64k.
276 However, when running on a kernel supporting 4k pages, the memory
277 mapping of the library may not actually happen on a 64k boundary!
278
279 (In the usual case where (l_addr & align) == 0, this check is
280 equivalent to the possibly expected check above.)
281
282 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
283
284 l_addr = l_dynaddr - dynaddr;
285
286 if ((l_addr & (minpagesize - 1)) == 0
287 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
288 {
289 if (info_verbose)
290 printf_unfiltered (_("Using PIC (Position Independent Code) "
291 "prelink displacement %s for \"%s\".\n"),
292 paddress (target_gdbarch (), l_addr),
293 so->so_name);
294 }
295 else
296 {
297 /* There is no way to verify the library file matches. prelink
298 can during prelinking of an unprelinked file (or unprelinking
299 of a prelinked file) shift the DYNAMIC segment by arbitrary
300 offset without any page size alignment. There is no way to
301 find out the ELF header and/or Program Headers for a limited
302 verification if it they match. One could do a verification
303 of the DYNAMIC segment. Still the found address is the best
304 one GDB could find. */
305
306 warning (_(".dynamic section for \"%s\" "
307 "is not at the expected address "
308 "(wrong library or version mismatch?)"), so->so_name);
309 }
310 }
311
312 set_addr:
313 li->l_addr = l_addr;
314 li->l_addr_p = 1;
315 }
316
317 return li->l_addr;
318 }
319
320 /* Per pspace SVR4 specific data. */
321
322 struct svr4_info
323 {
324 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
325
326 /* Validity flag for debug_loader_offset. */
327 int debug_loader_offset_p;
328
329 /* Load address for the dynamic linker, inferred. */
330 CORE_ADDR debug_loader_offset;
331
332 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
333 char *debug_loader_name;
334
335 /* Load map address for the main executable. */
336 CORE_ADDR main_lm_addr;
337
338 CORE_ADDR interp_text_sect_low;
339 CORE_ADDR interp_text_sect_high;
340 CORE_ADDR interp_plt_sect_low;
341 CORE_ADDR interp_plt_sect_high;
342
343 /* Nonzero if the list of objects was last obtained from the target
344 via qXfer:libraries-svr4:read. */
345 int using_xfer;
346
347 /* Table of struct probe_and_action instances, used by the
348 probes-based interface to map breakpoint addresses to probes
349 and their associated actions. Lookup is performed using
350 probe_and_action->prob->address. */
351 htab_t probes_table;
352
353 /* List of objects loaded into the inferior, used by the probes-
354 based interface. */
355 struct so_list *solib_list;
356 };
357
358 /* Per-program-space data key. */
359 static const struct program_space_data *solib_svr4_pspace_data;
360
361 /* Free the probes table. */
362
363 static void
364 free_probes_table (struct svr4_info *info)
365 {
366 if (info->probes_table == NULL)
367 return;
368
369 htab_delete (info->probes_table);
370 info->probes_table = NULL;
371 }
372
373 /* Free the solib list. */
374
375 static void
376 free_solib_list (struct svr4_info *info)
377 {
378 svr4_free_library_list (&info->solib_list);
379 info->solib_list = NULL;
380 }
381
382 static void
383 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
384 {
385 struct svr4_info *info = (struct svr4_info *) arg;
386
387 free_probes_table (info);
388 free_solib_list (info);
389
390 xfree (info);
391 }
392
393 /* Get the current svr4 data. If none is found yet, add it now. This
394 function always returns a valid object. */
395
396 static struct svr4_info *
397 get_svr4_info (void)
398 {
399 struct svr4_info *info;
400
401 info = (struct svr4_info *) program_space_data (current_program_space,
402 solib_svr4_pspace_data);
403 if (info != NULL)
404 return info;
405
406 info = XCNEW (struct svr4_info);
407 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
408 return info;
409 }
410
411 /* Local function prototypes */
412
413 static int match_main (const char *);
414
415 /* Read program header TYPE from inferior memory. The header is found
416 by scanning the OS auxiliary vector.
417
418 If TYPE == -1, return the program headers instead of the contents of
419 one program header.
420
421 Return vector of bytes holding the program header contents, or an empty
422 optional on failure. If successful and P_ARCH_SIZE is non-NULL, the target
423 architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE. Likewise,
424 the base address of the section is returned in *BASE_ADDR. */
425
426 static gdb::optional<gdb::byte_vector>
427 read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr)
428 {
429 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
430 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
431 int arch_size, sect_size;
432 CORE_ADDR sect_addr;
433 int pt_phdr_p = 0;
434
435 /* Get required auxv elements from target. */
436 if (target_auxv_search (current_top_target (), AT_PHDR, &at_phdr) <= 0)
437 return {};
438 if (target_auxv_search (current_top_target (), AT_PHENT, &at_phent) <= 0)
439 return {};
440 if (target_auxv_search (current_top_target (), AT_PHNUM, &at_phnum) <= 0)
441 return {};
442 if (!at_phdr || !at_phnum)
443 return {};
444
445 /* Determine ELF architecture type. */
446 if (at_phent == sizeof (Elf32_External_Phdr))
447 arch_size = 32;
448 else if (at_phent == sizeof (Elf64_External_Phdr))
449 arch_size = 64;
450 else
451 return {};
452
453 /* Find the requested segment. */
454 if (type == -1)
455 {
456 sect_addr = at_phdr;
457 sect_size = at_phent * at_phnum;
458 }
459 else if (arch_size == 32)
460 {
461 Elf32_External_Phdr phdr;
462 int i;
463
464 /* Search for requested PHDR. */
465 for (i = 0; i < at_phnum; i++)
466 {
467 int p_type;
468
469 if (target_read_memory (at_phdr + i * sizeof (phdr),
470 (gdb_byte *)&phdr, sizeof (phdr)))
471 return {};
472
473 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
474 4, byte_order);
475
476 if (p_type == PT_PHDR)
477 {
478 pt_phdr_p = 1;
479 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
480 4, byte_order);
481 }
482
483 if (p_type == type)
484 break;
485 }
486
487 if (i == at_phnum)
488 return {};
489
490 /* Retrieve address and size. */
491 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
492 4, byte_order);
493 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
494 4, byte_order);
495 }
496 else
497 {
498 Elf64_External_Phdr phdr;
499 int i;
500
501 /* Search for requested PHDR. */
502 for (i = 0; i < at_phnum; i++)
503 {
504 int p_type;
505
506 if (target_read_memory (at_phdr + i * sizeof (phdr),
507 (gdb_byte *)&phdr, sizeof (phdr)))
508 return {};
509
510 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
511 4, byte_order);
512
513 if (p_type == PT_PHDR)
514 {
515 pt_phdr_p = 1;
516 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
517 8, byte_order);
518 }
519
520 if (p_type == type)
521 break;
522 }
523
524 if (i == at_phnum)
525 return {};
526
527 /* Retrieve address and size. */
528 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
529 8, byte_order);
530 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
531 8, byte_order);
532 }
533
534 /* PT_PHDR is optional, but we really need it
535 for PIE to make this work in general. */
536
537 if (pt_phdr_p)
538 {
539 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
540 Relocation offset is the difference between the two. */
541 sect_addr = sect_addr + (at_phdr - pt_phdr);
542 }
543
544 /* Read in requested program header. */
545 gdb::byte_vector buf (sect_size);
546 if (target_read_memory (sect_addr, buf.data (), sect_size))
547 return {};
548
549 if (p_arch_size)
550 *p_arch_size = arch_size;
551 if (base_addr)
552 *base_addr = sect_addr;
553
554 return buf;
555 }
556
557
558 /* Return program interpreter string. */
559 static gdb::optional<gdb::byte_vector>
560 find_program_interpreter (void)
561 {
562 /* If we have an exec_bfd, use its section table. */
563 if (exec_bfd
564 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
565 {
566 struct bfd_section *interp_sect;
567
568 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
569 if (interp_sect != NULL)
570 {
571 int sect_size = bfd_section_size (exec_bfd, interp_sect);
572
573 gdb::byte_vector buf (sect_size);
574 bfd_get_section_contents (exec_bfd, interp_sect, buf.data (), 0,
575 sect_size);
576 return buf;
577 }
578 }
579
580 /* If we didn't find it, use the target auxiliary vector. */
581 return read_program_header (PT_INTERP, NULL, NULL);
582 }
583
584
585 /* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
586 found, 1 is returned and the corresponding PTR is set. */
587
588 static int
589 scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
590 CORE_ADDR *ptr_addr)
591 {
592 int arch_size, step, sect_size;
593 long current_dyntag;
594 CORE_ADDR dyn_ptr, dyn_addr;
595 gdb_byte *bufend, *bufstart, *buf;
596 Elf32_External_Dyn *x_dynp_32;
597 Elf64_External_Dyn *x_dynp_64;
598 struct bfd_section *sect;
599 struct target_section *target_section;
600
601 if (abfd == NULL)
602 return 0;
603
604 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
605 return 0;
606
607 arch_size = bfd_get_arch_size (abfd);
608 if (arch_size == -1)
609 return 0;
610
611 /* Find the start address of the .dynamic section. */
612 sect = bfd_get_section_by_name (abfd, ".dynamic");
613 if (sect == NULL)
614 return 0;
615
616 for (target_section = current_target_sections->sections;
617 target_section < current_target_sections->sections_end;
618 target_section++)
619 if (sect == target_section->the_bfd_section)
620 break;
621 if (target_section < current_target_sections->sections_end)
622 dyn_addr = target_section->addr;
623 else
624 {
625 /* ABFD may come from OBJFILE acting only as a symbol file without being
626 loaded into the target (see add_symbol_file_command). This case is
627 such fallback to the file VMA address without the possibility of
628 having the section relocated to its actual in-memory address. */
629
630 dyn_addr = bfd_section_vma (abfd, sect);
631 }
632
633 /* Read in .dynamic from the BFD. We will get the actual value
634 from memory later. */
635 sect_size = bfd_section_size (abfd, sect);
636 buf = bufstart = (gdb_byte *) alloca (sect_size);
637 if (!bfd_get_section_contents (abfd, sect,
638 buf, 0, sect_size))
639 return 0;
640
641 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
642 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
643 : sizeof (Elf64_External_Dyn);
644 for (bufend = buf + sect_size;
645 buf < bufend;
646 buf += step)
647 {
648 if (arch_size == 32)
649 {
650 x_dynp_32 = (Elf32_External_Dyn *) buf;
651 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
652 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
653 }
654 else
655 {
656 x_dynp_64 = (Elf64_External_Dyn *) buf;
657 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
658 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
659 }
660 if (current_dyntag == DT_NULL)
661 return 0;
662 if (current_dyntag == desired_dyntag)
663 {
664 /* If requested, try to read the runtime value of this .dynamic
665 entry. */
666 if (ptr)
667 {
668 struct type *ptr_type;
669 gdb_byte ptr_buf[8];
670 CORE_ADDR ptr_addr_1;
671
672 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
673 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
674 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
675 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
676 *ptr = dyn_ptr;
677 if (ptr_addr)
678 *ptr_addr = dyn_addr + (buf - bufstart);
679 }
680 return 1;
681 }
682 }
683
684 return 0;
685 }
686
687 /* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
688 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
689 is returned and the corresponding PTR is set. */
690
691 static int
692 scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
693 CORE_ADDR *ptr_addr)
694 {
695 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
696 int arch_size, step;
697 long current_dyntag;
698 CORE_ADDR dyn_ptr;
699 CORE_ADDR base_addr;
700
701 /* Read in .dynamic section. */
702 gdb::optional<gdb::byte_vector> ph_data
703 = read_program_header (PT_DYNAMIC, &arch_size, &base_addr);
704 if (!ph_data)
705 return 0;
706
707 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
708 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
709 : sizeof (Elf64_External_Dyn);
710 for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size ();
711 buf < bufend; buf += step)
712 {
713 if (arch_size == 32)
714 {
715 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
716
717 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
718 4, byte_order);
719 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
720 4, byte_order);
721 }
722 else
723 {
724 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
725
726 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
727 8, byte_order);
728 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
729 8, byte_order);
730 }
731 if (current_dyntag == DT_NULL)
732 break;
733
734 if (current_dyntag == desired_dyntag)
735 {
736 if (ptr)
737 *ptr = dyn_ptr;
738
739 if (ptr_addr)
740 *ptr_addr = base_addr + buf - ph_data->data ();
741
742 return 1;
743 }
744 }
745
746 return 0;
747 }
748
749 /* Locate the base address of dynamic linker structs for SVR4 elf
750 targets.
751
752 For SVR4 elf targets the address of the dynamic linker's runtime
753 structure is contained within the dynamic info section in the
754 executable file. The dynamic section is also mapped into the
755 inferior address space. Because the runtime loader fills in the
756 real address before starting the inferior, we have to read in the
757 dynamic info section from the inferior address space.
758 If there are any errors while trying to find the address, we
759 silently return 0, otherwise the found address is returned. */
760
761 static CORE_ADDR
762 elf_locate_base (void)
763 {
764 struct bound_minimal_symbol msymbol;
765 CORE_ADDR dyn_ptr, dyn_ptr_addr;
766
767 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
768 instead of DT_DEBUG, although they sometimes contain an unused
769 DT_DEBUG. */
770 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
771 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
772 {
773 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
774 gdb_byte *pbuf;
775 int pbuf_size = TYPE_LENGTH (ptr_type);
776
777 pbuf = (gdb_byte *) alloca (pbuf_size);
778 /* DT_MIPS_RLD_MAP contains a pointer to the address
779 of the dynamic link structure. */
780 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
781 return 0;
782 return extract_typed_address (pbuf, ptr_type);
783 }
784
785 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
786 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
787 in non-PIE. */
788 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
789 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
790 {
791 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
792 gdb_byte *pbuf;
793 int pbuf_size = TYPE_LENGTH (ptr_type);
794
795 pbuf = (gdb_byte *) alloca (pbuf_size);
796 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
797 DT slot to the address of the dynamic link structure. */
798 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
799 return 0;
800 return extract_typed_address (pbuf, ptr_type);
801 }
802
803 /* Find DT_DEBUG. */
804 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
805 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
806 return dyn_ptr;
807
808 /* This may be a static executable. Look for the symbol
809 conventionally named _r_debug, as a last resort. */
810 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
811 if (msymbol.minsym != NULL)
812 return BMSYMBOL_VALUE_ADDRESS (msymbol);
813
814 /* DT_DEBUG entry not found. */
815 return 0;
816 }
817
818 /* Locate the base address of dynamic linker structs.
819
820 For both the SunOS and SVR4 shared library implementations, if the
821 inferior executable has been linked dynamically, there is a single
822 address somewhere in the inferior's data space which is the key to
823 locating all of the dynamic linker's runtime structures. This
824 address is the value of the debug base symbol. The job of this
825 function is to find and return that address, or to return 0 if there
826 is no such address (the executable is statically linked for example).
827
828 For SunOS, the job is almost trivial, since the dynamic linker and
829 all of it's structures are statically linked to the executable at
830 link time. Thus the symbol for the address we are looking for has
831 already been added to the minimal symbol table for the executable's
832 objfile at the time the symbol file's symbols were read, and all we
833 have to do is look it up there. Note that we explicitly do NOT want
834 to find the copies in the shared library.
835
836 The SVR4 version is a bit more complicated because the address
837 is contained somewhere in the dynamic info section. We have to go
838 to a lot more work to discover the address of the debug base symbol.
839 Because of this complexity, we cache the value we find and return that
840 value on subsequent invocations. Note there is no copy in the
841 executable symbol tables. */
842
843 static CORE_ADDR
844 locate_base (struct svr4_info *info)
845 {
846 /* Check to see if we have a currently valid address, and if so, avoid
847 doing all this work again and just return the cached address. If
848 we have no cached address, try to locate it in the dynamic info
849 section for ELF executables. There's no point in doing any of this
850 though if we don't have some link map offsets to work with. */
851
852 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
853 info->debug_base = elf_locate_base ();
854 return info->debug_base;
855 }
856
857 /* Find the first element in the inferior's dynamic link map, and
858 return its address in the inferior. Return zero if the address
859 could not be determined.
860
861 FIXME: Perhaps we should validate the info somehow, perhaps by
862 checking r_version for a known version number, or r_state for
863 RT_CONSISTENT. */
864
865 static CORE_ADDR
866 solib_svr4_r_map (struct svr4_info *info)
867 {
868 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
869 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
870 CORE_ADDR addr = 0;
871
872 TRY
873 {
874 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
875 ptr_type);
876 }
877 CATCH (ex, RETURN_MASK_ERROR)
878 {
879 exception_print (gdb_stderr, ex);
880 }
881 END_CATCH
882
883 return addr;
884 }
885
886 /* Find r_brk from the inferior's debug base. */
887
888 static CORE_ADDR
889 solib_svr4_r_brk (struct svr4_info *info)
890 {
891 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
892 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
893
894 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
895 ptr_type);
896 }
897
898 /* Find the link map for the dynamic linker (if it is not in the
899 normal list of loaded shared objects). */
900
901 static CORE_ADDR
902 solib_svr4_r_ldsomap (struct svr4_info *info)
903 {
904 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
905 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
906 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
907 ULONGEST version = 0;
908
909 TRY
910 {
911 /* Check version, and return zero if `struct r_debug' doesn't have
912 the r_ldsomap member. */
913 version
914 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
915 lmo->r_version_size, byte_order);
916 }
917 CATCH (ex, RETURN_MASK_ERROR)
918 {
919 exception_print (gdb_stderr, ex);
920 }
921 END_CATCH
922
923 if (version < 2 || lmo->r_ldsomap_offset == -1)
924 return 0;
925
926 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
927 ptr_type);
928 }
929
930 /* On Solaris systems with some versions of the dynamic linker,
931 ld.so's l_name pointer points to the SONAME in the string table
932 rather than into writable memory. So that GDB can find shared
933 libraries when loading a core file generated by gcore, ensure that
934 memory areas containing the l_name string are saved in the core
935 file. */
936
937 static int
938 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
939 {
940 struct svr4_info *info;
941 CORE_ADDR ldsomap;
942 CORE_ADDR name_lm;
943
944 info = get_svr4_info ();
945
946 info->debug_base = 0;
947 locate_base (info);
948 if (!info->debug_base)
949 return 0;
950
951 ldsomap = solib_svr4_r_ldsomap (info);
952 if (!ldsomap)
953 return 0;
954
955 std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap);
956 name_lm = li != NULL ? li->l_name : 0;
957
958 return (name_lm >= vaddr && name_lm < vaddr + size);
959 }
960
961 /* See solist.h. */
962
963 static int
964 open_symbol_file_object (int from_tty)
965 {
966 CORE_ADDR lm, l_name;
967 gdb::unique_xmalloc_ptr<char> filename;
968 int errcode;
969 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
970 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
971 int l_name_size = TYPE_LENGTH (ptr_type);
972 gdb::byte_vector l_name_buf (l_name_size);
973 struct svr4_info *info = get_svr4_info ();
974 symfile_add_flags add_flags = 0;
975
976 if (from_tty)
977 add_flags |= SYMFILE_VERBOSE;
978
979 if (symfile_objfile)
980 if (!query (_("Attempt to reload symbols from process? ")))
981 return 0;
982
983 /* Always locate the debug struct, in case it has moved. */
984 info->debug_base = 0;
985 if (locate_base (info) == 0)
986 return 0; /* failed somehow... */
987
988 /* First link map member should be the executable. */
989 lm = solib_svr4_r_map (info);
990 if (lm == 0)
991 return 0; /* failed somehow... */
992
993 /* Read address of name from target memory to GDB. */
994 read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);
995
996 /* Convert the address to host format. */
997 l_name = extract_typed_address (l_name_buf.data (), ptr_type);
998
999 if (l_name == 0)
1000 return 0; /* No filename. */
1001
1002 /* Now fetch the filename from target memory. */
1003 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1004
1005 if (errcode)
1006 {
1007 warning (_("failed to read exec filename from attached file: %s"),
1008 safe_strerror (errcode));
1009 return 0;
1010 }
1011
1012 /* Have a pathname: read the symbol file. */
1013 symbol_file_add_main (filename.get (), add_flags);
1014
1015 return 1;
1016 }
1017
1018 /* Data exchange structure for the XML parser as returned by
1019 svr4_current_sos_via_xfer_libraries. */
1020
1021 struct svr4_library_list
1022 {
1023 struct so_list *head, **tailp;
1024
1025 /* Inferior address of struct link_map used for the main executable. It is
1026 NULL if not known. */
1027 CORE_ADDR main_lm;
1028 };
1029
1030 /* Implementation for target_so_ops.free_so. */
1031
1032 static void
1033 svr4_free_so (struct so_list *so)
1034 {
1035 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1036
1037 delete li;
1038 }
1039
1040 /* Implement target_so_ops.clear_so. */
1041
1042 static void
1043 svr4_clear_so (struct so_list *so)
1044 {
1045 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1046
1047 if (li != NULL)
1048 li->l_addr_p = 0;
1049 }
1050
1051 /* Free so_list built so far (called via cleanup). */
1052
1053 static void
1054 svr4_free_library_list (void *p_list)
1055 {
1056 struct so_list *list = *(struct so_list **) p_list;
1057
1058 while (list != NULL)
1059 {
1060 struct so_list *next = list->next;
1061
1062 free_so (list);
1063 list = next;
1064 }
1065 }
1066
1067 /* Copy library list. */
1068
1069 static struct so_list *
1070 svr4_copy_library_list (struct so_list *src)
1071 {
1072 struct so_list *dst = NULL;
1073 struct so_list **link = &dst;
1074
1075 while (src != NULL)
1076 {
1077 struct so_list *newobj;
1078
1079 newobj = XNEW (struct so_list);
1080 memcpy (newobj, src, sizeof (struct so_list));
1081
1082 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1083 newobj->lm_info = new lm_info_svr4 (*src_li);
1084
1085 newobj->next = NULL;
1086 *link = newobj;
1087 link = &newobj->next;
1088
1089 src = src->next;
1090 }
1091
1092 return dst;
1093 }
1094
1095 #ifdef HAVE_LIBEXPAT
1096
1097 #include "xml-support.h"
1098
1099 /* Handle the start of a <library> element. Note: new elements are added
1100 at the tail of the list, keeping the list in order. */
1101
1102 static void
1103 library_list_start_library (struct gdb_xml_parser *parser,
1104 const struct gdb_xml_element *element,
1105 void *user_data,
1106 std::vector<gdb_xml_value> &attributes)
1107 {
1108 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1109 const char *name
1110 = (const char *) xml_find_attribute (attributes, "name")->value.get ();
1111 ULONGEST *lmp
1112 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
1113 ULONGEST *l_addrp
1114 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
1115 ULONGEST *l_ldp
1116 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
1117 struct so_list *new_elem;
1118
1119 new_elem = XCNEW (struct so_list);
1120 lm_info_svr4 *li = new lm_info_svr4;
1121 new_elem->lm_info = li;
1122 li->lm_addr = *lmp;
1123 li->l_addr_inferior = *l_addrp;
1124 li->l_ld = *l_ldp;
1125
1126 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1127 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1128 strcpy (new_elem->so_original_name, new_elem->so_name);
1129
1130 *list->tailp = new_elem;
1131 list->tailp = &new_elem->next;
1132 }
1133
1134 /* Handle the start of a <library-list-svr4> element. */
1135
1136 static void
1137 svr4_library_list_start_list (struct gdb_xml_parser *parser,
1138 const struct gdb_xml_element *element,
1139 void *user_data,
1140 std::vector<gdb_xml_value> &attributes)
1141 {
1142 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1143 const char *version
1144 = (const char *) xml_find_attribute (attributes, "version")->value.get ();
1145 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1146
1147 if (strcmp (version, "1.0") != 0)
1148 gdb_xml_error (parser,
1149 _("SVR4 Library list has unsupported version \"%s\""),
1150 version);
1151
1152 if (main_lm)
1153 list->main_lm = *(ULONGEST *) main_lm->value.get ();
1154 }
1155
1156 /* The allowed elements and attributes for an XML library list.
1157 The root element is a <library-list>. */
1158
1159 static const struct gdb_xml_attribute svr4_library_attributes[] =
1160 {
1161 { "name", GDB_XML_AF_NONE, NULL, NULL },
1162 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1163 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1164 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1165 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1166 };
1167
1168 static const struct gdb_xml_element svr4_library_list_children[] =
1169 {
1170 {
1171 "library", svr4_library_attributes, NULL,
1172 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1173 library_list_start_library, NULL
1174 },
1175 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1176 };
1177
1178 static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1179 {
1180 { "version", GDB_XML_AF_NONE, NULL, NULL },
1181 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1182 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1183 };
1184
1185 static const struct gdb_xml_element svr4_library_list_elements[] =
1186 {
1187 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1188 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1189 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1190 };
1191
1192 /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1193
1194 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1195 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1196 empty, caller is responsible for freeing all its entries. */
1197
1198 static int
1199 svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1200 {
1201 auto cleanup = make_scope_exit ([&] ()
1202 {
1203 svr4_free_library_list (&list->head);
1204 });
1205
1206 memset (list, 0, sizeof (*list));
1207 list->tailp = &list->head;
1208 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
1209 svr4_library_list_elements, document, list) == 0)
1210 {
1211 /* Parsed successfully, keep the result. */
1212 cleanup.release ();
1213 return 1;
1214 }
1215
1216 return 0;
1217 }
1218
1219 /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
1220
1221 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1222 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1223 empty, caller is responsible for freeing all its entries.
1224
1225 Note that ANNEX must be NULL if the remote does not explicitly allow
1226 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1227 this can be checked using target_augmented_libraries_svr4_read (). */
1228
1229 static int
1230 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1231 const char *annex)
1232 {
1233 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1234
1235 /* Fetch the list of shared libraries. */
1236 gdb::optional<gdb::char_vector> svr4_library_document
1237 = target_read_stralloc (current_top_target (), TARGET_OBJECT_LIBRARIES_SVR4,
1238 annex);
1239 if (!svr4_library_document)
1240 return 0;
1241
1242 return svr4_parse_libraries (svr4_library_document->data (), list);
1243 }
1244
1245 #else
1246
1247 static int
1248 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1249 const char *annex)
1250 {
1251 return 0;
1252 }
1253
1254 #endif
1255
1256 /* If no shared library information is available from the dynamic
1257 linker, build a fallback list from other sources. */
1258
1259 static struct so_list *
1260 svr4_default_sos (void)
1261 {
1262 struct svr4_info *info = get_svr4_info ();
1263 struct so_list *newobj;
1264
1265 if (!info->debug_loader_offset_p)
1266 return NULL;
1267
1268 newobj = XCNEW (struct so_list);
1269 lm_info_svr4 *li = new lm_info_svr4;
1270 newobj->lm_info = li;
1271
1272 /* Nothing will ever check the other fields if we set l_addr_p. */
1273 li->l_addr = info->debug_loader_offset;
1274 li->l_addr_p = 1;
1275
1276 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1277 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1278 strcpy (newobj->so_original_name, newobj->so_name);
1279
1280 return newobj;
1281 }
1282
1283 /* Read the whole inferior libraries chain starting at address LM.
1284 Expect the first entry in the chain's previous entry to be PREV_LM.
1285 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1286 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1287 to it. Returns nonzero upon success. If zero is returned the
1288 entries stored to LINK_PTR_PTR are still valid although they may
1289 represent only part of the inferior library list. */
1290
1291 static int
1292 svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1293 struct so_list ***link_ptr_ptr, int ignore_first)
1294 {
1295 CORE_ADDR first_l_name = 0;
1296 CORE_ADDR next_lm;
1297
1298 for (; lm != 0; prev_lm = lm, lm = next_lm)
1299 {
1300 int errcode;
1301 gdb::unique_xmalloc_ptr<char> buffer;
1302
1303 so_list_up newobj (XCNEW (struct so_list));
1304
1305 lm_info_svr4 *li = lm_info_read (lm).release ();
1306 newobj->lm_info = li;
1307 if (li == NULL)
1308 return 0;
1309
1310 next_lm = li->l_next;
1311
1312 if (li->l_prev != prev_lm)
1313 {
1314 warning (_("Corrupted shared library list: %s != %s"),
1315 paddress (target_gdbarch (), prev_lm),
1316 paddress (target_gdbarch (), li->l_prev));
1317 return 0;
1318 }
1319
1320 /* For SVR4 versions, the first entry in the link map is for the
1321 inferior executable, so we must ignore it. For some versions of
1322 SVR4, it has no name. For others (Solaris 2.3 for example), it
1323 does have a name, so we can no longer use a missing name to
1324 decide when to ignore it. */
1325 if (ignore_first && li->l_prev == 0)
1326 {
1327 struct svr4_info *info = get_svr4_info ();
1328
1329 first_l_name = li->l_name;
1330 info->main_lm_addr = li->lm_addr;
1331 continue;
1332 }
1333
1334 /* Extract this shared object's name. */
1335 target_read_string (li->l_name, &buffer, SO_NAME_MAX_PATH_SIZE - 1,
1336 &errcode);
1337 if (errcode != 0)
1338 {
1339 /* If this entry's l_name address matches that of the
1340 inferior executable, then this is not a normal shared
1341 object, but (most likely) a vDSO. In this case, silently
1342 skip it; otherwise emit a warning. */
1343 if (first_l_name == 0 || li->l_name != first_l_name)
1344 warning (_("Can't read pathname for load map: %s."),
1345 safe_strerror (errcode));
1346 continue;
1347 }
1348
1349 strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1);
1350 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1351 strcpy (newobj->so_original_name, newobj->so_name);
1352
1353 /* If this entry has no name, or its name matches the name
1354 for the main executable, don't include it in the list. */
1355 if (! newobj->so_name[0] || match_main (newobj->so_name))
1356 continue;
1357
1358 newobj->next = 0;
1359 /* Don't free it now. */
1360 **link_ptr_ptr = newobj.release ();
1361 *link_ptr_ptr = &(**link_ptr_ptr)->next;
1362 }
1363
1364 return 1;
1365 }
1366
1367 /* Read the full list of currently loaded shared objects directly
1368 from the inferior, without referring to any libraries read and
1369 stored by the probes interface. Handle special cases relating
1370 to the first elements of the list. */
1371
1372 static struct so_list *
1373 svr4_current_sos_direct (struct svr4_info *info)
1374 {
1375 CORE_ADDR lm;
1376 struct so_list *head = NULL;
1377 struct so_list **link_ptr = &head;
1378 int ignore_first;
1379 struct svr4_library_list library_list;
1380
1381 /* Fall back to manual examination of the target if the packet is not
1382 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1383 tests a case where gdbserver cannot find the shared libraries list while
1384 GDB itself is able to find it via SYMFILE_OBJFILE.
1385
1386 Unfortunately statically linked inferiors will also fall back through this
1387 suboptimal code path. */
1388
1389 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1390 NULL);
1391 if (info->using_xfer)
1392 {
1393 if (library_list.main_lm)
1394 info->main_lm_addr = library_list.main_lm;
1395
1396 return library_list.head ? library_list.head : svr4_default_sos ();
1397 }
1398
1399 /* Always locate the debug struct, in case it has moved. */
1400 info->debug_base = 0;
1401 locate_base (info);
1402
1403 /* If we can't find the dynamic linker's base structure, this
1404 must not be a dynamically linked executable. Hmm. */
1405 if (! info->debug_base)
1406 return svr4_default_sos ();
1407
1408 /* Assume that everything is a library if the dynamic loader was loaded
1409 late by a static executable. */
1410 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1411 ignore_first = 0;
1412 else
1413 ignore_first = 1;
1414
1415 auto cleanup = make_scope_exit ([&] ()
1416 {
1417 svr4_free_library_list (&head);
1418 });
1419
1420 /* Walk the inferior's link map list, and build our list of
1421 `struct so_list' nodes. */
1422 lm = solib_svr4_r_map (info);
1423 if (lm)
1424 svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
1425
1426 /* On Solaris, the dynamic linker is not in the normal list of
1427 shared objects, so make sure we pick it up too. Having
1428 symbol information for the dynamic linker is quite crucial
1429 for skipping dynamic linker resolver code. */
1430 lm = solib_svr4_r_ldsomap (info);
1431 if (lm)
1432 svr4_read_so_list (lm, 0, &link_ptr, 0);
1433
1434 cleanup.release ();
1435
1436 if (head == NULL)
1437 return svr4_default_sos ();
1438
1439 return head;
1440 }
1441
1442 /* Implement the main part of the "current_sos" target_so_ops
1443 method. */
1444
1445 static struct so_list *
1446 svr4_current_sos_1 (void)
1447 {
1448 struct svr4_info *info = get_svr4_info ();
1449
1450 /* If the solib list has been read and stored by the probes
1451 interface then we return a copy of the stored list. */
1452 if (info->solib_list != NULL)
1453 return svr4_copy_library_list (info->solib_list);
1454
1455 /* Otherwise obtain the solib list directly from the inferior. */
1456 return svr4_current_sos_direct (info);
1457 }
1458
1459 /* Implement the "current_sos" target_so_ops method. */
1460
1461 static struct so_list *
1462 svr4_current_sos (void)
1463 {
1464 struct so_list *so_head = svr4_current_sos_1 ();
1465 struct mem_range vsyscall_range;
1466
1467 /* Filter out the vDSO module, if present. Its symbol file would
1468 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1469 managed by symfile-mem.c:add_vsyscall_page. */
1470 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1471 && vsyscall_range.length != 0)
1472 {
1473 struct so_list **sop;
1474
1475 sop = &so_head;
1476 while (*sop != NULL)
1477 {
1478 struct so_list *so = *sop;
1479
1480 /* We can't simply match the vDSO by starting address alone,
1481 because lm_info->l_addr_inferior (and also l_addr) do not
1482 necessarily represent the real starting address of the
1483 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1484 field (the ".dynamic" section of the shared object)
1485 always points at the absolute/resolved address though.
1486 So check whether that address is inside the vDSO's
1487 mapping instead.
1488
1489 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1490 0-based ELF, and we see:
1491
1492 (gdb) info auxv
1493 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1494 (gdb) p/x *_r_debug.r_map.l_next
1495 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1496
1497 And on Linux 2.6.32 (x86_64) we see:
1498
1499 (gdb) info auxv
1500 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1501 (gdb) p/x *_r_debug.r_map.l_next
1502 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1503
1504 Dumping that vDSO shows:
1505
1506 (gdb) info proc mappings
1507 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1508 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1509 # readelf -Wa vdso.bin
1510 [...]
1511 Entry point address: 0xffffffffff700700
1512 [...]
1513 Section Headers:
1514 [Nr] Name Type Address Off Size
1515 [ 0] NULL 0000000000000000 000000 000000
1516 [ 1] .hash HASH ffffffffff700120 000120 000038
1517 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1518 [...]
1519 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1520 */
1521
1522 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1523
1524 if (address_in_mem_range (li->l_ld, &vsyscall_range))
1525 {
1526 *sop = so->next;
1527 free_so (so);
1528 break;
1529 }
1530
1531 sop = &so->next;
1532 }
1533 }
1534
1535 return so_head;
1536 }
1537
1538 /* Get the address of the link_map for a given OBJFILE. */
1539
1540 CORE_ADDR
1541 svr4_fetch_objfile_link_map (struct objfile *objfile)
1542 {
1543 struct so_list *so;
1544 struct svr4_info *info = get_svr4_info ();
1545
1546 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1547 if (info->main_lm_addr == 0)
1548 solib_add (NULL, 0, auto_solib_add);
1549
1550 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1551 if (objfile == symfile_objfile)
1552 return info->main_lm_addr;
1553
1554 /* The other link map addresses may be found by examining the list
1555 of shared libraries. */
1556 for (so = master_so_list (); so; so = so->next)
1557 if (so->objfile == objfile)
1558 {
1559 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1560
1561 return li->lm_addr;
1562 }
1563
1564 /* Not found! */
1565 return 0;
1566 }
1567
1568 /* On some systems, the only way to recognize the link map entry for
1569 the main executable file is by looking at its name. Return
1570 non-zero iff SONAME matches one of the known main executable names. */
1571
1572 static int
1573 match_main (const char *soname)
1574 {
1575 const char * const *mainp;
1576
1577 for (mainp = main_name_list; *mainp != NULL; mainp++)
1578 {
1579 if (strcmp (soname, *mainp) == 0)
1580 return (1);
1581 }
1582
1583 return (0);
1584 }
1585
1586 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1587 SVR4 run time loader. */
1588
1589 int
1590 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1591 {
1592 struct svr4_info *info = get_svr4_info ();
1593
1594 return ((pc >= info->interp_text_sect_low
1595 && pc < info->interp_text_sect_high)
1596 || (pc >= info->interp_plt_sect_low
1597 && pc < info->interp_plt_sect_high)
1598 || in_plt_section (pc)
1599 || in_gnu_ifunc_stub (pc));
1600 }
1601
1602 /* Given an executable's ABFD and target, compute the entry-point
1603 address. */
1604
1605 static CORE_ADDR
1606 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1607 {
1608 CORE_ADDR addr;
1609
1610 /* KevinB wrote ... for most targets, the address returned by
1611 bfd_get_start_address() is the entry point for the start
1612 function. But, for some targets, bfd_get_start_address() returns
1613 the address of a function descriptor from which the entry point
1614 address may be extracted. This address is extracted by
1615 gdbarch_convert_from_func_ptr_addr(). The method
1616 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1617 function for targets which don't use function descriptors. */
1618 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1619 bfd_get_start_address (abfd),
1620 targ);
1621 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
1622 }
1623
1624 /* A probe and its associated action. */
1625
1626 struct probe_and_action
1627 {
1628 /* The probe. */
1629 probe *prob;
1630
1631 /* The relocated address of the probe. */
1632 CORE_ADDR address;
1633
1634 /* The action. */
1635 enum probe_action action;
1636 };
1637
1638 /* Returns a hash code for the probe_and_action referenced by p. */
1639
1640 static hashval_t
1641 hash_probe_and_action (const void *p)
1642 {
1643 const struct probe_and_action *pa = (const struct probe_and_action *) p;
1644
1645 return (hashval_t) pa->address;
1646 }
1647
1648 /* Returns non-zero if the probe_and_actions referenced by p1 and p2
1649 are equal. */
1650
1651 static int
1652 equal_probe_and_action (const void *p1, const void *p2)
1653 {
1654 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1655 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
1656
1657 return pa1->address == pa2->address;
1658 }
1659
1660 /* Register a solib event probe and its associated action in the
1661 probes table. */
1662
1663 static void
1664 register_solib_event_probe (probe *prob, CORE_ADDR address,
1665 enum probe_action action)
1666 {
1667 struct svr4_info *info = get_svr4_info ();
1668 struct probe_and_action lookup, *pa;
1669 void **slot;
1670
1671 /* Create the probes table, if necessary. */
1672 if (info->probes_table == NULL)
1673 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1674 equal_probe_and_action,
1675 xfree, xcalloc, xfree);
1676
1677 lookup.prob = prob;
1678 lookup.address = address;
1679 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1680 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1681
1682 pa = XCNEW (struct probe_and_action);
1683 pa->prob = prob;
1684 pa->address = address;
1685 pa->action = action;
1686
1687 *slot = pa;
1688 }
1689
1690 /* Get the solib event probe at the specified location, and the
1691 action associated with it. Returns NULL if no solib event probe
1692 was found. */
1693
1694 static struct probe_and_action *
1695 solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1696 {
1697 struct probe_and_action lookup;
1698 void **slot;
1699
1700 lookup.address = address;
1701 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1702
1703 if (slot == NULL)
1704 return NULL;
1705
1706 return (struct probe_and_action *) *slot;
1707 }
1708
1709 /* Decide what action to take when the specified solib event probe is
1710 hit. */
1711
1712 static enum probe_action
1713 solib_event_probe_action (struct probe_and_action *pa)
1714 {
1715 enum probe_action action;
1716 unsigned probe_argc = 0;
1717 struct frame_info *frame = get_current_frame ();
1718
1719 action = pa->action;
1720 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1721 return action;
1722
1723 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1724
1725 /* Check that an appropriate number of arguments has been supplied.
1726 We expect:
1727 arg0: Lmid_t lmid (mandatory)
1728 arg1: struct r_debug *debug_base (mandatory)
1729 arg2: struct link_map *new (optional, for incremental updates) */
1730 TRY
1731 {
1732 probe_argc = pa->prob->get_argument_count (frame);
1733 }
1734 CATCH (ex, RETURN_MASK_ERROR)
1735 {
1736 exception_print (gdb_stderr, ex);
1737 probe_argc = 0;
1738 }
1739 END_CATCH
1740
1741 /* If get_argument_count throws an exception, probe_argc will be set
1742 to zero. However, if pa->prob does not have arguments, then
1743 get_argument_count will succeed but probe_argc will also be zero.
1744 Both cases happen because of different things, but they are
1745 treated equally here: action will be set to
1746 PROBES_INTERFACE_FAILED. */
1747 if (probe_argc == 2)
1748 action = FULL_RELOAD;
1749 else if (probe_argc < 2)
1750 action = PROBES_INTERFACE_FAILED;
1751
1752 return action;
1753 }
1754
1755 /* Populate the shared object list by reading the entire list of
1756 shared objects from the inferior. Handle special cases relating
1757 to the first elements of the list. Returns nonzero on success. */
1758
1759 static int
1760 solist_update_full (struct svr4_info *info)
1761 {
1762 free_solib_list (info);
1763 info->solib_list = svr4_current_sos_direct (info);
1764
1765 return 1;
1766 }
1767
1768 /* Update the shared object list starting from the link-map entry
1769 passed by the linker in the probe's third argument. Returns
1770 nonzero if the list was successfully updated, or zero to indicate
1771 failure. */
1772
1773 static int
1774 solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1775 {
1776 struct so_list *tail;
1777 CORE_ADDR prev_lm;
1778
1779 /* svr4_current_sos_direct contains logic to handle a number of
1780 special cases relating to the first elements of the list. To
1781 avoid duplicating this logic we defer to solist_update_full
1782 if the list is empty. */
1783 if (info->solib_list == NULL)
1784 return 0;
1785
1786 /* Fall back to a full update if we are using a remote target
1787 that does not support incremental transfers. */
1788 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1789 return 0;
1790
1791 /* Walk to the end of the list. */
1792 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1793 /* Nothing. */;
1794
1795 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1796 prev_lm = li->lm_addr;
1797
1798 /* Read the new objects. */
1799 if (info->using_xfer)
1800 {
1801 struct svr4_library_list library_list;
1802 char annex[64];
1803
1804 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1805 phex_nz (lm, sizeof (lm)),
1806 phex_nz (prev_lm, sizeof (prev_lm)));
1807 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1808 return 0;
1809
1810 tail->next = library_list.head;
1811 }
1812 else
1813 {
1814 struct so_list **link = &tail->next;
1815
1816 /* IGNORE_FIRST may safely be set to zero here because the
1817 above check and deferral to solist_update_full ensures
1818 that this call to svr4_read_so_list will never see the
1819 first element. */
1820 if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1821 return 0;
1822 }
1823
1824 return 1;
1825 }
1826
1827 /* Disable the probes-based linker interface and revert to the
1828 original interface. We don't reset the breakpoints as the
1829 ones set up for the probes-based interface are adequate. */
1830
1831 static void
1832 disable_probes_interface ()
1833 {
1834 struct svr4_info *info = get_svr4_info ();
1835
1836 warning (_("Probes-based dynamic linker interface failed.\n"
1837 "Reverting to original interface.\n"));
1838
1839 free_probes_table (info);
1840 free_solib_list (info);
1841 }
1842
1843 /* Update the solib list as appropriate when using the
1844 probes-based linker interface. Do nothing if using the
1845 standard interface. */
1846
1847 static void
1848 svr4_handle_solib_event (void)
1849 {
1850 struct svr4_info *info = get_svr4_info ();
1851 struct probe_and_action *pa;
1852 enum probe_action action;
1853 struct value *val = NULL;
1854 CORE_ADDR pc, debug_base, lm = 0;
1855 struct frame_info *frame = get_current_frame ();
1856
1857 /* Do nothing if not using the probes interface. */
1858 if (info->probes_table == NULL)
1859 return;
1860
1861 /* If anything goes wrong we revert to the original linker
1862 interface. */
1863 auto cleanup = make_scope_exit (disable_probes_interface);
1864
1865 pc = regcache_read_pc (get_current_regcache ());
1866 pa = solib_event_probe_at (info, pc);
1867 if (pa == NULL)
1868 return;
1869
1870 action = solib_event_probe_action (pa);
1871 if (action == PROBES_INTERFACE_FAILED)
1872 return;
1873
1874 if (action == DO_NOTHING)
1875 {
1876 cleanup.release ();
1877 return;
1878 }
1879
1880 /* evaluate_argument looks up symbols in the dynamic linker
1881 using find_pc_section. find_pc_section is accelerated by a cache
1882 called the section map. The section map is invalidated every
1883 time a shared library is loaded or unloaded, and if the inferior
1884 is generating a lot of shared library events then the section map
1885 will be updated every time svr4_handle_solib_event is called.
1886 We called find_pc_section in svr4_create_solib_event_breakpoints,
1887 so we can guarantee that the dynamic linker's sections are in the
1888 section map. We can therefore inhibit section map updates across
1889 these calls to evaluate_argument and save a lot of time. */
1890 {
1891 scoped_restore inhibit_updates
1892 = inhibit_section_map_updates (current_program_space);
1893
1894 TRY
1895 {
1896 val = pa->prob->evaluate_argument (1, frame);
1897 }
1898 CATCH (ex, RETURN_MASK_ERROR)
1899 {
1900 exception_print (gdb_stderr, ex);
1901 val = NULL;
1902 }
1903 END_CATCH
1904
1905 if (val == NULL)
1906 return;
1907
1908 debug_base = value_as_address (val);
1909 if (debug_base == 0)
1910 return;
1911
1912 /* Always locate the debug struct, in case it moved. */
1913 info->debug_base = 0;
1914 if (locate_base (info) == 0)
1915 return;
1916
1917 /* GDB does not currently support libraries loaded via dlmopen
1918 into namespaces other than the initial one. We must ignore
1919 any namespace other than the initial namespace here until
1920 support for this is added to GDB. */
1921 if (debug_base != info->debug_base)
1922 action = DO_NOTHING;
1923
1924 if (action == UPDATE_OR_RELOAD)
1925 {
1926 TRY
1927 {
1928 val = pa->prob->evaluate_argument (2, frame);
1929 }
1930 CATCH (ex, RETURN_MASK_ERROR)
1931 {
1932 exception_print (gdb_stderr, ex);
1933 return;
1934 }
1935 END_CATCH
1936
1937 if (val != NULL)
1938 lm = value_as_address (val);
1939
1940 if (lm == 0)
1941 action = FULL_RELOAD;
1942 }
1943
1944 /* Resume section map updates. Closing the scope is
1945 sufficient. */
1946 }
1947
1948 if (action == UPDATE_OR_RELOAD)
1949 {
1950 if (!solist_update_incremental (info, lm))
1951 action = FULL_RELOAD;
1952 }
1953
1954 if (action == FULL_RELOAD)
1955 {
1956 if (!solist_update_full (info))
1957 return;
1958 }
1959
1960 cleanup.release ();
1961 }
1962
1963 /* Helper function for svr4_update_solib_event_breakpoints. */
1964
1965 static int
1966 svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
1967 {
1968 struct bp_location *loc;
1969
1970 if (b->type != bp_shlib_event)
1971 {
1972 /* Continue iterating. */
1973 return 0;
1974 }
1975
1976 for (loc = b->loc; loc != NULL; loc = loc->next)
1977 {
1978 struct svr4_info *info;
1979 struct probe_and_action *pa;
1980
1981 info = ((struct svr4_info *)
1982 program_space_data (loc->pspace, solib_svr4_pspace_data));
1983 if (info == NULL || info->probes_table == NULL)
1984 continue;
1985
1986 pa = solib_event_probe_at (info, loc->address);
1987 if (pa == NULL)
1988 continue;
1989
1990 if (pa->action == DO_NOTHING)
1991 {
1992 if (b->enable_state == bp_disabled && stop_on_solib_events)
1993 enable_breakpoint (b);
1994 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
1995 disable_breakpoint (b);
1996 }
1997
1998 break;
1999 }
2000
2001 /* Continue iterating. */
2002 return 0;
2003 }
2004
2005 /* Enable or disable optional solib event breakpoints as appropriate.
2006 Called whenever stop_on_solib_events is changed. */
2007
2008 static void
2009 svr4_update_solib_event_breakpoints (void)
2010 {
2011 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
2012 }
2013
2014 /* Create and register solib event breakpoints. PROBES is an array
2015 of NUM_PROBES elements, each of which is vector of probes. A
2016 solib event breakpoint will be created and registered for each
2017 probe. */
2018
2019 static void
2020 svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
2021 const std::vector<probe *> *probes,
2022 struct objfile *objfile)
2023 {
2024 for (int i = 0; i < NUM_PROBES; i++)
2025 {
2026 enum probe_action action = probe_info[i].action;
2027
2028 for (probe *p : probes[i])
2029 {
2030 CORE_ADDR address = p->get_relocated_address (objfile);
2031
2032 create_solib_event_breakpoint (gdbarch, address);
2033 register_solib_event_probe (p, address, action);
2034 }
2035 }
2036
2037 svr4_update_solib_event_breakpoints ();
2038 }
2039
2040 /* Both the SunOS and the SVR4 dynamic linkers call a marker function
2041 before and after mapping and unmapping shared libraries. The sole
2042 purpose of this method is to allow debuggers to set a breakpoint so
2043 they can track these changes.
2044
2045 Some versions of the glibc dynamic linker contain named probes
2046 to allow more fine grained stopping. Given the address of the
2047 original marker function, this function attempts to find these
2048 probes, and if found, sets breakpoints on those instead. If the
2049 probes aren't found, a single breakpoint is set on the original
2050 marker function. */
2051
2052 static void
2053 svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
2054 CORE_ADDR address)
2055 {
2056 struct obj_section *os;
2057
2058 os = find_pc_section (address);
2059 if (os != NULL)
2060 {
2061 int with_prefix;
2062
2063 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
2064 {
2065 std::vector<probe *> probes[NUM_PROBES];
2066 int all_probes_found = 1;
2067 int checked_can_use_probe_arguments = 0;
2068
2069 for (int i = 0; i < NUM_PROBES; i++)
2070 {
2071 const char *name = probe_info[i].name;
2072 probe *p;
2073 char buf[32];
2074
2075 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
2076 shipped with an early version of the probes code in
2077 which the probes' names were prefixed with "rtld_"
2078 and the "map_failed" probe did not exist. The
2079 locations of the probes are otherwise the same, so
2080 we check for probes with prefixed names if probes
2081 with unprefixed names are not present. */
2082 if (with_prefix)
2083 {
2084 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2085 name = buf;
2086 }
2087
2088 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2089
2090 /* The "map_failed" probe did not exist in early
2091 versions of the probes code in which the probes'
2092 names were prefixed with "rtld_". */
2093 if (strcmp (name, "rtld_map_failed") == 0)
2094 continue;
2095
2096 if (probes[i].empty ())
2097 {
2098 all_probes_found = 0;
2099 break;
2100 }
2101
2102 /* Ensure probe arguments can be evaluated. */
2103 if (!checked_can_use_probe_arguments)
2104 {
2105 p = probes[i][0];
2106 if (!p->can_evaluate_arguments ())
2107 {
2108 all_probes_found = 0;
2109 break;
2110 }
2111 checked_can_use_probe_arguments = 1;
2112 }
2113 }
2114
2115 if (all_probes_found)
2116 svr4_create_probe_breakpoints (gdbarch, probes, os->objfile);
2117
2118 if (all_probes_found)
2119 return;
2120 }
2121 }
2122
2123 create_solib_event_breakpoint (gdbarch, address);
2124 }
2125
2126 /* Helper function for gdb_bfd_lookup_symbol. */
2127
2128 static int
2129 cmp_name_and_sec_flags (const asymbol *sym, const void *data)
2130 {
2131 return (strcmp (sym->name, (const char *) data) == 0
2132 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2133 }
2134 /* Arrange for dynamic linker to hit breakpoint.
2135
2136 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2137 debugger interface, support for arranging for the inferior to hit
2138 a breakpoint after mapping in the shared libraries. This function
2139 enables that breakpoint.
2140
2141 For SunOS, there is a special flag location (in_debugger) which we
2142 set to 1. When the dynamic linker sees this flag set, it will set
2143 a breakpoint at a location known only to itself, after saving the
2144 original contents of that place and the breakpoint address itself,
2145 in it's own internal structures. When we resume the inferior, it
2146 will eventually take a SIGTRAP when it runs into the breakpoint.
2147 We handle this (in a different place) by restoring the contents of
2148 the breakpointed location (which is only known after it stops),
2149 chasing around to locate the shared libraries that have been
2150 loaded, then resuming.
2151
2152 For SVR4, the debugger interface structure contains a member (r_brk)
2153 which is statically initialized at the time the shared library is
2154 built, to the offset of a function (_r_debug_state) which is guaran-
2155 teed to be called once before mapping in a library, and again when
2156 the mapping is complete. At the time we are examining this member,
2157 it contains only the unrelocated offset of the function, so we have
2158 to do our own relocation. Later, when the dynamic linker actually
2159 runs, it relocates r_brk to be the actual address of _r_debug_state().
2160
2161 The debugger interface structure also contains an enumeration which
2162 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2163 depending upon whether or not the library is being mapped or unmapped,
2164 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
2165
2166 static int
2167 enable_break (struct svr4_info *info, int from_tty)
2168 {
2169 struct bound_minimal_symbol msymbol;
2170 const char * const *bkpt_namep;
2171 asection *interp_sect;
2172 CORE_ADDR sym_addr;
2173
2174 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2175 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
2176
2177 /* If we already have a shared library list in the target, and
2178 r_debug contains r_brk, set the breakpoint there - this should
2179 mean r_brk has already been relocated. Assume the dynamic linker
2180 is the object containing r_brk. */
2181
2182 solib_add (NULL, from_tty, auto_solib_add);
2183 sym_addr = 0;
2184 if (info->debug_base && solib_svr4_r_map (info) != 0)
2185 sym_addr = solib_svr4_r_brk (info);
2186
2187 if (sym_addr != 0)
2188 {
2189 struct obj_section *os;
2190
2191 sym_addr = gdbarch_addr_bits_remove
2192 (target_gdbarch (),
2193 gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2194 sym_addr,
2195 current_top_target ()));
2196
2197 /* On at least some versions of Solaris there's a dynamic relocation
2198 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2199 we get control before the dynamic linker has self-relocated.
2200 Check if SYM_ADDR is in a known section, if it is assume we can
2201 trust its value. This is just a heuristic though, it could go away
2202 or be replaced if it's getting in the way.
2203
2204 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2205 however it's spelled in your particular system) is ARM or Thumb.
2206 That knowledge is encoded in the address, if it's Thumb the low bit
2207 is 1. However, we've stripped that info above and it's not clear
2208 what all the consequences are of passing a non-addr_bits_remove'd
2209 address to svr4_create_solib_event_breakpoints. The call to
2210 find_pc_section verifies we know about the address and have some
2211 hope of computing the right kind of breakpoint to use (via
2212 symbol info). It does mean that GDB needs to be pointed at a
2213 non-stripped version of the dynamic linker in order to obtain
2214 information it already knows about. Sigh. */
2215
2216 os = find_pc_section (sym_addr);
2217 if (os != NULL)
2218 {
2219 /* Record the relocated start and end address of the dynamic linker
2220 text and plt section for svr4_in_dynsym_resolve_code. */
2221 bfd *tmp_bfd;
2222 CORE_ADDR load_addr;
2223
2224 tmp_bfd = os->objfile->obfd;
2225 load_addr = ANOFFSET (os->objfile->section_offsets,
2226 SECT_OFF_TEXT (os->objfile));
2227
2228 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2229 if (interp_sect)
2230 {
2231 info->interp_text_sect_low =
2232 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2233 info->interp_text_sect_high =
2234 info->interp_text_sect_low
2235 + bfd_section_size (tmp_bfd, interp_sect);
2236 }
2237 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2238 if (interp_sect)
2239 {
2240 info->interp_plt_sect_low =
2241 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2242 info->interp_plt_sect_high =
2243 info->interp_plt_sect_low
2244 + bfd_section_size (tmp_bfd, interp_sect);
2245 }
2246
2247 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2248 return 1;
2249 }
2250 }
2251
2252 /* Find the program interpreter; if not found, warn the user and drop
2253 into the old breakpoint at symbol code. */
2254 gdb::optional<gdb::byte_vector> interp_name_holder
2255 = find_program_interpreter ();
2256 if (interp_name_holder)
2257 {
2258 const char *interp_name = (const char *) interp_name_holder->data ();
2259 CORE_ADDR load_addr = 0;
2260 int load_addr_found = 0;
2261 int loader_found_in_list = 0;
2262 struct so_list *so;
2263 struct target_ops *tmp_bfd_target;
2264
2265 sym_addr = 0;
2266
2267 /* Now we need to figure out where the dynamic linker was
2268 loaded so that we can load its symbols and place a breakpoint
2269 in the dynamic linker itself.
2270
2271 This address is stored on the stack. However, I've been unable
2272 to find any magic formula to find it for Solaris (appears to
2273 be trivial on GNU/Linux). Therefore, we have to try an alternate
2274 mechanism to find the dynamic linker's base address. */
2275
2276 gdb_bfd_ref_ptr tmp_bfd;
2277 TRY
2278 {
2279 tmp_bfd = solib_bfd_open (interp_name);
2280 }
2281 CATCH (ex, RETURN_MASK_ALL)
2282 {
2283 }
2284 END_CATCH
2285
2286 if (tmp_bfd == NULL)
2287 goto bkpt_at_symbol;
2288
2289 /* Now convert the TMP_BFD into a target. That way target, as
2290 well as BFD operations can be used. target_bfd_reopen
2291 acquires its own reference. */
2292 tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ());
2293
2294 /* On a running target, we can get the dynamic linker's base
2295 address from the shared library table. */
2296 so = master_so_list ();
2297 while (so)
2298 {
2299 if (svr4_same_1 (interp_name, so->so_original_name))
2300 {
2301 load_addr_found = 1;
2302 loader_found_in_list = 1;
2303 load_addr = lm_addr_check (so, tmp_bfd.get ());
2304 break;
2305 }
2306 so = so->next;
2307 }
2308
2309 /* If we were not able to find the base address of the loader
2310 from our so_list, then try using the AT_BASE auxilliary entry. */
2311 if (!load_addr_found)
2312 if (target_auxv_search (current_top_target (), AT_BASE, &load_addr) > 0)
2313 {
2314 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
2315
2316 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2317 that `+ load_addr' will overflow CORE_ADDR width not creating
2318 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2319 GDB. */
2320
2321 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
2322 {
2323 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
2324 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
2325 tmp_bfd_target);
2326
2327 gdb_assert (load_addr < space_size);
2328
2329 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2330 64bit ld.so with 32bit executable, it should not happen. */
2331
2332 if (tmp_entry_point < space_size
2333 && tmp_entry_point + load_addr >= space_size)
2334 load_addr -= space_size;
2335 }
2336
2337 load_addr_found = 1;
2338 }
2339
2340 /* Otherwise we find the dynamic linker's base address by examining
2341 the current pc (which should point at the entry point for the
2342 dynamic linker) and subtracting the offset of the entry point.
2343
2344 This is more fragile than the previous approaches, but is a good
2345 fallback method because it has actually been working well in
2346 most cases. */
2347 if (!load_addr_found)
2348 {
2349 struct regcache *regcache
2350 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
2351
2352 load_addr = (regcache_read_pc (regcache)
2353 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
2354 }
2355
2356 if (!loader_found_in_list)
2357 {
2358 info->debug_loader_name = xstrdup (interp_name);
2359 info->debug_loader_offset_p = 1;
2360 info->debug_loader_offset = load_addr;
2361 solib_add (NULL, from_tty, auto_solib_add);
2362 }
2363
2364 /* Record the relocated start and end address of the dynamic linker
2365 text and plt section for svr4_in_dynsym_resolve_code. */
2366 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
2367 if (interp_sect)
2368 {
2369 info->interp_text_sect_low =
2370 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
2371 info->interp_text_sect_high =
2372 info->interp_text_sect_low
2373 + bfd_section_size (tmp_bfd.get (), interp_sect);
2374 }
2375 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
2376 if (interp_sect)
2377 {
2378 info->interp_plt_sect_low =
2379 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
2380 info->interp_plt_sect_high =
2381 info->interp_plt_sect_low
2382 + bfd_section_size (tmp_bfd.get (), interp_sect);
2383 }
2384
2385 /* Now try to set a breakpoint in the dynamic linker. */
2386 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2387 {
2388 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2389 cmp_name_and_sec_flags,
2390 *bkpt_namep);
2391 if (sym_addr != 0)
2392 break;
2393 }
2394
2395 if (sym_addr != 0)
2396 /* Convert 'sym_addr' from a function pointer to an address.
2397 Because we pass tmp_bfd_target instead of the current
2398 target, this will always produce an unrelocated value. */
2399 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2400 sym_addr,
2401 tmp_bfd_target);
2402
2403 /* We're done with both the temporary bfd and target. Closing
2404 the target closes the underlying bfd, because it holds the
2405 only remaining reference. */
2406 target_close (tmp_bfd_target);
2407
2408 if (sym_addr != 0)
2409 {
2410 svr4_create_solib_event_breakpoints (target_gdbarch (),
2411 load_addr + sym_addr);
2412 return 1;
2413 }
2414
2415 /* For whatever reason we couldn't set a breakpoint in the dynamic
2416 linker. Warn and drop into the old code. */
2417 bkpt_at_symbol:
2418 warning (_("Unable to find dynamic linker breakpoint function.\n"
2419 "GDB will be unable to debug shared library initializers\n"
2420 "and track explicitly loaded dynamic code."));
2421 }
2422
2423 /* Scan through the lists of symbols, trying to look up the symbol and
2424 set a breakpoint there. Terminate loop when we/if we succeed. */
2425
2426 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2427 {
2428 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2429 if ((msymbol.minsym != NULL)
2430 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2431 {
2432 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2433 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2434 sym_addr,
2435 current_top_target ());
2436 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2437 return 1;
2438 }
2439 }
2440
2441 if (interp_name_holder && !current_inferior ()->attach_flag)
2442 {
2443 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
2444 {
2445 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2446 if ((msymbol.minsym != NULL)
2447 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2448 {
2449 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2450 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2451 sym_addr,
2452 current_top_target ());
2453 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2454 return 1;
2455 }
2456 }
2457 }
2458 return 0;
2459 }
2460
2461 /* Read the ELF program headers from ABFD. */
2462
2463 static gdb::optional<gdb::byte_vector>
2464 read_program_headers_from_bfd (bfd *abfd)
2465 {
2466 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
2467 int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2468 if (phdrs_size == 0)
2469 return {};
2470
2471 gdb::byte_vector buf (phdrs_size);
2472 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2473 || bfd_bread (buf.data (), phdrs_size, abfd) != phdrs_size)
2474 return {};
2475
2476 return buf;
2477 }
2478
2479 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2480 exec_bfd. Otherwise return 0.
2481
2482 We relocate all of the sections by the same amount. This
2483 behavior is mandated by recent editions of the System V ABI.
2484 According to the System V Application Binary Interface,
2485 Edition 4.1, page 5-5:
2486
2487 ... Though the system chooses virtual addresses for
2488 individual processes, it maintains the segments' relative
2489 positions. Because position-independent code uses relative
2490 addressesing between segments, the difference between
2491 virtual addresses in memory must match the difference
2492 between virtual addresses in the file. The difference
2493 between the virtual address of any segment in memory and
2494 the corresponding virtual address in the file is thus a
2495 single constant value for any one executable or shared
2496 object in a given process. This difference is the base
2497 address. One use of the base address is to relocate the
2498 memory image of the program during dynamic linking.
2499
2500 The same language also appears in Edition 4.0 of the System V
2501 ABI and is left unspecified in some of the earlier editions.
2502
2503 Decide if the objfile needs to be relocated. As indicated above, we will
2504 only be here when execution is stopped. But during attachment PC can be at
2505 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2506 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2507 regcache_read_pc would point to the interpreter and not the main executable.
2508
2509 So, to summarize, relocations are necessary when the start address obtained
2510 from the executable is different from the address in auxv AT_ENTRY entry.
2511
2512 [ The astute reader will note that we also test to make sure that
2513 the executable in question has the DYNAMIC flag set. It is my
2514 opinion that this test is unnecessary (undesirable even). It
2515 was added to avoid inadvertent relocation of an executable
2516 whose e_type member in the ELF header is not ET_DYN. There may
2517 be a time in the future when it is desirable to do relocations
2518 on other types of files as well in which case this condition
2519 should either be removed or modified to accomodate the new file
2520 type. - Kevin, Nov 2000. ] */
2521
2522 static int
2523 svr4_exec_displacement (CORE_ADDR *displacementp)
2524 {
2525 /* ENTRY_POINT is a possible function descriptor - before
2526 a call to gdbarch_convert_from_func_ptr_addr. */
2527 CORE_ADDR entry_point, exec_displacement;
2528
2529 if (exec_bfd == NULL)
2530 return 0;
2531
2532 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2533 being executed themselves and PIE (Position Independent Executable)
2534 executables are ET_DYN. */
2535
2536 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2537 return 0;
2538
2539 if (target_auxv_search (current_top_target (), AT_ENTRY, &entry_point) <= 0)
2540 return 0;
2541
2542 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
2543
2544 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
2545 alignment. It is cheaper than the program headers comparison below. */
2546
2547 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2548 {
2549 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2550
2551 /* p_align of PT_LOAD segments does not specify any alignment but
2552 only congruency of addresses:
2553 p_offset % p_align == p_vaddr % p_align
2554 Kernel is free to load the executable with lower alignment. */
2555
2556 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
2557 return 0;
2558 }
2559
2560 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2561 comparing their program headers. If the program headers in the auxilliary
2562 vector do not match the program headers in the executable, then we are
2563 looking at a different file than the one used by the kernel - for
2564 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2565
2566 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2567 {
2568 /* Be optimistic and return 0 only if GDB was able to verify the headers
2569 really do not match. */
2570 int arch_size;
2571
2572 gdb::optional<gdb::byte_vector> phdrs_target
2573 = read_program_header (-1, &arch_size, NULL);
2574 gdb::optional<gdb::byte_vector> phdrs_binary
2575 = read_program_headers_from_bfd (exec_bfd);
2576 if (phdrs_target && phdrs_binary)
2577 {
2578 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2579
2580 /* We are dealing with three different addresses. EXEC_BFD
2581 represents current address in on-disk file. target memory content
2582 may be different from EXEC_BFD as the file may have been prelinked
2583 to a different address after the executable has been loaded.
2584 Moreover the address of placement in target memory can be
2585 different from what the program headers in target memory say -
2586 this is the goal of PIE.
2587
2588 Detected DISPLACEMENT covers both the offsets of PIE placement and
2589 possible new prelink performed after start of the program. Here
2590 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2591 content offset for the verification purpose. */
2592
2593 if (phdrs_target->size () != phdrs_binary->size ()
2594 || bfd_get_arch_size (exec_bfd) != arch_size)
2595 return 0;
2596 else if (arch_size == 32
2597 && phdrs_target->size () >= sizeof (Elf32_External_Phdr)
2598 && phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0)
2599 {
2600 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2601 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2602 CORE_ADDR displacement = 0;
2603 int i;
2604
2605 /* DISPLACEMENT could be found more easily by the difference of
2606 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2607 already have enough information to compute that displacement
2608 with what we've read. */
2609
2610 for (i = 0; i < ehdr2->e_phnum; i++)
2611 if (phdr2[i].p_type == PT_LOAD)
2612 {
2613 Elf32_External_Phdr *phdrp;
2614 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2615 CORE_ADDR vaddr, paddr;
2616 CORE_ADDR displacement_vaddr = 0;
2617 CORE_ADDR displacement_paddr = 0;
2618
2619 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
2620 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2621 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2622
2623 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2624 byte_order);
2625 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2626
2627 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2628 byte_order);
2629 displacement_paddr = paddr - phdr2[i].p_paddr;
2630
2631 if (displacement_vaddr == displacement_paddr)
2632 displacement = displacement_vaddr;
2633
2634 break;
2635 }
2636
2637 /* Now compare program headers from the target and the binary
2638 with optional DISPLACEMENT. */
2639
2640 for (i = 0;
2641 i < phdrs_target->size () / sizeof (Elf32_External_Phdr);
2642 i++)
2643 {
2644 Elf32_External_Phdr *phdrp;
2645 Elf32_External_Phdr *phdr2p;
2646 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2647 CORE_ADDR vaddr, paddr;
2648 asection *plt2_asect;
2649
2650 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
2651 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2652 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2653 phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i];
2654
2655 /* PT_GNU_STACK is an exception by being never relocated by
2656 prelink as its addresses are always zero. */
2657
2658 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2659 continue;
2660
2661 /* Check also other adjustment combinations - PR 11786. */
2662
2663 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2664 byte_order);
2665 vaddr -= displacement;
2666 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2667
2668 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2669 byte_order);
2670 paddr -= displacement;
2671 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2672
2673 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2674 continue;
2675
2676 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2677 CentOS-5 has problems with filesz, memsz as well.
2678 Strip also modifies memsz of PT_TLS.
2679 See PR 11786. */
2680 if (phdr2[i].p_type == PT_GNU_RELRO
2681 || phdr2[i].p_type == PT_TLS)
2682 {
2683 Elf32_External_Phdr tmp_phdr = *phdrp;
2684 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2685
2686 memset (tmp_phdr.p_filesz, 0, 4);
2687 memset (tmp_phdr.p_memsz, 0, 4);
2688 memset (tmp_phdr.p_flags, 0, 4);
2689 memset (tmp_phdr.p_align, 0, 4);
2690 memset (tmp_phdr2.p_filesz, 0, 4);
2691 memset (tmp_phdr2.p_memsz, 0, 4);
2692 memset (tmp_phdr2.p_flags, 0, 4);
2693 memset (tmp_phdr2.p_align, 0, 4);
2694
2695 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2696 == 0)
2697 continue;
2698 }
2699
2700 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2701 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2702 if (plt2_asect)
2703 {
2704 int content2;
2705 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2706 CORE_ADDR filesz;
2707
2708 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2709 & SEC_HAS_CONTENTS) != 0;
2710
2711 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2712 byte_order);
2713
2714 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2715 FILESZ is from the in-memory image. */
2716 if (content2)
2717 filesz += bfd_get_section_size (plt2_asect);
2718 else
2719 filesz -= bfd_get_section_size (plt2_asect);
2720
2721 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2722 filesz);
2723
2724 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2725 continue;
2726 }
2727
2728 return 0;
2729 }
2730 }
2731 else if (arch_size == 64
2732 && phdrs_target->size () >= sizeof (Elf64_External_Phdr)
2733 && phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0)
2734 {
2735 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2736 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2737 CORE_ADDR displacement = 0;
2738 int i;
2739
2740 /* DISPLACEMENT could be found more easily by the difference of
2741 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2742 already have enough information to compute that displacement
2743 with what we've read. */
2744
2745 for (i = 0; i < ehdr2->e_phnum; i++)
2746 if (phdr2[i].p_type == PT_LOAD)
2747 {
2748 Elf64_External_Phdr *phdrp;
2749 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2750 CORE_ADDR vaddr, paddr;
2751 CORE_ADDR displacement_vaddr = 0;
2752 CORE_ADDR displacement_paddr = 0;
2753
2754 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
2755 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2756 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2757
2758 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2759 byte_order);
2760 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2761
2762 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2763 byte_order);
2764 displacement_paddr = paddr - phdr2[i].p_paddr;
2765
2766 if (displacement_vaddr == displacement_paddr)
2767 displacement = displacement_vaddr;
2768
2769 break;
2770 }
2771
2772 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2773
2774 for (i = 0;
2775 i < phdrs_target->size () / sizeof (Elf64_External_Phdr);
2776 i++)
2777 {
2778 Elf64_External_Phdr *phdrp;
2779 Elf64_External_Phdr *phdr2p;
2780 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2781 CORE_ADDR vaddr, paddr;
2782 asection *plt2_asect;
2783
2784 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
2785 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2786 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2787 phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i];
2788
2789 /* PT_GNU_STACK is an exception by being never relocated by
2790 prelink as its addresses are always zero. */
2791
2792 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2793 continue;
2794
2795 /* Check also other adjustment combinations - PR 11786. */
2796
2797 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2798 byte_order);
2799 vaddr -= displacement;
2800 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2801
2802 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2803 byte_order);
2804 paddr -= displacement;
2805 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2806
2807 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2808 continue;
2809
2810 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2811 CentOS-5 has problems with filesz, memsz as well.
2812 Strip also modifies memsz of PT_TLS.
2813 See PR 11786. */
2814 if (phdr2[i].p_type == PT_GNU_RELRO
2815 || phdr2[i].p_type == PT_TLS)
2816 {
2817 Elf64_External_Phdr tmp_phdr = *phdrp;
2818 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2819
2820 memset (tmp_phdr.p_filesz, 0, 8);
2821 memset (tmp_phdr.p_memsz, 0, 8);
2822 memset (tmp_phdr.p_flags, 0, 4);
2823 memset (tmp_phdr.p_align, 0, 8);
2824 memset (tmp_phdr2.p_filesz, 0, 8);
2825 memset (tmp_phdr2.p_memsz, 0, 8);
2826 memset (tmp_phdr2.p_flags, 0, 4);
2827 memset (tmp_phdr2.p_align, 0, 8);
2828
2829 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2830 == 0)
2831 continue;
2832 }
2833
2834 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2835 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2836 if (plt2_asect)
2837 {
2838 int content2;
2839 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2840 CORE_ADDR filesz;
2841
2842 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2843 & SEC_HAS_CONTENTS) != 0;
2844
2845 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2846 byte_order);
2847
2848 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2849 FILESZ is from the in-memory image. */
2850 if (content2)
2851 filesz += bfd_get_section_size (plt2_asect);
2852 else
2853 filesz -= bfd_get_section_size (plt2_asect);
2854
2855 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2856 filesz);
2857
2858 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2859 continue;
2860 }
2861
2862 return 0;
2863 }
2864 }
2865 else
2866 return 0;
2867 }
2868 }
2869
2870 if (info_verbose)
2871 {
2872 /* It can be printed repeatedly as there is no easy way to check
2873 the executable symbols/file has been already relocated to
2874 displacement. */
2875
2876 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2877 "displacement %s for \"%s\".\n"),
2878 paddress (target_gdbarch (), exec_displacement),
2879 bfd_get_filename (exec_bfd));
2880 }
2881
2882 *displacementp = exec_displacement;
2883 return 1;
2884 }
2885
2886 /* Relocate the main executable. This function should be called upon
2887 stopping the inferior process at the entry point to the program.
2888 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2889 different, the main executable is relocated by the proper amount. */
2890
2891 static void
2892 svr4_relocate_main_executable (void)
2893 {
2894 CORE_ADDR displacement;
2895
2896 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2897 probably contains the offsets computed using the PIE displacement
2898 from the previous run, which of course are irrelevant for this run.
2899 So we need to determine the new PIE displacement and recompute the
2900 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2901 already contains pre-computed offsets.
2902
2903 If we cannot compute the PIE displacement, either:
2904
2905 - The executable is not PIE.
2906
2907 - SYMFILE_OBJFILE does not match the executable started in the target.
2908 This can happen for main executable symbols loaded at the host while
2909 `ld.so --ld-args main-executable' is loaded in the target.
2910
2911 Then we leave the section offsets untouched and use them as is for
2912 this run. Either:
2913
2914 - These section offsets were properly reset earlier, and thus
2915 already contain the correct values. This can happen for instance
2916 when reconnecting via the remote protocol to a target that supports
2917 the `qOffsets' packet.
2918
2919 - The section offsets were not reset earlier, and the best we can
2920 hope is that the old offsets are still applicable to the new run. */
2921
2922 if (! svr4_exec_displacement (&displacement))
2923 return;
2924
2925 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2926 addresses. */
2927
2928 if (symfile_objfile)
2929 {
2930 struct section_offsets *new_offsets;
2931 int i;
2932
2933 new_offsets = XALLOCAVEC (struct section_offsets,
2934 symfile_objfile->num_sections);
2935
2936 for (i = 0; i < symfile_objfile->num_sections; i++)
2937 new_offsets->offsets[i] = displacement;
2938
2939 objfile_relocate (symfile_objfile, new_offsets);
2940 }
2941 else if (exec_bfd)
2942 {
2943 asection *asect;
2944
2945 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2946 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2947 (bfd_section_vma (exec_bfd, asect)
2948 + displacement));
2949 }
2950 }
2951
2952 /* Implement the "create_inferior_hook" target_solib_ops method.
2953
2954 For SVR4 executables, this first instruction is either the first
2955 instruction in the dynamic linker (for dynamically linked
2956 executables) or the instruction at "start" for statically linked
2957 executables. For dynamically linked executables, the system
2958 first exec's /lib/libc.so.N, which contains the dynamic linker,
2959 and starts it running. The dynamic linker maps in any needed
2960 shared libraries, maps in the actual user executable, and then
2961 jumps to "start" in the user executable.
2962
2963 We can arrange to cooperate with the dynamic linker to discover the
2964 names of shared libraries that are dynamically linked, and the base
2965 addresses to which they are linked.
2966
2967 This function is responsible for discovering those names and
2968 addresses, and saving sufficient information about them to allow
2969 their symbols to be read at a later time. */
2970
2971 static void
2972 svr4_solib_create_inferior_hook (int from_tty)
2973 {
2974 struct svr4_info *info;
2975
2976 info = get_svr4_info ();
2977
2978 /* Clear the probes-based interface's state. */
2979 free_probes_table (info);
2980 free_solib_list (info);
2981
2982 /* Relocate the main executable if necessary. */
2983 svr4_relocate_main_executable ();
2984
2985 /* No point setting a breakpoint in the dynamic linker if we can't
2986 hit it (e.g., a core file, or a trace file). */
2987 if (!target_has_execution)
2988 return;
2989
2990 if (!svr4_have_link_map_offsets ())
2991 return;
2992
2993 if (!enable_break (info, from_tty))
2994 return;
2995 }
2996
2997 static void
2998 svr4_clear_solib (void)
2999 {
3000 struct svr4_info *info;
3001
3002 info = get_svr4_info ();
3003 info->debug_base = 0;
3004 info->debug_loader_offset_p = 0;
3005 info->debug_loader_offset = 0;
3006 xfree (info->debug_loader_name);
3007 info->debug_loader_name = NULL;
3008 }
3009
3010 /* Clear any bits of ADDR that wouldn't fit in a target-format
3011 data pointer. "Data pointer" here refers to whatever sort of
3012 address the dynamic linker uses to manage its sections. At the
3013 moment, we don't support shared libraries on any processors where
3014 code and data pointers are different sizes.
3015
3016 This isn't really the right solution. What we really need here is
3017 a way to do arithmetic on CORE_ADDR values that respects the
3018 natural pointer/address correspondence. (For example, on the MIPS,
3019 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3020 sign-extend the value. There, simply truncating the bits above
3021 gdbarch_ptr_bit, as we do below, is no good.) This should probably
3022 be a new gdbarch method or something. */
3023 static CORE_ADDR
3024 svr4_truncate_ptr (CORE_ADDR addr)
3025 {
3026 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
3027 /* We don't need to truncate anything, and the bit twiddling below
3028 will fail due to overflow problems. */
3029 return addr;
3030 else
3031 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
3032 }
3033
3034
3035 static void
3036 svr4_relocate_section_addresses (struct so_list *so,
3037 struct target_section *sec)
3038 {
3039 bfd *abfd = sec->the_bfd_section->owner;
3040
3041 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3042 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
3043 }
3044 \f
3045
3046 /* Architecture-specific operations. */
3047
3048 /* Per-architecture data key. */
3049 static struct gdbarch_data *solib_svr4_data;
3050
3051 struct solib_svr4_ops
3052 {
3053 /* Return a description of the layout of `struct link_map'. */
3054 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3055 };
3056
3057 /* Return a default for the architecture-specific operations. */
3058
3059 static void *
3060 solib_svr4_init (struct obstack *obstack)
3061 {
3062 struct solib_svr4_ops *ops;
3063
3064 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
3065 ops->fetch_link_map_offsets = NULL;
3066 return ops;
3067 }
3068
3069 /* Set the architecture-specific `struct link_map_offsets' fetcher for
3070 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
3071
3072 void
3073 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3074 struct link_map_offsets *(*flmo) (void))
3075 {
3076 struct solib_svr4_ops *ops
3077 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
3078
3079 ops->fetch_link_map_offsets = flmo;
3080
3081 set_solib_ops (gdbarch, &svr4_so_ops);
3082 }
3083
3084 /* Fetch a link_map_offsets structure using the architecture-specific
3085 `struct link_map_offsets' fetcher. */
3086
3087 static struct link_map_offsets *
3088 svr4_fetch_link_map_offsets (void)
3089 {
3090 struct solib_svr4_ops *ops
3091 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3092 solib_svr4_data);
3093
3094 gdb_assert (ops->fetch_link_map_offsets);
3095 return ops->fetch_link_map_offsets ();
3096 }
3097
3098 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3099
3100 static int
3101 svr4_have_link_map_offsets (void)
3102 {
3103 struct solib_svr4_ops *ops
3104 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3105 solib_svr4_data);
3106
3107 return (ops->fetch_link_map_offsets != NULL);
3108 }
3109 \f
3110
3111 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
3112 `struct r_debug' and a `struct link_map' that are binary compatible
3113 with the origional SVR4 implementation. */
3114
3115 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3116 for an ILP32 SVR4 system. */
3117
3118 struct link_map_offsets *
3119 svr4_ilp32_fetch_link_map_offsets (void)
3120 {
3121 static struct link_map_offsets lmo;
3122 static struct link_map_offsets *lmp = NULL;
3123
3124 if (lmp == NULL)
3125 {
3126 lmp = &lmo;
3127
3128 lmo.r_version_offset = 0;
3129 lmo.r_version_size = 4;
3130 lmo.r_map_offset = 4;
3131 lmo.r_brk_offset = 8;
3132 lmo.r_ldsomap_offset = 20;
3133
3134 /* Everything we need is in the first 20 bytes. */
3135 lmo.link_map_size = 20;
3136 lmo.l_addr_offset = 0;
3137 lmo.l_name_offset = 4;
3138 lmo.l_ld_offset = 8;
3139 lmo.l_next_offset = 12;
3140 lmo.l_prev_offset = 16;
3141 }
3142
3143 return lmp;
3144 }
3145
3146 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3147 for an LP64 SVR4 system. */
3148
3149 struct link_map_offsets *
3150 svr4_lp64_fetch_link_map_offsets (void)
3151 {
3152 static struct link_map_offsets lmo;
3153 static struct link_map_offsets *lmp = NULL;
3154
3155 if (lmp == NULL)
3156 {
3157 lmp = &lmo;
3158
3159 lmo.r_version_offset = 0;
3160 lmo.r_version_size = 4;
3161 lmo.r_map_offset = 8;
3162 lmo.r_brk_offset = 16;
3163 lmo.r_ldsomap_offset = 40;
3164
3165 /* Everything we need is in the first 40 bytes. */
3166 lmo.link_map_size = 40;
3167 lmo.l_addr_offset = 0;
3168 lmo.l_name_offset = 8;
3169 lmo.l_ld_offset = 16;
3170 lmo.l_next_offset = 24;
3171 lmo.l_prev_offset = 32;
3172 }
3173
3174 return lmp;
3175 }
3176 \f
3177
3178 struct target_so_ops svr4_so_ops;
3179
3180 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3181 different rule for symbol lookup. The lookup begins here in the DSO, not in
3182 the main executable. */
3183
3184 static struct block_symbol
3185 elf_lookup_lib_symbol (struct objfile *objfile,
3186 const char *name,
3187 const domain_enum domain)
3188 {
3189 bfd *abfd;
3190
3191 if (objfile == symfile_objfile)
3192 abfd = exec_bfd;
3193 else
3194 {
3195 /* OBJFILE should have been passed as the non-debug one. */
3196 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3197
3198 abfd = objfile->obfd;
3199 }
3200
3201 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL, NULL) != 1)
3202 return (struct block_symbol) {NULL, NULL};
3203
3204 return lookup_global_symbol_from_objfile (objfile, name, domain);
3205 }
3206
3207 void
3208 _initialize_svr4_solib (void)
3209 {
3210 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3211 solib_svr4_pspace_data
3212 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
3213
3214 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
3215 svr4_so_ops.free_so = svr4_free_so;
3216 svr4_so_ops.clear_so = svr4_clear_so;
3217 svr4_so_ops.clear_solib = svr4_clear_solib;
3218 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3219 svr4_so_ops.current_sos = svr4_current_sos;
3220 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
3221 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
3222 svr4_so_ops.bfd_open = solib_bfd_open;
3223 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
3224 svr4_so_ops.same = svr4_same;
3225 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
3226 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3227 svr4_so_ops.handle_event = svr4_handle_solib_event;
3228 }
This page took 0.117648 seconds and 3 git commands to generate.