Merge {i386,amd64}_linux_read_description
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "elf/external.h"
23 #include "elf/common.h"
24 #include "elf/mips.h"
25
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbcore.h"
31 #include "target.h"
32 #include "inferior.h"
33 #include "infrun.h"
34 #include "regcache.h"
35 #include "gdbthread.h"
36 #include "observer.h"
37
38 #include "gdb_assert.h"
39
40 #include "solist.h"
41 #include "solib.h"
42 #include "solib-svr4.h"
43
44 #include "bfd-target.h"
45 #include "elf-bfd.h"
46 #include "exec.h"
47 #include "auxv.h"
48 #include "exceptions.h"
49 #include "gdb_bfd.h"
50 #include "probe.h"
51
52 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
53 static int svr4_have_link_map_offsets (void);
54 static void svr4_relocate_main_executable (void);
55 static void svr4_free_library_list (void *p_list);
56
57 /* Link map info to include in an allocated so_list entry. */
58
59 struct lm_info
60 {
61 /* Amount by which addresses in the binary should be relocated to
62 match the inferior. The direct inferior value is L_ADDR_INFERIOR.
63 When prelinking is involved and the prelink base address changes,
64 we may need a different offset - the recomputed offset is in L_ADDR.
65 It is commonly the same value. It is cached as we want to warn about
66 the difference and compute it only once. L_ADDR is valid
67 iff L_ADDR_P. */
68 CORE_ADDR l_addr, l_addr_inferior;
69 unsigned int l_addr_p : 1;
70
71 /* The target location of lm. */
72 CORE_ADDR lm_addr;
73
74 /* Values read in from inferior's fields of the same name. */
75 CORE_ADDR l_ld, l_next, l_prev, l_name;
76 };
77
78 /* On SVR4 systems, a list of symbols in the dynamic linker where
79 GDB can try to place a breakpoint to monitor shared library
80 events.
81
82 If none of these symbols are found, or other errors occur, then
83 SVR4 systems will fall back to using a symbol as the "startup
84 mapping complete" breakpoint address. */
85
86 static const char * const solib_break_names[] =
87 {
88 "r_debug_state",
89 "_r_debug_state",
90 "_dl_debug_state",
91 "rtld_db_dlactivity",
92 "__dl_rtld_db_dlactivity",
93 "_rtld_debug_state",
94
95 NULL
96 };
97
98 static const char * const bkpt_names[] =
99 {
100 "_start",
101 "__start",
102 "main",
103 NULL
104 };
105
106 static const char * const main_name_list[] =
107 {
108 "main_$main",
109 NULL
110 };
111
112 /* What to do when a probe stop occurs. */
113
114 enum probe_action
115 {
116 /* Something went seriously wrong. Stop using probes and
117 revert to using the older interface. */
118 PROBES_INTERFACE_FAILED,
119
120 /* No action is required. The shared object list is still
121 valid. */
122 DO_NOTHING,
123
124 /* The shared object list should be reloaded entirely. */
125 FULL_RELOAD,
126
127 /* Attempt to incrementally update the shared object list. If
128 the update fails or is not possible, fall back to reloading
129 the list in full. */
130 UPDATE_OR_RELOAD,
131 };
132
133 /* A probe's name and its associated action. */
134
135 struct probe_info
136 {
137 /* The name of the probe. */
138 const char *name;
139
140 /* What to do when a probe stop occurs. */
141 enum probe_action action;
142 };
143
144 /* A list of named probes and their associated actions. If all
145 probes are present in the dynamic linker then the probes-based
146 interface will be used. */
147
148 static const struct probe_info probe_info[] =
149 {
150 { "init_start", DO_NOTHING },
151 { "init_complete", FULL_RELOAD },
152 { "map_start", DO_NOTHING },
153 { "map_failed", DO_NOTHING },
154 { "reloc_complete", UPDATE_OR_RELOAD },
155 { "unmap_start", DO_NOTHING },
156 { "unmap_complete", FULL_RELOAD },
157 };
158
159 #define NUM_PROBES ARRAY_SIZE (probe_info)
160
161 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
162 the same shared library. */
163
164 static int
165 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
166 {
167 if (strcmp (gdb_so_name, inferior_so_name) == 0)
168 return 1;
169
170 /* On Solaris, when starting inferior we think that dynamic linker is
171 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
172 contains /lib/ld.so.1. Sometimes one file is a link to another, but
173 sometimes they have identical content, but are not linked to each
174 other. We don't restrict this check for Solaris, but the chances
175 of running into this situation elsewhere are very low. */
176 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
177 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
178 return 1;
179
180 /* Similarly, we observed the same issue with sparc64, but with
181 different locations. */
182 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
183 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
184 return 1;
185
186 return 0;
187 }
188
189 static int
190 svr4_same (struct so_list *gdb, struct so_list *inferior)
191 {
192 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
193 }
194
195 static struct lm_info *
196 lm_info_read (CORE_ADDR lm_addr)
197 {
198 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
199 gdb_byte *lm;
200 struct lm_info *lm_info;
201 struct cleanup *back_to;
202
203 lm = xmalloc (lmo->link_map_size);
204 back_to = make_cleanup (xfree, lm);
205
206 if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
207 {
208 warning (_("Error reading shared library list entry at %s"),
209 paddress (target_gdbarch (), lm_addr)),
210 lm_info = NULL;
211 }
212 else
213 {
214 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
215
216 lm_info = xzalloc (sizeof (*lm_info));
217 lm_info->lm_addr = lm_addr;
218
219 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
220 ptr_type);
221 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
222 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
223 ptr_type);
224 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
225 ptr_type);
226 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
227 ptr_type);
228 }
229
230 do_cleanups (back_to);
231
232 return lm_info;
233 }
234
235 static int
236 has_lm_dynamic_from_link_map (void)
237 {
238 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
239
240 return lmo->l_ld_offset >= 0;
241 }
242
243 static CORE_ADDR
244 lm_addr_check (const struct so_list *so, bfd *abfd)
245 {
246 if (!so->lm_info->l_addr_p)
247 {
248 struct bfd_section *dyninfo_sect;
249 CORE_ADDR l_addr, l_dynaddr, dynaddr;
250
251 l_addr = so->lm_info->l_addr_inferior;
252
253 if (! abfd || ! has_lm_dynamic_from_link_map ())
254 goto set_addr;
255
256 l_dynaddr = so->lm_info->l_ld;
257
258 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
259 if (dyninfo_sect == NULL)
260 goto set_addr;
261
262 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
263
264 if (dynaddr + l_addr != l_dynaddr)
265 {
266 CORE_ADDR align = 0x1000;
267 CORE_ADDR minpagesize = align;
268
269 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
270 {
271 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
272 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
273 int i;
274
275 align = 1;
276
277 for (i = 0; i < ehdr->e_phnum; i++)
278 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
279 align = phdr[i].p_align;
280
281 minpagesize = get_elf_backend_data (abfd)->minpagesize;
282 }
283
284 /* Turn it into a mask. */
285 align--;
286
287 /* If the changes match the alignment requirements, we
288 assume we're using a core file that was generated by the
289 same binary, just prelinked with a different base offset.
290 If it doesn't match, we may have a different binary, the
291 same binary with the dynamic table loaded at an unrelated
292 location, or anything, really. To avoid regressions,
293 don't adjust the base offset in the latter case, although
294 odds are that, if things really changed, debugging won't
295 quite work.
296
297 One could expect more the condition
298 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
299 but the one below is relaxed for PPC. The PPC kernel supports
300 either 4k or 64k page sizes. To be prepared for 64k pages,
301 PPC ELF files are built using an alignment requirement of 64k.
302 However, when running on a kernel supporting 4k pages, the memory
303 mapping of the library may not actually happen on a 64k boundary!
304
305 (In the usual case where (l_addr & align) == 0, this check is
306 equivalent to the possibly expected check above.)
307
308 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
309
310 l_addr = l_dynaddr - dynaddr;
311
312 if ((l_addr & (minpagesize - 1)) == 0
313 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
314 {
315 if (info_verbose)
316 printf_unfiltered (_("Using PIC (Position Independent Code) "
317 "prelink displacement %s for \"%s\".\n"),
318 paddress (target_gdbarch (), l_addr),
319 so->so_name);
320 }
321 else
322 {
323 /* There is no way to verify the library file matches. prelink
324 can during prelinking of an unprelinked file (or unprelinking
325 of a prelinked file) shift the DYNAMIC segment by arbitrary
326 offset without any page size alignment. There is no way to
327 find out the ELF header and/or Program Headers for a limited
328 verification if it they match. One could do a verification
329 of the DYNAMIC segment. Still the found address is the best
330 one GDB could find. */
331
332 warning (_(".dynamic section for \"%s\" "
333 "is not at the expected address "
334 "(wrong library or version mismatch?)"), so->so_name);
335 }
336 }
337
338 set_addr:
339 so->lm_info->l_addr = l_addr;
340 so->lm_info->l_addr_p = 1;
341 }
342
343 return so->lm_info->l_addr;
344 }
345
346 /* Per pspace SVR4 specific data. */
347
348 struct svr4_info
349 {
350 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
351
352 /* Validity flag for debug_loader_offset. */
353 int debug_loader_offset_p;
354
355 /* Load address for the dynamic linker, inferred. */
356 CORE_ADDR debug_loader_offset;
357
358 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
359 char *debug_loader_name;
360
361 /* Load map address for the main executable. */
362 CORE_ADDR main_lm_addr;
363
364 CORE_ADDR interp_text_sect_low;
365 CORE_ADDR interp_text_sect_high;
366 CORE_ADDR interp_plt_sect_low;
367 CORE_ADDR interp_plt_sect_high;
368
369 /* Nonzero if the list of objects was last obtained from the target
370 via qXfer:libraries-svr4:read. */
371 int using_xfer;
372
373 /* Table of struct probe_and_action instances, used by the
374 probes-based interface to map breakpoint addresses to probes
375 and their associated actions. Lookup is performed using
376 probe_and_action->probe->address. */
377 htab_t probes_table;
378
379 /* List of objects loaded into the inferior, used by the probes-
380 based interface. */
381 struct so_list *solib_list;
382 };
383
384 /* Per-program-space data key. */
385 static const struct program_space_data *solib_svr4_pspace_data;
386
387 /* Free the probes table. */
388
389 static void
390 free_probes_table (struct svr4_info *info)
391 {
392 if (info->probes_table == NULL)
393 return;
394
395 htab_delete (info->probes_table);
396 info->probes_table = NULL;
397 }
398
399 /* Free the solib list. */
400
401 static void
402 free_solib_list (struct svr4_info *info)
403 {
404 svr4_free_library_list (&info->solib_list);
405 info->solib_list = NULL;
406 }
407
408 static void
409 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
410 {
411 struct svr4_info *info = arg;
412
413 free_probes_table (info);
414 free_solib_list (info);
415
416 xfree (info);
417 }
418
419 /* Get the current svr4 data. If none is found yet, add it now. This
420 function always returns a valid object. */
421
422 static struct svr4_info *
423 get_svr4_info (void)
424 {
425 struct svr4_info *info;
426
427 info = program_space_data (current_program_space, solib_svr4_pspace_data);
428 if (info != NULL)
429 return info;
430
431 info = XCNEW (struct svr4_info);
432 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
433 return info;
434 }
435
436 /* Local function prototypes */
437
438 static int match_main (const char *);
439
440 /* Read program header TYPE from inferior memory. The header is found
441 by scanning the OS auxillary vector.
442
443 If TYPE == -1, return the program headers instead of the contents of
444 one program header.
445
446 Return a pointer to allocated memory holding the program header contents,
447 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
448 size of those contents is returned to P_SECT_SIZE. Likewise, the target
449 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
450
451 static gdb_byte *
452 read_program_header (int type, int *p_sect_size, int *p_arch_size)
453 {
454 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
455 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
456 int arch_size, sect_size;
457 CORE_ADDR sect_addr;
458 gdb_byte *buf;
459 int pt_phdr_p = 0;
460
461 /* Get required auxv elements from target. */
462 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
463 return 0;
464 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
465 return 0;
466 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
467 return 0;
468 if (!at_phdr || !at_phnum)
469 return 0;
470
471 /* Determine ELF architecture type. */
472 if (at_phent == sizeof (Elf32_External_Phdr))
473 arch_size = 32;
474 else if (at_phent == sizeof (Elf64_External_Phdr))
475 arch_size = 64;
476 else
477 return 0;
478
479 /* Find the requested segment. */
480 if (type == -1)
481 {
482 sect_addr = at_phdr;
483 sect_size = at_phent * at_phnum;
484 }
485 else if (arch_size == 32)
486 {
487 Elf32_External_Phdr phdr;
488 int i;
489
490 /* Search for requested PHDR. */
491 for (i = 0; i < at_phnum; i++)
492 {
493 int p_type;
494
495 if (target_read_memory (at_phdr + i * sizeof (phdr),
496 (gdb_byte *)&phdr, sizeof (phdr)))
497 return 0;
498
499 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
500 4, byte_order);
501
502 if (p_type == PT_PHDR)
503 {
504 pt_phdr_p = 1;
505 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
506 4, byte_order);
507 }
508
509 if (p_type == type)
510 break;
511 }
512
513 if (i == at_phnum)
514 return 0;
515
516 /* Retrieve address and size. */
517 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
518 4, byte_order);
519 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
520 4, byte_order);
521 }
522 else
523 {
524 Elf64_External_Phdr phdr;
525 int i;
526
527 /* Search for requested PHDR. */
528 for (i = 0; i < at_phnum; i++)
529 {
530 int p_type;
531
532 if (target_read_memory (at_phdr + i * sizeof (phdr),
533 (gdb_byte *)&phdr, sizeof (phdr)))
534 return 0;
535
536 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
537 4, byte_order);
538
539 if (p_type == PT_PHDR)
540 {
541 pt_phdr_p = 1;
542 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
543 8, byte_order);
544 }
545
546 if (p_type == type)
547 break;
548 }
549
550 if (i == at_phnum)
551 return 0;
552
553 /* Retrieve address and size. */
554 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
555 8, byte_order);
556 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
557 8, byte_order);
558 }
559
560 /* PT_PHDR is optional, but we really need it
561 for PIE to make this work in general. */
562
563 if (pt_phdr_p)
564 {
565 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
566 Relocation offset is the difference between the two. */
567 sect_addr = sect_addr + (at_phdr - pt_phdr);
568 }
569
570 /* Read in requested program header. */
571 buf = xmalloc (sect_size);
572 if (target_read_memory (sect_addr, buf, sect_size))
573 {
574 xfree (buf);
575 return NULL;
576 }
577
578 if (p_arch_size)
579 *p_arch_size = arch_size;
580 if (p_sect_size)
581 *p_sect_size = sect_size;
582
583 return buf;
584 }
585
586
587 /* Return program interpreter string. */
588 static char *
589 find_program_interpreter (void)
590 {
591 gdb_byte *buf = NULL;
592
593 /* If we have an exec_bfd, use its section table. */
594 if (exec_bfd
595 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
596 {
597 struct bfd_section *interp_sect;
598
599 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
600 if (interp_sect != NULL)
601 {
602 int sect_size = bfd_section_size (exec_bfd, interp_sect);
603
604 buf = xmalloc (sect_size);
605 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
606 }
607 }
608
609 /* If we didn't find it, use the target auxillary vector. */
610 if (!buf)
611 buf = read_program_header (PT_INTERP, NULL, NULL);
612
613 return (char *) buf;
614 }
615
616
617 /* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
618 returned and the corresponding PTR is set. */
619
620 static int
621 scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
622 {
623 int arch_size, step, sect_size;
624 long dyn_tag;
625 CORE_ADDR dyn_ptr, dyn_addr;
626 gdb_byte *bufend, *bufstart, *buf;
627 Elf32_External_Dyn *x_dynp_32;
628 Elf64_External_Dyn *x_dynp_64;
629 struct bfd_section *sect;
630 struct target_section *target_section;
631
632 if (abfd == NULL)
633 return 0;
634
635 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
636 return 0;
637
638 arch_size = bfd_get_arch_size (abfd);
639 if (arch_size == -1)
640 return 0;
641
642 /* Find the start address of the .dynamic section. */
643 sect = bfd_get_section_by_name (abfd, ".dynamic");
644 if (sect == NULL)
645 return 0;
646
647 for (target_section = current_target_sections->sections;
648 target_section < current_target_sections->sections_end;
649 target_section++)
650 if (sect == target_section->the_bfd_section)
651 break;
652 if (target_section < current_target_sections->sections_end)
653 dyn_addr = target_section->addr;
654 else
655 {
656 /* ABFD may come from OBJFILE acting only as a symbol file without being
657 loaded into the target (see add_symbol_file_command). This case is
658 such fallback to the file VMA address without the possibility of
659 having the section relocated to its actual in-memory address. */
660
661 dyn_addr = bfd_section_vma (abfd, sect);
662 }
663
664 /* Read in .dynamic from the BFD. We will get the actual value
665 from memory later. */
666 sect_size = bfd_section_size (abfd, sect);
667 buf = bufstart = alloca (sect_size);
668 if (!bfd_get_section_contents (abfd, sect,
669 buf, 0, sect_size))
670 return 0;
671
672 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
673 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
674 : sizeof (Elf64_External_Dyn);
675 for (bufend = buf + sect_size;
676 buf < bufend;
677 buf += step)
678 {
679 if (arch_size == 32)
680 {
681 x_dynp_32 = (Elf32_External_Dyn *) buf;
682 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
683 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
684 }
685 else
686 {
687 x_dynp_64 = (Elf64_External_Dyn *) buf;
688 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
689 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
690 }
691 if (dyn_tag == DT_NULL)
692 return 0;
693 if (dyn_tag == dyntag)
694 {
695 /* If requested, try to read the runtime value of this .dynamic
696 entry. */
697 if (ptr)
698 {
699 struct type *ptr_type;
700 gdb_byte ptr_buf[8];
701 CORE_ADDR ptr_addr;
702
703 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
704 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
705 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
706 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
707 *ptr = dyn_ptr;
708 }
709 return 1;
710 }
711 }
712
713 return 0;
714 }
715
716 /* Scan for DYNTAG in .dynamic section of the target's main executable,
717 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
718 returned and the corresponding PTR is set. */
719
720 static int
721 scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
722 {
723 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
724 int sect_size, arch_size, step;
725 long dyn_tag;
726 CORE_ADDR dyn_ptr;
727 gdb_byte *bufend, *bufstart, *buf;
728
729 /* Read in .dynamic section. */
730 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
731 if (!buf)
732 return 0;
733
734 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
735 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
736 : sizeof (Elf64_External_Dyn);
737 for (bufend = buf + sect_size;
738 buf < bufend;
739 buf += step)
740 {
741 if (arch_size == 32)
742 {
743 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
744
745 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
746 4, byte_order);
747 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
748 4, byte_order);
749 }
750 else
751 {
752 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
753
754 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
755 8, byte_order);
756 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
757 8, byte_order);
758 }
759 if (dyn_tag == DT_NULL)
760 break;
761
762 if (dyn_tag == dyntag)
763 {
764 if (ptr)
765 *ptr = dyn_ptr;
766
767 xfree (bufstart);
768 return 1;
769 }
770 }
771
772 xfree (bufstart);
773 return 0;
774 }
775
776 /* Locate the base address of dynamic linker structs for SVR4 elf
777 targets.
778
779 For SVR4 elf targets the address of the dynamic linker's runtime
780 structure is contained within the dynamic info section in the
781 executable file. The dynamic section is also mapped into the
782 inferior address space. Because the runtime loader fills in the
783 real address before starting the inferior, we have to read in the
784 dynamic info section from the inferior address space.
785 If there are any errors while trying to find the address, we
786 silently return 0, otherwise the found address is returned. */
787
788 static CORE_ADDR
789 elf_locate_base (void)
790 {
791 struct bound_minimal_symbol msymbol;
792 CORE_ADDR dyn_ptr;
793
794 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
795 instead of DT_DEBUG, although they sometimes contain an unused
796 DT_DEBUG. */
797 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
798 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
799 {
800 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
801 gdb_byte *pbuf;
802 int pbuf_size = TYPE_LENGTH (ptr_type);
803
804 pbuf = alloca (pbuf_size);
805 /* DT_MIPS_RLD_MAP contains a pointer to the address
806 of the dynamic link structure. */
807 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
808 return 0;
809 return extract_typed_address (pbuf, ptr_type);
810 }
811
812 /* Find DT_DEBUG. */
813 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
814 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
815 return dyn_ptr;
816
817 /* This may be a static executable. Look for the symbol
818 conventionally named _r_debug, as a last resort. */
819 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
820 if (msymbol.minsym != NULL)
821 return BMSYMBOL_VALUE_ADDRESS (msymbol);
822
823 /* DT_DEBUG entry not found. */
824 return 0;
825 }
826
827 /* Locate the base address of dynamic linker structs.
828
829 For both the SunOS and SVR4 shared library implementations, if the
830 inferior executable has been linked dynamically, there is a single
831 address somewhere in the inferior's data space which is the key to
832 locating all of the dynamic linker's runtime structures. This
833 address is the value of the debug base symbol. The job of this
834 function is to find and return that address, or to return 0 if there
835 is no such address (the executable is statically linked for example).
836
837 For SunOS, the job is almost trivial, since the dynamic linker and
838 all of it's structures are statically linked to the executable at
839 link time. Thus the symbol for the address we are looking for has
840 already been added to the minimal symbol table for the executable's
841 objfile at the time the symbol file's symbols were read, and all we
842 have to do is look it up there. Note that we explicitly do NOT want
843 to find the copies in the shared library.
844
845 The SVR4 version is a bit more complicated because the address
846 is contained somewhere in the dynamic info section. We have to go
847 to a lot more work to discover the address of the debug base symbol.
848 Because of this complexity, we cache the value we find and return that
849 value on subsequent invocations. Note there is no copy in the
850 executable symbol tables. */
851
852 static CORE_ADDR
853 locate_base (struct svr4_info *info)
854 {
855 /* Check to see if we have a currently valid address, and if so, avoid
856 doing all this work again and just return the cached address. If
857 we have no cached address, try to locate it in the dynamic info
858 section for ELF executables. There's no point in doing any of this
859 though if we don't have some link map offsets to work with. */
860
861 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
862 info->debug_base = elf_locate_base ();
863 return info->debug_base;
864 }
865
866 /* Find the first element in the inferior's dynamic link map, and
867 return its address in the inferior. Return zero if the address
868 could not be determined.
869
870 FIXME: Perhaps we should validate the info somehow, perhaps by
871 checking r_version for a known version number, or r_state for
872 RT_CONSISTENT. */
873
874 static CORE_ADDR
875 solib_svr4_r_map (struct svr4_info *info)
876 {
877 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
878 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
879 CORE_ADDR addr = 0;
880 volatile struct gdb_exception ex;
881
882 TRY_CATCH (ex, RETURN_MASK_ERROR)
883 {
884 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
885 ptr_type);
886 }
887 exception_print (gdb_stderr, ex);
888 return addr;
889 }
890
891 /* Find r_brk from the inferior's debug base. */
892
893 static CORE_ADDR
894 solib_svr4_r_brk (struct svr4_info *info)
895 {
896 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
897 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
898
899 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
900 ptr_type);
901 }
902
903 /* Find the link map for the dynamic linker (if it is not in the
904 normal list of loaded shared objects). */
905
906 static CORE_ADDR
907 solib_svr4_r_ldsomap (struct svr4_info *info)
908 {
909 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
910 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
911 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
912 ULONGEST version;
913
914 /* Check version, and return zero if `struct r_debug' doesn't have
915 the r_ldsomap member. */
916 version
917 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
918 lmo->r_version_size, byte_order);
919 if (version < 2 || lmo->r_ldsomap_offset == -1)
920 return 0;
921
922 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
923 ptr_type);
924 }
925
926 /* On Solaris systems with some versions of the dynamic linker,
927 ld.so's l_name pointer points to the SONAME in the string table
928 rather than into writable memory. So that GDB can find shared
929 libraries when loading a core file generated by gcore, ensure that
930 memory areas containing the l_name string are saved in the core
931 file. */
932
933 static int
934 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
935 {
936 struct svr4_info *info;
937 CORE_ADDR ldsomap;
938 struct so_list *new;
939 struct cleanup *old_chain;
940 CORE_ADDR name_lm;
941
942 info = get_svr4_info ();
943
944 info->debug_base = 0;
945 locate_base (info);
946 if (!info->debug_base)
947 return 0;
948
949 ldsomap = solib_svr4_r_ldsomap (info);
950 if (!ldsomap)
951 return 0;
952
953 new = XCNEW (struct so_list);
954 old_chain = make_cleanup (xfree, new);
955 new->lm_info = lm_info_read (ldsomap);
956 make_cleanup (xfree, new->lm_info);
957 name_lm = new->lm_info ? new->lm_info->l_name : 0;
958 do_cleanups (old_chain);
959
960 return (name_lm >= vaddr && name_lm < vaddr + size);
961 }
962
963 /* Implement the "open_symbol_file_object" target_so_ops method.
964
965 If no open symbol file, attempt to locate and open the main symbol
966 file. On SVR4 systems, this is the first link map entry. If its
967 name is here, we can open it. Useful when attaching to a process
968 without first loading its symbol file. */
969
970 static int
971 open_symbol_file_object (void *from_ttyp)
972 {
973 CORE_ADDR lm, l_name;
974 char *filename;
975 int errcode;
976 int from_tty = *(int *)from_ttyp;
977 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
978 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
979 int l_name_size = TYPE_LENGTH (ptr_type);
980 gdb_byte *l_name_buf = xmalloc (l_name_size);
981 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
982 struct svr4_info *info = get_svr4_info ();
983
984 if (symfile_objfile)
985 if (!query (_("Attempt to reload symbols from process? ")))
986 {
987 do_cleanups (cleanups);
988 return 0;
989 }
990
991 /* Always locate the debug struct, in case it has moved. */
992 info->debug_base = 0;
993 if (locate_base (info) == 0)
994 {
995 do_cleanups (cleanups);
996 return 0; /* failed somehow... */
997 }
998
999 /* First link map member should be the executable. */
1000 lm = solib_svr4_r_map (info);
1001 if (lm == 0)
1002 {
1003 do_cleanups (cleanups);
1004 return 0; /* failed somehow... */
1005 }
1006
1007 /* Read address of name from target memory to GDB. */
1008 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
1009
1010 /* Convert the address to host format. */
1011 l_name = extract_typed_address (l_name_buf, ptr_type);
1012
1013 if (l_name == 0)
1014 {
1015 do_cleanups (cleanups);
1016 return 0; /* No filename. */
1017 }
1018
1019 /* Now fetch the filename from target memory. */
1020 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1021 make_cleanup (xfree, filename);
1022
1023 if (errcode)
1024 {
1025 warning (_("failed to read exec filename from attached file: %s"),
1026 safe_strerror (errcode));
1027 do_cleanups (cleanups);
1028 return 0;
1029 }
1030
1031 /* Have a pathname: read the symbol file. */
1032 symbol_file_add_main (filename, from_tty);
1033
1034 do_cleanups (cleanups);
1035 return 1;
1036 }
1037
1038 /* Data exchange structure for the XML parser as returned by
1039 svr4_current_sos_via_xfer_libraries. */
1040
1041 struct svr4_library_list
1042 {
1043 struct so_list *head, **tailp;
1044
1045 /* Inferior address of struct link_map used for the main executable. It is
1046 NULL if not known. */
1047 CORE_ADDR main_lm;
1048 };
1049
1050 /* Implementation for target_so_ops.free_so. */
1051
1052 static void
1053 svr4_free_so (struct so_list *so)
1054 {
1055 xfree (so->lm_info);
1056 }
1057
1058 /* Implement target_so_ops.clear_so. */
1059
1060 static void
1061 svr4_clear_so (struct so_list *so)
1062 {
1063 if (so->lm_info != NULL)
1064 so->lm_info->l_addr_p = 0;
1065 }
1066
1067 /* Free so_list built so far (called via cleanup). */
1068
1069 static void
1070 svr4_free_library_list (void *p_list)
1071 {
1072 struct so_list *list = *(struct so_list **) p_list;
1073
1074 while (list != NULL)
1075 {
1076 struct so_list *next = list->next;
1077
1078 free_so (list);
1079 list = next;
1080 }
1081 }
1082
1083 /* Copy library list. */
1084
1085 static struct so_list *
1086 svr4_copy_library_list (struct so_list *src)
1087 {
1088 struct so_list *dst = NULL;
1089 struct so_list **link = &dst;
1090
1091 while (src != NULL)
1092 {
1093 struct so_list *new;
1094
1095 new = xmalloc (sizeof (struct so_list));
1096 memcpy (new, src, sizeof (struct so_list));
1097
1098 new->lm_info = xmalloc (sizeof (struct lm_info));
1099 memcpy (new->lm_info, src->lm_info, sizeof (struct lm_info));
1100
1101 new->next = NULL;
1102 *link = new;
1103 link = &new->next;
1104
1105 src = src->next;
1106 }
1107
1108 return dst;
1109 }
1110
1111 #ifdef HAVE_LIBEXPAT
1112
1113 #include "xml-support.h"
1114
1115 /* Handle the start of a <library> element. Note: new elements are added
1116 at the tail of the list, keeping the list in order. */
1117
1118 static void
1119 library_list_start_library (struct gdb_xml_parser *parser,
1120 const struct gdb_xml_element *element,
1121 void *user_data, VEC(gdb_xml_value_s) *attributes)
1122 {
1123 struct svr4_library_list *list = user_data;
1124 const char *name = xml_find_attribute (attributes, "name")->value;
1125 ULONGEST *lmp = xml_find_attribute (attributes, "lm")->value;
1126 ULONGEST *l_addrp = xml_find_attribute (attributes, "l_addr")->value;
1127 ULONGEST *l_ldp = xml_find_attribute (attributes, "l_ld")->value;
1128 struct so_list *new_elem;
1129
1130 new_elem = XCNEW (struct so_list);
1131 new_elem->lm_info = XCNEW (struct lm_info);
1132 new_elem->lm_info->lm_addr = *lmp;
1133 new_elem->lm_info->l_addr_inferior = *l_addrp;
1134 new_elem->lm_info->l_ld = *l_ldp;
1135
1136 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1137 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1138 strcpy (new_elem->so_original_name, new_elem->so_name);
1139
1140 *list->tailp = new_elem;
1141 list->tailp = &new_elem->next;
1142 }
1143
1144 /* Handle the start of a <library-list-svr4> element. */
1145
1146 static void
1147 svr4_library_list_start_list (struct gdb_xml_parser *parser,
1148 const struct gdb_xml_element *element,
1149 void *user_data, VEC(gdb_xml_value_s) *attributes)
1150 {
1151 struct svr4_library_list *list = user_data;
1152 const char *version = xml_find_attribute (attributes, "version")->value;
1153 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1154
1155 if (strcmp (version, "1.0") != 0)
1156 gdb_xml_error (parser,
1157 _("SVR4 Library list has unsupported version \"%s\""),
1158 version);
1159
1160 if (main_lm)
1161 list->main_lm = *(ULONGEST *) main_lm->value;
1162 }
1163
1164 /* The allowed elements and attributes for an XML library list.
1165 The root element is a <library-list>. */
1166
1167 static const struct gdb_xml_attribute svr4_library_attributes[] =
1168 {
1169 { "name", GDB_XML_AF_NONE, NULL, NULL },
1170 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1171 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1172 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1173 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1174 };
1175
1176 static const struct gdb_xml_element svr4_library_list_children[] =
1177 {
1178 {
1179 "library", svr4_library_attributes, NULL,
1180 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1181 library_list_start_library, NULL
1182 },
1183 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1184 };
1185
1186 static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1187 {
1188 { "version", GDB_XML_AF_NONE, NULL, NULL },
1189 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1190 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1191 };
1192
1193 static const struct gdb_xml_element svr4_library_list_elements[] =
1194 {
1195 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1196 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1197 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1198 };
1199
1200 /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1201
1202 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1203 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1204 empty, caller is responsible for freeing all its entries. */
1205
1206 static int
1207 svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1208 {
1209 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1210 &list->head);
1211
1212 memset (list, 0, sizeof (*list));
1213 list->tailp = &list->head;
1214 if (gdb_xml_parse_quick (_("target library list"), "library-list.dtd",
1215 svr4_library_list_elements, document, list) == 0)
1216 {
1217 /* Parsed successfully, keep the result. */
1218 discard_cleanups (back_to);
1219 return 1;
1220 }
1221
1222 do_cleanups (back_to);
1223 return 0;
1224 }
1225
1226 /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
1227
1228 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1229 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1230 empty, caller is responsible for freeing all its entries.
1231
1232 Note that ANNEX must be NULL if the remote does not explicitly allow
1233 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1234 this can be checked using target_augmented_libraries_svr4_read (). */
1235
1236 static int
1237 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1238 const char *annex)
1239 {
1240 char *svr4_library_document;
1241 int result;
1242 struct cleanup *back_to;
1243
1244 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1245
1246 /* Fetch the list of shared libraries. */
1247 svr4_library_document = target_read_stralloc (&current_target,
1248 TARGET_OBJECT_LIBRARIES_SVR4,
1249 annex);
1250 if (svr4_library_document == NULL)
1251 return 0;
1252
1253 back_to = make_cleanup (xfree, svr4_library_document);
1254 result = svr4_parse_libraries (svr4_library_document, list);
1255 do_cleanups (back_to);
1256
1257 return result;
1258 }
1259
1260 #else
1261
1262 static int
1263 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1264 const char *annex)
1265 {
1266 return 0;
1267 }
1268
1269 #endif
1270
1271 /* If no shared library information is available from the dynamic
1272 linker, build a fallback list from other sources. */
1273
1274 static struct so_list *
1275 svr4_default_sos (void)
1276 {
1277 struct svr4_info *info = get_svr4_info ();
1278 struct so_list *new;
1279
1280 if (!info->debug_loader_offset_p)
1281 return NULL;
1282
1283 new = XCNEW (struct so_list);
1284
1285 new->lm_info = xzalloc (sizeof (struct lm_info));
1286
1287 /* Nothing will ever check the other fields if we set l_addr_p. */
1288 new->lm_info->l_addr = info->debug_loader_offset;
1289 new->lm_info->l_addr_p = 1;
1290
1291 strncpy (new->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1292 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1293 strcpy (new->so_original_name, new->so_name);
1294
1295 return new;
1296 }
1297
1298 /* Read the whole inferior libraries chain starting at address LM.
1299 Expect the first entry in the chain's previous entry to be PREV_LM.
1300 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1301 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1302 to it. Returns nonzero upon success. If zero is returned the
1303 entries stored to LINK_PTR_PTR are still valid although they may
1304 represent only part of the inferior library list. */
1305
1306 static int
1307 svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1308 struct so_list ***link_ptr_ptr, int ignore_first)
1309 {
1310 CORE_ADDR first_l_name = 0;
1311 CORE_ADDR next_lm;
1312
1313 for (; lm != 0; prev_lm = lm, lm = next_lm)
1314 {
1315 struct so_list *new;
1316 struct cleanup *old_chain;
1317 int errcode;
1318 char *buffer;
1319
1320 new = XCNEW (struct so_list);
1321 old_chain = make_cleanup_free_so (new);
1322
1323 new->lm_info = lm_info_read (lm);
1324 if (new->lm_info == NULL)
1325 {
1326 do_cleanups (old_chain);
1327 return 0;
1328 }
1329
1330 next_lm = new->lm_info->l_next;
1331
1332 if (new->lm_info->l_prev != prev_lm)
1333 {
1334 warning (_("Corrupted shared library list: %s != %s"),
1335 paddress (target_gdbarch (), prev_lm),
1336 paddress (target_gdbarch (), new->lm_info->l_prev));
1337 do_cleanups (old_chain);
1338 return 0;
1339 }
1340
1341 /* For SVR4 versions, the first entry in the link map is for the
1342 inferior executable, so we must ignore it. For some versions of
1343 SVR4, it has no name. For others (Solaris 2.3 for example), it
1344 does have a name, so we can no longer use a missing name to
1345 decide when to ignore it. */
1346 if (ignore_first && new->lm_info->l_prev == 0)
1347 {
1348 struct svr4_info *info = get_svr4_info ();
1349
1350 first_l_name = new->lm_info->l_name;
1351 info->main_lm_addr = new->lm_info->lm_addr;
1352 do_cleanups (old_chain);
1353 continue;
1354 }
1355
1356 /* Extract this shared object's name. */
1357 target_read_string (new->lm_info->l_name, &buffer,
1358 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1359 if (errcode != 0)
1360 {
1361 /* If this entry's l_name address matches that of the
1362 inferior executable, then this is not a normal shared
1363 object, but (most likely) a vDSO. In this case, silently
1364 skip it; otherwise emit a warning. */
1365 if (first_l_name == 0 || new->lm_info->l_name != first_l_name)
1366 warning (_("Can't read pathname for load map: %s."),
1367 safe_strerror (errcode));
1368 do_cleanups (old_chain);
1369 continue;
1370 }
1371
1372 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1373 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1374 strcpy (new->so_original_name, new->so_name);
1375 xfree (buffer);
1376
1377 /* If this entry has no name, or its name matches the name
1378 for the main executable, don't include it in the list. */
1379 if (! new->so_name[0] || match_main (new->so_name))
1380 {
1381 do_cleanups (old_chain);
1382 continue;
1383 }
1384
1385 discard_cleanups (old_chain);
1386 new->next = 0;
1387 **link_ptr_ptr = new;
1388 *link_ptr_ptr = &new->next;
1389 }
1390
1391 return 1;
1392 }
1393
1394 /* Read the full list of currently loaded shared objects directly
1395 from the inferior, without referring to any libraries read and
1396 stored by the probes interface. Handle special cases relating
1397 to the first elements of the list. */
1398
1399 static struct so_list *
1400 svr4_current_sos_direct (struct svr4_info *info)
1401 {
1402 CORE_ADDR lm;
1403 struct so_list *head = NULL;
1404 struct so_list **link_ptr = &head;
1405 struct cleanup *back_to;
1406 int ignore_first;
1407 struct svr4_library_list library_list;
1408
1409 /* Fall back to manual examination of the target if the packet is not
1410 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1411 tests a case where gdbserver cannot find the shared libraries list while
1412 GDB itself is able to find it via SYMFILE_OBJFILE.
1413
1414 Unfortunately statically linked inferiors will also fall back through this
1415 suboptimal code path. */
1416
1417 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1418 NULL);
1419 if (info->using_xfer)
1420 {
1421 if (library_list.main_lm)
1422 info->main_lm_addr = library_list.main_lm;
1423
1424 return library_list.head ? library_list.head : svr4_default_sos ();
1425 }
1426
1427 /* Always locate the debug struct, in case it has moved. */
1428 info->debug_base = 0;
1429 locate_base (info);
1430
1431 /* If we can't find the dynamic linker's base structure, this
1432 must not be a dynamically linked executable. Hmm. */
1433 if (! info->debug_base)
1434 return svr4_default_sos ();
1435
1436 /* Assume that everything is a library if the dynamic loader was loaded
1437 late by a static executable. */
1438 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1439 ignore_first = 0;
1440 else
1441 ignore_first = 1;
1442
1443 back_to = make_cleanup (svr4_free_library_list, &head);
1444
1445 /* Walk the inferior's link map list, and build our list of
1446 `struct so_list' nodes. */
1447 lm = solib_svr4_r_map (info);
1448 if (lm)
1449 svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
1450
1451 /* On Solaris, the dynamic linker is not in the normal list of
1452 shared objects, so make sure we pick it up too. Having
1453 symbol information for the dynamic linker is quite crucial
1454 for skipping dynamic linker resolver code. */
1455 lm = solib_svr4_r_ldsomap (info);
1456 if (lm)
1457 svr4_read_so_list (lm, 0, &link_ptr, 0);
1458
1459 discard_cleanups (back_to);
1460
1461 if (head == NULL)
1462 return svr4_default_sos ();
1463
1464 return head;
1465 }
1466
1467 /* Implement the "current_sos" target_so_ops method. */
1468
1469 static struct so_list *
1470 svr4_current_sos (void)
1471 {
1472 struct svr4_info *info = get_svr4_info ();
1473
1474 /* If the solib list has been read and stored by the probes
1475 interface then we return a copy of the stored list. */
1476 if (info->solib_list != NULL)
1477 return svr4_copy_library_list (info->solib_list);
1478
1479 /* Otherwise obtain the solib list directly from the inferior. */
1480 return svr4_current_sos_direct (info);
1481 }
1482
1483 /* Get the address of the link_map for a given OBJFILE. */
1484
1485 CORE_ADDR
1486 svr4_fetch_objfile_link_map (struct objfile *objfile)
1487 {
1488 struct so_list *so;
1489 struct svr4_info *info = get_svr4_info ();
1490
1491 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1492 if (info->main_lm_addr == 0)
1493 solib_add (NULL, 0, &current_target, auto_solib_add);
1494
1495 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1496 if (objfile == symfile_objfile)
1497 return info->main_lm_addr;
1498
1499 /* The other link map addresses may be found by examining the list
1500 of shared libraries. */
1501 for (so = master_so_list (); so; so = so->next)
1502 if (so->objfile == objfile)
1503 return so->lm_info->lm_addr;
1504
1505 /* Not found! */
1506 return 0;
1507 }
1508
1509 /* On some systems, the only way to recognize the link map entry for
1510 the main executable file is by looking at its name. Return
1511 non-zero iff SONAME matches one of the known main executable names. */
1512
1513 static int
1514 match_main (const char *soname)
1515 {
1516 const char * const *mainp;
1517
1518 for (mainp = main_name_list; *mainp != NULL; mainp++)
1519 {
1520 if (strcmp (soname, *mainp) == 0)
1521 return (1);
1522 }
1523
1524 return (0);
1525 }
1526
1527 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1528 SVR4 run time loader. */
1529
1530 int
1531 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1532 {
1533 struct svr4_info *info = get_svr4_info ();
1534
1535 return ((pc >= info->interp_text_sect_low
1536 && pc < info->interp_text_sect_high)
1537 || (pc >= info->interp_plt_sect_low
1538 && pc < info->interp_plt_sect_high)
1539 || in_plt_section (pc)
1540 || in_gnu_ifunc_stub (pc));
1541 }
1542
1543 /* Given an executable's ABFD and target, compute the entry-point
1544 address. */
1545
1546 static CORE_ADDR
1547 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1548 {
1549 CORE_ADDR addr;
1550
1551 /* KevinB wrote ... for most targets, the address returned by
1552 bfd_get_start_address() is the entry point for the start
1553 function. But, for some targets, bfd_get_start_address() returns
1554 the address of a function descriptor from which the entry point
1555 address may be extracted. This address is extracted by
1556 gdbarch_convert_from_func_ptr_addr(). The method
1557 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1558 function for targets which don't use function descriptors. */
1559 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1560 bfd_get_start_address (abfd),
1561 targ);
1562 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
1563 }
1564
1565 /* A probe and its associated action. */
1566
1567 struct probe_and_action
1568 {
1569 /* The probe. */
1570 struct probe *probe;
1571
1572 /* The relocated address of the probe. */
1573 CORE_ADDR address;
1574
1575 /* The action. */
1576 enum probe_action action;
1577 };
1578
1579 /* Returns a hash code for the probe_and_action referenced by p. */
1580
1581 static hashval_t
1582 hash_probe_and_action (const void *p)
1583 {
1584 const struct probe_and_action *pa = p;
1585
1586 return (hashval_t) pa->address;
1587 }
1588
1589 /* Returns non-zero if the probe_and_actions referenced by p1 and p2
1590 are equal. */
1591
1592 static int
1593 equal_probe_and_action (const void *p1, const void *p2)
1594 {
1595 const struct probe_and_action *pa1 = p1;
1596 const struct probe_and_action *pa2 = p2;
1597
1598 return pa1->address == pa2->address;
1599 }
1600
1601 /* Register a solib event probe and its associated action in the
1602 probes table. */
1603
1604 static void
1605 register_solib_event_probe (struct probe *probe, CORE_ADDR address,
1606 enum probe_action action)
1607 {
1608 struct svr4_info *info = get_svr4_info ();
1609 struct probe_and_action lookup, *pa;
1610 void **slot;
1611
1612 /* Create the probes table, if necessary. */
1613 if (info->probes_table == NULL)
1614 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1615 equal_probe_and_action,
1616 xfree, xcalloc, xfree);
1617
1618 lookup.probe = probe;
1619 lookup.address = address;
1620 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1621 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1622
1623 pa = XCNEW (struct probe_and_action);
1624 pa->probe = probe;
1625 pa->address = address;
1626 pa->action = action;
1627
1628 *slot = pa;
1629 }
1630
1631 /* Get the solib event probe at the specified location, and the
1632 action associated with it. Returns NULL if no solib event probe
1633 was found. */
1634
1635 static struct probe_and_action *
1636 solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1637 {
1638 struct probe_and_action lookup;
1639 void **slot;
1640
1641 lookup.address = address;
1642 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1643
1644 if (slot == NULL)
1645 return NULL;
1646
1647 return (struct probe_and_action *) *slot;
1648 }
1649
1650 /* Decide what action to take when the specified solib event probe is
1651 hit. */
1652
1653 static enum probe_action
1654 solib_event_probe_action (struct probe_and_action *pa)
1655 {
1656 enum probe_action action;
1657 unsigned probe_argc;
1658 struct frame_info *frame = get_current_frame ();
1659
1660 action = pa->action;
1661 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1662 return action;
1663
1664 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1665
1666 /* Check that an appropriate number of arguments has been supplied.
1667 We expect:
1668 arg0: Lmid_t lmid (mandatory)
1669 arg1: struct r_debug *debug_base (mandatory)
1670 arg2: struct link_map *new (optional, for incremental updates) */
1671 probe_argc = get_probe_argument_count (pa->probe, frame);
1672 if (probe_argc == 2)
1673 action = FULL_RELOAD;
1674 else if (probe_argc < 2)
1675 action = PROBES_INTERFACE_FAILED;
1676
1677 return action;
1678 }
1679
1680 /* Populate the shared object list by reading the entire list of
1681 shared objects from the inferior. Handle special cases relating
1682 to the first elements of the list. Returns nonzero on success. */
1683
1684 static int
1685 solist_update_full (struct svr4_info *info)
1686 {
1687 free_solib_list (info);
1688 info->solib_list = svr4_current_sos_direct (info);
1689
1690 return 1;
1691 }
1692
1693 /* Update the shared object list starting from the link-map entry
1694 passed by the linker in the probe's third argument. Returns
1695 nonzero if the list was successfully updated, or zero to indicate
1696 failure. */
1697
1698 static int
1699 solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1700 {
1701 struct so_list *tail;
1702 CORE_ADDR prev_lm;
1703
1704 /* svr4_current_sos_direct contains logic to handle a number of
1705 special cases relating to the first elements of the list. To
1706 avoid duplicating this logic we defer to solist_update_full
1707 if the list is empty. */
1708 if (info->solib_list == NULL)
1709 return 0;
1710
1711 /* Fall back to a full update if we are using a remote target
1712 that does not support incremental transfers. */
1713 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1714 return 0;
1715
1716 /* Walk to the end of the list. */
1717 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1718 /* Nothing. */;
1719 prev_lm = tail->lm_info->lm_addr;
1720
1721 /* Read the new objects. */
1722 if (info->using_xfer)
1723 {
1724 struct svr4_library_list library_list;
1725 char annex[64];
1726
1727 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1728 phex_nz (lm, sizeof (lm)),
1729 phex_nz (prev_lm, sizeof (prev_lm)));
1730 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1731 return 0;
1732
1733 tail->next = library_list.head;
1734 }
1735 else
1736 {
1737 struct so_list **link = &tail->next;
1738
1739 /* IGNORE_FIRST may safely be set to zero here because the
1740 above check and deferral to solist_update_full ensures
1741 that this call to svr4_read_so_list will never see the
1742 first element. */
1743 if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1744 return 0;
1745 }
1746
1747 return 1;
1748 }
1749
1750 /* Disable the probes-based linker interface and revert to the
1751 original interface. We don't reset the breakpoints as the
1752 ones set up for the probes-based interface are adequate. */
1753
1754 static void
1755 disable_probes_interface_cleanup (void *arg)
1756 {
1757 struct svr4_info *info = get_svr4_info ();
1758
1759 warning (_("Probes-based dynamic linker interface failed.\n"
1760 "Reverting to original interface.\n"));
1761
1762 free_probes_table (info);
1763 free_solib_list (info);
1764 }
1765
1766 /* Update the solib list as appropriate when using the
1767 probes-based linker interface. Do nothing if using the
1768 standard interface. */
1769
1770 static void
1771 svr4_handle_solib_event (void)
1772 {
1773 struct svr4_info *info = get_svr4_info ();
1774 struct probe_and_action *pa;
1775 enum probe_action action;
1776 struct cleanup *old_chain, *usm_chain;
1777 struct value *val;
1778 CORE_ADDR pc, debug_base, lm = 0;
1779 int is_initial_ns;
1780 struct frame_info *frame = get_current_frame ();
1781
1782 /* Do nothing if not using the probes interface. */
1783 if (info->probes_table == NULL)
1784 return;
1785
1786 /* If anything goes wrong we revert to the original linker
1787 interface. */
1788 old_chain = make_cleanup (disable_probes_interface_cleanup, NULL);
1789
1790 pc = regcache_read_pc (get_current_regcache ());
1791 pa = solib_event_probe_at (info, pc);
1792 if (pa == NULL)
1793 {
1794 do_cleanups (old_chain);
1795 return;
1796 }
1797
1798 action = solib_event_probe_action (pa);
1799 if (action == PROBES_INTERFACE_FAILED)
1800 {
1801 do_cleanups (old_chain);
1802 return;
1803 }
1804
1805 if (action == DO_NOTHING)
1806 {
1807 discard_cleanups (old_chain);
1808 return;
1809 }
1810
1811 /* evaluate_probe_argument looks up symbols in the dynamic linker
1812 using find_pc_section. find_pc_section is accelerated by a cache
1813 called the section map. The section map is invalidated every
1814 time a shared library is loaded or unloaded, and if the inferior
1815 is generating a lot of shared library events then the section map
1816 will be updated every time svr4_handle_solib_event is called.
1817 We called find_pc_section in svr4_create_solib_event_breakpoints,
1818 so we can guarantee that the dynamic linker's sections are in the
1819 section map. We can therefore inhibit section map updates across
1820 these calls to evaluate_probe_argument and save a lot of time. */
1821 inhibit_section_map_updates (current_program_space);
1822 usm_chain = make_cleanup (resume_section_map_updates_cleanup,
1823 current_program_space);
1824
1825 val = evaluate_probe_argument (pa->probe, 1, frame);
1826 if (val == NULL)
1827 {
1828 do_cleanups (old_chain);
1829 return;
1830 }
1831
1832 debug_base = value_as_address (val);
1833 if (debug_base == 0)
1834 {
1835 do_cleanups (old_chain);
1836 return;
1837 }
1838
1839 /* Always locate the debug struct, in case it moved. */
1840 info->debug_base = 0;
1841 if (locate_base (info) == 0)
1842 {
1843 do_cleanups (old_chain);
1844 return;
1845 }
1846
1847 /* GDB does not currently support libraries loaded via dlmopen
1848 into namespaces other than the initial one. We must ignore
1849 any namespace other than the initial namespace here until
1850 support for this is added to GDB. */
1851 if (debug_base != info->debug_base)
1852 action = DO_NOTHING;
1853
1854 if (action == UPDATE_OR_RELOAD)
1855 {
1856 val = evaluate_probe_argument (pa->probe, 2, frame);
1857 if (val != NULL)
1858 lm = value_as_address (val);
1859
1860 if (lm == 0)
1861 action = FULL_RELOAD;
1862 }
1863
1864 /* Resume section map updates. */
1865 do_cleanups (usm_chain);
1866
1867 if (action == UPDATE_OR_RELOAD)
1868 {
1869 if (!solist_update_incremental (info, lm))
1870 action = FULL_RELOAD;
1871 }
1872
1873 if (action == FULL_RELOAD)
1874 {
1875 if (!solist_update_full (info))
1876 {
1877 do_cleanups (old_chain);
1878 return;
1879 }
1880 }
1881
1882 discard_cleanups (old_chain);
1883 }
1884
1885 /* Helper function for svr4_update_solib_event_breakpoints. */
1886
1887 static int
1888 svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
1889 {
1890 struct bp_location *loc;
1891
1892 if (b->type != bp_shlib_event)
1893 {
1894 /* Continue iterating. */
1895 return 0;
1896 }
1897
1898 for (loc = b->loc; loc != NULL; loc = loc->next)
1899 {
1900 struct svr4_info *info;
1901 struct probe_and_action *pa;
1902
1903 info = program_space_data (loc->pspace, solib_svr4_pspace_data);
1904 if (info == NULL || info->probes_table == NULL)
1905 continue;
1906
1907 pa = solib_event_probe_at (info, loc->address);
1908 if (pa == NULL)
1909 continue;
1910
1911 if (pa->action == DO_NOTHING)
1912 {
1913 if (b->enable_state == bp_disabled && stop_on_solib_events)
1914 enable_breakpoint (b);
1915 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
1916 disable_breakpoint (b);
1917 }
1918
1919 break;
1920 }
1921
1922 /* Continue iterating. */
1923 return 0;
1924 }
1925
1926 /* Enable or disable optional solib event breakpoints as appropriate.
1927 Called whenever stop_on_solib_events is changed. */
1928
1929 static void
1930 svr4_update_solib_event_breakpoints (void)
1931 {
1932 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
1933 }
1934
1935 /* Create and register solib event breakpoints. PROBES is an array
1936 of NUM_PROBES elements, each of which is vector of probes. A
1937 solib event breakpoint will be created and registered for each
1938 probe. */
1939
1940 static void
1941 svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
1942 VEC (probe_p) **probes,
1943 struct objfile *objfile)
1944 {
1945 int i;
1946
1947 for (i = 0; i < NUM_PROBES; i++)
1948 {
1949 enum probe_action action = probe_info[i].action;
1950 struct probe *probe;
1951 int ix;
1952
1953 for (ix = 0;
1954 VEC_iterate (probe_p, probes[i], ix, probe);
1955 ++ix)
1956 {
1957 CORE_ADDR address = get_probe_address (probe, objfile);
1958
1959 create_solib_event_breakpoint (gdbarch, address);
1960 register_solib_event_probe (probe, address, action);
1961 }
1962 }
1963
1964 svr4_update_solib_event_breakpoints ();
1965 }
1966
1967 /* Both the SunOS and the SVR4 dynamic linkers call a marker function
1968 before and after mapping and unmapping shared libraries. The sole
1969 purpose of this method is to allow debuggers to set a breakpoint so
1970 they can track these changes.
1971
1972 Some versions of the glibc dynamic linker contain named probes
1973 to allow more fine grained stopping. Given the address of the
1974 original marker function, this function attempts to find these
1975 probes, and if found, sets breakpoints on those instead. If the
1976 probes aren't found, a single breakpoint is set on the original
1977 marker function. */
1978
1979 static void
1980 svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
1981 CORE_ADDR address)
1982 {
1983 struct obj_section *os;
1984
1985 os = find_pc_section (address);
1986 if (os != NULL)
1987 {
1988 int with_prefix;
1989
1990 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
1991 {
1992 VEC (probe_p) *probes[NUM_PROBES];
1993 int all_probes_found = 1;
1994 int checked_can_use_probe_arguments = 0;
1995 int i;
1996
1997 memset (probes, 0, sizeof (probes));
1998 for (i = 0; i < NUM_PROBES; i++)
1999 {
2000 const char *name = probe_info[i].name;
2001 struct probe *p;
2002 char buf[32];
2003
2004 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
2005 shipped with an early version of the probes code in
2006 which the probes' names were prefixed with "rtld_"
2007 and the "map_failed" probe did not exist. The
2008 locations of the probes are otherwise the same, so
2009 we check for probes with prefixed names if probes
2010 with unprefixed names are not present. */
2011 if (with_prefix)
2012 {
2013 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2014 name = buf;
2015 }
2016
2017 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2018
2019 /* The "map_failed" probe did not exist in early
2020 versions of the probes code in which the probes'
2021 names were prefixed with "rtld_". */
2022 if (strcmp (name, "rtld_map_failed") == 0)
2023 continue;
2024
2025 if (VEC_empty (probe_p, probes[i]))
2026 {
2027 all_probes_found = 0;
2028 break;
2029 }
2030
2031 /* Ensure probe arguments can be evaluated. */
2032 if (!checked_can_use_probe_arguments)
2033 {
2034 p = VEC_index (probe_p, probes[i], 0);
2035 if (!can_evaluate_probe_arguments (p))
2036 {
2037 all_probes_found = 0;
2038 break;
2039 }
2040 checked_can_use_probe_arguments = 1;
2041 }
2042 }
2043
2044 if (all_probes_found)
2045 svr4_create_probe_breakpoints (gdbarch, probes, os->objfile);
2046
2047 for (i = 0; i < NUM_PROBES; i++)
2048 VEC_free (probe_p, probes[i]);
2049
2050 if (all_probes_found)
2051 return;
2052 }
2053 }
2054
2055 create_solib_event_breakpoint (gdbarch, address);
2056 }
2057
2058 /* Helper function for gdb_bfd_lookup_symbol. */
2059
2060 static int
2061 cmp_name_and_sec_flags (asymbol *sym, void *data)
2062 {
2063 return (strcmp (sym->name, (const char *) data) == 0
2064 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2065 }
2066 /* Arrange for dynamic linker to hit breakpoint.
2067
2068 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2069 debugger interface, support for arranging for the inferior to hit
2070 a breakpoint after mapping in the shared libraries. This function
2071 enables that breakpoint.
2072
2073 For SunOS, there is a special flag location (in_debugger) which we
2074 set to 1. When the dynamic linker sees this flag set, it will set
2075 a breakpoint at a location known only to itself, after saving the
2076 original contents of that place and the breakpoint address itself,
2077 in it's own internal structures. When we resume the inferior, it
2078 will eventually take a SIGTRAP when it runs into the breakpoint.
2079 We handle this (in a different place) by restoring the contents of
2080 the breakpointed location (which is only known after it stops),
2081 chasing around to locate the shared libraries that have been
2082 loaded, then resuming.
2083
2084 For SVR4, the debugger interface structure contains a member (r_brk)
2085 which is statically initialized at the time the shared library is
2086 built, to the offset of a function (_r_debug_state) which is guaran-
2087 teed to be called once before mapping in a library, and again when
2088 the mapping is complete. At the time we are examining this member,
2089 it contains only the unrelocated offset of the function, so we have
2090 to do our own relocation. Later, when the dynamic linker actually
2091 runs, it relocates r_brk to be the actual address of _r_debug_state().
2092
2093 The debugger interface structure also contains an enumeration which
2094 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2095 depending upon whether or not the library is being mapped or unmapped,
2096 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
2097
2098 static int
2099 enable_break (struct svr4_info *info, int from_tty)
2100 {
2101 struct bound_minimal_symbol msymbol;
2102 const char * const *bkpt_namep;
2103 asection *interp_sect;
2104 char *interp_name;
2105 CORE_ADDR sym_addr;
2106
2107 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2108 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
2109
2110 /* If we already have a shared library list in the target, and
2111 r_debug contains r_brk, set the breakpoint there - this should
2112 mean r_brk has already been relocated. Assume the dynamic linker
2113 is the object containing r_brk. */
2114
2115 solib_add (NULL, from_tty, &current_target, auto_solib_add);
2116 sym_addr = 0;
2117 if (info->debug_base && solib_svr4_r_map (info) != 0)
2118 sym_addr = solib_svr4_r_brk (info);
2119
2120 if (sym_addr != 0)
2121 {
2122 struct obj_section *os;
2123
2124 sym_addr = gdbarch_addr_bits_remove
2125 (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2126 sym_addr,
2127 &current_target));
2128
2129 /* On at least some versions of Solaris there's a dynamic relocation
2130 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2131 we get control before the dynamic linker has self-relocated.
2132 Check if SYM_ADDR is in a known section, if it is assume we can
2133 trust its value. This is just a heuristic though, it could go away
2134 or be replaced if it's getting in the way.
2135
2136 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2137 however it's spelled in your particular system) is ARM or Thumb.
2138 That knowledge is encoded in the address, if it's Thumb the low bit
2139 is 1. However, we've stripped that info above and it's not clear
2140 what all the consequences are of passing a non-addr_bits_remove'd
2141 address to svr4_create_solib_event_breakpoints. The call to
2142 find_pc_section verifies we know about the address and have some
2143 hope of computing the right kind of breakpoint to use (via
2144 symbol info). It does mean that GDB needs to be pointed at a
2145 non-stripped version of the dynamic linker in order to obtain
2146 information it already knows about. Sigh. */
2147
2148 os = find_pc_section (sym_addr);
2149 if (os != NULL)
2150 {
2151 /* Record the relocated start and end address of the dynamic linker
2152 text and plt section for svr4_in_dynsym_resolve_code. */
2153 bfd *tmp_bfd;
2154 CORE_ADDR load_addr;
2155
2156 tmp_bfd = os->objfile->obfd;
2157 load_addr = ANOFFSET (os->objfile->section_offsets,
2158 SECT_OFF_TEXT (os->objfile));
2159
2160 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2161 if (interp_sect)
2162 {
2163 info->interp_text_sect_low =
2164 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2165 info->interp_text_sect_high =
2166 info->interp_text_sect_low
2167 + bfd_section_size (tmp_bfd, interp_sect);
2168 }
2169 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2170 if (interp_sect)
2171 {
2172 info->interp_plt_sect_low =
2173 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2174 info->interp_plt_sect_high =
2175 info->interp_plt_sect_low
2176 + bfd_section_size (tmp_bfd, interp_sect);
2177 }
2178
2179 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2180 return 1;
2181 }
2182 }
2183
2184 /* Find the program interpreter; if not found, warn the user and drop
2185 into the old breakpoint at symbol code. */
2186 interp_name = find_program_interpreter ();
2187 if (interp_name)
2188 {
2189 CORE_ADDR load_addr = 0;
2190 int load_addr_found = 0;
2191 int loader_found_in_list = 0;
2192 struct so_list *so;
2193 bfd *tmp_bfd = NULL;
2194 struct target_ops *tmp_bfd_target;
2195 volatile struct gdb_exception ex;
2196
2197 sym_addr = 0;
2198
2199 /* Now we need to figure out where the dynamic linker was
2200 loaded so that we can load its symbols and place a breakpoint
2201 in the dynamic linker itself.
2202
2203 This address is stored on the stack. However, I've been unable
2204 to find any magic formula to find it for Solaris (appears to
2205 be trivial on GNU/Linux). Therefore, we have to try an alternate
2206 mechanism to find the dynamic linker's base address. */
2207
2208 TRY_CATCH (ex, RETURN_MASK_ALL)
2209 {
2210 tmp_bfd = solib_bfd_open (interp_name);
2211 }
2212 if (tmp_bfd == NULL)
2213 goto bkpt_at_symbol;
2214
2215 /* Now convert the TMP_BFD into a target. That way target, as
2216 well as BFD operations can be used. */
2217 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
2218 /* target_bfd_reopen acquired its own reference, so we can
2219 release ours now. */
2220 gdb_bfd_unref (tmp_bfd);
2221
2222 /* On a running target, we can get the dynamic linker's base
2223 address from the shared library table. */
2224 so = master_so_list ();
2225 while (so)
2226 {
2227 if (svr4_same_1 (interp_name, so->so_original_name))
2228 {
2229 load_addr_found = 1;
2230 loader_found_in_list = 1;
2231 load_addr = lm_addr_check (so, tmp_bfd);
2232 break;
2233 }
2234 so = so->next;
2235 }
2236
2237 /* If we were not able to find the base address of the loader
2238 from our so_list, then try using the AT_BASE auxilliary entry. */
2239 if (!load_addr_found)
2240 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
2241 {
2242 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
2243
2244 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2245 that `+ load_addr' will overflow CORE_ADDR width not creating
2246 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2247 GDB. */
2248
2249 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
2250 {
2251 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
2252 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
2253 tmp_bfd_target);
2254
2255 gdb_assert (load_addr < space_size);
2256
2257 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2258 64bit ld.so with 32bit executable, it should not happen. */
2259
2260 if (tmp_entry_point < space_size
2261 && tmp_entry_point + load_addr >= space_size)
2262 load_addr -= space_size;
2263 }
2264
2265 load_addr_found = 1;
2266 }
2267
2268 /* Otherwise we find the dynamic linker's base address by examining
2269 the current pc (which should point at the entry point for the
2270 dynamic linker) and subtracting the offset of the entry point.
2271
2272 This is more fragile than the previous approaches, but is a good
2273 fallback method because it has actually been working well in
2274 most cases. */
2275 if (!load_addr_found)
2276 {
2277 struct regcache *regcache
2278 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
2279
2280 load_addr = (regcache_read_pc (regcache)
2281 - exec_entry_point (tmp_bfd, tmp_bfd_target));
2282 }
2283
2284 if (!loader_found_in_list)
2285 {
2286 info->debug_loader_name = xstrdup (interp_name);
2287 info->debug_loader_offset_p = 1;
2288 info->debug_loader_offset = load_addr;
2289 solib_add (NULL, from_tty, &current_target, auto_solib_add);
2290 }
2291
2292 /* Record the relocated start and end address of the dynamic linker
2293 text and plt section for svr4_in_dynsym_resolve_code. */
2294 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2295 if (interp_sect)
2296 {
2297 info->interp_text_sect_low =
2298 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2299 info->interp_text_sect_high =
2300 info->interp_text_sect_low
2301 + bfd_section_size (tmp_bfd, interp_sect);
2302 }
2303 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2304 if (interp_sect)
2305 {
2306 info->interp_plt_sect_low =
2307 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2308 info->interp_plt_sect_high =
2309 info->interp_plt_sect_low
2310 + bfd_section_size (tmp_bfd, interp_sect);
2311 }
2312
2313 /* Now try to set a breakpoint in the dynamic linker. */
2314 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2315 {
2316 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name_and_sec_flags,
2317 (void *) *bkpt_namep);
2318 if (sym_addr != 0)
2319 break;
2320 }
2321
2322 if (sym_addr != 0)
2323 /* Convert 'sym_addr' from a function pointer to an address.
2324 Because we pass tmp_bfd_target instead of the current
2325 target, this will always produce an unrelocated value. */
2326 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2327 sym_addr,
2328 tmp_bfd_target);
2329
2330 /* We're done with both the temporary bfd and target. Closing
2331 the target closes the underlying bfd, because it holds the
2332 only remaining reference. */
2333 target_close (tmp_bfd_target);
2334
2335 if (sym_addr != 0)
2336 {
2337 svr4_create_solib_event_breakpoints (target_gdbarch (),
2338 load_addr + sym_addr);
2339 xfree (interp_name);
2340 return 1;
2341 }
2342
2343 /* For whatever reason we couldn't set a breakpoint in the dynamic
2344 linker. Warn and drop into the old code. */
2345 bkpt_at_symbol:
2346 xfree (interp_name);
2347 warning (_("Unable to find dynamic linker breakpoint function.\n"
2348 "GDB will be unable to debug shared library initializers\n"
2349 "and track explicitly loaded dynamic code."));
2350 }
2351
2352 /* Scan through the lists of symbols, trying to look up the symbol and
2353 set a breakpoint there. Terminate loop when we/if we succeed. */
2354
2355 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2356 {
2357 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2358 if ((msymbol.minsym != NULL)
2359 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2360 {
2361 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2362 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2363 sym_addr,
2364 &current_target);
2365 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2366 return 1;
2367 }
2368 }
2369
2370 if (interp_name != NULL && !current_inferior ()->attach_flag)
2371 {
2372 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
2373 {
2374 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2375 if ((msymbol.minsym != NULL)
2376 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2377 {
2378 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2379 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2380 sym_addr,
2381 &current_target);
2382 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2383 return 1;
2384 }
2385 }
2386 }
2387 return 0;
2388 }
2389
2390 /* Implement the "special_symbol_handling" target_so_ops method. */
2391
2392 static void
2393 svr4_special_symbol_handling (void)
2394 {
2395 /* Nothing to do. */
2396 }
2397
2398 /* Read the ELF program headers from ABFD. Return the contents and
2399 set *PHDRS_SIZE to the size of the program headers. */
2400
2401 static gdb_byte *
2402 read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
2403 {
2404 Elf_Internal_Ehdr *ehdr;
2405 gdb_byte *buf;
2406
2407 ehdr = elf_elfheader (abfd);
2408
2409 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2410 if (*phdrs_size == 0)
2411 return NULL;
2412
2413 buf = xmalloc (*phdrs_size);
2414 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2415 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
2416 {
2417 xfree (buf);
2418 return NULL;
2419 }
2420
2421 return buf;
2422 }
2423
2424 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2425 exec_bfd. Otherwise return 0.
2426
2427 We relocate all of the sections by the same amount. This
2428 behavior is mandated by recent editions of the System V ABI.
2429 According to the System V Application Binary Interface,
2430 Edition 4.1, page 5-5:
2431
2432 ... Though the system chooses virtual addresses for
2433 individual processes, it maintains the segments' relative
2434 positions. Because position-independent code uses relative
2435 addressesing between segments, the difference between
2436 virtual addresses in memory must match the difference
2437 between virtual addresses in the file. The difference
2438 between the virtual address of any segment in memory and
2439 the corresponding virtual address in the file is thus a
2440 single constant value for any one executable or shared
2441 object in a given process. This difference is the base
2442 address. One use of the base address is to relocate the
2443 memory image of the program during dynamic linking.
2444
2445 The same language also appears in Edition 4.0 of the System V
2446 ABI and is left unspecified in some of the earlier editions.
2447
2448 Decide if the objfile needs to be relocated. As indicated above, we will
2449 only be here when execution is stopped. But during attachment PC can be at
2450 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2451 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2452 regcache_read_pc would point to the interpreter and not the main executable.
2453
2454 So, to summarize, relocations are necessary when the start address obtained
2455 from the executable is different from the address in auxv AT_ENTRY entry.
2456
2457 [ The astute reader will note that we also test to make sure that
2458 the executable in question has the DYNAMIC flag set. It is my
2459 opinion that this test is unnecessary (undesirable even). It
2460 was added to avoid inadvertent relocation of an executable
2461 whose e_type member in the ELF header is not ET_DYN. There may
2462 be a time in the future when it is desirable to do relocations
2463 on other types of files as well in which case this condition
2464 should either be removed or modified to accomodate the new file
2465 type. - Kevin, Nov 2000. ] */
2466
2467 static int
2468 svr4_exec_displacement (CORE_ADDR *displacementp)
2469 {
2470 /* ENTRY_POINT is a possible function descriptor - before
2471 a call to gdbarch_convert_from_func_ptr_addr. */
2472 CORE_ADDR entry_point, displacement;
2473
2474 if (exec_bfd == NULL)
2475 return 0;
2476
2477 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2478 being executed themselves and PIE (Position Independent Executable)
2479 executables are ET_DYN. */
2480
2481 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2482 return 0;
2483
2484 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
2485 return 0;
2486
2487 displacement = entry_point - bfd_get_start_address (exec_bfd);
2488
2489 /* Verify the DISPLACEMENT candidate complies with the required page
2490 alignment. It is cheaper than the program headers comparison below. */
2491
2492 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2493 {
2494 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2495
2496 /* p_align of PT_LOAD segments does not specify any alignment but
2497 only congruency of addresses:
2498 p_offset % p_align == p_vaddr % p_align
2499 Kernel is free to load the executable with lower alignment. */
2500
2501 if ((displacement & (elf->minpagesize - 1)) != 0)
2502 return 0;
2503 }
2504
2505 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2506 comparing their program headers. If the program headers in the auxilliary
2507 vector do not match the program headers in the executable, then we are
2508 looking at a different file than the one used by the kernel - for
2509 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2510
2511 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2512 {
2513 /* Be optimistic and clear OK only if GDB was able to verify the headers
2514 really do not match. */
2515 int phdrs_size, phdrs2_size, ok = 1;
2516 gdb_byte *buf, *buf2;
2517 int arch_size;
2518
2519 buf = read_program_header (-1, &phdrs_size, &arch_size);
2520 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
2521 if (buf != NULL && buf2 != NULL)
2522 {
2523 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2524
2525 /* We are dealing with three different addresses. EXEC_BFD
2526 represents current address in on-disk file. target memory content
2527 may be different from EXEC_BFD as the file may have been prelinked
2528 to a different address after the executable has been loaded.
2529 Moreover the address of placement in target memory can be
2530 different from what the program headers in target memory say -
2531 this is the goal of PIE.
2532
2533 Detected DISPLACEMENT covers both the offsets of PIE placement and
2534 possible new prelink performed after start of the program. Here
2535 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2536 content offset for the verification purpose. */
2537
2538 if (phdrs_size != phdrs2_size
2539 || bfd_get_arch_size (exec_bfd) != arch_size)
2540 ok = 0;
2541 else if (arch_size == 32
2542 && phdrs_size >= sizeof (Elf32_External_Phdr)
2543 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
2544 {
2545 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2546 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2547 CORE_ADDR displacement = 0;
2548 int i;
2549
2550 /* DISPLACEMENT could be found more easily by the difference of
2551 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2552 already have enough information to compute that displacement
2553 with what we've read. */
2554
2555 for (i = 0; i < ehdr2->e_phnum; i++)
2556 if (phdr2[i].p_type == PT_LOAD)
2557 {
2558 Elf32_External_Phdr *phdrp;
2559 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2560 CORE_ADDR vaddr, paddr;
2561 CORE_ADDR displacement_vaddr = 0;
2562 CORE_ADDR displacement_paddr = 0;
2563
2564 phdrp = &((Elf32_External_Phdr *) buf)[i];
2565 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2566 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2567
2568 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2569 byte_order);
2570 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2571
2572 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2573 byte_order);
2574 displacement_paddr = paddr - phdr2[i].p_paddr;
2575
2576 if (displacement_vaddr == displacement_paddr)
2577 displacement = displacement_vaddr;
2578
2579 break;
2580 }
2581
2582 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2583
2584 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
2585 {
2586 Elf32_External_Phdr *phdrp;
2587 Elf32_External_Phdr *phdr2p;
2588 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2589 CORE_ADDR vaddr, paddr;
2590 asection *plt2_asect;
2591
2592 phdrp = &((Elf32_External_Phdr *) buf)[i];
2593 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2594 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2595 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
2596
2597 /* PT_GNU_STACK is an exception by being never relocated by
2598 prelink as its addresses are always zero. */
2599
2600 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2601 continue;
2602
2603 /* Check also other adjustment combinations - PR 11786. */
2604
2605 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2606 byte_order);
2607 vaddr -= displacement;
2608 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2609
2610 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2611 byte_order);
2612 paddr -= displacement;
2613 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2614
2615 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2616 continue;
2617
2618 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2619 CentOS-5 has problems with filesz, memsz as well.
2620 See PR 11786. */
2621 if (phdr2[i].p_type == PT_GNU_RELRO)
2622 {
2623 Elf32_External_Phdr tmp_phdr = *phdrp;
2624 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2625
2626 memset (tmp_phdr.p_filesz, 0, 4);
2627 memset (tmp_phdr.p_memsz, 0, 4);
2628 memset (tmp_phdr.p_flags, 0, 4);
2629 memset (tmp_phdr.p_align, 0, 4);
2630 memset (tmp_phdr2.p_filesz, 0, 4);
2631 memset (tmp_phdr2.p_memsz, 0, 4);
2632 memset (tmp_phdr2.p_flags, 0, 4);
2633 memset (tmp_phdr2.p_align, 0, 4);
2634
2635 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2636 == 0)
2637 continue;
2638 }
2639
2640 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2641 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2642 if (plt2_asect)
2643 {
2644 int content2;
2645 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2646 CORE_ADDR filesz;
2647
2648 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2649 & SEC_HAS_CONTENTS) != 0;
2650
2651 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2652 byte_order);
2653
2654 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2655 FILESZ is from the in-memory image. */
2656 if (content2)
2657 filesz += bfd_get_section_size (plt2_asect);
2658 else
2659 filesz -= bfd_get_section_size (plt2_asect);
2660
2661 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2662 filesz);
2663
2664 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2665 continue;
2666 }
2667
2668 ok = 0;
2669 break;
2670 }
2671 }
2672 else if (arch_size == 64
2673 && phdrs_size >= sizeof (Elf64_External_Phdr)
2674 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
2675 {
2676 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2677 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2678 CORE_ADDR displacement = 0;
2679 int i;
2680
2681 /* DISPLACEMENT could be found more easily by the difference of
2682 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2683 already have enough information to compute that displacement
2684 with what we've read. */
2685
2686 for (i = 0; i < ehdr2->e_phnum; i++)
2687 if (phdr2[i].p_type == PT_LOAD)
2688 {
2689 Elf64_External_Phdr *phdrp;
2690 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2691 CORE_ADDR vaddr, paddr;
2692 CORE_ADDR displacement_vaddr = 0;
2693 CORE_ADDR displacement_paddr = 0;
2694
2695 phdrp = &((Elf64_External_Phdr *) buf)[i];
2696 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2697 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2698
2699 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2700 byte_order);
2701 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2702
2703 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2704 byte_order);
2705 displacement_paddr = paddr - phdr2[i].p_paddr;
2706
2707 if (displacement_vaddr == displacement_paddr)
2708 displacement = displacement_vaddr;
2709
2710 break;
2711 }
2712
2713 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2714
2715 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2716 {
2717 Elf64_External_Phdr *phdrp;
2718 Elf64_External_Phdr *phdr2p;
2719 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2720 CORE_ADDR vaddr, paddr;
2721 asection *plt2_asect;
2722
2723 phdrp = &((Elf64_External_Phdr *) buf)[i];
2724 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2725 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2726 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2727
2728 /* PT_GNU_STACK is an exception by being never relocated by
2729 prelink as its addresses are always zero. */
2730
2731 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2732 continue;
2733
2734 /* Check also other adjustment combinations - PR 11786. */
2735
2736 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2737 byte_order);
2738 vaddr -= displacement;
2739 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2740
2741 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2742 byte_order);
2743 paddr -= displacement;
2744 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2745
2746 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2747 continue;
2748
2749 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2750 CentOS-5 has problems with filesz, memsz as well.
2751 See PR 11786. */
2752 if (phdr2[i].p_type == PT_GNU_RELRO)
2753 {
2754 Elf64_External_Phdr tmp_phdr = *phdrp;
2755 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2756
2757 memset (tmp_phdr.p_filesz, 0, 8);
2758 memset (tmp_phdr.p_memsz, 0, 8);
2759 memset (tmp_phdr.p_flags, 0, 4);
2760 memset (tmp_phdr.p_align, 0, 8);
2761 memset (tmp_phdr2.p_filesz, 0, 8);
2762 memset (tmp_phdr2.p_memsz, 0, 8);
2763 memset (tmp_phdr2.p_flags, 0, 4);
2764 memset (tmp_phdr2.p_align, 0, 8);
2765
2766 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2767 == 0)
2768 continue;
2769 }
2770
2771 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2772 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2773 if (plt2_asect)
2774 {
2775 int content2;
2776 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2777 CORE_ADDR filesz;
2778
2779 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2780 & SEC_HAS_CONTENTS) != 0;
2781
2782 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2783 byte_order);
2784
2785 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2786 FILESZ is from the in-memory image. */
2787 if (content2)
2788 filesz += bfd_get_section_size (plt2_asect);
2789 else
2790 filesz -= bfd_get_section_size (plt2_asect);
2791
2792 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2793 filesz);
2794
2795 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2796 continue;
2797 }
2798
2799 ok = 0;
2800 break;
2801 }
2802 }
2803 else
2804 ok = 0;
2805 }
2806
2807 xfree (buf);
2808 xfree (buf2);
2809
2810 if (!ok)
2811 return 0;
2812 }
2813
2814 if (info_verbose)
2815 {
2816 /* It can be printed repeatedly as there is no easy way to check
2817 the executable symbols/file has been already relocated to
2818 displacement. */
2819
2820 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2821 "displacement %s for \"%s\".\n"),
2822 paddress (target_gdbarch (), displacement),
2823 bfd_get_filename (exec_bfd));
2824 }
2825
2826 *displacementp = displacement;
2827 return 1;
2828 }
2829
2830 /* Relocate the main executable. This function should be called upon
2831 stopping the inferior process at the entry point to the program.
2832 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2833 different, the main executable is relocated by the proper amount. */
2834
2835 static void
2836 svr4_relocate_main_executable (void)
2837 {
2838 CORE_ADDR displacement;
2839
2840 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2841 probably contains the offsets computed using the PIE displacement
2842 from the previous run, which of course are irrelevant for this run.
2843 So we need to determine the new PIE displacement and recompute the
2844 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2845 already contains pre-computed offsets.
2846
2847 If we cannot compute the PIE displacement, either:
2848
2849 - The executable is not PIE.
2850
2851 - SYMFILE_OBJFILE does not match the executable started in the target.
2852 This can happen for main executable symbols loaded at the host while
2853 `ld.so --ld-args main-executable' is loaded in the target.
2854
2855 Then we leave the section offsets untouched and use them as is for
2856 this run. Either:
2857
2858 - These section offsets were properly reset earlier, and thus
2859 already contain the correct values. This can happen for instance
2860 when reconnecting via the remote protocol to a target that supports
2861 the `qOffsets' packet.
2862
2863 - The section offsets were not reset earlier, and the best we can
2864 hope is that the old offsets are still applicable to the new run. */
2865
2866 if (! svr4_exec_displacement (&displacement))
2867 return;
2868
2869 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2870 addresses. */
2871
2872 if (symfile_objfile)
2873 {
2874 struct section_offsets *new_offsets;
2875 int i;
2876
2877 new_offsets = alloca (symfile_objfile->num_sections
2878 * sizeof (*new_offsets));
2879
2880 for (i = 0; i < symfile_objfile->num_sections; i++)
2881 new_offsets->offsets[i] = displacement;
2882
2883 objfile_relocate (symfile_objfile, new_offsets);
2884 }
2885 else if (exec_bfd)
2886 {
2887 asection *asect;
2888
2889 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2890 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2891 (bfd_section_vma (exec_bfd, asect)
2892 + displacement));
2893 }
2894 }
2895
2896 /* Implement the "create_inferior_hook" target_solib_ops method.
2897
2898 For SVR4 executables, this first instruction is either the first
2899 instruction in the dynamic linker (for dynamically linked
2900 executables) or the instruction at "start" for statically linked
2901 executables. For dynamically linked executables, the system
2902 first exec's /lib/libc.so.N, which contains the dynamic linker,
2903 and starts it running. The dynamic linker maps in any needed
2904 shared libraries, maps in the actual user executable, and then
2905 jumps to "start" in the user executable.
2906
2907 We can arrange to cooperate with the dynamic linker to discover the
2908 names of shared libraries that are dynamically linked, and the base
2909 addresses to which they are linked.
2910
2911 This function is responsible for discovering those names and
2912 addresses, and saving sufficient information about them to allow
2913 their symbols to be read at a later time. */
2914
2915 static void
2916 svr4_solib_create_inferior_hook (int from_tty)
2917 {
2918 struct svr4_info *info;
2919
2920 info = get_svr4_info ();
2921
2922 /* Clear the probes-based interface's state. */
2923 free_probes_table (info);
2924 free_solib_list (info);
2925
2926 /* Relocate the main executable if necessary. */
2927 svr4_relocate_main_executable ();
2928
2929 /* No point setting a breakpoint in the dynamic linker if we can't
2930 hit it (e.g., a core file, or a trace file). */
2931 if (!target_has_execution)
2932 return;
2933
2934 if (!svr4_have_link_map_offsets ())
2935 return;
2936
2937 if (!enable_break (info, from_tty))
2938 return;
2939 }
2940
2941 static void
2942 svr4_clear_solib (void)
2943 {
2944 struct svr4_info *info;
2945
2946 info = get_svr4_info ();
2947 info->debug_base = 0;
2948 info->debug_loader_offset_p = 0;
2949 info->debug_loader_offset = 0;
2950 xfree (info->debug_loader_name);
2951 info->debug_loader_name = NULL;
2952 }
2953
2954 /* Clear any bits of ADDR that wouldn't fit in a target-format
2955 data pointer. "Data pointer" here refers to whatever sort of
2956 address the dynamic linker uses to manage its sections. At the
2957 moment, we don't support shared libraries on any processors where
2958 code and data pointers are different sizes.
2959
2960 This isn't really the right solution. What we really need here is
2961 a way to do arithmetic on CORE_ADDR values that respects the
2962 natural pointer/address correspondence. (For example, on the MIPS,
2963 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2964 sign-extend the value. There, simply truncating the bits above
2965 gdbarch_ptr_bit, as we do below, is no good.) This should probably
2966 be a new gdbarch method or something. */
2967 static CORE_ADDR
2968 svr4_truncate_ptr (CORE_ADDR addr)
2969 {
2970 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
2971 /* We don't need to truncate anything, and the bit twiddling below
2972 will fail due to overflow problems. */
2973 return addr;
2974 else
2975 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
2976 }
2977
2978
2979 static void
2980 svr4_relocate_section_addresses (struct so_list *so,
2981 struct target_section *sec)
2982 {
2983 bfd *abfd = sec->the_bfd_section->owner;
2984
2985 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
2986 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
2987 }
2988 \f
2989
2990 /* Architecture-specific operations. */
2991
2992 /* Per-architecture data key. */
2993 static struct gdbarch_data *solib_svr4_data;
2994
2995 struct solib_svr4_ops
2996 {
2997 /* Return a description of the layout of `struct link_map'. */
2998 struct link_map_offsets *(*fetch_link_map_offsets)(void);
2999 };
3000
3001 /* Return a default for the architecture-specific operations. */
3002
3003 static void *
3004 solib_svr4_init (struct obstack *obstack)
3005 {
3006 struct solib_svr4_ops *ops;
3007
3008 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
3009 ops->fetch_link_map_offsets = NULL;
3010 return ops;
3011 }
3012
3013 /* Set the architecture-specific `struct link_map_offsets' fetcher for
3014 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
3015
3016 void
3017 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3018 struct link_map_offsets *(*flmo) (void))
3019 {
3020 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
3021
3022 ops->fetch_link_map_offsets = flmo;
3023
3024 set_solib_ops (gdbarch, &svr4_so_ops);
3025 }
3026
3027 /* Fetch a link_map_offsets structure using the architecture-specific
3028 `struct link_map_offsets' fetcher. */
3029
3030 static struct link_map_offsets *
3031 svr4_fetch_link_map_offsets (void)
3032 {
3033 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
3034
3035 gdb_assert (ops->fetch_link_map_offsets);
3036 return ops->fetch_link_map_offsets ();
3037 }
3038
3039 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3040
3041 static int
3042 svr4_have_link_map_offsets (void)
3043 {
3044 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
3045
3046 return (ops->fetch_link_map_offsets != NULL);
3047 }
3048 \f
3049
3050 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
3051 `struct r_debug' and a `struct link_map' that are binary compatible
3052 with the origional SVR4 implementation. */
3053
3054 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3055 for an ILP32 SVR4 system. */
3056
3057 struct link_map_offsets *
3058 svr4_ilp32_fetch_link_map_offsets (void)
3059 {
3060 static struct link_map_offsets lmo;
3061 static struct link_map_offsets *lmp = NULL;
3062
3063 if (lmp == NULL)
3064 {
3065 lmp = &lmo;
3066
3067 lmo.r_version_offset = 0;
3068 lmo.r_version_size = 4;
3069 lmo.r_map_offset = 4;
3070 lmo.r_brk_offset = 8;
3071 lmo.r_ldsomap_offset = 20;
3072
3073 /* Everything we need is in the first 20 bytes. */
3074 lmo.link_map_size = 20;
3075 lmo.l_addr_offset = 0;
3076 lmo.l_name_offset = 4;
3077 lmo.l_ld_offset = 8;
3078 lmo.l_next_offset = 12;
3079 lmo.l_prev_offset = 16;
3080 }
3081
3082 return lmp;
3083 }
3084
3085 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3086 for an LP64 SVR4 system. */
3087
3088 struct link_map_offsets *
3089 svr4_lp64_fetch_link_map_offsets (void)
3090 {
3091 static struct link_map_offsets lmo;
3092 static struct link_map_offsets *lmp = NULL;
3093
3094 if (lmp == NULL)
3095 {
3096 lmp = &lmo;
3097
3098 lmo.r_version_offset = 0;
3099 lmo.r_version_size = 4;
3100 lmo.r_map_offset = 8;
3101 lmo.r_brk_offset = 16;
3102 lmo.r_ldsomap_offset = 40;
3103
3104 /* Everything we need is in the first 40 bytes. */
3105 lmo.link_map_size = 40;
3106 lmo.l_addr_offset = 0;
3107 lmo.l_name_offset = 8;
3108 lmo.l_ld_offset = 16;
3109 lmo.l_next_offset = 24;
3110 lmo.l_prev_offset = 32;
3111 }
3112
3113 return lmp;
3114 }
3115 \f
3116
3117 struct target_so_ops svr4_so_ops;
3118
3119 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3120 different rule for symbol lookup. The lookup begins here in the DSO, not in
3121 the main executable. */
3122
3123 static struct symbol *
3124 elf_lookup_lib_symbol (const struct objfile *objfile,
3125 const char *name,
3126 const domain_enum domain)
3127 {
3128 bfd *abfd;
3129
3130 if (objfile == symfile_objfile)
3131 abfd = exec_bfd;
3132 else
3133 {
3134 /* OBJFILE should have been passed as the non-debug one. */
3135 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3136
3137 abfd = objfile->obfd;
3138 }
3139
3140 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
3141 return NULL;
3142
3143 return lookup_global_symbol_from_objfile (objfile, name, domain);
3144 }
3145
3146 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
3147
3148 void
3149 _initialize_svr4_solib (void)
3150 {
3151 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3152 solib_svr4_pspace_data
3153 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
3154
3155 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
3156 svr4_so_ops.free_so = svr4_free_so;
3157 svr4_so_ops.clear_so = svr4_clear_so;
3158 svr4_so_ops.clear_solib = svr4_clear_solib;
3159 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3160 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
3161 svr4_so_ops.current_sos = svr4_current_sos;
3162 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
3163 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
3164 svr4_so_ops.bfd_open = solib_bfd_open;
3165 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
3166 svr4_so_ops.same = svr4_same;
3167 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
3168 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3169 svr4_so_ops.handle_event = svr4_handle_solib_event;
3170 }
This page took 0.097339 seconds and 4 git commands to generate.