* gdb.threads/print-threads.exp: Extend timeout for slower
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23
24 #include "elf/external.h"
25 #include "elf/common.h"
26 #include "elf/mips.h"
27
28 #include "symtab.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbcore.h"
33 #include "target.h"
34 #include "inferior.h"
35 #include "regcache.h"
36 #include "gdbthread.h"
37 #include "observer.h"
38
39 #include "gdb_assert.h"
40
41 #include "solist.h"
42 #include "solib.h"
43 #include "solib-svr4.h"
44
45 #include "bfd-target.h"
46 #include "elf-bfd.h"
47 #include "exec.h"
48 #include "auxv.h"
49 #include "exceptions.h"
50
51 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
52 static int svr4_have_link_map_offsets (void);
53 static void svr4_relocate_main_executable (void);
54
55 /* Link map info to include in an allocated so_list entry. */
56
57 struct lm_info
58 {
59 /* Amount by which addresses in the binary should be relocated to
60 match the inferior. The direct inferior value is L_ADDR_INFERIOR.
61 When prelinking is involved and the prelink base address changes,
62 we may need a different offset - the recomputed offset is in L_ADDR.
63 It is commonly the same value. It is cached as we want to warn about
64 the difference and compute it only once. L_ADDR is valid
65 iff L_ADDR_P. */
66 CORE_ADDR l_addr, l_addr_inferior;
67 unsigned int l_addr_p : 1;
68
69 /* The target location of lm. */
70 CORE_ADDR lm_addr;
71
72 /* Values read in from inferior's fields of the same name. */
73 CORE_ADDR l_ld, l_next, l_prev, l_name;
74 };
75
76 /* On SVR4 systems, a list of symbols in the dynamic linker where
77 GDB can try to place a breakpoint to monitor shared library
78 events.
79
80 If none of these symbols are found, or other errors occur, then
81 SVR4 systems will fall back to using a symbol as the "startup
82 mapping complete" breakpoint address. */
83
84 static const char * const solib_break_names[] =
85 {
86 "r_debug_state",
87 "_r_debug_state",
88 "_dl_debug_state",
89 "rtld_db_dlactivity",
90 "__dl_rtld_db_dlactivity",
91 "_rtld_debug_state",
92
93 NULL
94 };
95
96 static const char * const bkpt_names[] =
97 {
98 "_start",
99 "__start",
100 "main",
101 NULL
102 };
103
104 static const char * const main_name_list[] =
105 {
106 "main_$main",
107 NULL
108 };
109
110 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
111 the same shared library. */
112
113 static int
114 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
115 {
116 if (strcmp (gdb_so_name, inferior_so_name) == 0)
117 return 1;
118
119 /* On Solaris, when starting inferior we think that dynamic linker is
120 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
121 contains /lib/ld.so.1. Sometimes one file is a link to another, but
122 sometimes they have identical content, but are not linked to each
123 other. We don't restrict this check for Solaris, but the chances
124 of running into this situation elsewhere are very low. */
125 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
126 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
127 return 1;
128
129 /* Similarly, we observed the same issue with sparc64, but with
130 different locations. */
131 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
132 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
133 return 1;
134
135 return 0;
136 }
137
138 static int
139 svr4_same (struct so_list *gdb, struct so_list *inferior)
140 {
141 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
142 }
143
144 static struct lm_info *
145 lm_info_read (CORE_ADDR lm_addr)
146 {
147 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
148 gdb_byte *lm;
149 struct lm_info *lm_info;
150 struct cleanup *back_to;
151
152 lm = xmalloc (lmo->link_map_size);
153 back_to = make_cleanup (xfree, lm);
154
155 if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
156 {
157 warning (_("Error reading shared library list entry at %s"),
158 paddress (target_gdbarch, lm_addr)),
159 lm_info = NULL;
160 }
161 else
162 {
163 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
164
165 lm_info = xzalloc (sizeof (*lm_info));
166 lm_info->lm_addr = lm_addr;
167
168 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
169 ptr_type);
170 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
171 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
172 ptr_type);
173 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
174 ptr_type);
175 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
176 ptr_type);
177 }
178
179 do_cleanups (back_to);
180
181 return lm_info;
182 }
183
184 static int
185 has_lm_dynamic_from_link_map (void)
186 {
187 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
188
189 return lmo->l_ld_offset >= 0;
190 }
191
192 static CORE_ADDR
193 lm_addr_check (struct so_list *so, bfd *abfd)
194 {
195 if (!so->lm_info->l_addr_p)
196 {
197 struct bfd_section *dyninfo_sect;
198 CORE_ADDR l_addr, l_dynaddr, dynaddr;
199
200 l_addr = so->lm_info->l_addr_inferior;
201
202 if (! abfd || ! has_lm_dynamic_from_link_map ())
203 goto set_addr;
204
205 l_dynaddr = so->lm_info->l_ld;
206
207 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
208 if (dyninfo_sect == NULL)
209 goto set_addr;
210
211 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
212
213 if (dynaddr + l_addr != l_dynaddr)
214 {
215 CORE_ADDR align = 0x1000;
216 CORE_ADDR minpagesize = align;
217
218 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
219 {
220 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
221 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
222 int i;
223
224 align = 1;
225
226 for (i = 0; i < ehdr->e_phnum; i++)
227 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
228 align = phdr[i].p_align;
229
230 minpagesize = get_elf_backend_data (abfd)->minpagesize;
231 }
232
233 /* Turn it into a mask. */
234 align--;
235
236 /* If the changes match the alignment requirements, we
237 assume we're using a core file that was generated by the
238 same binary, just prelinked with a different base offset.
239 If it doesn't match, we may have a different binary, the
240 same binary with the dynamic table loaded at an unrelated
241 location, or anything, really. To avoid regressions,
242 don't adjust the base offset in the latter case, although
243 odds are that, if things really changed, debugging won't
244 quite work.
245
246 One could expect more the condition
247 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
248 but the one below is relaxed for PPC. The PPC kernel supports
249 either 4k or 64k page sizes. To be prepared for 64k pages,
250 PPC ELF files are built using an alignment requirement of 64k.
251 However, when running on a kernel supporting 4k pages, the memory
252 mapping of the library may not actually happen on a 64k boundary!
253
254 (In the usual case where (l_addr & align) == 0, this check is
255 equivalent to the possibly expected check above.)
256
257 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
258
259 l_addr = l_dynaddr - dynaddr;
260
261 if ((l_addr & (minpagesize - 1)) == 0
262 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
263 {
264 if (info_verbose)
265 printf_unfiltered (_("Using PIC (Position Independent Code) "
266 "prelink displacement %s for \"%s\".\n"),
267 paddress (target_gdbarch, l_addr),
268 so->so_name);
269 }
270 else
271 {
272 /* There is no way to verify the library file matches. prelink
273 can during prelinking of an unprelinked file (or unprelinking
274 of a prelinked file) shift the DYNAMIC segment by arbitrary
275 offset without any page size alignment. There is no way to
276 find out the ELF header and/or Program Headers for a limited
277 verification if it they match. One could do a verification
278 of the DYNAMIC segment. Still the found address is the best
279 one GDB could find. */
280
281 warning (_(".dynamic section for \"%s\" "
282 "is not at the expected address "
283 "(wrong library or version mismatch?)"), so->so_name);
284 }
285 }
286
287 set_addr:
288 so->lm_info->l_addr = l_addr;
289 so->lm_info->l_addr_p = 1;
290 }
291
292 return so->lm_info->l_addr;
293 }
294
295 /* Per pspace SVR4 specific data. */
296
297 struct svr4_info
298 {
299 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
300
301 /* Validity flag for debug_loader_offset. */
302 int debug_loader_offset_p;
303
304 /* Load address for the dynamic linker, inferred. */
305 CORE_ADDR debug_loader_offset;
306
307 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
308 char *debug_loader_name;
309
310 /* Load map address for the main executable. */
311 CORE_ADDR main_lm_addr;
312
313 CORE_ADDR interp_text_sect_low;
314 CORE_ADDR interp_text_sect_high;
315 CORE_ADDR interp_plt_sect_low;
316 CORE_ADDR interp_plt_sect_high;
317 };
318
319 /* Per-program-space data key. */
320 static const struct program_space_data *solib_svr4_pspace_data;
321
322 static void
323 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
324 {
325 struct svr4_info *info;
326
327 info = program_space_data (pspace, solib_svr4_pspace_data);
328 xfree (info);
329 }
330
331 /* Get the current svr4 data. If none is found yet, add it now. This
332 function always returns a valid object. */
333
334 static struct svr4_info *
335 get_svr4_info (void)
336 {
337 struct svr4_info *info;
338
339 info = program_space_data (current_program_space, solib_svr4_pspace_data);
340 if (info != NULL)
341 return info;
342
343 info = XZALLOC (struct svr4_info);
344 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
345 return info;
346 }
347
348 /* Local function prototypes */
349
350 static int match_main (const char *);
351
352 /* Read program header TYPE from inferior memory. The header is found
353 by scanning the OS auxillary vector.
354
355 If TYPE == -1, return the program headers instead of the contents of
356 one program header.
357
358 Return a pointer to allocated memory holding the program header contents,
359 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
360 size of those contents is returned to P_SECT_SIZE. Likewise, the target
361 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
362
363 static gdb_byte *
364 read_program_header (int type, int *p_sect_size, int *p_arch_size)
365 {
366 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
367 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
368 int arch_size, sect_size;
369 CORE_ADDR sect_addr;
370 gdb_byte *buf;
371 int pt_phdr_p = 0;
372
373 /* Get required auxv elements from target. */
374 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
375 return 0;
376 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
377 return 0;
378 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
379 return 0;
380 if (!at_phdr || !at_phnum)
381 return 0;
382
383 /* Determine ELF architecture type. */
384 if (at_phent == sizeof (Elf32_External_Phdr))
385 arch_size = 32;
386 else if (at_phent == sizeof (Elf64_External_Phdr))
387 arch_size = 64;
388 else
389 return 0;
390
391 /* Find the requested segment. */
392 if (type == -1)
393 {
394 sect_addr = at_phdr;
395 sect_size = at_phent * at_phnum;
396 }
397 else if (arch_size == 32)
398 {
399 Elf32_External_Phdr phdr;
400 int i;
401
402 /* Search for requested PHDR. */
403 for (i = 0; i < at_phnum; i++)
404 {
405 int p_type;
406
407 if (target_read_memory (at_phdr + i * sizeof (phdr),
408 (gdb_byte *)&phdr, sizeof (phdr)))
409 return 0;
410
411 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
412 4, byte_order);
413
414 if (p_type == PT_PHDR)
415 {
416 pt_phdr_p = 1;
417 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
418 4, byte_order);
419 }
420
421 if (p_type == type)
422 break;
423 }
424
425 if (i == at_phnum)
426 return 0;
427
428 /* Retrieve address and size. */
429 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
430 4, byte_order);
431 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
432 4, byte_order);
433 }
434 else
435 {
436 Elf64_External_Phdr phdr;
437 int i;
438
439 /* Search for requested PHDR. */
440 for (i = 0; i < at_phnum; i++)
441 {
442 int p_type;
443
444 if (target_read_memory (at_phdr + i * sizeof (phdr),
445 (gdb_byte *)&phdr, sizeof (phdr)))
446 return 0;
447
448 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
449 4, byte_order);
450
451 if (p_type == PT_PHDR)
452 {
453 pt_phdr_p = 1;
454 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
455 8, byte_order);
456 }
457
458 if (p_type == type)
459 break;
460 }
461
462 if (i == at_phnum)
463 return 0;
464
465 /* Retrieve address and size. */
466 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
467 8, byte_order);
468 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
469 8, byte_order);
470 }
471
472 /* PT_PHDR is optional, but we really need it
473 for PIE to make this work in general. */
474
475 if (pt_phdr_p)
476 {
477 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
478 Relocation offset is the difference between the two. */
479 sect_addr = sect_addr + (at_phdr - pt_phdr);
480 }
481
482 /* Read in requested program header. */
483 buf = xmalloc (sect_size);
484 if (target_read_memory (sect_addr, buf, sect_size))
485 {
486 xfree (buf);
487 return NULL;
488 }
489
490 if (p_arch_size)
491 *p_arch_size = arch_size;
492 if (p_sect_size)
493 *p_sect_size = sect_size;
494
495 return buf;
496 }
497
498
499 /* Return program interpreter string. */
500 static gdb_byte *
501 find_program_interpreter (void)
502 {
503 gdb_byte *buf = NULL;
504
505 /* If we have an exec_bfd, use its section table. */
506 if (exec_bfd
507 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
508 {
509 struct bfd_section *interp_sect;
510
511 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
512 if (interp_sect != NULL)
513 {
514 int sect_size = bfd_section_size (exec_bfd, interp_sect);
515
516 buf = xmalloc (sect_size);
517 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
518 }
519 }
520
521 /* If we didn't find it, use the target auxillary vector. */
522 if (!buf)
523 buf = read_program_header (PT_INTERP, NULL, NULL);
524
525 return buf;
526 }
527
528
529 /* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
530 returned and the corresponding PTR is set. */
531
532 static int
533 scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
534 {
535 int arch_size, step, sect_size;
536 long dyn_tag;
537 CORE_ADDR dyn_ptr, dyn_addr;
538 gdb_byte *bufend, *bufstart, *buf;
539 Elf32_External_Dyn *x_dynp_32;
540 Elf64_External_Dyn *x_dynp_64;
541 struct bfd_section *sect;
542 struct target_section *target_section;
543
544 if (abfd == NULL)
545 return 0;
546
547 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
548 return 0;
549
550 arch_size = bfd_get_arch_size (abfd);
551 if (arch_size == -1)
552 return 0;
553
554 /* Find the start address of the .dynamic section. */
555 sect = bfd_get_section_by_name (abfd, ".dynamic");
556 if (sect == NULL)
557 return 0;
558
559 for (target_section = current_target_sections->sections;
560 target_section < current_target_sections->sections_end;
561 target_section++)
562 if (sect == target_section->the_bfd_section)
563 break;
564 if (target_section < current_target_sections->sections_end)
565 dyn_addr = target_section->addr;
566 else
567 {
568 /* ABFD may come from OBJFILE acting only as a symbol file without being
569 loaded into the target (see add_symbol_file_command). This case is
570 such fallback to the file VMA address without the possibility of
571 having the section relocated to its actual in-memory address. */
572
573 dyn_addr = bfd_section_vma (abfd, sect);
574 }
575
576 /* Read in .dynamic from the BFD. We will get the actual value
577 from memory later. */
578 sect_size = bfd_section_size (abfd, sect);
579 buf = bufstart = alloca (sect_size);
580 if (!bfd_get_section_contents (abfd, sect,
581 buf, 0, sect_size))
582 return 0;
583
584 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
585 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
586 : sizeof (Elf64_External_Dyn);
587 for (bufend = buf + sect_size;
588 buf < bufend;
589 buf += step)
590 {
591 if (arch_size == 32)
592 {
593 x_dynp_32 = (Elf32_External_Dyn *) buf;
594 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
595 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
596 }
597 else
598 {
599 x_dynp_64 = (Elf64_External_Dyn *) buf;
600 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
601 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
602 }
603 if (dyn_tag == DT_NULL)
604 return 0;
605 if (dyn_tag == dyntag)
606 {
607 /* If requested, try to read the runtime value of this .dynamic
608 entry. */
609 if (ptr)
610 {
611 struct type *ptr_type;
612 gdb_byte ptr_buf[8];
613 CORE_ADDR ptr_addr;
614
615 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
616 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
617 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
618 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
619 *ptr = dyn_ptr;
620 }
621 return 1;
622 }
623 }
624
625 return 0;
626 }
627
628 /* Scan for DYNTAG in .dynamic section of the target's main executable,
629 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
630 returned and the corresponding PTR is set. */
631
632 static int
633 scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
634 {
635 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
636 int sect_size, arch_size, step;
637 long dyn_tag;
638 CORE_ADDR dyn_ptr;
639 gdb_byte *bufend, *bufstart, *buf;
640
641 /* Read in .dynamic section. */
642 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
643 if (!buf)
644 return 0;
645
646 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
647 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
648 : sizeof (Elf64_External_Dyn);
649 for (bufend = buf + sect_size;
650 buf < bufend;
651 buf += step)
652 {
653 if (arch_size == 32)
654 {
655 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
656
657 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
658 4, byte_order);
659 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
660 4, byte_order);
661 }
662 else
663 {
664 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
665
666 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
667 8, byte_order);
668 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
669 8, byte_order);
670 }
671 if (dyn_tag == DT_NULL)
672 break;
673
674 if (dyn_tag == dyntag)
675 {
676 if (ptr)
677 *ptr = dyn_ptr;
678
679 xfree (bufstart);
680 return 1;
681 }
682 }
683
684 xfree (bufstart);
685 return 0;
686 }
687
688 /* Locate the base address of dynamic linker structs for SVR4 elf
689 targets.
690
691 For SVR4 elf targets the address of the dynamic linker's runtime
692 structure is contained within the dynamic info section in the
693 executable file. The dynamic section is also mapped into the
694 inferior address space. Because the runtime loader fills in the
695 real address before starting the inferior, we have to read in the
696 dynamic info section from the inferior address space.
697 If there are any errors while trying to find the address, we
698 silently return 0, otherwise the found address is returned. */
699
700 static CORE_ADDR
701 elf_locate_base (void)
702 {
703 struct minimal_symbol *msymbol;
704 CORE_ADDR dyn_ptr;
705
706 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
707 instead of DT_DEBUG, although they sometimes contain an unused
708 DT_DEBUG. */
709 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
710 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
711 {
712 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
713 gdb_byte *pbuf;
714 int pbuf_size = TYPE_LENGTH (ptr_type);
715
716 pbuf = alloca (pbuf_size);
717 /* DT_MIPS_RLD_MAP contains a pointer to the address
718 of the dynamic link structure. */
719 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
720 return 0;
721 return extract_typed_address (pbuf, ptr_type);
722 }
723
724 /* Find DT_DEBUG. */
725 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
726 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
727 return dyn_ptr;
728
729 /* This may be a static executable. Look for the symbol
730 conventionally named _r_debug, as a last resort. */
731 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
732 if (msymbol != NULL)
733 return SYMBOL_VALUE_ADDRESS (msymbol);
734
735 /* DT_DEBUG entry not found. */
736 return 0;
737 }
738
739 /* Locate the base address of dynamic linker structs.
740
741 For both the SunOS and SVR4 shared library implementations, if the
742 inferior executable has been linked dynamically, there is a single
743 address somewhere in the inferior's data space which is the key to
744 locating all of the dynamic linker's runtime structures. This
745 address is the value of the debug base symbol. The job of this
746 function is to find and return that address, or to return 0 if there
747 is no such address (the executable is statically linked for example).
748
749 For SunOS, the job is almost trivial, since the dynamic linker and
750 all of it's structures are statically linked to the executable at
751 link time. Thus the symbol for the address we are looking for has
752 already been added to the minimal symbol table for the executable's
753 objfile at the time the symbol file's symbols were read, and all we
754 have to do is look it up there. Note that we explicitly do NOT want
755 to find the copies in the shared library.
756
757 The SVR4 version is a bit more complicated because the address
758 is contained somewhere in the dynamic info section. We have to go
759 to a lot more work to discover the address of the debug base symbol.
760 Because of this complexity, we cache the value we find and return that
761 value on subsequent invocations. Note there is no copy in the
762 executable symbol tables. */
763
764 static CORE_ADDR
765 locate_base (struct svr4_info *info)
766 {
767 /* Check to see if we have a currently valid address, and if so, avoid
768 doing all this work again and just return the cached address. If
769 we have no cached address, try to locate it in the dynamic info
770 section for ELF executables. There's no point in doing any of this
771 though if we don't have some link map offsets to work with. */
772
773 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
774 info->debug_base = elf_locate_base ();
775 return info->debug_base;
776 }
777
778 /* Find the first element in the inferior's dynamic link map, and
779 return its address in the inferior. Return zero if the address
780 could not be determined.
781
782 FIXME: Perhaps we should validate the info somehow, perhaps by
783 checking r_version for a known version number, or r_state for
784 RT_CONSISTENT. */
785
786 static CORE_ADDR
787 solib_svr4_r_map (struct svr4_info *info)
788 {
789 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
790 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
791 CORE_ADDR addr = 0;
792 volatile struct gdb_exception ex;
793
794 TRY_CATCH (ex, RETURN_MASK_ERROR)
795 {
796 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
797 ptr_type);
798 }
799 exception_print (gdb_stderr, ex);
800 return addr;
801 }
802
803 /* Find r_brk from the inferior's debug base. */
804
805 static CORE_ADDR
806 solib_svr4_r_brk (struct svr4_info *info)
807 {
808 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
809 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
810
811 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
812 ptr_type);
813 }
814
815 /* Find the link map for the dynamic linker (if it is not in the
816 normal list of loaded shared objects). */
817
818 static CORE_ADDR
819 solib_svr4_r_ldsomap (struct svr4_info *info)
820 {
821 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
822 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
823 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
824 ULONGEST version;
825
826 /* Check version, and return zero if `struct r_debug' doesn't have
827 the r_ldsomap member. */
828 version
829 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
830 lmo->r_version_size, byte_order);
831 if (version < 2 || lmo->r_ldsomap_offset == -1)
832 return 0;
833
834 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
835 ptr_type);
836 }
837
838 /* On Solaris systems with some versions of the dynamic linker,
839 ld.so's l_name pointer points to the SONAME in the string table
840 rather than into writable memory. So that GDB can find shared
841 libraries when loading a core file generated by gcore, ensure that
842 memory areas containing the l_name string are saved in the core
843 file. */
844
845 static int
846 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
847 {
848 struct svr4_info *info;
849 CORE_ADDR ldsomap;
850 struct so_list *new;
851 struct cleanup *old_chain;
852 struct link_map_offsets *lmo;
853 CORE_ADDR name_lm;
854
855 info = get_svr4_info ();
856
857 info->debug_base = 0;
858 locate_base (info);
859 if (!info->debug_base)
860 return 0;
861
862 ldsomap = solib_svr4_r_ldsomap (info);
863 if (!ldsomap)
864 return 0;
865
866 lmo = svr4_fetch_link_map_offsets ();
867 new = XZALLOC (struct so_list);
868 old_chain = make_cleanup (xfree, new);
869 new->lm_info = lm_info_read (ldsomap);
870 make_cleanup (xfree, new->lm_info);
871 name_lm = new->lm_info ? new->lm_info->l_name : 0;
872 do_cleanups (old_chain);
873
874 return (name_lm >= vaddr && name_lm < vaddr + size);
875 }
876
877 /* Implement the "open_symbol_file_object" target_so_ops method.
878
879 If no open symbol file, attempt to locate and open the main symbol
880 file. On SVR4 systems, this is the first link map entry. If its
881 name is here, we can open it. Useful when attaching to a process
882 without first loading its symbol file. */
883
884 static int
885 open_symbol_file_object (void *from_ttyp)
886 {
887 CORE_ADDR lm, l_name;
888 char *filename;
889 int errcode;
890 int from_tty = *(int *)from_ttyp;
891 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
892 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
893 int l_name_size = TYPE_LENGTH (ptr_type);
894 gdb_byte *l_name_buf = xmalloc (l_name_size);
895 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
896 struct svr4_info *info = get_svr4_info ();
897
898 if (symfile_objfile)
899 if (!query (_("Attempt to reload symbols from process? ")))
900 {
901 do_cleanups (cleanups);
902 return 0;
903 }
904
905 /* Always locate the debug struct, in case it has moved. */
906 info->debug_base = 0;
907 if (locate_base (info) == 0)
908 {
909 do_cleanups (cleanups);
910 return 0; /* failed somehow... */
911 }
912
913 /* First link map member should be the executable. */
914 lm = solib_svr4_r_map (info);
915 if (lm == 0)
916 {
917 do_cleanups (cleanups);
918 return 0; /* failed somehow... */
919 }
920
921 /* Read address of name from target memory to GDB. */
922 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
923
924 /* Convert the address to host format. */
925 l_name = extract_typed_address (l_name_buf, ptr_type);
926
927 if (l_name == 0)
928 {
929 do_cleanups (cleanups);
930 return 0; /* No filename. */
931 }
932
933 /* Now fetch the filename from target memory. */
934 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
935 make_cleanup (xfree, filename);
936
937 if (errcode)
938 {
939 warning (_("failed to read exec filename from attached file: %s"),
940 safe_strerror (errcode));
941 do_cleanups (cleanups);
942 return 0;
943 }
944
945 /* Have a pathname: read the symbol file. */
946 symbol_file_add_main (filename, from_tty);
947
948 do_cleanups (cleanups);
949 return 1;
950 }
951
952 /* Implementation for target_so_ops.free_so. */
953
954 static void
955 svr4_free_so (struct so_list *so)
956 {
957 xfree (so->lm_info);
958 }
959
960 /* Free so_list built so far (called via cleanup). */
961
962 static void
963 svr4_free_library_list (void *p_list)
964 {
965 struct so_list *list = *(struct so_list **) p_list;
966
967 while (list != NULL)
968 {
969 struct so_list *next = list->next;
970
971 svr4_free_so (list);
972 list = next;
973 }
974 }
975
976 /* If no shared library information is available from the dynamic
977 linker, build a fallback list from other sources. */
978
979 static struct so_list *
980 svr4_default_sos (void)
981 {
982 struct svr4_info *info = get_svr4_info ();
983 struct so_list *new;
984
985 if (!info->debug_loader_offset_p)
986 return NULL;
987
988 new = XZALLOC (struct so_list);
989
990 new->lm_info = xzalloc (sizeof (struct lm_info));
991
992 /* Nothing will ever check the other fields if we set l_addr_p. */
993 new->lm_info->l_addr = info->debug_loader_offset;
994 new->lm_info->l_addr_p = 1;
995
996 strncpy (new->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
997 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
998 strcpy (new->so_original_name, new->so_name);
999
1000 return new;
1001 }
1002
1003 /* Read the whole inferior libraries chain starting at address LM. Add the
1004 entries to the tail referenced by LINK_PTR_PTR. Ignore the first entry if
1005 IGNORE_FIRST and set global MAIN_LM_ADDR according to it. */
1006
1007 static void
1008 svr4_read_so_list (CORE_ADDR lm, struct so_list ***link_ptr_ptr,
1009 int ignore_first)
1010 {
1011 CORE_ADDR prev_lm = 0, next_lm;
1012
1013 for (; lm != 0; prev_lm = lm, lm = next_lm)
1014 {
1015 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
1016 struct so_list *new;
1017 struct cleanup *old_chain;
1018 int errcode;
1019 char *buffer;
1020
1021 new = XZALLOC (struct so_list);
1022 old_chain = make_cleanup_free_so (new);
1023
1024 new->lm_info = lm_info_read (lm);
1025 if (new->lm_info == NULL)
1026 {
1027 do_cleanups (old_chain);
1028 break;
1029 }
1030
1031 next_lm = new->lm_info->l_next;
1032
1033 if (new->lm_info->l_prev != prev_lm)
1034 {
1035 warning (_("Corrupted shared library list"));
1036 do_cleanups (old_chain);
1037 break;
1038 }
1039
1040 /* For SVR4 versions, the first entry in the link map is for the
1041 inferior executable, so we must ignore it. For some versions of
1042 SVR4, it has no name. For others (Solaris 2.3 for example), it
1043 does have a name, so we can no longer use a missing name to
1044 decide when to ignore it. */
1045 if (ignore_first && new->lm_info->l_prev == 0)
1046 {
1047 struct svr4_info *info = get_svr4_info ();
1048
1049 info->main_lm_addr = new->lm_info->lm_addr;
1050 do_cleanups (old_chain);
1051 continue;
1052 }
1053
1054 /* Extract this shared object's name. */
1055 target_read_string (new->lm_info->l_name, &buffer,
1056 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1057 if (errcode != 0)
1058 {
1059 warning (_("Can't read pathname for load map: %s."),
1060 safe_strerror (errcode));
1061 do_cleanups (old_chain);
1062 continue;
1063 }
1064
1065 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1066 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1067 strcpy (new->so_original_name, new->so_name);
1068 xfree (buffer);
1069
1070 /* If this entry has no name, or its name matches the name
1071 for the main executable, don't include it in the list. */
1072 if (! new->so_name[0] || match_main (new->so_name))
1073 {
1074 do_cleanups (old_chain);
1075 continue;
1076 }
1077
1078 discard_cleanups (old_chain);
1079 new->next = 0;
1080 **link_ptr_ptr = new;
1081 *link_ptr_ptr = &new->next;
1082 }
1083 }
1084
1085 /* Implement the "current_sos" target_so_ops method. */
1086
1087 static struct so_list *
1088 svr4_current_sos (void)
1089 {
1090 CORE_ADDR lm;
1091 struct so_list *head = NULL;
1092 struct so_list **link_ptr = &head;
1093 struct svr4_info *info;
1094 struct cleanup *back_to;
1095 int ignore_first;
1096
1097 info = get_svr4_info ();
1098
1099 /* Always locate the debug struct, in case it has moved. */
1100 info->debug_base = 0;
1101 locate_base (info);
1102
1103 /* If we can't find the dynamic linker's base structure, this
1104 must not be a dynamically linked executable. Hmm. */
1105 if (! info->debug_base)
1106 return svr4_default_sos ();
1107
1108 /* Assume that everything is a library if the dynamic loader was loaded
1109 late by a static executable. */
1110 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1111 ignore_first = 0;
1112 else
1113 ignore_first = 1;
1114
1115 back_to = make_cleanup (svr4_free_library_list, &head);
1116
1117 /* Walk the inferior's link map list, and build our list of
1118 `struct so_list' nodes. */
1119 lm = solib_svr4_r_map (info);
1120 if (lm)
1121 svr4_read_so_list (lm, &link_ptr, ignore_first);
1122
1123 /* On Solaris, the dynamic linker is not in the normal list of
1124 shared objects, so make sure we pick it up too. Having
1125 symbol information for the dynamic linker is quite crucial
1126 for skipping dynamic linker resolver code. */
1127 lm = solib_svr4_r_ldsomap (info);
1128 if (lm)
1129 svr4_read_so_list (lm, &link_ptr, 0);
1130
1131 discard_cleanups (back_to);
1132
1133 if (head == NULL)
1134 return svr4_default_sos ();
1135
1136 return head;
1137 }
1138
1139 /* Get the address of the link_map for a given OBJFILE. */
1140
1141 CORE_ADDR
1142 svr4_fetch_objfile_link_map (struct objfile *objfile)
1143 {
1144 struct so_list *so;
1145 struct svr4_info *info = get_svr4_info ();
1146
1147 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1148 if (info->main_lm_addr == 0)
1149 solib_add (NULL, 0, &current_target, auto_solib_add);
1150
1151 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1152 if (objfile == symfile_objfile)
1153 return info->main_lm_addr;
1154
1155 /* The other link map addresses may be found by examining the list
1156 of shared libraries. */
1157 for (so = master_so_list (); so; so = so->next)
1158 if (so->objfile == objfile)
1159 return so->lm_info->lm_addr;
1160
1161 /* Not found! */
1162 return 0;
1163 }
1164
1165 /* On some systems, the only way to recognize the link map entry for
1166 the main executable file is by looking at its name. Return
1167 non-zero iff SONAME matches one of the known main executable names. */
1168
1169 static int
1170 match_main (const char *soname)
1171 {
1172 const char * const *mainp;
1173
1174 for (mainp = main_name_list; *mainp != NULL; mainp++)
1175 {
1176 if (strcmp (soname, *mainp) == 0)
1177 return (1);
1178 }
1179
1180 return (0);
1181 }
1182
1183 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1184 SVR4 run time loader. */
1185
1186 int
1187 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1188 {
1189 struct svr4_info *info = get_svr4_info ();
1190
1191 return ((pc >= info->interp_text_sect_low
1192 && pc < info->interp_text_sect_high)
1193 || (pc >= info->interp_plt_sect_low
1194 && pc < info->interp_plt_sect_high)
1195 || in_plt_section (pc, NULL)
1196 || in_gnu_ifunc_stub (pc));
1197 }
1198
1199 /* Given an executable's ABFD and target, compute the entry-point
1200 address. */
1201
1202 static CORE_ADDR
1203 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1204 {
1205 /* KevinB wrote ... for most targets, the address returned by
1206 bfd_get_start_address() is the entry point for the start
1207 function. But, for some targets, bfd_get_start_address() returns
1208 the address of a function descriptor from which the entry point
1209 address may be extracted. This address is extracted by
1210 gdbarch_convert_from_func_ptr_addr(). The method
1211 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1212 function for targets which don't use function descriptors. */
1213 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1214 bfd_get_start_address (abfd),
1215 targ);
1216 }
1217
1218 /* Helper function for gdb_bfd_lookup_symbol. */
1219
1220 static int
1221 cmp_name_and_sec_flags (asymbol *sym, void *data)
1222 {
1223 return (strcmp (sym->name, (const char *) data) == 0
1224 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
1225 }
1226 /* Arrange for dynamic linker to hit breakpoint.
1227
1228 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1229 debugger interface, support for arranging for the inferior to hit
1230 a breakpoint after mapping in the shared libraries. This function
1231 enables that breakpoint.
1232
1233 For SunOS, there is a special flag location (in_debugger) which we
1234 set to 1. When the dynamic linker sees this flag set, it will set
1235 a breakpoint at a location known only to itself, after saving the
1236 original contents of that place and the breakpoint address itself,
1237 in it's own internal structures. When we resume the inferior, it
1238 will eventually take a SIGTRAP when it runs into the breakpoint.
1239 We handle this (in a different place) by restoring the contents of
1240 the breakpointed location (which is only known after it stops),
1241 chasing around to locate the shared libraries that have been
1242 loaded, then resuming.
1243
1244 For SVR4, the debugger interface structure contains a member (r_brk)
1245 which is statically initialized at the time the shared library is
1246 built, to the offset of a function (_r_debug_state) which is guaran-
1247 teed to be called once before mapping in a library, and again when
1248 the mapping is complete. At the time we are examining this member,
1249 it contains only the unrelocated offset of the function, so we have
1250 to do our own relocation. Later, when the dynamic linker actually
1251 runs, it relocates r_brk to be the actual address of _r_debug_state().
1252
1253 The debugger interface structure also contains an enumeration which
1254 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1255 depending upon whether or not the library is being mapped or unmapped,
1256 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
1257
1258 static int
1259 enable_break (struct svr4_info *info, int from_tty)
1260 {
1261 struct minimal_symbol *msymbol;
1262 const char * const *bkpt_namep;
1263 asection *interp_sect;
1264 gdb_byte *interp_name;
1265 CORE_ADDR sym_addr;
1266
1267 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1268 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
1269
1270 /* If we already have a shared library list in the target, and
1271 r_debug contains r_brk, set the breakpoint there - this should
1272 mean r_brk has already been relocated. Assume the dynamic linker
1273 is the object containing r_brk. */
1274
1275 solib_add (NULL, from_tty, &current_target, auto_solib_add);
1276 sym_addr = 0;
1277 if (info->debug_base && solib_svr4_r_map (info) != 0)
1278 sym_addr = solib_svr4_r_brk (info);
1279
1280 if (sym_addr != 0)
1281 {
1282 struct obj_section *os;
1283
1284 sym_addr = gdbarch_addr_bits_remove
1285 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1286 sym_addr,
1287 &current_target));
1288
1289 /* On at least some versions of Solaris there's a dynamic relocation
1290 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
1291 we get control before the dynamic linker has self-relocated.
1292 Check if SYM_ADDR is in a known section, if it is assume we can
1293 trust its value. This is just a heuristic though, it could go away
1294 or be replaced if it's getting in the way.
1295
1296 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
1297 however it's spelled in your particular system) is ARM or Thumb.
1298 That knowledge is encoded in the address, if it's Thumb the low bit
1299 is 1. However, we've stripped that info above and it's not clear
1300 what all the consequences are of passing a non-addr_bits_remove'd
1301 address to create_solib_event_breakpoint. The call to
1302 find_pc_section verifies we know about the address and have some
1303 hope of computing the right kind of breakpoint to use (via
1304 symbol info). It does mean that GDB needs to be pointed at a
1305 non-stripped version of the dynamic linker in order to obtain
1306 information it already knows about. Sigh. */
1307
1308 os = find_pc_section (sym_addr);
1309 if (os != NULL)
1310 {
1311 /* Record the relocated start and end address of the dynamic linker
1312 text and plt section for svr4_in_dynsym_resolve_code. */
1313 bfd *tmp_bfd;
1314 CORE_ADDR load_addr;
1315
1316 tmp_bfd = os->objfile->obfd;
1317 load_addr = ANOFFSET (os->objfile->section_offsets,
1318 os->objfile->sect_index_text);
1319
1320 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1321 if (interp_sect)
1322 {
1323 info->interp_text_sect_low =
1324 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1325 info->interp_text_sect_high =
1326 info->interp_text_sect_low
1327 + bfd_section_size (tmp_bfd, interp_sect);
1328 }
1329 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1330 if (interp_sect)
1331 {
1332 info->interp_plt_sect_low =
1333 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1334 info->interp_plt_sect_high =
1335 info->interp_plt_sect_low
1336 + bfd_section_size (tmp_bfd, interp_sect);
1337 }
1338
1339 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1340 return 1;
1341 }
1342 }
1343
1344 /* Find the program interpreter; if not found, warn the user and drop
1345 into the old breakpoint at symbol code. */
1346 interp_name = find_program_interpreter ();
1347 if (interp_name)
1348 {
1349 CORE_ADDR load_addr = 0;
1350 int load_addr_found = 0;
1351 int loader_found_in_list = 0;
1352 struct so_list *so;
1353 bfd *tmp_bfd = NULL;
1354 struct target_ops *tmp_bfd_target;
1355 volatile struct gdb_exception ex;
1356
1357 sym_addr = 0;
1358
1359 /* Now we need to figure out where the dynamic linker was
1360 loaded so that we can load its symbols and place a breakpoint
1361 in the dynamic linker itself.
1362
1363 This address is stored on the stack. However, I've been unable
1364 to find any magic formula to find it for Solaris (appears to
1365 be trivial on GNU/Linux). Therefore, we have to try an alternate
1366 mechanism to find the dynamic linker's base address. */
1367
1368 TRY_CATCH (ex, RETURN_MASK_ALL)
1369 {
1370 tmp_bfd = solib_bfd_open (interp_name);
1371 }
1372 if (tmp_bfd == NULL)
1373 goto bkpt_at_symbol;
1374
1375 /* Now convert the TMP_BFD into a target. That way target, as
1376 well as BFD operations can be used. Note that closing the
1377 target will also close the underlying bfd. */
1378 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1379
1380 /* On a running target, we can get the dynamic linker's base
1381 address from the shared library table. */
1382 so = master_so_list ();
1383 while (so)
1384 {
1385 if (svr4_same_1 (interp_name, so->so_original_name))
1386 {
1387 load_addr_found = 1;
1388 loader_found_in_list = 1;
1389 load_addr = lm_addr_check (so, tmp_bfd);
1390 break;
1391 }
1392 so = so->next;
1393 }
1394
1395 /* If we were not able to find the base address of the loader
1396 from our so_list, then try using the AT_BASE auxilliary entry. */
1397 if (!load_addr_found)
1398 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
1399 {
1400 int addr_bit = gdbarch_addr_bit (target_gdbarch);
1401
1402 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
1403 that `+ load_addr' will overflow CORE_ADDR width not creating
1404 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
1405 GDB. */
1406
1407 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
1408 {
1409 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
1410 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
1411 tmp_bfd_target);
1412
1413 gdb_assert (load_addr < space_size);
1414
1415 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
1416 64bit ld.so with 32bit executable, it should not happen. */
1417
1418 if (tmp_entry_point < space_size
1419 && tmp_entry_point + load_addr >= space_size)
1420 load_addr -= space_size;
1421 }
1422
1423 load_addr_found = 1;
1424 }
1425
1426 /* Otherwise we find the dynamic linker's base address by examining
1427 the current pc (which should point at the entry point for the
1428 dynamic linker) and subtracting the offset of the entry point.
1429
1430 This is more fragile than the previous approaches, but is a good
1431 fallback method because it has actually been working well in
1432 most cases. */
1433 if (!load_addr_found)
1434 {
1435 struct regcache *regcache
1436 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1437
1438 load_addr = (regcache_read_pc (regcache)
1439 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1440 }
1441
1442 if (!loader_found_in_list)
1443 {
1444 info->debug_loader_name = xstrdup (interp_name);
1445 info->debug_loader_offset_p = 1;
1446 info->debug_loader_offset = load_addr;
1447 solib_add (NULL, from_tty, &current_target, auto_solib_add);
1448 }
1449
1450 /* Record the relocated start and end address of the dynamic linker
1451 text and plt section for svr4_in_dynsym_resolve_code. */
1452 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1453 if (interp_sect)
1454 {
1455 info->interp_text_sect_low =
1456 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1457 info->interp_text_sect_high =
1458 info->interp_text_sect_low
1459 + bfd_section_size (tmp_bfd, interp_sect);
1460 }
1461 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1462 if (interp_sect)
1463 {
1464 info->interp_plt_sect_low =
1465 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1466 info->interp_plt_sect_high =
1467 info->interp_plt_sect_low
1468 + bfd_section_size (tmp_bfd, interp_sect);
1469 }
1470
1471 /* Now try to set a breakpoint in the dynamic linker. */
1472 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1473 {
1474 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name_and_sec_flags,
1475 (void *) *bkpt_namep);
1476 if (sym_addr != 0)
1477 break;
1478 }
1479
1480 if (sym_addr != 0)
1481 /* Convert 'sym_addr' from a function pointer to an address.
1482 Because we pass tmp_bfd_target instead of the current
1483 target, this will always produce an unrelocated value. */
1484 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1485 sym_addr,
1486 tmp_bfd_target);
1487
1488 /* We're done with both the temporary bfd and target. Remember,
1489 closing the target closes the underlying bfd. */
1490 target_close (tmp_bfd_target, 0);
1491
1492 if (sym_addr != 0)
1493 {
1494 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
1495 xfree (interp_name);
1496 return 1;
1497 }
1498
1499 /* For whatever reason we couldn't set a breakpoint in the dynamic
1500 linker. Warn and drop into the old code. */
1501 bkpt_at_symbol:
1502 xfree (interp_name);
1503 warning (_("Unable to find dynamic linker breakpoint function.\n"
1504 "GDB will be unable to debug shared library initializers\n"
1505 "and track explicitly loaded dynamic code."));
1506 }
1507
1508 /* Scan through the lists of symbols, trying to look up the symbol and
1509 set a breakpoint there. Terminate loop when we/if we succeed. */
1510
1511 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1512 {
1513 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1514 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1515 {
1516 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1517 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1518 sym_addr,
1519 &current_target);
1520 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1521 return 1;
1522 }
1523 }
1524
1525 if (!current_inferior ()->attach_flag)
1526 {
1527 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1528 {
1529 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1530 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1531 {
1532 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1533 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1534 sym_addr,
1535 &current_target);
1536 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1537 return 1;
1538 }
1539 }
1540 }
1541 return 0;
1542 }
1543
1544 /* Implement the "special_symbol_handling" target_so_ops method. */
1545
1546 static void
1547 svr4_special_symbol_handling (void)
1548 {
1549 /* Nothing to do. */
1550 }
1551
1552 /* Read the ELF program headers from ABFD. Return the contents and
1553 set *PHDRS_SIZE to the size of the program headers. */
1554
1555 static gdb_byte *
1556 read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
1557 {
1558 Elf_Internal_Ehdr *ehdr;
1559 gdb_byte *buf;
1560
1561 ehdr = elf_elfheader (abfd);
1562
1563 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
1564 if (*phdrs_size == 0)
1565 return NULL;
1566
1567 buf = xmalloc (*phdrs_size);
1568 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
1569 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
1570 {
1571 xfree (buf);
1572 return NULL;
1573 }
1574
1575 return buf;
1576 }
1577
1578 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
1579 exec_bfd. Otherwise return 0.
1580
1581 We relocate all of the sections by the same amount. This
1582 behavior is mandated by recent editions of the System V ABI.
1583 According to the System V Application Binary Interface,
1584 Edition 4.1, page 5-5:
1585
1586 ... Though the system chooses virtual addresses for
1587 individual processes, it maintains the segments' relative
1588 positions. Because position-independent code uses relative
1589 addressesing between segments, the difference between
1590 virtual addresses in memory must match the difference
1591 between virtual addresses in the file. The difference
1592 between the virtual address of any segment in memory and
1593 the corresponding virtual address in the file is thus a
1594 single constant value for any one executable or shared
1595 object in a given process. This difference is the base
1596 address. One use of the base address is to relocate the
1597 memory image of the program during dynamic linking.
1598
1599 The same language also appears in Edition 4.0 of the System V
1600 ABI and is left unspecified in some of the earlier editions.
1601
1602 Decide if the objfile needs to be relocated. As indicated above, we will
1603 only be here when execution is stopped. But during attachment PC can be at
1604 arbitrary address therefore regcache_read_pc can be misleading (contrary to
1605 the auxv AT_ENTRY value). Moreover for executable with interpreter section
1606 regcache_read_pc would point to the interpreter and not the main executable.
1607
1608 So, to summarize, relocations are necessary when the start address obtained
1609 from the executable is different from the address in auxv AT_ENTRY entry.
1610
1611 [ The astute reader will note that we also test to make sure that
1612 the executable in question has the DYNAMIC flag set. It is my
1613 opinion that this test is unnecessary (undesirable even). It
1614 was added to avoid inadvertent relocation of an executable
1615 whose e_type member in the ELF header is not ET_DYN. There may
1616 be a time in the future when it is desirable to do relocations
1617 on other types of files as well in which case this condition
1618 should either be removed or modified to accomodate the new file
1619 type. - Kevin, Nov 2000. ] */
1620
1621 static int
1622 svr4_exec_displacement (CORE_ADDR *displacementp)
1623 {
1624 /* ENTRY_POINT is a possible function descriptor - before
1625 a call to gdbarch_convert_from_func_ptr_addr. */
1626 CORE_ADDR entry_point, displacement;
1627
1628 if (exec_bfd == NULL)
1629 return 0;
1630
1631 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
1632 being executed themselves and PIE (Position Independent Executable)
1633 executables are ET_DYN. */
1634
1635 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
1636 return 0;
1637
1638 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
1639 return 0;
1640
1641 displacement = entry_point - bfd_get_start_address (exec_bfd);
1642
1643 /* Verify the DISPLACEMENT candidate complies with the required page
1644 alignment. It is cheaper than the program headers comparison below. */
1645
1646 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1647 {
1648 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
1649
1650 /* p_align of PT_LOAD segments does not specify any alignment but
1651 only congruency of addresses:
1652 p_offset % p_align == p_vaddr % p_align
1653 Kernel is free to load the executable with lower alignment. */
1654
1655 if ((displacement & (elf->minpagesize - 1)) != 0)
1656 return 0;
1657 }
1658
1659 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
1660 comparing their program headers. If the program headers in the auxilliary
1661 vector do not match the program headers in the executable, then we are
1662 looking at a different file than the one used by the kernel - for
1663 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
1664
1665 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1666 {
1667 /* Be optimistic and clear OK only if GDB was able to verify the headers
1668 really do not match. */
1669 int phdrs_size, phdrs2_size, ok = 1;
1670 gdb_byte *buf, *buf2;
1671 int arch_size;
1672
1673 buf = read_program_header (-1, &phdrs_size, &arch_size);
1674 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
1675 if (buf != NULL && buf2 != NULL)
1676 {
1677 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1678
1679 /* We are dealing with three different addresses. EXEC_BFD
1680 represents current address in on-disk file. target memory content
1681 may be different from EXEC_BFD as the file may have been prelinked
1682 to a different address after the executable has been loaded.
1683 Moreover the address of placement in target memory can be
1684 different from what the program headers in target memory say -
1685 this is the goal of PIE.
1686
1687 Detected DISPLACEMENT covers both the offsets of PIE placement and
1688 possible new prelink performed after start of the program. Here
1689 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
1690 content offset for the verification purpose. */
1691
1692 if (phdrs_size != phdrs2_size
1693 || bfd_get_arch_size (exec_bfd) != arch_size)
1694 ok = 0;
1695 else if (arch_size == 32
1696 && phdrs_size >= sizeof (Elf32_External_Phdr)
1697 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
1698 {
1699 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1700 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1701 CORE_ADDR displacement = 0;
1702 int i;
1703
1704 /* DISPLACEMENT could be found more easily by the difference of
1705 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1706 already have enough information to compute that displacement
1707 with what we've read. */
1708
1709 for (i = 0; i < ehdr2->e_phnum; i++)
1710 if (phdr2[i].p_type == PT_LOAD)
1711 {
1712 Elf32_External_Phdr *phdrp;
1713 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1714 CORE_ADDR vaddr, paddr;
1715 CORE_ADDR displacement_vaddr = 0;
1716 CORE_ADDR displacement_paddr = 0;
1717
1718 phdrp = &((Elf32_External_Phdr *) buf)[i];
1719 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1720 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1721
1722 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1723 byte_order);
1724 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1725
1726 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1727 byte_order);
1728 displacement_paddr = paddr - phdr2[i].p_paddr;
1729
1730 if (displacement_vaddr == displacement_paddr)
1731 displacement = displacement_vaddr;
1732
1733 break;
1734 }
1735
1736 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1737
1738 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
1739 {
1740 Elf32_External_Phdr *phdrp;
1741 Elf32_External_Phdr *phdr2p;
1742 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1743 CORE_ADDR vaddr, paddr;
1744 asection *plt2_asect;
1745
1746 phdrp = &((Elf32_External_Phdr *) buf)[i];
1747 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1748 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1749 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
1750
1751 /* PT_GNU_STACK is an exception by being never relocated by
1752 prelink as its addresses are always zero. */
1753
1754 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1755 continue;
1756
1757 /* Check also other adjustment combinations - PR 11786. */
1758
1759 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1760 byte_order);
1761 vaddr -= displacement;
1762 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
1763
1764 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1765 byte_order);
1766 paddr -= displacement;
1767 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
1768
1769 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1770 continue;
1771
1772 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
1773 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
1774 if (plt2_asect)
1775 {
1776 int content2;
1777 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
1778 CORE_ADDR filesz;
1779
1780 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
1781 & SEC_HAS_CONTENTS) != 0;
1782
1783 filesz = extract_unsigned_integer (buf_filesz_p, 4,
1784 byte_order);
1785
1786 /* PLT2_ASECT is from on-disk file (exec_bfd) while
1787 FILESZ is from the in-memory image. */
1788 if (content2)
1789 filesz += bfd_get_section_size (plt2_asect);
1790 else
1791 filesz -= bfd_get_section_size (plt2_asect);
1792
1793 store_unsigned_integer (buf_filesz_p, 4, byte_order,
1794 filesz);
1795
1796 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1797 continue;
1798 }
1799
1800 ok = 0;
1801 break;
1802 }
1803 }
1804 else if (arch_size == 64
1805 && phdrs_size >= sizeof (Elf64_External_Phdr)
1806 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
1807 {
1808 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1809 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1810 CORE_ADDR displacement = 0;
1811 int i;
1812
1813 /* DISPLACEMENT could be found more easily by the difference of
1814 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1815 already have enough information to compute that displacement
1816 with what we've read. */
1817
1818 for (i = 0; i < ehdr2->e_phnum; i++)
1819 if (phdr2[i].p_type == PT_LOAD)
1820 {
1821 Elf64_External_Phdr *phdrp;
1822 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1823 CORE_ADDR vaddr, paddr;
1824 CORE_ADDR displacement_vaddr = 0;
1825 CORE_ADDR displacement_paddr = 0;
1826
1827 phdrp = &((Elf64_External_Phdr *) buf)[i];
1828 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1829 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1830
1831 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
1832 byte_order);
1833 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1834
1835 paddr = extract_unsigned_integer (buf_paddr_p, 8,
1836 byte_order);
1837 displacement_paddr = paddr - phdr2[i].p_paddr;
1838
1839 if (displacement_vaddr == displacement_paddr)
1840 displacement = displacement_vaddr;
1841
1842 break;
1843 }
1844
1845 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1846
1847 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
1848 {
1849 Elf64_External_Phdr *phdrp;
1850 Elf64_External_Phdr *phdr2p;
1851 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1852 CORE_ADDR vaddr, paddr;
1853 asection *plt2_asect;
1854
1855 phdrp = &((Elf64_External_Phdr *) buf)[i];
1856 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1857 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1858 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
1859
1860 /* PT_GNU_STACK is an exception by being never relocated by
1861 prelink as its addresses are always zero. */
1862
1863 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1864 continue;
1865
1866 /* Check also other adjustment combinations - PR 11786. */
1867
1868 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
1869 byte_order);
1870 vaddr -= displacement;
1871 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
1872
1873 paddr = extract_unsigned_integer (buf_paddr_p, 8,
1874 byte_order);
1875 paddr -= displacement;
1876 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
1877
1878 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1879 continue;
1880
1881 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
1882 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
1883 if (plt2_asect)
1884 {
1885 int content2;
1886 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
1887 CORE_ADDR filesz;
1888
1889 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
1890 & SEC_HAS_CONTENTS) != 0;
1891
1892 filesz = extract_unsigned_integer (buf_filesz_p, 8,
1893 byte_order);
1894
1895 /* PLT2_ASECT is from on-disk file (exec_bfd) while
1896 FILESZ is from the in-memory image. */
1897 if (content2)
1898 filesz += bfd_get_section_size (plt2_asect);
1899 else
1900 filesz -= bfd_get_section_size (plt2_asect);
1901
1902 store_unsigned_integer (buf_filesz_p, 8, byte_order,
1903 filesz);
1904
1905 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1906 continue;
1907 }
1908
1909 ok = 0;
1910 break;
1911 }
1912 }
1913 else
1914 ok = 0;
1915 }
1916
1917 xfree (buf);
1918 xfree (buf2);
1919
1920 if (!ok)
1921 return 0;
1922 }
1923
1924 if (info_verbose)
1925 {
1926 /* It can be printed repeatedly as there is no easy way to check
1927 the executable symbols/file has been already relocated to
1928 displacement. */
1929
1930 printf_unfiltered (_("Using PIE (Position Independent Executable) "
1931 "displacement %s for \"%s\".\n"),
1932 paddress (target_gdbarch, displacement),
1933 bfd_get_filename (exec_bfd));
1934 }
1935
1936 *displacementp = displacement;
1937 return 1;
1938 }
1939
1940 /* Relocate the main executable. This function should be called upon
1941 stopping the inferior process at the entry point to the program.
1942 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
1943 different, the main executable is relocated by the proper amount. */
1944
1945 static void
1946 svr4_relocate_main_executable (void)
1947 {
1948 CORE_ADDR displacement;
1949
1950 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
1951 probably contains the offsets computed using the PIE displacement
1952 from the previous run, which of course are irrelevant for this run.
1953 So we need to determine the new PIE displacement and recompute the
1954 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
1955 already contains pre-computed offsets.
1956
1957 If we cannot compute the PIE displacement, either:
1958
1959 - The executable is not PIE.
1960
1961 - SYMFILE_OBJFILE does not match the executable started in the target.
1962 This can happen for main executable symbols loaded at the host while
1963 `ld.so --ld-args main-executable' is loaded in the target.
1964
1965 Then we leave the section offsets untouched and use them as is for
1966 this run. Either:
1967
1968 - These section offsets were properly reset earlier, and thus
1969 already contain the correct values. This can happen for instance
1970 when reconnecting via the remote protocol to a target that supports
1971 the `qOffsets' packet.
1972
1973 - The section offsets were not reset earlier, and the best we can
1974 hope is that the old offsets are still applicable to the new run. */
1975
1976 if (! svr4_exec_displacement (&displacement))
1977 return;
1978
1979 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
1980 addresses. */
1981
1982 if (symfile_objfile)
1983 {
1984 struct section_offsets *new_offsets;
1985 int i;
1986
1987 new_offsets = alloca (symfile_objfile->num_sections
1988 * sizeof (*new_offsets));
1989
1990 for (i = 0; i < symfile_objfile->num_sections; i++)
1991 new_offsets->offsets[i] = displacement;
1992
1993 objfile_relocate (symfile_objfile, new_offsets);
1994 }
1995 else if (exec_bfd)
1996 {
1997 asection *asect;
1998
1999 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2000 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2001 (bfd_section_vma (exec_bfd, asect)
2002 + displacement));
2003 }
2004 }
2005
2006 /* Implement the "create_inferior_hook" target_solib_ops method.
2007
2008 For SVR4 executables, this first instruction is either the first
2009 instruction in the dynamic linker (for dynamically linked
2010 executables) or the instruction at "start" for statically linked
2011 executables. For dynamically linked executables, the system
2012 first exec's /lib/libc.so.N, which contains the dynamic linker,
2013 and starts it running. The dynamic linker maps in any needed
2014 shared libraries, maps in the actual user executable, and then
2015 jumps to "start" in the user executable.
2016
2017 We can arrange to cooperate with the dynamic linker to discover the
2018 names of shared libraries that are dynamically linked, and the base
2019 addresses to which they are linked.
2020
2021 This function is responsible for discovering those names and
2022 addresses, and saving sufficient information about them to allow
2023 their symbols to be read at a later time.
2024
2025 FIXME
2026
2027 Between enable_break() and disable_break(), this code does not
2028 properly handle hitting breakpoints which the user might have
2029 set in the startup code or in the dynamic linker itself. Proper
2030 handling will probably have to wait until the implementation is
2031 changed to use the "breakpoint handler function" method.
2032
2033 Also, what if child has exit()ed? Must exit loop somehow. */
2034
2035 static void
2036 svr4_solib_create_inferior_hook (int from_tty)
2037 {
2038 #if defined(_SCO_DS)
2039 struct inferior *inf;
2040 struct thread_info *tp;
2041 #endif /* defined(_SCO_DS) */
2042 struct svr4_info *info;
2043
2044 info = get_svr4_info ();
2045
2046 /* Relocate the main executable if necessary. */
2047 svr4_relocate_main_executable ();
2048
2049 /* No point setting a breakpoint in the dynamic linker if we can't
2050 hit it (e.g., a core file, or a trace file). */
2051 if (!target_has_execution)
2052 return;
2053
2054 if (!svr4_have_link_map_offsets ())
2055 return;
2056
2057 if (!enable_break (info, from_tty))
2058 return;
2059
2060 #if defined(_SCO_DS)
2061 /* SCO needs the loop below, other systems should be using the
2062 special shared library breakpoints and the shared library breakpoint
2063 service routine.
2064
2065 Now run the target. It will eventually hit the breakpoint, at
2066 which point all of the libraries will have been mapped in and we
2067 can go groveling around in the dynamic linker structures to find
2068 out what we need to know about them. */
2069
2070 inf = current_inferior ();
2071 tp = inferior_thread ();
2072
2073 clear_proceed_status ();
2074 inf->control.stop_soon = STOP_QUIETLY;
2075 tp->suspend.stop_signal = TARGET_SIGNAL_0;
2076 do
2077 {
2078 target_resume (pid_to_ptid (-1), 0, tp->suspend.stop_signal);
2079 wait_for_inferior ();
2080 }
2081 while (tp->suspend.stop_signal != TARGET_SIGNAL_TRAP);
2082 inf->control.stop_soon = NO_STOP_QUIETLY;
2083 #endif /* defined(_SCO_DS) */
2084 }
2085
2086 static void
2087 svr4_clear_solib (void)
2088 {
2089 struct svr4_info *info;
2090
2091 info = get_svr4_info ();
2092 info->debug_base = 0;
2093 info->debug_loader_offset_p = 0;
2094 info->debug_loader_offset = 0;
2095 xfree (info->debug_loader_name);
2096 info->debug_loader_name = NULL;
2097 }
2098
2099 /* Clear any bits of ADDR that wouldn't fit in a target-format
2100 data pointer. "Data pointer" here refers to whatever sort of
2101 address the dynamic linker uses to manage its sections. At the
2102 moment, we don't support shared libraries on any processors where
2103 code and data pointers are different sizes.
2104
2105 This isn't really the right solution. What we really need here is
2106 a way to do arithmetic on CORE_ADDR values that respects the
2107 natural pointer/address correspondence. (For example, on the MIPS,
2108 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2109 sign-extend the value. There, simply truncating the bits above
2110 gdbarch_ptr_bit, as we do below, is no good.) This should probably
2111 be a new gdbarch method or something. */
2112 static CORE_ADDR
2113 svr4_truncate_ptr (CORE_ADDR addr)
2114 {
2115 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
2116 /* We don't need to truncate anything, and the bit twiddling below
2117 will fail due to overflow problems. */
2118 return addr;
2119 else
2120 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
2121 }
2122
2123
2124 static void
2125 svr4_relocate_section_addresses (struct so_list *so,
2126 struct target_section *sec)
2127 {
2128 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so,
2129 sec->bfd));
2130 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so,
2131 sec->bfd));
2132 }
2133 \f
2134
2135 /* Architecture-specific operations. */
2136
2137 /* Per-architecture data key. */
2138 static struct gdbarch_data *solib_svr4_data;
2139
2140 struct solib_svr4_ops
2141 {
2142 /* Return a description of the layout of `struct link_map'. */
2143 struct link_map_offsets *(*fetch_link_map_offsets)(void);
2144 };
2145
2146 /* Return a default for the architecture-specific operations. */
2147
2148 static void *
2149 solib_svr4_init (struct obstack *obstack)
2150 {
2151 struct solib_svr4_ops *ops;
2152
2153 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
2154 ops->fetch_link_map_offsets = NULL;
2155 return ops;
2156 }
2157
2158 /* Set the architecture-specific `struct link_map_offsets' fetcher for
2159 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
2160
2161 void
2162 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
2163 struct link_map_offsets *(*flmo) (void))
2164 {
2165 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
2166
2167 ops->fetch_link_map_offsets = flmo;
2168
2169 set_solib_ops (gdbarch, &svr4_so_ops);
2170 }
2171
2172 /* Fetch a link_map_offsets structure using the architecture-specific
2173 `struct link_map_offsets' fetcher. */
2174
2175 static struct link_map_offsets *
2176 svr4_fetch_link_map_offsets (void)
2177 {
2178 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
2179
2180 gdb_assert (ops->fetch_link_map_offsets);
2181 return ops->fetch_link_map_offsets ();
2182 }
2183
2184 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
2185
2186 static int
2187 svr4_have_link_map_offsets (void)
2188 {
2189 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
2190
2191 return (ops->fetch_link_map_offsets != NULL);
2192 }
2193 \f
2194
2195 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
2196 `struct r_debug' and a `struct link_map' that are binary compatible
2197 with the origional SVR4 implementation. */
2198
2199 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2200 for an ILP32 SVR4 system. */
2201
2202 struct link_map_offsets *
2203 svr4_ilp32_fetch_link_map_offsets (void)
2204 {
2205 static struct link_map_offsets lmo;
2206 static struct link_map_offsets *lmp = NULL;
2207
2208 if (lmp == NULL)
2209 {
2210 lmp = &lmo;
2211
2212 lmo.r_version_offset = 0;
2213 lmo.r_version_size = 4;
2214 lmo.r_map_offset = 4;
2215 lmo.r_brk_offset = 8;
2216 lmo.r_ldsomap_offset = 20;
2217
2218 /* Everything we need is in the first 20 bytes. */
2219 lmo.link_map_size = 20;
2220 lmo.l_addr_offset = 0;
2221 lmo.l_name_offset = 4;
2222 lmo.l_ld_offset = 8;
2223 lmo.l_next_offset = 12;
2224 lmo.l_prev_offset = 16;
2225 }
2226
2227 return lmp;
2228 }
2229
2230 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2231 for an LP64 SVR4 system. */
2232
2233 struct link_map_offsets *
2234 svr4_lp64_fetch_link_map_offsets (void)
2235 {
2236 static struct link_map_offsets lmo;
2237 static struct link_map_offsets *lmp = NULL;
2238
2239 if (lmp == NULL)
2240 {
2241 lmp = &lmo;
2242
2243 lmo.r_version_offset = 0;
2244 lmo.r_version_size = 4;
2245 lmo.r_map_offset = 8;
2246 lmo.r_brk_offset = 16;
2247 lmo.r_ldsomap_offset = 40;
2248
2249 /* Everything we need is in the first 40 bytes. */
2250 lmo.link_map_size = 40;
2251 lmo.l_addr_offset = 0;
2252 lmo.l_name_offset = 8;
2253 lmo.l_ld_offset = 16;
2254 lmo.l_next_offset = 24;
2255 lmo.l_prev_offset = 32;
2256 }
2257
2258 return lmp;
2259 }
2260 \f
2261
2262 struct target_so_ops svr4_so_ops;
2263
2264 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
2265 different rule for symbol lookup. The lookup begins here in the DSO, not in
2266 the main executable. */
2267
2268 static struct symbol *
2269 elf_lookup_lib_symbol (const struct objfile *objfile,
2270 const char *name,
2271 const domain_enum domain)
2272 {
2273 bfd *abfd;
2274
2275 if (objfile == symfile_objfile)
2276 abfd = exec_bfd;
2277 else
2278 {
2279 /* OBJFILE should have been passed as the non-debug one. */
2280 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
2281
2282 abfd = objfile->obfd;
2283 }
2284
2285 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
2286 return NULL;
2287
2288 return lookup_global_symbol_from_objfile (objfile, name, domain);
2289 }
2290
2291 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
2292
2293 void
2294 _initialize_svr4_solib (void)
2295 {
2296 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
2297 solib_svr4_pspace_data
2298 = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
2299
2300 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
2301 svr4_so_ops.free_so = svr4_free_so;
2302 svr4_so_ops.clear_solib = svr4_clear_solib;
2303 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
2304 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
2305 svr4_so_ops.current_sos = svr4_current_sos;
2306 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
2307 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
2308 svr4_so_ops.bfd_open = solib_bfd_open;
2309 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
2310 svr4_so_ops.same = svr4_same;
2311 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
2312 }
This page took 0.0772040000000001 seconds and 4 git commands to generate.