gdb/
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23
24 #include "elf/external.h"
25 #include "elf/common.h"
26 #include "elf/mips.h"
27
28 #include "symtab.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbcore.h"
33 #include "target.h"
34 #include "inferior.h"
35 #include "regcache.h"
36 #include "gdbthread.h"
37 #include "observer.h"
38
39 #include "gdb_assert.h"
40
41 #include "solist.h"
42 #include "solib.h"
43 #include "solib-svr4.h"
44
45 #include "bfd-target.h"
46 #include "elf-bfd.h"
47 #include "exec.h"
48 #include "auxv.h"
49 #include "exceptions.h"
50
51 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
52 static int svr4_have_link_map_offsets (void);
53
54 /* Link map info to include in an allocated so_list entry */
55
56 struct lm_info
57 {
58 /* Pointer to copy of link map from inferior. The type is char *
59 rather than void *, so that we may use byte offsets to find the
60 various fields without the need for a cast. */
61 gdb_byte *lm;
62
63 /* Amount by which addresses in the binary should be relocated to
64 match the inferior. This could most often be taken directly
65 from lm, but when prelinking is involved and the prelink base
66 address changes, we may need a different offset, we want to
67 warn about the difference and compute it only once. */
68 CORE_ADDR l_addr;
69
70 /* The target location of lm. */
71 CORE_ADDR lm_addr;
72 };
73
74 /* On SVR4 systems, a list of symbols in the dynamic linker where
75 GDB can try to place a breakpoint to monitor shared library
76 events.
77
78 If none of these symbols are found, or other errors occur, then
79 SVR4 systems will fall back to using a symbol as the "startup
80 mapping complete" breakpoint address. */
81
82 static char *solib_break_names[] =
83 {
84 "r_debug_state",
85 "_r_debug_state",
86 "_dl_debug_state",
87 "rtld_db_dlactivity",
88 "_rtld_debug_state",
89
90 NULL
91 };
92
93 static char *bkpt_names[] =
94 {
95 "_start",
96 "__start",
97 "main",
98 NULL
99 };
100
101 static char *main_name_list[] =
102 {
103 "main_$main",
104 NULL
105 };
106
107 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
108 the same shared library. */
109
110 static int
111 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
112 {
113 if (strcmp (gdb_so_name, inferior_so_name) == 0)
114 return 1;
115
116 /* On Solaris, when starting inferior we think that dynamic linker is
117 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
118 contains /lib/ld.so.1. Sometimes one file is a link to another, but
119 sometimes they have identical content, but are not linked to each
120 other. We don't restrict this check for Solaris, but the chances
121 of running into this situation elsewhere are very low. */
122 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
123 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
124 return 1;
125
126 /* Similarly, we observed the same issue with sparc64, but with
127 different locations. */
128 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
129 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
130 return 1;
131
132 return 0;
133 }
134
135 static int
136 svr4_same (struct so_list *gdb, struct so_list *inferior)
137 {
138 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
139 }
140
141 /* link map access functions */
142
143 static CORE_ADDR
144 LM_ADDR_FROM_LINK_MAP (struct so_list *so)
145 {
146 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
147 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
148
149 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
150 ptr_type);
151 }
152
153 static int
154 HAS_LM_DYNAMIC_FROM_LINK_MAP (void)
155 {
156 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
157
158 return lmo->l_ld_offset >= 0;
159 }
160
161 static CORE_ADDR
162 LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
163 {
164 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
165 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
166
167 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
168 ptr_type);
169 }
170
171 static CORE_ADDR
172 LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
173 {
174 if (so->lm_info->l_addr == (CORE_ADDR)-1)
175 {
176 struct bfd_section *dyninfo_sect;
177 CORE_ADDR l_addr, l_dynaddr, dynaddr, align = 0x1000;
178
179 l_addr = LM_ADDR_FROM_LINK_MAP (so);
180
181 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
182 goto set_addr;
183
184 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
185
186 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
187 if (dyninfo_sect == NULL)
188 goto set_addr;
189
190 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
191
192 if (dynaddr + l_addr != l_dynaddr)
193 {
194 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
195 {
196 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
197 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
198 int i;
199
200 align = 1;
201
202 for (i = 0; i < ehdr->e_phnum; i++)
203 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
204 align = phdr[i].p_align;
205 }
206
207 /* Turn it into a mask. */
208 align--;
209
210 /* If the changes match the alignment requirements, we
211 assume we're using a core file that was generated by the
212 same binary, just prelinked with a different base offset.
213 If it doesn't match, we may have a different binary, the
214 same binary with the dynamic table loaded at an unrelated
215 location, or anything, really. To avoid regressions,
216 don't adjust the base offset in the latter case, although
217 odds are that, if things really changed, debugging won't
218 quite work. */
219 if ((l_addr & align) == ((l_dynaddr - dynaddr) & align))
220 {
221 l_addr = l_dynaddr - dynaddr;
222
223 warning (_(".dynamic section for \"%s\" "
224 "is not at the expected address"), so->so_name);
225 warning (_("difference appears to be caused by prelink, "
226 "adjusting expectations"));
227 }
228 else
229 warning (_(".dynamic section for \"%s\" "
230 "is not at the expected address "
231 "(wrong library or version mismatch?)"), so->so_name);
232 }
233
234 set_addr:
235 so->lm_info->l_addr = l_addr;
236 }
237
238 return so->lm_info->l_addr;
239 }
240
241 static CORE_ADDR
242 LM_NEXT (struct so_list *so)
243 {
244 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
245 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
246
247 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
248 ptr_type);
249 }
250
251 static CORE_ADDR
252 LM_NAME (struct so_list *so)
253 {
254 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
255 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
256
257 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
258 ptr_type);
259 }
260
261 static int
262 IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
263 {
264 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
265 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
266
267 /* Assume that everything is a library if the dynamic loader was loaded
268 late by a static executable. */
269 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
270 return 0;
271
272 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
273 ptr_type) == 0;
274 }
275
276 /* Per pspace SVR4 specific data. */
277
278 struct svr4_info
279 {
280 CORE_ADDR debug_base; /* Base of dynamic linker structures */
281
282 /* Validity flag for debug_loader_offset. */
283 int debug_loader_offset_p;
284
285 /* Load address for the dynamic linker, inferred. */
286 CORE_ADDR debug_loader_offset;
287
288 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
289 char *debug_loader_name;
290
291 /* Load map address for the main executable. */
292 CORE_ADDR main_lm_addr;
293
294 CORE_ADDR interp_text_sect_low;
295 CORE_ADDR interp_text_sect_high;
296 CORE_ADDR interp_plt_sect_low;
297 CORE_ADDR interp_plt_sect_high;
298 };
299
300 /* Per-program-space data key. */
301 static const struct program_space_data *solib_svr4_pspace_data;
302
303 static void
304 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
305 {
306 struct svr4_info *info;
307
308 info = program_space_data (pspace, solib_svr4_pspace_data);
309 xfree (info);
310 }
311
312 /* Get the current svr4 data. If none is found yet, add it now. This
313 function always returns a valid object. */
314
315 static struct svr4_info *
316 get_svr4_info (void)
317 {
318 struct svr4_info *info;
319
320 info = program_space_data (current_program_space, solib_svr4_pspace_data);
321 if (info != NULL)
322 return info;
323
324 info = XZALLOC (struct svr4_info);
325 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
326 return info;
327 }
328
329 /* Local function prototypes */
330
331 static int match_main (char *);
332
333 static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
334
335 /*
336
337 LOCAL FUNCTION
338
339 bfd_lookup_symbol -- lookup the value for a specific symbol
340
341 SYNOPSIS
342
343 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
344
345 DESCRIPTION
346
347 An expensive way to lookup the value of a single symbol for
348 bfd's that are only temporary anyway. This is used by the
349 shared library support to find the address of the debugger
350 notification routine in the shared library.
351
352 The returned symbol may be in a code or data section; functions
353 will normally be in a code section, but may be in a data section
354 if this architecture uses function descriptors.
355
356 Note that 0 is specifically allowed as an error return (no
357 such symbol).
358 */
359
360 static CORE_ADDR
361 bfd_lookup_symbol (bfd *abfd, char *symname)
362 {
363 long storage_needed;
364 asymbol *sym;
365 asymbol **symbol_table;
366 unsigned int number_of_symbols;
367 unsigned int i;
368 struct cleanup *back_to;
369 CORE_ADDR symaddr = 0;
370
371 storage_needed = bfd_get_symtab_upper_bound (abfd);
372
373 if (storage_needed > 0)
374 {
375 symbol_table = (asymbol **) xmalloc (storage_needed);
376 back_to = make_cleanup (xfree, symbol_table);
377 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
378
379 for (i = 0; i < number_of_symbols; i++)
380 {
381 sym = *symbol_table++;
382 if (strcmp (sym->name, symname) == 0
383 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
384 {
385 /* BFD symbols are section relative. */
386 symaddr = sym->value + sym->section->vma;
387 break;
388 }
389 }
390 do_cleanups (back_to);
391 }
392
393 if (symaddr)
394 return symaddr;
395
396 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
397 have to check the dynamic string table too. */
398
399 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
400
401 if (storage_needed > 0)
402 {
403 symbol_table = (asymbol **) xmalloc (storage_needed);
404 back_to = make_cleanup (xfree, symbol_table);
405 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
406
407 for (i = 0; i < number_of_symbols; i++)
408 {
409 sym = *symbol_table++;
410
411 if (strcmp (sym->name, symname) == 0
412 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
413 {
414 /* BFD symbols are section relative. */
415 symaddr = sym->value + sym->section->vma;
416 break;
417 }
418 }
419 do_cleanups (back_to);
420 }
421
422 return symaddr;
423 }
424
425
426 /* Read program header TYPE from inferior memory. The header is found
427 by scanning the OS auxillary vector.
428
429 Return a pointer to allocated memory holding the program header contents,
430 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
431 size of those contents is returned to P_SECT_SIZE. Likewise, the target
432 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
433
434 static gdb_byte *
435 read_program_header (int type, int *p_sect_size, int *p_arch_size)
436 {
437 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
438 CORE_ADDR at_phdr, at_phent, at_phnum;
439 int arch_size, sect_size;
440 CORE_ADDR sect_addr;
441 gdb_byte *buf;
442
443 /* Get required auxv elements from target. */
444 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
445 return 0;
446 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
447 return 0;
448 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
449 return 0;
450 if (!at_phdr || !at_phnum)
451 return 0;
452
453 /* Determine ELF architecture type. */
454 if (at_phent == sizeof (Elf32_External_Phdr))
455 arch_size = 32;
456 else if (at_phent == sizeof (Elf64_External_Phdr))
457 arch_size = 64;
458 else
459 return 0;
460
461 /* Find .dynamic section via the PT_DYNAMIC PHDR. */
462 if (arch_size == 32)
463 {
464 Elf32_External_Phdr phdr;
465 int i;
466
467 /* Search for requested PHDR. */
468 for (i = 0; i < at_phnum; i++)
469 {
470 if (target_read_memory (at_phdr + i * sizeof (phdr),
471 (gdb_byte *)&phdr, sizeof (phdr)))
472 return 0;
473
474 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
475 4, byte_order) == type)
476 break;
477 }
478
479 if (i == at_phnum)
480 return 0;
481
482 /* Retrieve address and size. */
483 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
484 4, byte_order);
485 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
486 4, byte_order);
487 }
488 else
489 {
490 Elf64_External_Phdr phdr;
491 int i;
492
493 /* Search for requested PHDR. */
494 for (i = 0; i < at_phnum; i++)
495 {
496 if (target_read_memory (at_phdr + i * sizeof (phdr),
497 (gdb_byte *)&phdr, sizeof (phdr)))
498 return 0;
499
500 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
501 4, byte_order) == type)
502 break;
503 }
504
505 if (i == at_phnum)
506 return 0;
507
508 /* Retrieve address and size. */
509 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
510 8, byte_order);
511 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
512 8, byte_order);
513 }
514
515 /* Read in requested program header. */
516 buf = xmalloc (sect_size);
517 if (target_read_memory (sect_addr, buf, sect_size))
518 {
519 xfree (buf);
520 return NULL;
521 }
522
523 if (p_arch_size)
524 *p_arch_size = arch_size;
525 if (p_sect_size)
526 *p_sect_size = sect_size;
527
528 return buf;
529 }
530
531
532 /* Return program interpreter string. */
533 static gdb_byte *
534 find_program_interpreter (void)
535 {
536 gdb_byte *buf = NULL;
537
538 /* If we have an exec_bfd, use its section table. */
539 if (exec_bfd
540 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
541 {
542 struct bfd_section *interp_sect;
543
544 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
545 if (interp_sect != NULL)
546 {
547 CORE_ADDR sect_addr = bfd_section_vma (exec_bfd, interp_sect);
548 int sect_size = bfd_section_size (exec_bfd, interp_sect);
549
550 buf = xmalloc (sect_size);
551 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
552 }
553 }
554
555 /* If we didn't find it, use the target auxillary vector. */
556 if (!buf)
557 buf = read_program_header (PT_INTERP, NULL, NULL);
558
559 return buf;
560 }
561
562
563 /* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
564 returned and the corresponding PTR is set. */
565
566 static int
567 scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
568 {
569 int arch_size, step, sect_size;
570 long dyn_tag;
571 CORE_ADDR dyn_ptr, dyn_addr;
572 gdb_byte *bufend, *bufstart, *buf;
573 Elf32_External_Dyn *x_dynp_32;
574 Elf64_External_Dyn *x_dynp_64;
575 struct bfd_section *sect;
576
577 if (abfd == NULL)
578 return 0;
579
580 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
581 return 0;
582
583 arch_size = bfd_get_arch_size (abfd);
584 if (arch_size == -1)
585 return 0;
586
587 /* Find the start address of the .dynamic section. */
588 sect = bfd_get_section_by_name (abfd, ".dynamic");
589 if (sect == NULL)
590 return 0;
591 dyn_addr = bfd_section_vma (abfd, sect);
592
593 /* Read in .dynamic from the BFD. We will get the actual value
594 from memory later. */
595 sect_size = bfd_section_size (abfd, sect);
596 buf = bufstart = alloca (sect_size);
597 if (!bfd_get_section_contents (abfd, sect,
598 buf, 0, sect_size))
599 return 0;
600
601 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
602 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
603 : sizeof (Elf64_External_Dyn);
604 for (bufend = buf + sect_size;
605 buf < bufend;
606 buf += step)
607 {
608 if (arch_size == 32)
609 {
610 x_dynp_32 = (Elf32_External_Dyn *) buf;
611 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
612 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
613 }
614 else
615 {
616 x_dynp_64 = (Elf64_External_Dyn *) buf;
617 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
618 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
619 }
620 if (dyn_tag == DT_NULL)
621 return 0;
622 if (dyn_tag == dyntag)
623 {
624 /* If requested, try to read the runtime value of this .dynamic
625 entry. */
626 if (ptr)
627 {
628 struct type *ptr_type;
629 gdb_byte ptr_buf[8];
630 CORE_ADDR ptr_addr;
631
632 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
633 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
634 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
635 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
636 *ptr = dyn_ptr;
637 }
638 return 1;
639 }
640 }
641
642 return 0;
643 }
644
645 /* Scan for DYNTAG in .dynamic section of the target's main executable,
646 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
647 returned and the corresponding PTR is set. */
648
649 static int
650 scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
651 {
652 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
653 int sect_size, arch_size, step;
654 long dyn_tag;
655 CORE_ADDR dyn_ptr;
656 gdb_byte *bufend, *bufstart, *buf;
657
658 /* Read in .dynamic section. */
659 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
660 if (!buf)
661 return 0;
662
663 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
664 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
665 : sizeof (Elf64_External_Dyn);
666 for (bufend = buf + sect_size;
667 buf < bufend;
668 buf += step)
669 {
670 if (arch_size == 32)
671 {
672 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
673 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
674 4, byte_order);
675 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
676 4, byte_order);
677 }
678 else
679 {
680 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
681 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
682 8, byte_order);
683 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
684 8, byte_order);
685 }
686 if (dyn_tag == DT_NULL)
687 break;
688
689 if (dyn_tag == dyntag)
690 {
691 if (ptr)
692 *ptr = dyn_ptr;
693
694 xfree (bufstart);
695 return 1;
696 }
697 }
698
699 xfree (bufstart);
700 return 0;
701 }
702
703
704 /*
705
706 LOCAL FUNCTION
707
708 elf_locate_base -- locate the base address of dynamic linker structs
709 for SVR4 elf targets.
710
711 SYNOPSIS
712
713 CORE_ADDR elf_locate_base (void)
714
715 DESCRIPTION
716
717 For SVR4 elf targets the address of the dynamic linker's runtime
718 structure is contained within the dynamic info section in the
719 executable file. The dynamic section is also mapped into the
720 inferior address space. Because the runtime loader fills in the
721 real address before starting the inferior, we have to read in the
722 dynamic info section from the inferior address space.
723 If there are any errors while trying to find the address, we
724 silently return 0, otherwise the found address is returned.
725
726 */
727
728 static CORE_ADDR
729 elf_locate_base (void)
730 {
731 struct minimal_symbol *msymbol;
732 CORE_ADDR dyn_ptr;
733
734 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
735 instead of DT_DEBUG, although they sometimes contain an unused
736 DT_DEBUG. */
737 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
738 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
739 {
740 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
741 gdb_byte *pbuf;
742 int pbuf_size = TYPE_LENGTH (ptr_type);
743 pbuf = alloca (pbuf_size);
744 /* DT_MIPS_RLD_MAP contains a pointer to the address
745 of the dynamic link structure. */
746 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
747 return 0;
748 return extract_typed_address (pbuf, ptr_type);
749 }
750
751 /* Find DT_DEBUG. */
752 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
753 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
754 return dyn_ptr;
755
756 /* This may be a static executable. Look for the symbol
757 conventionally named _r_debug, as a last resort. */
758 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
759 if (msymbol != NULL)
760 return SYMBOL_VALUE_ADDRESS (msymbol);
761
762 /* DT_DEBUG entry not found. */
763 return 0;
764 }
765
766 /*
767
768 LOCAL FUNCTION
769
770 locate_base -- locate the base address of dynamic linker structs
771
772 SYNOPSIS
773
774 CORE_ADDR locate_base (struct svr4_info *)
775
776 DESCRIPTION
777
778 For both the SunOS and SVR4 shared library implementations, if the
779 inferior executable has been linked dynamically, there is a single
780 address somewhere in the inferior's data space which is the key to
781 locating all of the dynamic linker's runtime structures. This
782 address is the value of the debug base symbol. The job of this
783 function is to find and return that address, or to return 0 if there
784 is no such address (the executable is statically linked for example).
785
786 For SunOS, the job is almost trivial, since the dynamic linker and
787 all of it's structures are statically linked to the executable at
788 link time. Thus the symbol for the address we are looking for has
789 already been added to the minimal symbol table for the executable's
790 objfile at the time the symbol file's symbols were read, and all we
791 have to do is look it up there. Note that we explicitly do NOT want
792 to find the copies in the shared library.
793
794 The SVR4 version is a bit more complicated because the address
795 is contained somewhere in the dynamic info section. We have to go
796 to a lot more work to discover the address of the debug base symbol.
797 Because of this complexity, we cache the value we find and return that
798 value on subsequent invocations. Note there is no copy in the
799 executable symbol tables.
800
801 */
802
803 static CORE_ADDR
804 locate_base (struct svr4_info *info)
805 {
806 /* Check to see if we have a currently valid address, and if so, avoid
807 doing all this work again and just return the cached address. If
808 we have no cached address, try to locate it in the dynamic info
809 section for ELF executables. There's no point in doing any of this
810 though if we don't have some link map offsets to work with. */
811
812 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
813 info->debug_base = elf_locate_base ();
814 return info->debug_base;
815 }
816
817 /* Find the first element in the inferior's dynamic link map, and
818 return its address in the inferior.
819
820 FIXME: Perhaps we should validate the info somehow, perhaps by
821 checking r_version for a known version number, or r_state for
822 RT_CONSISTENT. */
823
824 static CORE_ADDR
825 solib_svr4_r_map (struct svr4_info *info)
826 {
827 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
828 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
829
830 return read_memory_typed_address (info->debug_base + lmo->r_map_offset,
831 ptr_type);
832 }
833
834 /* Find r_brk from the inferior's debug base. */
835
836 static CORE_ADDR
837 solib_svr4_r_brk (struct svr4_info *info)
838 {
839 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
840 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
841
842 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
843 ptr_type);
844 }
845
846 /* Find the link map for the dynamic linker (if it is not in the
847 normal list of loaded shared objects). */
848
849 static CORE_ADDR
850 solib_svr4_r_ldsomap (struct svr4_info *info)
851 {
852 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
853 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
854 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
855 ULONGEST version;
856
857 /* Check version, and return zero if `struct r_debug' doesn't have
858 the r_ldsomap member. */
859 version
860 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
861 lmo->r_version_size, byte_order);
862 if (version < 2 || lmo->r_ldsomap_offset == -1)
863 return 0;
864
865 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
866 ptr_type);
867 }
868
869 /* On Solaris systems with some versions of the dynamic linker,
870 ld.so's l_name pointer points to the SONAME in the string table
871 rather than into writable memory. So that GDB can find shared
872 libraries when loading a core file generated by gcore, ensure that
873 memory areas containing the l_name string are saved in the core
874 file. */
875
876 static int
877 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
878 {
879 struct svr4_info *info;
880 CORE_ADDR ldsomap;
881 struct so_list *new;
882 struct cleanup *old_chain;
883 struct link_map_offsets *lmo;
884 CORE_ADDR lm_name;
885
886 info = get_svr4_info ();
887
888 info->debug_base = 0;
889 locate_base (info);
890 if (!info->debug_base)
891 return 0;
892
893 ldsomap = solib_svr4_r_ldsomap (info);
894 if (!ldsomap)
895 return 0;
896
897 lmo = svr4_fetch_link_map_offsets ();
898 new = XZALLOC (struct so_list);
899 old_chain = make_cleanup (xfree, new);
900 new->lm_info = xmalloc (sizeof (struct lm_info));
901 make_cleanup (xfree, new->lm_info);
902 new->lm_info->l_addr = (CORE_ADDR)-1;
903 new->lm_info->lm_addr = ldsomap;
904 new->lm_info->lm = xzalloc (lmo->link_map_size);
905 make_cleanup (xfree, new->lm_info->lm);
906 read_memory (ldsomap, new->lm_info->lm, lmo->link_map_size);
907 lm_name = LM_NAME (new);
908 do_cleanups (old_chain);
909
910 return (lm_name >= vaddr && lm_name < vaddr + size);
911 }
912
913 /*
914
915 LOCAL FUNCTION
916
917 open_symbol_file_object
918
919 SYNOPSIS
920
921 void open_symbol_file_object (void *from_tty)
922
923 DESCRIPTION
924
925 If no open symbol file, attempt to locate and open the main symbol
926 file. On SVR4 systems, this is the first link map entry. If its
927 name is here, we can open it. Useful when attaching to a process
928 without first loading its symbol file.
929
930 If FROM_TTYP dereferences to a non-zero integer, allow messages to
931 be printed. This parameter is a pointer rather than an int because
932 open_symbol_file_object() is called via catch_errors() and
933 catch_errors() requires a pointer argument. */
934
935 static int
936 open_symbol_file_object (void *from_ttyp)
937 {
938 CORE_ADDR lm, l_name;
939 char *filename;
940 int errcode;
941 int from_tty = *(int *)from_ttyp;
942 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
943 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
944 int l_name_size = TYPE_LENGTH (ptr_type);
945 gdb_byte *l_name_buf = xmalloc (l_name_size);
946 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
947 struct svr4_info *info = get_svr4_info ();
948
949 if (symfile_objfile)
950 if (!query (_("Attempt to reload symbols from process? ")))
951 return 0;
952
953 /* Always locate the debug struct, in case it has moved. */
954 info->debug_base = 0;
955 if (locate_base (info) == 0)
956 return 0; /* failed somehow... */
957
958 /* First link map member should be the executable. */
959 lm = solib_svr4_r_map (info);
960 if (lm == 0)
961 return 0; /* failed somehow... */
962
963 /* Read address of name from target memory to GDB. */
964 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
965
966 /* Convert the address to host format. */
967 l_name = extract_typed_address (l_name_buf, ptr_type);
968
969 /* Free l_name_buf. */
970 do_cleanups (cleanups);
971
972 if (l_name == 0)
973 return 0; /* No filename. */
974
975 /* Now fetch the filename from target memory. */
976 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
977 make_cleanup (xfree, filename);
978
979 if (errcode)
980 {
981 warning (_("failed to read exec filename from attached file: %s"),
982 safe_strerror (errcode));
983 return 0;
984 }
985
986 /* Have a pathname: read the symbol file. */
987 symbol_file_add_main (filename, from_tty);
988
989 return 1;
990 }
991
992 /* If no shared library information is available from the dynamic
993 linker, build a fallback list from other sources. */
994
995 static struct so_list *
996 svr4_default_sos (void)
997 {
998 struct svr4_info *info = get_svr4_info ();
999
1000 struct so_list *head = NULL;
1001 struct so_list **link_ptr = &head;
1002
1003 if (info->debug_loader_offset_p)
1004 {
1005 struct so_list *new = XZALLOC (struct so_list);
1006
1007 new->lm_info = xmalloc (sizeof (struct lm_info));
1008
1009 /* Nothing will ever check the cached copy of the link
1010 map if we set l_addr. */
1011 new->lm_info->l_addr = info->debug_loader_offset;
1012 new->lm_info->lm_addr = 0;
1013 new->lm_info->lm = NULL;
1014
1015 strncpy (new->so_name, info->debug_loader_name,
1016 SO_NAME_MAX_PATH_SIZE - 1);
1017 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1018 strcpy (new->so_original_name, new->so_name);
1019
1020 *link_ptr = new;
1021 link_ptr = &new->next;
1022 }
1023
1024 return head;
1025 }
1026
1027 /* LOCAL FUNCTION
1028
1029 current_sos -- build a list of currently loaded shared objects
1030
1031 SYNOPSIS
1032
1033 struct so_list *current_sos ()
1034
1035 DESCRIPTION
1036
1037 Build a list of `struct so_list' objects describing the shared
1038 objects currently loaded in the inferior. This list does not
1039 include an entry for the main executable file.
1040
1041 Note that we only gather information directly available from the
1042 inferior --- we don't examine any of the shared library files
1043 themselves. The declaration of `struct so_list' says which fields
1044 we provide values for. */
1045
1046 static struct so_list *
1047 svr4_current_sos (void)
1048 {
1049 CORE_ADDR lm;
1050 struct so_list *head = 0;
1051 struct so_list **link_ptr = &head;
1052 CORE_ADDR ldsomap = 0;
1053 struct svr4_info *info;
1054
1055 info = get_svr4_info ();
1056
1057 /* Always locate the debug struct, in case it has moved. */
1058 info->debug_base = 0;
1059 locate_base (info);
1060
1061 /* If we can't find the dynamic linker's base structure, this
1062 must not be a dynamically linked executable. Hmm. */
1063 if (! info->debug_base)
1064 return svr4_default_sos ();
1065
1066 /* Walk the inferior's link map list, and build our list of
1067 `struct so_list' nodes. */
1068 lm = solib_svr4_r_map (info);
1069
1070 while (lm)
1071 {
1072 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
1073 struct so_list *new = XZALLOC (struct so_list);
1074 struct cleanup *old_chain = make_cleanup (xfree, new);
1075
1076 new->lm_info = xmalloc (sizeof (struct lm_info));
1077 make_cleanup (xfree, new->lm_info);
1078
1079 new->lm_info->l_addr = (CORE_ADDR)-1;
1080 new->lm_info->lm_addr = lm;
1081 new->lm_info->lm = xzalloc (lmo->link_map_size);
1082 make_cleanup (xfree, new->lm_info->lm);
1083
1084 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1085
1086 lm = LM_NEXT (new);
1087
1088 /* For SVR4 versions, the first entry in the link map is for the
1089 inferior executable, so we must ignore it. For some versions of
1090 SVR4, it has no name. For others (Solaris 2.3 for example), it
1091 does have a name, so we can no longer use a missing name to
1092 decide when to ignore it. */
1093 if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
1094 {
1095 info->main_lm_addr = new->lm_info->lm_addr;
1096 free_so (new);
1097 }
1098 else
1099 {
1100 int errcode;
1101 char *buffer;
1102
1103 /* Extract this shared object's name. */
1104 target_read_string (LM_NAME (new), &buffer,
1105 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1106 if (errcode != 0)
1107 warning (_("Can't read pathname for load map: %s."),
1108 safe_strerror (errcode));
1109 else
1110 {
1111 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1112 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1113 strcpy (new->so_original_name, new->so_name);
1114 }
1115 xfree (buffer);
1116
1117 /* If this entry has no name, or its name matches the name
1118 for the main executable, don't include it in the list. */
1119 if (! new->so_name[0]
1120 || match_main (new->so_name))
1121 free_so (new);
1122 else
1123 {
1124 new->next = 0;
1125 *link_ptr = new;
1126 link_ptr = &new->next;
1127 }
1128 }
1129
1130 /* On Solaris, the dynamic linker is not in the normal list of
1131 shared objects, so make sure we pick it up too. Having
1132 symbol information for the dynamic linker is quite crucial
1133 for skipping dynamic linker resolver code. */
1134 if (lm == 0 && ldsomap == 0)
1135 lm = ldsomap = solib_svr4_r_ldsomap (info);
1136
1137 discard_cleanups (old_chain);
1138 }
1139
1140 if (head == NULL)
1141 return svr4_default_sos ();
1142
1143 return head;
1144 }
1145
1146 /* Get the address of the link_map for a given OBJFILE. */
1147
1148 CORE_ADDR
1149 svr4_fetch_objfile_link_map (struct objfile *objfile)
1150 {
1151 struct so_list *so;
1152 struct svr4_info *info = get_svr4_info ();
1153
1154 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1155 if (info->main_lm_addr == 0)
1156 solib_add (NULL, 0, &current_target, auto_solib_add);
1157
1158 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1159 if (objfile == symfile_objfile)
1160 return info->main_lm_addr;
1161
1162 /* The other link map addresses may be found by examining the list
1163 of shared libraries. */
1164 for (so = master_so_list (); so; so = so->next)
1165 if (so->objfile == objfile)
1166 return so->lm_info->lm_addr;
1167
1168 /* Not found! */
1169 return 0;
1170 }
1171
1172 /* On some systems, the only way to recognize the link map entry for
1173 the main executable file is by looking at its name. Return
1174 non-zero iff SONAME matches one of the known main executable names. */
1175
1176 static int
1177 match_main (char *soname)
1178 {
1179 char **mainp;
1180
1181 for (mainp = main_name_list; *mainp != NULL; mainp++)
1182 {
1183 if (strcmp (soname, *mainp) == 0)
1184 return (1);
1185 }
1186
1187 return (0);
1188 }
1189
1190 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1191 SVR4 run time loader. */
1192
1193 int
1194 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1195 {
1196 struct svr4_info *info = get_svr4_info ();
1197
1198 return ((pc >= info->interp_text_sect_low
1199 && pc < info->interp_text_sect_high)
1200 || (pc >= info->interp_plt_sect_low
1201 && pc < info->interp_plt_sect_high)
1202 || in_plt_section (pc, NULL));
1203 }
1204
1205 /* Given an executable's ABFD and target, compute the entry-point
1206 address. */
1207
1208 static CORE_ADDR
1209 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1210 {
1211 /* KevinB wrote ... for most targets, the address returned by
1212 bfd_get_start_address() is the entry point for the start
1213 function. But, for some targets, bfd_get_start_address() returns
1214 the address of a function descriptor from which the entry point
1215 address may be extracted. This address is extracted by
1216 gdbarch_convert_from_func_ptr_addr(). The method
1217 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1218 function for targets which don't use function descriptors. */
1219 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1220 bfd_get_start_address (abfd),
1221 targ);
1222 }
1223
1224 /*
1225
1226 LOCAL FUNCTION
1227
1228 enable_break -- arrange for dynamic linker to hit breakpoint
1229
1230 SYNOPSIS
1231
1232 int enable_break (void)
1233
1234 DESCRIPTION
1235
1236 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1237 debugger interface, support for arranging for the inferior to hit
1238 a breakpoint after mapping in the shared libraries. This function
1239 enables that breakpoint.
1240
1241 For SunOS, there is a special flag location (in_debugger) which we
1242 set to 1. When the dynamic linker sees this flag set, it will set
1243 a breakpoint at a location known only to itself, after saving the
1244 original contents of that place and the breakpoint address itself,
1245 in it's own internal structures. When we resume the inferior, it
1246 will eventually take a SIGTRAP when it runs into the breakpoint.
1247 We handle this (in a different place) by restoring the contents of
1248 the breakpointed location (which is only known after it stops),
1249 chasing around to locate the shared libraries that have been
1250 loaded, then resuming.
1251
1252 For SVR4, the debugger interface structure contains a member (r_brk)
1253 which is statically initialized at the time the shared library is
1254 built, to the offset of a function (_r_debug_state) which is guaran-
1255 teed to be called once before mapping in a library, and again when
1256 the mapping is complete. At the time we are examining this member,
1257 it contains only the unrelocated offset of the function, so we have
1258 to do our own relocation. Later, when the dynamic linker actually
1259 runs, it relocates r_brk to be the actual address of _r_debug_state().
1260
1261 The debugger interface structure also contains an enumeration which
1262 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1263 depending upon whether or not the library is being mapped or unmapped,
1264 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1265 */
1266
1267 static int
1268 enable_break (struct svr4_info *info, int from_tty)
1269 {
1270 struct minimal_symbol *msymbol;
1271 char **bkpt_namep;
1272 asection *interp_sect;
1273 gdb_byte *interp_name;
1274 CORE_ADDR sym_addr;
1275
1276 /* First, remove all the solib event breakpoints. Their addresses
1277 may have changed since the last time we ran the program. */
1278 remove_solib_event_breakpoints ();
1279
1280 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1281 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
1282
1283 /* If we already have a shared library list in the target, and
1284 r_debug contains r_brk, set the breakpoint there - this should
1285 mean r_brk has already been relocated. Assume the dynamic linker
1286 is the object containing r_brk. */
1287
1288 solib_add (NULL, from_tty, &current_target, auto_solib_add);
1289 sym_addr = 0;
1290 if (info->debug_base && solib_svr4_r_map (info) != 0)
1291 sym_addr = solib_svr4_r_brk (info);
1292
1293 if (sym_addr != 0)
1294 {
1295 struct obj_section *os;
1296
1297 sym_addr = gdbarch_addr_bits_remove
1298 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1299 sym_addr,
1300 &current_target));
1301
1302 os = find_pc_section (sym_addr);
1303 if (os != NULL)
1304 {
1305 /* Record the relocated start and end address of the dynamic linker
1306 text and plt section for svr4_in_dynsym_resolve_code. */
1307 bfd *tmp_bfd;
1308 CORE_ADDR load_addr;
1309
1310 tmp_bfd = os->objfile->obfd;
1311 load_addr = ANOFFSET (os->objfile->section_offsets,
1312 os->objfile->sect_index_text);
1313
1314 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1315 if (interp_sect)
1316 {
1317 info->interp_text_sect_low =
1318 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1319 info->interp_text_sect_high =
1320 info->interp_text_sect_low
1321 + bfd_section_size (tmp_bfd, interp_sect);
1322 }
1323 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1324 if (interp_sect)
1325 {
1326 info->interp_plt_sect_low =
1327 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1328 info->interp_plt_sect_high =
1329 info->interp_plt_sect_low
1330 + bfd_section_size (tmp_bfd, interp_sect);
1331 }
1332
1333 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1334 return 1;
1335 }
1336 }
1337
1338 /* Find the program interpreter; if not found, warn the user and drop
1339 into the old breakpoint at symbol code. */
1340 interp_name = find_program_interpreter ();
1341 if (interp_name)
1342 {
1343 CORE_ADDR load_addr = 0;
1344 int load_addr_found = 0;
1345 int loader_found_in_list = 0;
1346 struct so_list *so;
1347 bfd *tmp_bfd = NULL;
1348 struct target_ops *tmp_bfd_target;
1349 volatile struct gdb_exception ex;
1350
1351 sym_addr = 0;
1352
1353 /* Now we need to figure out where the dynamic linker was
1354 loaded so that we can load its symbols and place a breakpoint
1355 in the dynamic linker itself.
1356
1357 This address is stored on the stack. However, I've been unable
1358 to find any magic formula to find it for Solaris (appears to
1359 be trivial on GNU/Linux). Therefore, we have to try an alternate
1360 mechanism to find the dynamic linker's base address. */
1361
1362 TRY_CATCH (ex, RETURN_MASK_ALL)
1363 {
1364 tmp_bfd = solib_bfd_open (interp_name);
1365 }
1366 if (tmp_bfd == NULL)
1367 goto bkpt_at_symbol;
1368
1369 /* Now convert the TMP_BFD into a target. That way target, as
1370 well as BFD operations can be used. Note that closing the
1371 target will also close the underlying bfd. */
1372 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1373
1374 /* On a running target, we can get the dynamic linker's base
1375 address from the shared library table. */
1376 so = master_so_list ();
1377 while (so)
1378 {
1379 if (svr4_same_1 (interp_name, so->so_original_name))
1380 {
1381 load_addr_found = 1;
1382 loader_found_in_list = 1;
1383 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
1384 break;
1385 }
1386 so = so->next;
1387 }
1388
1389 /* If we were not able to find the base address of the loader
1390 from our so_list, then try using the AT_BASE auxilliary entry. */
1391 if (!load_addr_found)
1392 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
1393 load_addr_found = 1;
1394
1395 /* Otherwise we find the dynamic linker's base address by examining
1396 the current pc (which should point at the entry point for the
1397 dynamic linker) and subtracting the offset of the entry point.
1398
1399 This is more fragile than the previous approaches, but is a good
1400 fallback method because it has actually been working well in
1401 most cases. */
1402 if (!load_addr_found)
1403 {
1404 struct regcache *regcache
1405 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1406 load_addr = (regcache_read_pc (regcache)
1407 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1408 }
1409
1410 if (!loader_found_in_list)
1411 {
1412 info->debug_loader_name = xstrdup (interp_name);
1413 info->debug_loader_offset_p = 1;
1414 info->debug_loader_offset = load_addr;
1415 solib_add (NULL, from_tty, &current_target, auto_solib_add);
1416 }
1417
1418 /* Record the relocated start and end address of the dynamic linker
1419 text and plt section for svr4_in_dynsym_resolve_code. */
1420 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1421 if (interp_sect)
1422 {
1423 info->interp_text_sect_low =
1424 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1425 info->interp_text_sect_high =
1426 info->interp_text_sect_low
1427 + bfd_section_size (tmp_bfd, interp_sect);
1428 }
1429 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1430 if (interp_sect)
1431 {
1432 info->interp_plt_sect_low =
1433 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1434 info->interp_plt_sect_high =
1435 info->interp_plt_sect_low
1436 + bfd_section_size (tmp_bfd, interp_sect);
1437 }
1438
1439 /* Now try to set a breakpoint in the dynamic linker. */
1440 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1441 {
1442 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1443 if (sym_addr != 0)
1444 break;
1445 }
1446
1447 if (sym_addr != 0)
1448 /* Convert 'sym_addr' from a function pointer to an address.
1449 Because we pass tmp_bfd_target instead of the current
1450 target, this will always produce an unrelocated value. */
1451 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1452 sym_addr,
1453 tmp_bfd_target);
1454
1455 /* We're done with both the temporary bfd and target. Remember,
1456 closing the target closes the underlying bfd. */
1457 target_close (tmp_bfd_target, 0);
1458
1459 if (sym_addr != 0)
1460 {
1461 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
1462 xfree (interp_name);
1463 return 1;
1464 }
1465
1466 /* For whatever reason we couldn't set a breakpoint in the dynamic
1467 linker. Warn and drop into the old code. */
1468 bkpt_at_symbol:
1469 xfree (interp_name);
1470 warning (_("Unable to find dynamic linker breakpoint function.\n"
1471 "GDB will be unable to debug shared library initializers\n"
1472 "and track explicitly loaded dynamic code."));
1473 }
1474
1475 /* Scan through the lists of symbols, trying to look up the symbol and
1476 set a breakpoint there. Terminate loop when we/if we succeed. */
1477
1478 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1479 {
1480 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1481 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1482 {
1483 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1484 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1485 sym_addr,
1486 &current_target);
1487 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1488 return 1;
1489 }
1490 }
1491
1492 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1493 {
1494 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1495 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1496 {
1497 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1498 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1499 sym_addr,
1500 &current_target);
1501 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1502 return 1;
1503 }
1504 }
1505 return 0;
1506 }
1507
1508 /*
1509
1510 LOCAL FUNCTION
1511
1512 special_symbol_handling -- additional shared library symbol handling
1513
1514 SYNOPSIS
1515
1516 void special_symbol_handling ()
1517
1518 DESCRIPTION
1519
1520 Once the symbols from a shared object have been loaded in the usual
1521 way, we are called to do any system specific symbol handling that
1522 is needed.
1523
1524 For SunOS4, this consisted of grunging around in the dynamic
1525 linkers structures to find symbol definitions for "common" symbols
1526 and adding them to the minimal symbol table for the runtime common
1527 objfile.
1528
1529 However, for SVR4, there's nothing to do.
1530
1531 */
1532
1533 static void
1534 svr4_special_symbol_handling (void)
1535 {
1536 }
1537
1538 /* Decide if the objfile needs to be relocated. As indicated above,
1539 we will only be here when execution is stopped at the beginning
1540 of the program. Relocation is necessary if the address at which
1541 we are presently stopped differs from the start address stored in
1542 the executable AND there's no interpreter section. The condition
1543 regarding the interpreter section is very important because if
1544 there *is* an interpreter section, execution will begin there
1545 instead. When there is an interpreter section, the start address
1546 is (presumably) used by the interpreter at some point to start
1547 execution of the program.
1548
1549 If there is an interpreter, it is normal for it to be set to an
1550 arbitrary address at the outset. The job of finding it is
1551 handled in enable_break().
1552
1553 So, to summarize, relocations are necessary when there is no
1554 interpreter section and the start address obtained from the
1555 executable is different from the address at which GDB is
1556 currently stopped.
1557
1558 [ The astute reader will note that we also test to make sure that
1559 the executable in question has the DYNAMIC flag set. It is my
1560 opinion that this test is unnecessary (undesirable even). It
1561 was added to avoid inadvertent relocation of an executable
1562 whose e_type member in the ELF header is not ET_DYN. There may
1563 be a time in the future when it is desirable to do relocations
1564 on other types of files as well in which case this condition
1565 should either be removed or modified to accomodate the new file
1566 type. (E.g, an ET_EXEC executable which has been built to be
1567 position-independent could safely be relocated by the OS if
1568 desired. It is true that this violates the ABI, but the ABI
1569 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1570 */
1571
1572 static CORE_ADDR
1573 svr4_static_exec_displacement (void)
1574 {
1575 asection *interp_sect;
1576 struct regcache *regcache
1577 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1578 CORE_ADDR pc = regcache_read_pc (regcache);
1579
1580 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1581 if (interp_sect == NULL
1582 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
1583 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
1584 return pc - exec_entry_point (exec_bfd, &exec_ops);
1585
1586 return 0;
1587 }
1588
1589 /* We relocate all of the sections by the same amount. This
1590 behavior is mandated by recent editions of the System V ABI.
1591 According to the System V Application Binary Interface,
1592 Edition 4.1, page 5-5:
1593
1594 ... Though the system chooses virtual addresses for
1595 individual processes, it maintains the segments' relative
1596 positions. Because position-independent code uses relative
1597 addressesing between segments, the difference between
1598 virtual addresses in memory must match the difference
1599 between virtual addresses in the file. The difference
1600 between the virtual address of any segment in memory and
1601 the corresponding virtual address in the file is thus a
1602 single constant value for any one executable or shared
1603 object in a given process. This difference is the base
1604 address. One use of the base address is to relocate the
1605 memory image of the program during dynamic linking.
1606
1607 The same language also appears in Edition 4.0 of the System V
1608 ABI and is left unspecified in some of the earlier editions. */
1609
1610 static CORE_ADDR
1611 svr4_exec_displacement (void)
1612 {
1613 int found;
1614 CORE_ADDR entry_point;
1615
1616 if (exec_bfd == NULL)
1617 return 0;
1618
1619 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) == 1)
1620 return entry_point - exec_entry_point (exec_bfd, &current_target);
1621
1622 return svr4_static_exec_displacement ();
1623 }
1624
1625 /* Relocate the main executable. This function should be called upon
1626 stopping the inferior process at the entry point to the program.
1627 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
1628 different, the main executable is relocated by the proper amount. */
1629
1630 static void
1631 svr4_relocate_main_executable (void)
1632 {
1633 CORE_ADDR displacement = svr4_exec_displacement ();
1634
1635 /* Even if DISPLACEMENT is 0 still try to relocate it as this is a new
1636 difference of in-memory vs. in-file addresses and we could already
1637 relocate the executable at this function to improper address before. */
1638
1639 if (symfile_objfile)
1640 {
1641 struct section_offsets *new_offsets;
1642 int i;
1643
1644 new_offsets = alloca (symfile_objfile->num_sections
1645 * sizeof (*new_offsets));
1646
1647 for (i = 0; i < symfile_objfile->num_sections; i++)
1648 new_offsets->offsets[i] = displacement;
1649
1650 objfile_relocate (symfile_objfile, new_offsets);
1651 }
1652 else if (exec_bfd)
1653 {
1654 asection *asect;
1655
1656 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
1657 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
1658 (bfd_section_vma (exec_bfd, asect)
1659 + displacement));
1660 }
1661 }
1662
1663 /*
1664
1665 GLOBAL FUNCTION
1666
1667 svr4_solib_create_inferior_hook -- shared library startup support
1668
1669 SYNOPSIS
1670
1671 void svr4_solib_create_inferior_hook (int from_tty)
1672
1673 DESCRIPTION
1674
1675 When gdb starts up the inferior, it nurses it along (through the
1676 shell) until it is ready to execute it's first instruction. At this
1677 point, this function gets called via expansion of the macro
1678 SOLIB_CREATE_INFERIOR_HOOK.
1679
1680 For SunOS executables, this first instruction is typically the
1681 one at "_start", or a similar text label, regardless of whether
1682 the executable is statically or dynamically linked. The runtime
1683 startup code takes care of dynamically linking in any shared
1684 libraries, once gdb allows the inferior to continue.
1685
1686 For SVR4 executables, this first instruction is either the first
1687 instruction in the dynamic linker (for dynamically linked
1688 executables) or the instruction at "start" for statically linked
1689 executables. For dynamically linked executables, the system
1690 first exec's /lib/libc.so.N, which contains the dynamic linker,
1691 and starts it running. The dynamic linker maps in any needed
1692 shared libraries, maps in the actual user executable, and then
1693 jumps to "start" in the user executable.
1694
1695 For both SunOS shared libraries, and SVR4 shared libraries, we
1696 can arrange to cooperate with the dynamic linker to discover the
1697 names of shared libraries that are dynamically linked, and the
1698 base addresses to which they are linked.
1699
1700 This function is responsible for discovering those names and
1701 addresses, and saving sufficient information about them to allow
1702 their symbols to be read at a later time.
1703
1704 FIXME
1705
1706 Between enable_break() and disable_break(), this code does not
1707 properly handle hitting breakpoints which the user might have
1708 set in the startup code or in the dynamic linker itself. Proper
1709 handling will probably have to wait until the implementation is
1710 changed to use the "breakpoint handler function" method.
1711
1712 Also, what if child has exit()ed? Must exit loop somehow.
1713 */
1714
1715 static void
1716 svr4_solib_create_inferior_hook (int from_tty)
1717 {
1718 struct inferior *inf;
1719 struct thread_info *tp;
1720 struct svr4_info *info;
1721
1722 info = get_svr4_info ();
1723
1724 /* Relocate the main executable if necessary. */
1725 svr4_relocate_main_executable ();
1726
1727 if (!svr4_have_link_map_offsets ())
1728 return;
1729
1730 if (!enable_break (info, from_tty))
1731 return;
1732
1733 #if defined(_SCO_DS)
1734 /* SCO needs the loop below, other systems should be using the
1735 special shared library breakpoints and the shared library breakpoint
1736 service routine.
1737
1738 Now run the target. It will eventually hit the breakpoint, at
1739 which point all of the libraries will have been mapped in and we
1740 can go groveling around in the dynamic linker structures to find
1741 out what we need to know about them. */
1742
1743 inf = current_inferior ();
1744 tp = inferior_thread ();
1745
1746 clear_proceed_status ();
1747 inf->stop_soon = STOP_QUIETLY;
1748 tp->stop_signal = TARGET_SIGNAL_0;
1749 do
1750 {
1751 target_resume (pid_to_ptid (-1), 0, tp->stop_signal);
1752 wait_for_inferior (0);
1753 }
1754 while (tp->stop_signal != TARGET_SIGNAL_TRAP);
1755 inf->stop_soon = NO_STOP_QUIETLY;
1756 #endif /* defined(_SCO_DS) */
1757 }
1758
1759 static void
1760 svr4_clear_solib (void)
1761 {
1762 struct svr4_info *info;
1763
1764 info = get_svr4_info ();
1765 info->debug_base = 0;
1766 info->debug_loader_offset_p = 0;
1767 info->debug_loader_offset = 0;
1768 xfree (info->debug_loader_name);
1769 info->debug_loader_name = NULL;
1770 }
1771
1772 static void
1773 svr4_free_so (struct so_list *so)
1774 {
1775 xfree (so->lm_info->lm);
1776 xfree (so->lm_info);
1777 }
1778
1779
1780 /* Clear any bits of ADDR that wouldn't fit in a target-format
1781 data pointer. "Data pointer" here refers to whatever sort of
1782 address the dynamic linker uses to manage its sections. At the
1783 moment, we don't support shared libraries on any processors where
1784 code and data pointers are different sizes.
1785
1786 This isn't really the right solution. What we really need here is
1787 a way to do arithmetic on CORE_ADDR values that respects the
1788 natural pointer/address correspondence. (For example, on the MIPS,
1789 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1790 sign-extend the value. There, simply truncating the bits above
1791 gdbarch_ptr_bit, as we do below, is no good.) This should probably
1792 be a new gdbarch method or something. */
1793 static CORE_ADDR
1794 svr4_truncate_ptr (CORE_ADDR addr)
1795 {
1796 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
1797 /* We don't need to truncate anything, and the bit twiddling below
1798 will fail due to overflow problems. */
1799 return addr;
1800 else
1801 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
1802 }
1803
1804
1805 static void
1806 svr4_relocate_section_addresses (struct so_list *so,
1807 struct target_section *sec)
1808 {
1809 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
1810 sec->bfd));
1811 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
1812 sec->bfd));
1813 }
1814 \f
1815
1816 /* Architecture-specific operations. */
1817
1818 /* Per-architecture data key. */
1819 static struct gdbarch_data *solib_svr4_data;
1820
1821 struct solib_svr4_ops
1822 {
1823 /* Return a description of the layout of `struct link_map'. */
1824 struct link_map_offsets *(*fetch_link_map_offsets)(void);
1825 };
1826
1827 /* Return a default for the architecture-specific operations. */
1828
1829 static void *
1830 solib_svr4_init (struct obstack *obstack)
1831 {
1832 struct solib_svr4_ops *ops;
1833
1834 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
1835 ops->fetch_link_map_offsets = NULL;
1836 return ops;
1837 }
1838
1839 /* Set the architecture-specific `struct link_map_offsets' fetcher for
1840 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1841
1842 void
1843 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1844 struct link_map_offsets *(*flmo) (void))
1845 {
1846 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
1847
1848 ops->fetch_link_map_offsets = flmo;
1849
1850 set_solib_ops (gdbarch, &svr4_so_ops);
1851 }
1852
1853 /* Fetch a link_map_offsets structure using the architecture-specific
1854 `struct link_map_offsets' fetcher. */
1855
1856 static struct link_map_offsets *
1857 svr4_fetch_link_map_offsets (void)
1858 {
1859 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
1860
1861 gdb_assert (ops->fetch_link_map_offsets);
1862 return ops->fetch_link_map_offsets ();
1863 }
1864
1865 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1866
1867 static int
1868 svr4_have_link_map_offsets (void)
1869 {
1870 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
1871 return (ops->fetch_link_map_offsets != NULL);
1872 }
1873 \f
1874
1875 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
1876 `struct r_debug' and a `struct link_map' that are binary compatible
1877 with the origional SVR4 implementation. */
1878
1879 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1880 for an ILP32 SVR4 system. */
1881
1882 struct link_map_offsets *
1883 svr4_ilp32_fetch_link_map_offsets (void)
1884 {
1885 static struct link_map_offsets lmo;
1886 static struct link_map_offsets *lmp = NULL;
1887
1888 if (lmp == NULL)
1889 {
1890 lmp = &lmo;
1891
1892 lmo.r_version_offset = 0;
1893 lmo.r_version_size = 4;
1894 lmo.r_map_offset = 4;
1895 lmo.r_brk_offset = 8;
1896 lmo.r_ldsomap_offset = 20;
1897
1898 /* Everything we need is in the first 20 bytes. */
1899 lmo.link_map_size = 20;
1900 lmo.l_addr_offset = 0;
1901 lmo.l_name_offset = 4;
1902 lmo.l_ld_offset = 8;
1903 lmo.l_next_offset = 12;
1904 lmo.l_prev_offset = 16;
1905 }
1906
1907 return lmp;
1908 }
1909
1910 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1911 for an LP64 SVR4 system. */
1912
1913 struct link_map_offsets *
1914 svr4_lp64_fetch_link_map_offsets (void)
1915 {
1916 static struct link_map_offsets lmo;
1917 static struct link_map_offsets *lmp = NULL;
1918
1919 if (lmp == NULL)
1920 {
1921 lmp = &lmo;
1922
1923 lmo.r_version_offset = 0;
1924 lmo.r_version_size = 4;
1925 lmo.r_map_offset = 8;
1926 lmo.r_brk_offset = 16;
1927 lmo.r_ldsomap_offset = 40;
1928
1929 /* Everything we need is in the first 40 bytes. */
1930 lmo.link_map_size = 40;
1931 lmo.l_addr_offset = 0;
1932 lmo.l_name_offset = 8;
1933 lmo.l_ld_offset = 16;
1934 lmo.l_next_offset = 24;
1935 lmo.l_prev_offset = 32;
1936 }
1937
1938 return lmp;
1939 }
1940 \f
1941
1942 struct target_so_ops svr4_so_ops;
1943
1944 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
1945 different rule for symbol lookup. The lookup begins here in the DSO, not in
1946 the main executable. */
1947
1948 static struct symbol *
1949 elf_lookup_lib_symbol (const struct objfile *objfile,
1950 const char *name,
1951 const char *linkage_name,
1952 const domain_enum domain)
1953 {
1954 if (objfile->obfd == NULL
1955 || scan_dyntag (DT_SYMBOLIC, objfile->obfd, NULL) != 1)
1956 return NULL;
1957
1958 return lookup_global_symbol_from_objfile
1959 (objfile, name, linkage_name, domain);
1960 }
1961
1962 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
1963
1964 void
1965 _initialize_svr4_solib (void)
1966 {
1967 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
1968 solib_svr4_pspace_data
1969 = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
1970
1971 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
1972 svr4_so_ops.free_so = svr4_free_so;
1973 svr4_so_ops.clear_solib = svr4_clear_solib;
1974 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1975 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1976 svr4_so_ops.current_sos = svr4_current_sos;
1977 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
1978 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
1979 svr4_so_ops.bfd_open = solib_bfd_open;
1980 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
1981 svr4_so_ops.same = svr4_same;
1982 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
1983 }
This page took 0.070334 seconds and 4 git commands to generate.