* target.h (struct section_table): Rename to ...
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23
24 #include "elf/external.h"
25 #include "elf/common.h"
26 #include "elf/mips.h"
27
28 #include "symtab.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbcore.h"
33 #include "target.h"
34 #include "inferior.h"
35 #include "regcache.h"
36 #include "gdbthread.h"
37 #include "observer.h"
38
39 #include "gdb_assert.h"
40
41 #include "solist.h"
42 #include "solib.h"
43 #include "solib-svr4.h"
44
45 #include "bfd-target.h"
46 #include "elf-bfd.h"
47 #include "exec.h"
48 #include "auxv.h"
49 #include "exceptions.h"
50
51 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
52 static int svr4_have_link_map_offsets (void);
53
54 /* Link map info to include in an allocated so_list entry */
55
56 struct lm_info
57 {
58 /* Pointer to copy of link map from inferior. The type is char *
59 rather than void *, so that we may use byte offsets to find the
60 various fields without the need for a cast. */
61 gdb_byte *lm;
62
63 /* Amount by which addresses in the binary should be relocated to
64 match the inferior. This could most often be taken directly
65 from lm, but when prelinking is involved and the prelink base
66 address changes, we may need a different offset, we want to
67 warn about the difference and compute it only once. */
68 CORE_ADDR l_addr;
69
70 /* The target location of lm. */
71 CORE_ADDR lm_addr;
72 };
73
74 /* On SVR4 systems, a list of symbols in the dynamic linker where
75 GDB can try to place a breakpoint to monitor shared library
76 events.
77
78 If none of these symbols are found, or other errors occur, then
79 SVR4 systems will fall back to using a symbol as the "startup
80 mapping complete" breakpoint address. */
81
82 static char *solib_break_names[] =
83 {
84 "r_debug_state",
85 "_r_debug_state",
86 "_dl_debug_state",
87 "rtld_db_dlactivity",
88 "_rtld_debug_state",
89
90 NULL
91 };
92
93 static char *bkpt_names[] =
94 {
95 "_start",
96 "__start",
97 "main",
98 NULL
99 };
100
101 static char *main_name_list[] =
102 {
103 "main_$main",
104 NULL
105 };
106
107 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
108 the same shared library. */
109
110 static int
111 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
112 {
113 if (strcmp (gdb_so_name, inferior_so_name) == 0)
114 return 1;
115
116 /* On Solaris, when starting inferior we think that dynamic linker is
117 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
118 contains /lib/ld.so.1. Sometimes one file is a link to another, but
119 sometimes they have identical content, but are not linked to each
120 other. We don't restrict this check for Solaris, but the chances
121 of running into this situation elsewhere are very low. */
122 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
123 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
124 return 1;
125
126 /* Similarly, we observed the same issue with sparc64, but with
127 different locations. */
128 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
129 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
130 return 1;
131
132 return 0;
133 }
134
135 static int
136 svr4_same (struct so_list *gdb, struct so_list *inferior)
137 {
138 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
139 }
140
141 /* link map access functions */
142
143 static CORE_ADDR
144 LM_ADDR_FROM_LINK_MAP (struct so_list *so)
145 {
146 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
147 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
148
149 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
150 ptr_type);
151 }
152
153 static int
154 HAS_LM_DYNAMIC_FROM_LINK_MAP (void)
155 {
156 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
157
158 return lmo->l_ld_offset >= 0;
159 }
160
161 static CORE_ADDR
162 LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
163 {
164 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
165 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
166
167 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
168 ptr_type);
169 }
170
171 static CORE_ADDR
172 LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
173 {
174 if (so->lm_info->l_addr == (CORE_ADDR)-1)
175 {
176 struct bfd_section *dyninfo_sect;
177 CORE_ADDR l_addr, l_dynaddr, dynaddr, align = 0x1000;
178
179 l_addr = LM_ADDR_FROM_LINK_MAP (so);
180
181 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
182 goto set_addr;
183
184 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
185
186 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
187 if (dyninfo_sect == NULL)
188 goto set_addr;
189
190 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
191
192 if (dynaddr + l_addr != l_dynaddr)
193 {
194 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
195 {
196 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
197 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
198 int i;
199
200 align = 1;
201
202 for (i = 0; i < ehdr->e_phnum; i++)
203 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
204 align = phdr[i].p_align;
205 }
206
207 /* Turn it into a mask. */
208 align--;
209
210 /* If the changes match the alignment requirements, we
211 assume we're using a core file that was generated by the
212 same binary, just prelinked with a different base offset.
213 If it doesn't match, we may have a different binary, the
214 same binary with the dynamic table loaded at an unrelated
215 location, or anything, really. To avoid regressions,
216 don't adjust the base offset in the latter case, although
217 odds are that, if things really changed, debugging won't
218 quite work. */
219 if ((l_addr & align) == ((l_dynaddr - dynaddr) & align))
220 {
221 l_addr = l_dynaddr - dynaddr;
222
223 warning (_(".dynamic section for \"%s\" "
224 "is not at the expected address"), so->so_name);
225 warning (_("difference appears to be caused by prelink, "
226 "adjusting expectations"));
227 }
228 else
229 warning (_(".dynamic section for \"%s\" "
230 "is not at the expected address "
231 "(wrong library or version mismatch?)"), so->so_name);
232 }
233
234 set_addr:
235 so->lm_info->l_addr = l_addr;
236 }
237
238 return so->lm_info->l_addr;
239 }
240
241 static CORE_ADDR
242 LM_NEXT (struct so_list *so)
243 {
244 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
245 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
246
247 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
248 ptr_type);
249 }
250
251 static CORE_ADDR
252 LM_NAME (struct so_list *so)
253 {
254 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
255 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
256
257 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
258 ptr_type);
259 }
260
261 static int
262 IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
263 {
264 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
265 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
266
267 /* Assume that everything is a library if the dynamic loader was loaded
268 late by a static executable. */
269 if (bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
270 return 0;
271
272 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
273 ptr_type) == 0;
274 }
275
276 /* Per-inferior SVR4 specific data. */
277
278 struct svr4_info
279 {
280 int pid;
281
282 CORE_ADDR debug_base; /* Base of dynamic linker structures */
283
284 /* Validity flag for debug_loader_offset. */
285 int debug_loader_offset_p;
286
287 /* Load address for the dynamic linker, inferred. */
288 CORE_ADDR debug_loader_offset;
289
290 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
291 char *debug_loader_name;
292
293 /* Load map address for the main executable. */
294 CORE_ADDR main_lm_addr;
295 };
296
297 /* List of known processes using solib-svr4 shared libraries, storing
298 the required bookkeeping for each. */
299
300 typedef struct svr4_info *svr4_info_p;
301 DEF_VEC_P(svr4_info_p);
302 VEC(svr4_info_p) *svr4_info = NULL;
303
304 /* Get svr4 data for inferior PID (target id). If none is found yet,
305 add it now. This function always returns a valid object. */
306
307 struct svr4_info *
308 get_svr4_info (int pid)
309 {
310 int ix;
311 struct svr4_info *it;
312
313 gdb_assert (pid != 0);
314
315 for (ix = 0; VEC_iterate (svr4_info_p, svr4_info, ix, it); ++ix)
316 {
317 if (it->pid == pid)
318 return it;
319 }
320
321 it = XZALLOC (struct svr4_info);
322 it->pid = pid;
323
324 VEC_safe_push (svr4_info_p, svr4_info, it);
325
326 return it;
327 }
328
329 /* Get rid of any svr4 related bookkeeping for inferior PID (target
330 id). */
331
332 static void
333 remove_svr4_info (int pid)
334 {
335 int ix;
336 struct svr4_info *it;
337
338 for (ix = 0; VEC_iterate (svr4_info_p, svr4_info, ix, it); ++ix)
339 {
340 if (it->pid == pid)
341 {
342 VEC_unordered_remove (svr4_info_p, svr4_info, ix);
343 return;
344 }
345 }
346 }
347
348 /* This is an "inferior_exit" observer. Inferior PID (target id) is
349 being removed from the inferior list, because it exited, was
350 killed, detached, or we just dropped the connection to the debug
351 interface --- discard any solib-svr4 related bookkeeping for this
352 inferior. */
353
354 static void
355 solib_svr4_inferior_exit (int pid)
356 {
357 remove_svr4_info (pid);
358 }
359
360 /* Local function prototypes */
361
362 static int match_main (char *);
363
364 static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
365
366 /*
367
368 LOCAL FUNCTION
369
370 bfd_lookup_symbol -- lookup the value for a specific symbol
371
372 SYNOPSIS
373
374 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
375
376 DESCRIPTION
377
378 An expensive way to lookup the value of a single symbol for
379 bfd's that are only temporary anyway. This is used by the
380 shared library support to find the address of the debugger
381 notification routine in the shared library.
382
383 The returned symbol may be in a code or data section; functions
384 will normally be in a code section, but may be in a data section
385 if this architecture uses function descriptors.
386
387 Note that 0 is specifically allowed as an error return (no
388 such symbol).
389 */
390
391 static CORE_ADDR
392 bfd_lookup_symbol (bfd *abfd, char *symname)
393 {
394 long storage_needed;
395 asymbol *sym;
396 asymbol **symbol_table;
397 unsigned int number_of_symbols;
398 unsigned int i;
399 struct cleanup *back_to;
400 CORE_ADDR symaddr = 0;
401
402 storage_needed = bfd_get_symtab_upper_bound (abfd);
403
404 if (storage_needed > 0)
405 {
406 symbol_table = (asymbol **) xmalloc (storage_needed);
407 back_to = make_cleanup (xfree, symbol_table);
408 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
409
410 for (i = 0; i < number_of_symbols; i++)
411 {
412 sym = *symbol_table++;
413 if (strcmp (sym->name, symname) == 0
414 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
415 {
416 /* BFD symbols are section relative. */
417 symaddr = sym->value + sym->section->vma;
418 break;
419 }
420 }
421 do_cleanups (back_to);
422 }
423
424 if (symaddr)
425 return symaddr;
426
427 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
428 have to check the dynamic string table too. */
429
430 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
431
432 if (storage_needed > 0)
433 {
434 symbol_table = (asymbol **) xmalloc (storage_needed);
435 back_to = make_cleanup (xfree, symbol_table);
436 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
437
438 for (i = 0; i < number_of_symbols; i++)
439 {
440 sym = *symbol_table++;
441
442 if (strcmp (sym->name, symname) == 0
443 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
444 {
445 /* BFD symbols are section relative. */
446 symaddr = sym->value + sym->section->vma;
447 break;
448 }
449 }
450 do_cleanups (back_to);
451 }
452
453 return symaddr;
454 }
455
456
457 /* Read program header TYPE from inferior memory. The header is found
458 by scanning the OS auxillary vector.
459
460 Return a pointer to allocated memory holding the program header contents,
461 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
462 size of those contents is returned to P_SECT_SIZE. Likewise, the target
463 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
464
465 static gdb_byte *
466 read_program_header (int type, int *p_sect_size, int *p_arch_size)
467 {
468 CORE_ADDR at_phdr, at_phent, at_phnum;
469 int arch_size, sect_size;
470 CORE_ADDR sect_addr;
471 gdb_byte *buf;
472
473 /* Get required auxv elements from target. */
474 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
475 return 0;
476 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
477 return 0;
478 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
479 return 0;
480 if (!at_phdr || !at_phnum)
481 return 0;
482
483 /* Determine ELF architecture type. */
484 if (at_phent == sizeof (Elf32_External_Phdr))
485 arch_size = 32;
486 else if (at_phent == sizeof (Elf64_External_Phdr))
487 arch_size = 64;
488 else
489 return 0;
490
491 /* Find .dynamic section via the PT_DYNAMIC PHDR. */
492 if (arch_size == 32)
493 {
494 Elf32_External_Phdr phdr;
495 int i;
496
497 /* Search for requested PHDR. */
498 for (i = 0; i < at_phnum; i++)
499 {
500 if (target_read_memory (at_phdr + i * sizeof (phdr),
501 (gdb_byte *)&phdr, sizeof (phdr)))
502 return 0;
503
504 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type, 4) == type)
505 break;
506 }
507
508 if (i == at_phnum)
509 return 0;
510
511 /* Retrieve address and size. */
512 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr, 4);
513 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz, 4);
514 }
515 else
516 {
517 Elf64_External_Phdr phdr;
518 int i;
519
520 /* Search for requested PHDR. */
521 for (i = 0; i < at_phnum; i++)
522 {
523 if (target_read_memory (at_phdr + i * sizeof (phdr),
524 (gdb_byte *)&phdr, sizeof (phdr)))
525 return 0;
526
527 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type, 4) == type)
528 break;
529 }
530
531 if (i == at_phnum)
532 return 0;
533
534 /* Retrieve address and size. */
535 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr, 8);
536 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz, 8);
537 }
538
539 /* Read in requested program header. */
540 buf = xmalloc (sect_size);
541 if (target_read_memory (sect_addr, buf, sect_size))
542 {
543 xfree (buf);
544 return NULL;
545 }
546
547 if (p_arch_size)
548 *p_arch_size = arch_size;
549 if (p_sect_size)
550 *p_sect_size = sect_size;
551
552 return buf;
553 }
554
555
556 /* Return program interpreter string. */
557 static gdb_byte *
558 find_program_interpreter (void)
559 {
560 gdb_byte *buf = NULL;
561
562 /* If we have an exec_bfd, use its section table. */
563 if (exec_bfd
564 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
565 {
566 struct bfd_section *interp_sect;
567
568 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
569 if (interp_sect != NULL)
570 {
571 CORE_ADDR sect_addr = bfd_section_vma (exec_bfd, interp_sect);
572 int sect_size = bfd_section_size (exec_bfd, interp_sect);
573
574 buf = xmalloc (sect_size);
575 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
576 }
577 }
578
579 /* If we didn't find it, use the target auxillary vector. */
580 if (!buf)
581 buf = read_program_header (PT_INTERP, NULL, NULL);
582
583 return buf;
584 }
585
586
587 /* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
588 returned and the corresponding PTR is set. */
589
590 static int
591 scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
592 {
593 int arch_size, step, sect_size;
594 long dyn_tag;
595 CORE_ADDR dyn_ptr, dyn_addr;
596 gdb_byte *bufend, *bufstart, *buf;
597 Elf32_External_Dyn *x_dynp_32;
598 Elf64_External_Dyn *x_dynp_64;
599 struct bfd_section *sect;
600
601 if (abfd == NULL)
602 return 0;
603 arch_size = bfd_get_arch_size (abfd);
604 if (arch_size == -1)
605 return 0;
606
607 /* Find the start address of the .dynamic section. */
608 sect = bfd_get_section_by_name (abfd, ".dynamic");
609 if (sect == NULL)
610 return 0;
611 dyn_addr = bfd_section_vma (abfd, sect);
612
613 /* Read in .dynamic from the BFD. We will get the actual value
614 from memory later. */
615 sect_size = bfd_section_size (abfd, sect);
616 buf = bufstart = alloca (sect_size);
617 if (!bfd_get_section_contents (abfd, sect,
618 buf, 0, sect_size))
619 return 0;
620
621 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
622 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
623 : sizeof (Elf64_External_Dyn);
624 for (bufend = buf + sect_size;
625 buf < bufend;
626 buf += step)
627 {
628 if (arch_size == 32)
629 {
630 x_dynp_32 = (Elf32_External_Dyn *) buf;
631 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
632 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
633 }
634 else
635 {
636 x_dynp_64 = (Elf64_External_Dyn *) buf;
637 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
638 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
639 }
640 if (dyn_tag == DT_NULL)
641 return 0;
642 if (dyn_tag == dyntag)
643 {
644 /* If requested, try to read the runtime value of this .dynamic
645 entry. */
646 if (ptr)
647 {
648 struct type *ptr_type;
649 gdb_byte ptr_buf[8];
650 CORE_ADDR ptr_addr;
651
652 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
653 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
654 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
655 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
656 *ptr = dyn_ptr;
657 }
658 return 1;
659 }
660 }
661
662 return 0;
663 }
664
665 /* Scan for DYNTAG in .dynamic section of the target's main executable,
666 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
667 returned and the corresponding PTR is set. */
668
669 static int
670 scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
671 {
672 int sect_size, arch_size, step;
673 long dyn_tag;
674 CORE_ADDR dyn_ptr;
675 gdb_byte *bufend, *bufstart, *buf;
676
677 /* Read in .dynamic section. */
678 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
679 if (!buf)
680 return 0;
681
682 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
683 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
684 : sizeof (Elf64_External_Dyn);
685 for (bufend = buf + sect_size;
686 buf < bufend;
687 buf += step)
688 {
689 if (arch_size == 32)
690 {
691 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
692 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag, 4);
693 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr, 4);
694 }
695 else
696 {
697 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
698 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag, 8);
699 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr, 8);
700 }
701 if (dyn_tag == DT_NULL)
702 break;
703
704 if (dyn_tag == dyntag)
705 {
706 if (ptr)
707 *ptr = dyn_ptr;
708
709 xfree (bufstart);
710 return 1;
711 }
712 }
713
714 xfree (bufstart);
715 return 0;
716 }
717
718
719 /*
720
721 LOCAL FUNCTION
722
723 elf_locate_base -- locate the base address of dynamic linker structs
724 for SVR4 elf targets.
725
726 SYNOPSIS
727
728 CORE_ADDR elf_locate_base (void)
729
730 DESCRIPTION
731
732 For SVR4 elf targets the address of the dynamic linker's runtime
733 structure is contained within the dynamic info section in the
734 executable file. The dynamic section is also mapped into the
735 inferior address space. Because the runtime loader fills in the
736 real address before starting the inferior, we have to read in the
737 dynamic info section from the inferior address space.
738 If there are any errors while trying to find the address, we
739 silently return 0, otherwise the found address is returned.
740
741 */
742
743 static CORE_ADDR
744 elf_locate_base (void)
745 {
746 struct minimal_symbol *msymbol;
747 CORE_ADDR dyn_ptr;
748
749 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
750 instead of DT_DEBUG, although they sometimes contain an unused
751 DT_DEBUG. */
752 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
753 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
754 {
755 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
756 gdb_byte *pbuf;
757 int pbuf_size = TYPE_LENGTH (ptr_type);
758 pbuf = alloca (pbuf_size);
759 /* DT_MIPS_RLD_MAP contains a pointer to the address
760 of the dynamic link structure. */
761 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
762 return 0;
763 return extract_typed_address (pbuf, ptr_type);
764 }
765
766 /* Find DT_DEBUG. */
767 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
768 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
769 return dyn_ptr;
770
771 /* This may be a static executable. Look for the symbol
772 conventionally named _r_debug, as a last resort. */
773 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
774 if (msymbol != NULL)
775 return SYMBOL_VALUE_ADDRESS (msymbol);
776
777 /* DT_DEBUG entry not found. */
778 return 0;
779 }
780
781 /*
782
783 LOCAL FUNCTION
784
785 locate_base -- locate the base address of dynamic linker structs
786
787 SYNOPSIS
788
789 CORE_ADDR locate_base (struct svr4_info *)
790
791 DESCRIPTION
792
793 For both the SunOS and SVR4 shared library implementations, if the
794 inferior executable has been linked dynamically, there is a single
795 address somewhere in the inferior's data space which is the key to
796 locating all of the dynamic linker's runtime structures. This
797 address is the value of the debug base symbol. The job of this
798 function is to find and return that address, or to return 0 if there
799 is no such address (the executable is statically linked for example).
800
801 For SunOS, the job is almost trivial, since the dynamic linker and
802 all of it's structures are statically linked to the executable at
803 link time. Thus the symbol for the address we are looking for has
804 already been added to the minimal symbol table for the executable's
805 objfile at the time the symbol file's symbols were read, and all we
806 have to do is look it up there. Note that we explicitly do NOT want
807 to find the copies in the shared library.
808
809 The SVR4 version is a bit more complicated because the address
810 is contained somewhere in the dynamic info section. We have to go
811 to a lot more work to discover the address of the debug base symbol.
812 Because of this complexity, we cache the value we find and return that
813 value on subsequent invocations. Note there is no copy in the
814 executable symbol tables.
815
816 */
817
818 static CORE_ADDR
819 locate_base (struct svr4_info *info)
820 {
821 /* Check to see if we have a currently valid address, and if so, avoid
822 doing all this work again and just return the cached address. If
823 we have no cached address, try to locate it in the dynamic info
824 section for ELF executables. There's no point in doing any of this
825 though if we don't have some link map offsets to work with. */
826
827 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
828 {
829 if (exec_bfd != NULL
830 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
831 info->debug_base = elf_locate_base ();
832 }
833 return info->debug_base;
834 }
835
836 /* Find the first element in the inferior's dynamic link map, and
837 return its address in the inferior.
838
839 FIXME: Perhaps we should validate the info somehow, perhaps by
840 checking r_version for a known version number, or r_state for
841 RT_CONSISTENT. */
842
843 static CORE_ADDR
844 solib_svr4_r_map (struct svr4_info *info)
845 {
846 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
847 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
848
849 return read_memory_typed_address (info->debug_base + lmo->r_map_offset,
850 ptr_type);
851 }
852
853 /* Find r_brk from the inferior's debug base. */
854
855 static CORE_ADDR
856 solib_svr4_r_brk (struct svr4_info *info)
857 {
858 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
859 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
860
861 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
862 ptr_type);
863 }
864
865 /* Find the link map for the dynamic linker (if it is not in the
866 normal list of loaded shared objects). */
867
868 static CORE_ADDR
869 solib_svr4_r_ldsomap (struct svr4_info *info)
870 {
871 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
872 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
873 ULONGEST version;
874
875 /* Check version, and return zero if `struct r_debug' doesn't have
876 the r_ldsomap member. */
877 version
878 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
879 lmo->r_version_size);
880 if (version < 2 || lmo->r_ldsomap_offset == -1)
881 return 0;
882
883 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
884 ptr_type);
885 }
886
887 /*
888
889 LOCAL FUNCTION
890
891 open_symbol_file_object
892
893 SYNOPSIS
894
895 void open_symbol_file_object (void *from_tty)
896
897 DESCRIPTION
898
899 If no open symbol file, attempt to locate and open the main symbol
900 file. On SVR4 systems, this is the first link map entry. If its
901 name is here, we can open it. Useful when attaching to a process
902 without first loading its symbol file.
903
904 If FROM_TTYP dereferences to a non-zero integer, allow messages to
905 be printed. This parameter is a pointer rather than an int because
906 open_symbol_file_object() is called via catch_errors() and
907 catch_errors() requires a pointer argument. */
908
909 static int
910 open_symbol_file_object (void *from_ttyp)
911 {
912 CORE_ADDR lm, l_name;
913 char *filename;
914 int errcode;
915 int from_tty = *(int *)from_ttyp;
916 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
917 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
918 int l_name_size = TYPE_LENGTH (ptr_type);
919 gdb_byte *l_name_buf = xmalloc (l_name_size);
920 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
921 struct svr4_info *info = get_svr4_info (PIDGET (inferior_ptid));
922
923 if (symfile_objfile)
924 if (!query (_("Attempt to reload symbols from process? ")))
925 return 0;
926
927 /* Always locate the debug struct, in case it has moved. */
928 info->debug_base = 0;
929 if (locate_base (info) == 0)
930 return 0; /* failed somehow... */
931
932 /* First link map member should be the executable. */
933 lm = solib_svr4_r_map (info);
934 if (lm == 0)
935 return 0; /* failed somehow... */
936
937 /* Read address of name from target memory to GDB. */
938 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
939
940 /* Convert the address to host format. */
941 l_name = extract_typed_address (l_name_buf, ptr_type);
942
943 /* Free l_name_buf. */
944 do_cleanups (cleanups);
945
946 if (l_name == 0)
947 return 0; /* No filename. */
948
949 /* Now fetch the filename from target memory. */
950 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
951 make_cleanup (xfree, filename);
952
953 if (errcode)
954 {
955 warning (_("failed to read exec filename from attached file: %s"),
956 safe_strerror (errcode));
957 return 0;
958 }
959
960 /* Have a pathname: read the symbol file. */
961 symbol_file_add_main (filename, from_tty);
962
963 return 1;
964 }
965
966 /* If no shared library information is available from the dynamic
967 linker, build a fallback list from other sources. */
968
969 static struct so_list *
970 svr4_default_sos (void)
971 {
972 struct inferior *inf = current_inferior ();
973 struct svr4_info *info = get_svr4_info (inf->pid);
974
975 struct so_list *head = NULL;
976 struct so_list **link_ptr = &head;
977
978 if (info->debug_loader_offset_p)
979 {
980 struct so_list *new = XZALLOC (struct so_list);
981
982 new->lm_info = xmalloc (sizeof (struct lm_info));
983
984 /* Nothing will ever check the cached copy of the link
985 map if we set l_addr. */
986 new->lm_info->l_addr = info->debug_loader_offset;
987 new->lm_info->lm_addr = 0;
988 new->lm_info->lm = NULL;
989
990 strncpy (new->so_name, info->debug_loader_name,
991 SO_NAME_MAX_PATH_SIZE - 1);
992 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
993 strcpy (new->so_original_name, new->so_name);
994
995 *link_ptr = new;
996 link_ptr = &new->next;
997 }
998
999 return head;
1000 }
1001
1002 /* LOCAL FUNCTION
1003
1004 current_sos -- build a list of currently loaded shared objects
1005
1006 SYNOPSIS
1007
1008 struct so_list *current_sos ()
1009
1010 DESCRIPTION
1011
1012 Build a list of `struct so_list' objects describing the shared
1013 objects currently loaded in the inferior. This list does not
1014 include an entry for the main executable file.
1015
1016 Note that we only gather information directly available from the
1017 inferior --- we don't examine any of the shared library files
1018 themselves. The declaration of `struct so_list' says which fields
1019 we provide values for. */
1020
1021 static struct so_list *
1022 svr4_current_sos (void)
1023 {
1024 CORE_ADDR lm;
1025 struct so_list *head = 0;
1026 struct so_list **link_ptr = &head;
1027 CORE_ADDR ldsomap = 0;
1028 struct inferior *inf;
1029 struct svr4_info *info;
1030
1031 if (ptid_equal (inferior_ptid, null_ptid))
1032 return NULL;
1033
1034 inf = current_inferior ();
1035 info = get_svr4_info (inf->pid);
1036
1037 /* Always locate the debug struct, in case it has moved. */
1038 info->debug_base = 0;
1039 locate_base (info);
1040
1041 /* If we can't find the dynamic linker's base structure, this
1042 must not be a dynamically linked executable. Hmm. */
1043 if (! info->debug_base)
1044 return svr4_default_sos ();
1045
1046 /* Walk the inferior's link map list, and build our list of
1047 `struct so_list' nodes. */
1048 lm = solib_svr4_r_map (info);
1049
1050 while (lm)
1051 {
1052 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
1053 struct so_list *new = XZALLOC (struct so_list);
1054 struct cleanup *old_chain = make_cleanup (xfree, new);
1055
1056 new->lm_info = xmalloc (sizeof (struct lm_info));
1057 make_cleanup (xfree, new->lm_info);
1058
1059 new->lm_info->l_addr = (CORE_ADDR)-1;
1060 new->lm_info->lm_addr = lm;
1061 new->lm_info->lm = xzalloc (lmo->link_map_size);
1062 make_cleanup (xfree, new->lm_info->lm);
1063
1064 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1065
1066 lm = LM_NEXT (new);
1067
1068 /* For SVR4 versions, the first entry in the link map is for the
1069 inferior executable, so we must ignore it. For some versions of
1070 SVR4, it has no name. For others (Solaris 2.3 for example), it
1071 does have a name, so we can no longer use a missing name to
1072 decide when to ignore it. */
1073 if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
1074 {
1075 info->main_lm_addr = new->lm_info->lm_addr;
1076 free_so (new);
1077 }
1078 else
1079 {
1080 int errcode;
1081 char *buffer;
1082
1083 /* Extract this shared object's name. */
1084 target_read_string (LM_NAME (new), &buffer,
1085 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1086 if (errcode != 0)
1087 warning (_("Can't read pathname for load map: %s."),
1088 safe_strerror (errcode));
1089 else
1090 {
1091 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1092 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1093 strcpy (new->so_original_name, new->so_name);
1094 }
1095 xfree (buffer);
1096
1097 /* If this entry has no name, or its name matches the name
1098 for the main executable, don't include it in the list. */
1099 if (! new->so_name[0]
1100 || match_main (new->so_name))
1101 free_so (new);
1102 else
1103 {
1104 new->next = 0;
1105 *link_ptr = new;
1106 link_ptr = &new->next;
1107 }
1108 }
1109
1110 /* On Solaris, the dynamic linker is not in the normal list of
1111 shared objects, so make sure we pick it up too. Having
1112 symbol information for the dynamic linker is quite crucial
1113 for skipping dynamic linker resolver code. */
1114 if (lm == 0 && ldsomap == 0)
1115 lm = ldsomap = solib_svr4_r_ldsomap (info);
1116
1117 discard_cleanups (old_chain);
1118 }
1119
1120 if (head == NULL)
1121 return svr4_default_sos ();
1122
1123 return head;
1124 }
1125
1126 /* Get the address of the link_map for a given OBJFILE. */
1127
1128 CORE_ADDR
1129 svr4_fetch_objfile_link_map (struct objfile *objfile)
1130 {
1131 struct so_list *so;
1132 struct svr4_info *info = get_svr4_info (PIDGET (inferior_ptid));
1133
1134 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1135 if (info->main_lm_addr == 0)
1136 solib_add (NULL, 0, &current_target, auto_solib_add);
1137
1138 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1139 if (objfile == symfile_objfile)
1140 return info->main_lm_addr;
1141
1142 /* The other link map addresses may be found by examining the list
1143 of shared libraries. */
1144 for (so = master_so_list (); so; so = so->next)
1145 if (so->objfile == objfile)
1146 return so->lm_info->lm_addr;
1147
1148 /* Not found! */
1149 return 0;
1150 }
1151
1152 /* On some systems, the only way to recognize the link map entry for
1153 the main executable file is by looking at its name. Return
1154 non-zero iff SONAME matches one of the known main executable names. */
1155
1156 static int
1157 match_main (char *soname)
1158 {
1159 char **mainp;
1160
1161 for (mainp = main_name_list; *mainp != NULL; mainp++)
1162 {
1163 if (strcmp (soname, *mainp) == 0)
1164 return (1);
1165 }
1166
1167 return (0);
1168 }
1169
1170 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1171 SVR4 run time loader. */
1172 static CORE_ADDR interp_text_sect_low;
1173 static CORE_ADDR interp_text_sect_high;
1174 static CORE_ADDR interp_plt_sect_low;
1175 static CORE_ADDR interp_plt_sect_high;
1176
1177 int
1178 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1179 {
1180 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
1181 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
1182 || in_plt_section (pc, NULL));
1183 }
1184
1185 /* Given an executable's ABFD and target, compute the entry-point
1186 address. */
1187
1188 static CORE_ADDR
1189 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1190 {
1191 /* KevinB wrote ... for most targets, the address returned by
1192 bfd_get_start_address() is the entry point for the start
1193 function. But, for some targets, bfd_get_start_address() returns
1194 the address of a function descriptor from which the entry point
1195 address may be extracted. This address is extracted by
1196 gdbarch_convert_from_func_ptr_addr(). The method
1197 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1198 function for targets which don't use function descriptors. */
1199 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1200 bfd_get_start_address (abfd),
1201 targ);
1202 }
1203
1204 /*
1205
1206 LOCAL FUNCTION
1207
1208 enable_break -- arrange for dynamic linker to hit breakpoint
1209
1210 SYNOPSIS
1211
1212 int enable_break (void)
1213
1214 DESCRIPTION
1215
1216 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1217 debugger interface, support for arranging for the inferior to hit
1218 a breakpoint after mapping in the shared libraries. This function
1219 enables that breakpoint.
1220
1221 For SunOS, there is a special flag location (in_debugger) which we
1222 set to 1. When the dynamic linker sees this flag set, it will set
1223 a breakpoint at a location known only to itself, after saving the
1224 original contents of that place and the breakpoint address itself,
1225 in it's own internal structures. When we resume the inferior, it
1226 will eventually take a SIGTRAP when it runs into the breakpoint.
1227 We handle this (in a different place) by restoring the contents of
1228 the breakpointed location (which is only known after it stops),
1229 chasing around to locate the shared libraries that have been
1230 loaded, then resuming.
1231
1232 For SVR4, the debugger interface structure contains a member (r_brk)
1233 which is statically initialized at the time the shared library is
1234 built, to the offset of a function (_r_debug_state) which is guaran-
1235 teed to be called once before mapping in a library, and again when
1236 the mapping is complete. At the time we are examining this member,
1237 it contains only the unrelocated offset of the function, so we have
1238 to do our own relocation. Later, when the dynamic linker actually
1239 runs, it relocates r_brk to be the actual address of _r_debug_state().
1240
1241 The debugger interface structure also contains an enumeration which
1242 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1243 depending upon whether or not the library is being mapped or unmapped,
1244 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1245 */
1246
1247 static int
1248 enable_break (struct svr4_info *info)
1249 {
1250 struct minimal_symbol *msymbol;
1251 char **bkpt_namep;
1252 asection *interp_sect;
1253 gdb_byte *interp_name;
1254 CORE_ADDR sym_addr;
1255 struct inferior *inf = current_inferior ();
1256
1257 /* First, remove all the solib event breakpoints. Their addresses
1258 may have changed since the last time we ran the program. */
1259 remove_solib_event_breakpoints ();
1260
1261 interp_text_sect_low = interp_text_sect_high = 0;
1262 interp_plt_sect_low = interp_plt_sect_high = 0;
1263
1264 /* If we already have a shared library list in the target, and
1265 r_debug contains r_brk, set the breakpoint there - this should
1266 mean r_brk has already been relocated. Assume the dynamic linker
1267 is the object containing r_brk. */
1268
1269 solib_add (NULL, 0, &current_target, auto_solib_add);
1270 sym_addr = 0;
1271 if (info->debug_base && solib_svr4_r_map (info) != 0)
1272 sym_addr = solib_svr4_r_brk (info);
1273
1274 if (sym_addr != 0)
1275 {
1276 struct obj_section *os;
1277
1278 sym_addr = gdbarch_addr_bits_remove
1279 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1280 sym_addr,
1281 &current_target));
1282
1283 os = find_pc_section (sym_addr);
1284 if (os != NULL)
1285 {
1286 /* Record the relocated start and end address of the dynamic linker
1287 text and plt section for svr4_in_dynsym_resolve_code. */
1288 bfd *tmp_bfd;
1289 CORE_ADDR load_addr;
1290
1291 tmp_bfd = os->objfile->obfd;
1292 load_addr = ANOFFSET (os->objfile->section_offsets,
1293 os->objfile->sect_index_text);
1294
1295 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1296 if (interp_sect)
1297 {
1298 interp_text_sect_low =
1299 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1300 interp_text_sect_high =
1301 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1302 }
1303 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1304 if (interp_sect)
1305 {
1306 interp_plt_sect_low =
1307 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1308 interp_plt_sect_high =
1309 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1310 }
1311
1312 create_solib_event_breakpoint (sym_addr);
1313 return 1;
1314 }
1315 }
1316
1317 /* Find the program interpreter; if not found, warn the user and drop
1318 into the old breakpoint at symbol code. */
1319 interp_name = find_program_interpreter ();
1320 if (interp_name)
1321 {
1322 CORE_ADDR load_addr = 0;
1323 int load_addr_found = 0;
1324 int loader_found_in_list = 0;
1325 struct so_list *so;
1326 bfd *tmp_bfd = NULL;
1327 struct target_ops *tmp_bfd_target;
1328 volatile struct gdb_exception ex;
1329
1330 sym_addr = 0;
1331
1332 /* Now we need to figure out where the dynamic linker was
1333 loaded so that we can load its symbols and place a breakpoint
1334 in the dynamic linker itself.
1335
1336 This address is stored on the stack. However, I've been unable
1337 to find any magic formula to find it for Solaris (appears to
1338 be trivial on GNU/Linux). Therefore, we have to try an alternate
1339 mechanism to find the dynamic linker's base address. */
1340
1341 TRY_CATCH (ex, RETURN_MASK_ALL)
1342 {
1343 tmp_bfd = solib_bfd_open (interp_name);
1344 }
1345 if (tmp_bfd == NULL)
1346 goto bkpt_at_symbol;
1347
1348 /* Now convert the TMP_BFD into a target. That way target, as
1349 well as BFD operations can be used. Note that closing the
1350 target will also close the underlying bfd. */
1351 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1352
1353 /* On a running target, we can get the dynamic linker's base
1354 address from the shared library table. */
1355 so = master_so_list ();
1356 while (so)
1357 {
1358 if (svr4_same_1 (interp_name, so->so_original_name))
1359 {
1360 load_addr_found = 1;
1361 loader_found_in_list = 1;
1362 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
1363 break;
1364 }
1365 so = so->next;
1366 }
1367
1368 /* If we were not able to find the base address of the loader
1369 from our so_list, then try using the AT_BASE auxilliary entry. */
1370 if (!load_addr_found)
1371 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
1372 load_addr_found = 1;
1373
1374 /* Otherwise we find the dynamic linker's base address by examining
1375 the current pc (which should point at the entry point for the
1376 dynamic linker) and subtracting the offset of the entry point.
1377
1378 This is more fragile than the previous approaches, but is a good
1379 fallback method because it has actually been working well in
1380 most cases. */
1381 if (!load_addr_found)
1382 {
1383 struct regcache *regcache = get_thread_regcache (inferior_ptid);
1384 load_addr = (regcache_read_pc (regcache)
1385 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1386 }
1387
1388 if (!loader_found_in_list)
1389 {
1390 info->debug_loader_name = xstrdup (interp_name);
1391 info->debug_loader_offset_p = 1;
1392 info->debug_loader_offset = load_addr;
1393 solib_add (NULL, 0, &current_target, auto_solib_add);
1394 }
1395
1396 /* Record the relocated start and end address of the dynamic linker
1397 text and plt section for svr4_in_dynsym_resolve_code. */
1398 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1399 if (interp_sect)
1400 {
1401 interp_text_sect_low =
1402 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1403 interp_text_sect_high =
1404 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1405 }
1406 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1407 if (interp_sect)
1408 {
1409 interp_plt_sect_low =
1410 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1411 interp_plt_sect_high =
1412 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1413 }
1414
1415 /* Now try to set a breakpoint in the dynamic linker. */
1416 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1417 {
1418 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1419 if (sym_addr != 0)
1420 break;
1421 }
1422
1423 if (sym_addr != 0)
1424 /* Convert 'sym_addr' from a function pointer to an address.
1425 Because we pass tmp_bfd_target instead of the current
1426 target, this will always produce an unrelocated value. */
1427 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1428 sym_addr,
1429 tmp_bfd_target);
1430
1431 /* We're done with both the temporary bfd and target. Remember,
1432 closing the target closes the underlying bfd. */
1433 target_close (tmp_bfd_target, 0);
1434
1435 if (sym_addr != 0)
1436 {
1437 create_solib_event_breakpoint (load_addr + sym_addr);
1438 xfree (interp_name);
1439 return 1;
1440 }
1441
1442 /* For whatever reason we couldn't set a breakpoint in the dynamic
1443 linker. Warn and drop into the old code. */
1444 bkpt_at_symbol:
1445 xfree (interp_name);
1446 warning (_("Unable to find dynamic linker breakpoint function.\n"
1447 "GDB will be unable to debug shared library initializers\n"
1448 "and track explicitly loaded dynamic code."));
1449 }
1450
1451 /* Scan through the lists of symbols, trying to look up the symbol and
1452 set a breakpoint there. Terminate loop when we/if we succeed. */
1453
1454 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1455 {
1456 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1457 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1458 {
1459 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1460 return 1;
1461 }
1462 }
1463
1464 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1465 {
1466 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1467 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1468 {
1469 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1470 return 1;
1471 }
1472 }
1473 return 0;
1474 }
1475
1476 /*
1477
1478 LOCAL FUNCTION
1479
1480 special_symbol_handling -- additional shared library symbol handling
1481
1482 SYNOPSIS
1483
1484 void special_symbol_handling ()
1485
1486 DESCRIPTION
1487
1488 Once the symbols from a shared object have been loaded in the usual
1489 way, we are called to do any system specific symbol handling that
1490 is needed.
1491
1492 For SunOS4, this consisted of grunging around in the dynamic
1493 linkers structures to find symbol definitions for "common" symbols
1494 and adding them to the minimal symbol table for the runtime common
1495 objfile.
1496
1497 However, for SVR4, there's nothing to do.
1498
1499 */
1500
1501 static void
1502 svr4_special_symbol_handling (void)
1503 {
1504 }
1505
1506 /* Relocate the main executable. This function should be called upon
1507 stopping the inferior process at the entry point to the program.
1508 The entry point from BFD is compared to the PC and if they are
1509 different, the main executable is relocated by the proper amount.
1510
1511 As written it will only attempt to relocate executables which
1512 lack interpreter sections. It seems likely that only dynamic
1513 linker executables will get relocated, though it should work
1514 properly for a position-independent static executable as well. */
1515
1516 static void
1517 svr4_relocate_main_executable (void)
1518 {
1519 asection *interp_sect;
1520 struct regcache *regcache = get_thread_regcache (inferior_ptid);
1521 CORE_ADDR pc = regcache_read_pc (regcache);
1522
1523 /* Decide if the objfile needs to be relocated. As indicated above,
1524 we will only be here when execution is stopped at the beginning
1525 of the program. Relocation is necessary if the address at which
1526 we are presently stopped differs from the start address stored in
1527 the executable AND there's no interpreter section. The condition
1528 regarding the interpreter section is very important because if
1529 there *is* an interpreter section, execution will begin there
1530 instead. When there is an interpreter section, the start address
1531 is (presumably) used by the interpreter at some point to start
1532 execution of the program.
1533
1534 If there is an interpreter, it is normal for it to be set to an
1535 arbitrary address at the outset. The job of finding it is
1536 handled in enable_break().
1537
1538 So, to summarize, relocations are necessary when there is no
1539 interpreter section and the start address obtained from the
1540 executable is different from the address at which GDB is
1541 currently stopped.
1542
1543 [ The astute reader will note that we also test to make sure that
1544 the executable in question has the DYNAMIC flag set. It is my
1545 opinion that this test is unnecessary (undesirable even). It
1546 was added to avoid inadvertent relocation of an executable
1547 whose e_type member in the ELF header is not ET_DYN. There may
1548 be a time in the future when it is desirable to do relocations
1549 on other types of files as well in which case this condition
1550 should either be removed or modified to accomodate the new file
1551 type. (E.g, an ET_EXEC executable which has been built to be
1552 position-independent could safely be relocated by the OS if
1553 desired. It is true that this violates the ABI, but the ABI
1554 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1555 */
1556
1557 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1558 if (interp_sect == NULL
1559 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
1560 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
1561 {
1562 struct cleanup *old_chain;
1563 struct section_offsets *new_offsets;
1564 int i, changed;
1565 CORE_ADDR displacement;
1566
1567 /* It is necessary to relocate the objfile. The amount to
1568 relocate by is simply the address at which we are stopped
1569 minus the starting address from the executable.
1570
1571 We relocate all of the sections by the same amount. This
1572 behavior is mandated by recent editions of the System V ABI.
1573 According to the System V Application Binary Interface,
1574 Edition 4.1, page 5-5:
1575
1576 ... Though the system chooses virtual addresses for
1577 individual processes, it maintains the segments' relative
1578 positions. Because position-independent code uses relative
1579 addressesing between segments, the difference between
1580 virtual addresses in memory must match the difference
1581 between virtual addresses in the file. The difference
1582 between the virtual address of any segment in memory and
1583 the corresponding virtual address in the file is thus a
1584 single constant value for any one executable or shared
1585 object in a given process. This difference is the base
1586 address. One use of the base address is to relocate the
1587 memory image of the program during dynamic linking.
1588
1589 The same language also appears in Edition 4.0 of the System V
1590 ABI and is left unspecified in some of the earlier editions. */
1591
1592 displacement = pc - exec_entry_point (exec_bfd, &exec_ops);
1593 changed = 0;
1594
1595 new_offsets = xcalloc (symfile_objfile->num_sections,
1596 sizeof (struct section_offsets));
1597 old_chain = make_cleanup (xfree, new_offsets);
1598
1599 for (i = 0; i < symfile_objfile->num_sections; i++)
1600 {
1601 if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
1602 changed = 1;
1603 new_offsets->offsets[i] = displacement;
1604 }
1605
1606 if (changed)
1607 objfile_relocate (symfile_objfile, new_offsets);
1608
1609 do_cleanups (old_chain);
1610 }
1611 }
1612
1613 /*
1614
1615 GLOBAL FUNCTION
1616
1617 svr4_solib_create_inferior_hook -- shared library startup support
1618
1619 SYNOPSIS
1620
1621 void svr4_solib_create_inferior_hook ()
1622
1623 DESCRIPTION
1624
1625 When gdb starts up the inferior, it nurses it along (through the
1626 shell) until it is ready to execute it's first instruction. At this
1627 point, this function gets called via expansion of the macro
1628 SOLIB_CREATE_INFERIOR_HOOK.
1629
1630 For SunOS executables, this first instruction is typically the
1631 one at "_start", or a similar text label, regardless of whether
1632 the executable is statically or dynamically linked. The runtime
1633 startup code takes care of dynamically linking in any shared
1634 libraries, once gdb allows the inferior to continue.
1635
1636 For SVR4 executables, this first instruction is either the first
1637 instruction in the dynamic linker (for dynamically linked
1638 executables) or the instruction at "start" for statically linked
1639 executables. For dynamically linked executables, the system
1640 first exec's /lib/libc.so.N, which contains the dynamic linker,
1641 and starts it running. The dynamic linker maps in any needed
1642 shared libraries, maps in the actual user executable, and then
1643 jumps to "start" in the user executable.
1644
1645 For both SunOS shared libraries, and SVR4 shared libraries, we
1646 can arrange to cooperate with the dynamic linker to discover the
1647 names of shared libraries that are dynamically linked, and the
1648 base addresses to which they are linked.
1649
1650 This function is responsible for discovering those names and
1651 addresses, and saving sufficient information about them to allow
1652 their symbols to be read at a later time.
1653
1654 FIXME
1655
1656 Between enable_break() and disable_break(), this code does not
1657 properly handle hitting breakpoints which the user might have
1658 set in the startup code or in the dynamic linker itself. Proper
1659 handling will probably have to wait until the implementation is
1660 changed to use the "breakpoint handler function" method.
1661
1662 Also, what if child has exit()ed? Must exit loop somehow.
1663 */
1664
1665 static void
1666 svr4_solib_create_inferior_hook (void)
1667 {
1668 struct inferior *inf;
1669 struct thread_info *tp;
1670 struct svr4_info *info;
1671
1672 info = get_svr4_info (PIDGET (inferior_ptid));
1673
1674 /* Relocate the main executable if necessary. */
1675 svr4_relocate_main_executable ();
1676
1677 if (!svr4_have_link_map_offsets ())
1678 return;
1679
1680 if (!enable_break (info))
1681 return;
1682
1683 #if defined(_SCO_DS)
1684 /* SCO needs the loop below, other systems should be using the
1685 special shared library breakpoints and the shared library breakpoint
1686 service routine.
1687
1688 Now run the target. It will eventually hit the breakpoint, at
1689 which point all of the libraries will have been mapped in and we
1690 can go groveling around in the dynamic linker structures to find
1691 out what we need to know about them. */
1692
1693 inf = current_inferior ();
1694 tp = inferior_thread ();
1695
1696 clear_proceed_status ();
1697 inf->stop_soon = STOP_QUIETLY;
1698 tp->stop_signal = TARGET_SIGNAL_0;
1699 do
1700 {
1701 target_resume (pid_to_ptid (-1), 0, tp->stop_signal);
1702 wait_for_inferior (0);
1703 }
1704 while (tp->stop_signal != TARGET_SIGNAL_TRAP);
1705 inf->stop_soon = NO_STOP_QUIETLY;
1706 #endif /* defined(_SCO_DS) */
1707 }
1708
1709 static void
1710 svr4_clear_solib (void)
1711 {
1712 remove_svr4_info (PIDGET (inferior_ptid));
1713 }
1714
1715 static void
1716 svr4_free_so (struct so_list *so)
1717 {
1718 xfree (so->lm_info->lm);
1719 xfree (so->lm_info);
1720 }
1721
1722
1723 /* Clear any bits of ADDR that wouldn't fit in a target-format
1724 data pointer. "Data pointer" here refers to whatever sort of
1725 address the dynamic linker uses to manage its sections. At the
1726 moment, we don't support shared libraries on any processors where
1727 code and data pointers are different sizes.
1728
1729 This isn't really the right solution. What we really need here is
1730 a way to do arithmetic on CORE_ADDR values that respects the
1731 natural pointer/address correspondence. (For example, on the MIPS,
1732 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1733 sign-extend the value. There, simply truncating the bits above
1734 gdbarch_ptr_bit, as we do below, is no good.) This should probably
1735 be a new gdbarch method or something. */
1736 static CORE_ADDR
1737 svr4_truncate_ptr (CORE_ADDR addr)
1738 {
1739 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
1740 /* We don't need to truncate anything, and the bit twiddling below
1741 will fail due to overflow problems. */
1742 return addr;
1743 else
1744 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
1745 }
1746
1747
1748 static void
1749 svr4_relocate_section_addresses (struct so_list *so,
1750 struct target_section *sec)
1751 {
1752 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
1753 sec->bfd));
1754 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
1755 sec->bfd));
1756 }
1757 \f
1758
1759 /* Architecture-specific operations. */
1760
1761 /* Per-architecture data key. */
1762 static struct gdbarch_data *solib_svr4_data;
1763
1764 struct solib_svr4_ops
1765 {
1766 /* Return a description of the layout of `struct link_map'. */
1767 struct link_map_offsets *(*fetch_link_map_offsets)(void);
1768 };
1769
1770 /* Return a default for the architecture-specific operations. */
1771
1772 static void *
1773 solib_svr4_init (struct obstack *obstack)
1774 {
1775 struct solib_svr4_ops *ops;
1776
1777 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
1778 ops->fetch_link_map_offsets = NULL;
1779 return ops;
1780 }
1781
1782 /* Set the architecture-specific `struct link_map_offsets' fetcher for
1783 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1784
1785 void
1786 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1787 struct link_map_offsets *(*flmo) (void))
1788 {
1789 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
1790
1791 ops->fetch_link_map_offsets = flmo;
1792
1793 set_solib_ops (gdbarch, &svr4_so_ops);
1794 }
1795
1796 /* Fetch a link_map_offsets structure using the architecture-specific
1797 `struct link_map_offsets' fetcher. */
1798
1799 static struct link_map_offsets *
1800 svr4_fetch_link_map_offsets (void)
1801 {
1802 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
1803
1804 gdb_assert (ops->fetch_link_map_offsets);
1805 return ops->fetch_link_map_offsets ();
1806 }
1807
1808 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1809
1810 static int
1811 svr4_have_link_map_offsets (void)
1812 {
1813 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
1814 return (ops->fetch_link_map_offsets != NULL);
1815 }
1816 \f
1817
1818 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
1819 `struct r_debug' and a `struct link_map' that are binary compatible
1820 with the origional SVR4 implementation. */
1821
1822 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1823 for an ILP32 SVR4 system. */
1824
1825 struct link_map_offsets *
1826 svr4_ilp32_fetch_link_map_offsets (void)
1827 {
1828 static struct link_map_offsets lmo;
1829 static struct link_map_offsets *lmp = NULL;
1830
1831 if (lmp == NULL)
1832 {
1833 lmp = &lmo;
1834
1835 lmo.r_version_offset = 0;
1836 lmo.r_version_size = 4;
1837 lmo.r_map_offset = 4;
1838 lmo.r_brk_offset = 8;
1839 lmo.r_ldsomap_offset = 20;
1840
1841 /* Everything we need is in the first 20 bytes. */
1842 lmo.link_map_size = 20;
1843 lmo.l_addr_offset = 0;
1844 lmo.l_name_offset = 4;
1845 lmo.l_ld_offset = 8;
1846 lmo.l_next_offset = 12;
1847 lmo.l_prev_offset = 16;
1848 }
1849
1850 return lmp;
1851 }
1852
1853 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1854 for an LP64 SVR4 system. */
1855
1856 struct link_map_offsets *
1857 svr4_lp64_fetch_link_map_offsets (void)
1858 {
1859 static struct link_map_offsets lmo;
1860 static struct link_map_offsets *lmp = NULL;
1861
1862 if (lmp == NULL)
1863 {
1864 lmp = &lmo;
1865
1866 lmo.r_version_offset = 0;
1867 lmo.r_version_size = 4;
1868 lmo.r_map_offset = 8;
1869 lmo.r_brk_offset = 16;
1870 lmo.r_ldsomap_offset = 40;
1871
1872 /* Everything we need is in the first 40 bytes. */
1873 lmo.link_map_size = 40;
1874 lmo.l_addr_offset = 0;
1875 lmo.l_name_offset = 8;
1876 lmo.l_ld_offset = 16;
1877 lmo.l_next_offset = 24;
1878 lmo.l_prev_offset = 32;
1879 }
1880
1881 return lmp;
1882 }
1883 \f
1884
1885 struct target_so_ops svr4_so_ops;
1886
1887 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
1888 different rule for symbol lookup. The lookup begins here in the DSO, not in
1889 the main executable. */
1890
1891 static struct symbol *
1892 elf_lookup_lib_symbol (const struct objfile *objfile,
1893 const char *name,
1894 const char *linkage_name,
1895 const domain_enum domain)
1896 {
1897 if (objfile->obfd == NULL
1898 || scan_dyntag (DT_SYMBOLIC, objfile->obfd, NULL) != 1)
1899 return NULL;
1900
1901 return lookup_global_symbol_from_objfile
1902 (objfile, name, linkage_name, domain);
1903 }
1904
1905 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
1906
1907 void
1908 _initialize_svr4_solib (void)
1909 {
1910 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
1911
1912 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
1913 svr4_so_ops.free_so = svr4_free_so;
1914 svr4_so_ops.clear_solib = svr4_clear_solib;
1915 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1916 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1917 svr4_so_ops.current_sos = svr4_current_sos;
1918 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
1919 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
1920 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
1921 svr4_so_ops.same = svr4_same;
1922
1923 observer_attach_inferior_exit (solib_svr4_inferior_exit);
1924 }
This page took 0.068303 seconds and 4 git commands to generate.