gdb/
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23
24 #include "elf/external.h"
25 #include "elf/common.h"
26 #include "elf/mips.h"
27
28 #include "symtab.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbcore.h"
33 #include "target.h"
34 #include "inferior.h"
35 #include "regcache.h"
36 #include "gdbthread.h"
37 #include "observer.h"
38
39 #include "gdb_assert.h"
40
41 #include "solist.h"
42 #include "solib.h"
43 #include "solib-svr4.h"
44
45 #include "bfd-target.h"
46 #include "elf-bfd.h"
47 #include "exec.h"
48 #include "auxv.h"
49 #include "exceptions.h"
50
51 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
52 static int svr4_have_link_map_offsets (void);
53 static void svr4_relocate_main_executable (void);
54
55 /* Link map info to include in an allocated so_list entry */
56
57 struct lm_info
58 {
59 /* Pointer to copy of link map from inferior. The type is char *
60 rather than void *, so that we may use byte offsets to find the
61 various fields without the need for a cast. */
62 gdb_byte *lm;
63
64 /* Amount by which addresses in the binary should be relocated to
65 match the inferior. This could most often be taken directly
66 from lm, but when prelinking is involved and the prelink base
67 address changes, we may need a different offset, we want to
68 warn about the difference and compute it only once. */
69 CORE_ADDR l_addr;
70
71 /* The target location of lm. */
72 CORE_ADDR lm_addr;
73 };
74
75 /* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
83 static const char * const solib_break_names[] =
84 {
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
89 "__dl_rtld_db_dlactivity",
90 "_rtld_debug_state",
91
92 NULL
93 };
94
95 static const char * const bkpt_names[] =
96 {
97 "_start",
98 "__start",
99 "main",
100 NULL
101 };
102
103 static const char * const main_name_list[] =
104 {
105 "main_$main",
106 NULL
107 };
108
109 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
110 the same shared library. */
111
112 static int
113 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
114 {
115 if (strcmp (gdb_so_name, inferior_so_name) == 0)
116 return 1;
117
118 /* On Solaris, when starting inferior we think that dynamic linker is
119 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
120 contains /lib/ld.so.1. Sometimes one file is a link to another, but
121 sometimes they have identical content, but are not linked to each
122 other. We don't restrict this check for Solaris, but the chances
123 of running into this situation elsewhere are very low. */
124 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
125 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
126 return 1;
127
128 /* Similarly, we observed the same issue with sparc64, but with
129 different locations. */
130 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
131 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
132 return 1;
133
134 return 0;
135 }
136
137 static int
138 svr4_same (struct so_list *gdb, struct so_list *inferior)
139 {
140 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
141 }
142
143 /* link map access functions */
144
145 static CORE_ADDR
146 LM_ADDR_FROM_LINK_MAP (struct so_list *so)
147 {
148 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
149 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
150
151 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
152 ptr_type);
153 }
154
155 static int
156 HAS_LM_DYNAMIC_FROM_LINK_MAP (void)
157 {
158 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
159
160 return lmo->l_ld_offset >= 0;
161 }
162
163 static CORE_ADDR
164 LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
165 {
166 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
167 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
168
169 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
170 ptr_type);
171 }
172
173 static CORE_ADDR
174 LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
175 {
176 if (so->lm_info->l_addr == (CORE_ADDR)-1)
177 {
178 struct bfd_section *dyninfo_sect;
179 CORE_ADDR l_addr, l_dynaddr, dynaddr;
180
181 l_addr = LM_ADDR_FROM_LINK_MAP (so);
182
183 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
184 goto set_addr;
185
186 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
187
188 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
189 if (dyninfo_sect == NULL)
190 goto set_addr;
191
192 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
193
194 if (dynaddr + l_addr != l_dynaddr)
195 {
196 CORE_ADDR align = 0x1000;
197 CORE_ADDR minpagesize = align;
198
199 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
200 {
201 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
202 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
203 int i;
204
205 align = 1;
206
207 for (i = 0; i < ehdr->e_phnum; i++)
208 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
209 align = phdr[i].p_align;
210
211 minpagesize = get_elf_backend_data (abfd)->minpagesize;
212 }
213
214 /* Turn it into a mask. */
215 align--;
216
217 /* If the changes match the alignment requirements, we
218 assume we're using a core file that was generated by the
219 same binary, just prelinked with a different base offset.
220 If it doesn't match, we may have a different binary, the
221 same binary with the dynamic table loaded at an unrelated
222 location, or anything, really. To avoid regressions,
223 don't adjust the base offset in the latter case, although
224 odds are that, if things really changed, debugging won't
225 quite work.
226
227 One could expect more the condition
228 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
229 but the one below is relaxed for PPC. The PPC kernel supports
230 either 4k or 64k page sizes. To be prepared for 64k pages,
231 PPC ELF files are built using an alignment requirement of 64k.
232 However, when running on a kernel supporting 4k pages, the memory
233 mapping of the library may not actually happen on a 64k boundary!
234
235 (In the usual case where (l_addr & align) == 0, this check is
236 equivalent to the possibly expected check above.)
237
238 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
239
240 if ((l_addr & (minpagesize - 1)) == 0
241 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
242 {
243 l_addr = l_dynaddr - dynaddr;
244
245 if (info_verbose)
246 printf_unfiltered (_("Using PIC (Position Independent Code) "
247 "prelink displacement %s for \"%s\".\n"),
248 paddress (target_gdbarch, l_addr),
249 so->so_name);
250 }
251 else
252 warning (_(".dynamic section for \"%s\" "
253 "is not at the expected address "
254 "(wrong library or version mismatch?)"), so->so_name);
255 }
256
257 set_addr:
258 so->lm_info->l_addr = l_addr;
259 }
260
261 return so->lm_info->l_addr;
262 }
263
264 static CORE_ADDR
265 LM_NEXT (struct so_list *so)
266 {
267 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
268 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
269
270 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
271 ptr_type);
272 }
273
274 static CORE_ADDR
275 LM_PREV (struct so_list *so)
276 {
277 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
278 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
279
280 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
281 ptr_type);
282 }
283
284 static CORE_ADDR
285 LM_NAME (struct so_list *so)
286 {
287 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
288 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
289
290 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
291 ptr_type);
292 }
293
294 static int
295 IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
296 {
297 /* Assume that everything is a library if the dynamic loader was loaded
298 late by a static executable. */
299 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
300 return 0;
301
302 return LM_PREV (so) == 0;
303 }
304
305 /* Per pspace SVR4 specific data. */
306
307 struct svr4_info
308 {
309 CORE_ADDR debug_base; /* Base of dynamic linker structures */
310
311 /* Validity flag for debug_loader_offset. */
312 int debug_loader_offset_p;
313
314 /* Load address for the dynamic linker, inferred. */
315 CORE_ADDR debug_loader_offset;
316
317 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
318 char *debug_loader_name;
319
320 /* Load map address for the main executable. */
321 CORE_ADDR main_lm_addr;
322
323 CORE_ADDR interp_text_sect_low;
324 CORE_ADDR interp_text_sect_high;
325 CORE_ADDR interp_plt_sect_low;
326 CORE_ADDR interp_plt_sect_high;
327 };
328
329 /* Per-program-space data key. */
330 static const struct program_space_data *solib_svr4_pspace_data;
331
332 static void
333 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
334 {
335 struct svr4_info *info;
336
337 info = program_space_data (pspace, solib_svr4_pspace_data);
338 xfree (info);
339 }
340
341 /* Get the current svr4 data. If none is found yet, add it now. This
342 function always returns a valid object. */
343
344 static struct svr4_info *
345 get_svr4_info (void)
346 {
347 struct svr4_info *info;
348
349 info = program_space_data (current_program_space, solib_svr4_pspace_data);
350 if (info != NULL)
351 return info;
352
353 info = XZALLOC (struct svr4_info);
354 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
355 return info;
356 }
357
358 /* Local function prototypes */
359
360 static int match_main (const char *);
361
362 /*
363
364 LOCAL FUNCTION
365
366 bfd_lookup_symbol -- lookup the value for a specific symbol
367
368 SYNOPSIS
369
370 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
371
372 DESCRIPTION
373
374 An expensive way to lookup the value of a single symbol for
375 bfd's that are only temporary anyway. This is used by the
376 shared library support to find the address of the debugger
377 notification routine in the shared library.
378
379 The returned symbol may be in a code or data section; functions
380 will normally be in a code section, but may be in a data section
381 if this architecture uses function descriptors.
382
383 Note that 0 is specifically allowed as an error return (no
384 such symbol).
385 */
386
387 static CORE_ADDR
388 bfd_lookup_symbol (bfd *abfd, const char *symname)
389 {
390 long storage_needed;
391 asymbol *sym;
392 asymbol **symbol_table;
393 unsigned int number_of_symbols;
394 unsigned int i;
395 struct cleanup *back_to;
396 CORE_ADDR symaddr = 0;
397
398 storage_needed = bfd_get_symtab_upper_bound (abfd);
399
400 if (storage_needed > 0)
401 {
402 symbol_table = (asymbol **) xmalloc (storage_needed);
403 back_to = make_cleanup (xfree, symbol_table);
404 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
405
406 for (i = 0; i < number_of_symbols; i++)
407 {
408 sym = *symbol_table++;
409 if (strcmp (sym->name, symname) == 0
410 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
411 {
412 /* BFD symbols are section relative. */
413 symaddr = sym->value + sym->section->vma;
414 break;
415 }
416 }
417 do_cleanups (back_to);
418 }
419
420 if (symaddr)
421 return symaddr;
422
423 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
424 have to check the dynamic string table too. */
425
426 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
427
428 if (storage_needed > 0)
429 {
430 symbol_table = (asymbol **) xmalloc (storage_needed);
431 back_to = make_cleanup (xfree, symbol_table);
432 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
433
434 for (i = 0; i < number_of_symbols; i++)
435 {
436 sym = *symbol_table++;
437
438 if (strcmp (sym->name, symname) == 0
439 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
440 {
441 /* BFD symbols are section relative. */
442 symaddr = sym->value + sym->section->vma;
443 break;
444 }
445 }
446 do_cleanups (back_to);
447 }
448
449 return symaddr;
450 }
451
452
453 /* Read program header TYPE from inferior memory. The header is found
454 by scanning the OS auxillary vector.
455
456 If TYPE == -1, return the program headers instead of the contents of
457 one program header.
458
459 Return a pointer to allocated memory holding the program header contents,
460 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
461 size of those contents is returned to P_SECT_SIZE. Likewise, the target
462 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
463
464 static gdb_byte *
465 read_program_header (int type, int *p_sect_size, int *p_arch_size)
466 {
467 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
468 CORE_ADDR at_phdr, at_phent, at_phnum;
469 int arch_size, sect_size;
470 CORE_ADDR sect_addr;
471 gdb_byte *buf;
472
473 /* Get required auxv elements from target. */
474 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
475 return 0;
476 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
477 return 0;
478 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
479 return 0;
480 if (!at_phdr || !at_phnum)
481 return 0;
482
483 /* Determine ELF architecture type. */
484 if (at_phent == sizeof (Elf32_External_Phdr))
485 arch_size = 32;
486 else if (at_phent == sizeof (Elf64_External_Phdr))
487 arch_size = 64;
488 else
489 return 0;
490
491 /* Find the requested segment. */
492 if (type == -1)
493 {
494 sect_addr = at_phdr;
495 sect_size = at_phent * at_phnum;
496 }
497 else if (arch_size == 32)
498 {
499 Elf32_External_Phdr phdr;
500 int i;
501
502 /* Search for requested PHDR. */
503 for (i = 0; i < at_phnum; i++)
504 {
505 if (target_read_memory (at_phdr + i * sizeof (phdr),
506 (gdb_byte *)&phdr, sizeof (phdr)))
507 return 0;
508
509 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
510 4, byte_order) == type)
511 break;
512 }
513
514 if (i == at_phnum)
515 return 0;
516
517 /* Retrieve address and size. */
518 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
519 4, byte_order);
520 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
521 4, byte_order);
522 }
523 else
524 {
525 Elf64_External_Phdr phdr;
526 int i;
527
528 /* Search for requested PHDR. */
529 for (i = 0; i < at_phnum; i++)
530 {
531 if (target_read_memory (at_phdr + i * sizeof (phdr),
532 (gdb_byte *)&phdr, sizeof (phdr)))
533 return 0;
534
535 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
536 4, byte_order) == type)
537 break;
538 }
539
540 if (i == at_phnum)
541 return 0;
542
543 /* Retrieve address and size. */
544 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
545 8, byte_order);
546 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
547 8, byte_order);
548 }
549
550 /* Read in requested program header. */
551 buf = xmalloc (sect_size);
552 if (target_read_memory (sect_addr, buf, sect_size))
553 {
554 xfree (buf);
555 return NULL;
556 }
557
558 if (p_arch_size)
559 *p_arch_size = arch_size;
560 if (p_sect_size)
561 *p_sect_size = sect_size;
562
563 return buf;
564 }
565
566
567 /* Return program interpreter string. */
568 static gdb_byte *
569 find_program_interpreter (void)
570 {
571 gdb_byte *buf = NULL;
572
573 /* If we have an exec_bfd, use its section table. */
574 if (exec_bfd
575 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
576 {
577 struct bfd_section *interp_sect;
578
579 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
580 if (interp_sect != NULL)
581 {
582 int sect_size = bfd_section_size (exec_bfd, interp_sect);
583
584 buf = xmalloc (sect_size);
585 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
586 }
587 }
588
589 /* If we didn't find it, use the target auxillary vector. */
590 if (!buf)
591 buf = read_program_header (PT_INTERP, NULL, NULL);
592
593 return buf;
594 }
595
596
597 /* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
598 returned and the corresponding PTR is set. */
599
600 static int
601 scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
602 {
603 int arch_size, step, sect_size;
604 long dyn_tag;
605 CORE_ADDR dyn_ptr, dyn_addr;
606 gdb_byte *bufend, *bufstart, *buf;
607 Elf32_External_Dyn *x_dynp_32;
608 Elf64_External_Dyn *x_dynp_64;
609 struct bfd_section *sect;
610 struct target_section *target_section;
611
612 if (abfd == NULL)
613 return 0;
614
615 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
616 return 0;
617
618 arch_size = bfd_get_arch_size (abfd);
619 if (arch_size == -1)
620 return 0;
621
622 /* Find the start address of the .dynamic section. */
623 sect = bfd_get_section_by_name (abfd, ".dynamic");
624 if (sect == NULL)
625 return 0;
626
627 for (target_section = current_target_sections->sections;
628 target_section < current_target_sections->sections_end;
629 target_section++)
630 if (sect == target_section->the_bfd_section)
631 break;
632 if (target_section < current_target_sections->sections_end)
633 dyn_addr = target_section->addr;
634 else
635 {
636 /* ABFD may come from OBJFILE acting only as a symbol file without being
637 loaded into the target (see add_symbol_file_command). This case is
638 such fallback to the file VMA address without the possibility of
639 having the section relocated to its actual in-memory address. */
640
641 dyn_addr = bfd_section_vma (abfd, sect);
642 }
643
644 /* Read in .dynamic from the BFD. We will get the actual value
645 from memory later. */
646 sect_size = bfd_section_size (abfd, sect);
647 buf = bufstart = alloca (sect_size);
648 if (!bfd_get_section_contents (abfd, sect,
649 buf, 0, sect_size))
650 return 0;
651
652 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
653 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
654 : sizeof (Elf64_External_Dyn);
655 for (bufend = buf + sect_size;
656 buf < bufend;
657 buf += step)
658 {
659 if (arch_size == 32)
660 {
661 x_dynp_32 = (Elf32_External_Dyn *) buf;
662 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
663 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
664 }
665 else
666 {
667 x_dynp_64 = (Elf64_External_Dyn *) buf;
668 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
669 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
670 }
671 if (dyn_tag == DT_NULL)
672 return 0;
673 if (dyn_tag == dyntag)
674 {
675 /* If requested, try to read the runtime value of this .dynamic
676 entry. */
677 if (ptr)
678 {
679 struct type *ptr_type;
680 gdb_byte ptr_buf[8];
681 CORE_ADDR ptr_addr;
682
683 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
684 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
685 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
686 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
687 *ptr = dyn_ptr;
688 }
689 return 1;
690 }
691 }
692
693 return 0;
694 }
695
696 /* Scan for DYNTAG in .dynamic section of the target's main executable,
697 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
698 returned and the corresponding PTR is set. */
699
700 static int
701 scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
702 {
703 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
704 int sect_size, arch_size, step;
705 long dyn_tag;
706 CORE_ADDR dyn_ptr;
707 gdb_byte *bufend, *bufstart, *buf;
708
709 /* Read in .dynamic section. */
710 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
711 if (!buf)
712 return 0;
713
714 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
715 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
716 : sizeof (Elf64_External_Dyn);
717 for (bufend = buf + sect_size;
718 buf < bufend;
719 buf += step)
720 {
721 if (arch_size == 32)
722 {
723 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
724
725 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
726 4, byte_order);
727 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
728 4, byte_order);
729 }
730 else
731 {
732 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
733
734 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
735 8, byte_order);
736 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
737 8, byte_order);
738 }
739 if (dyn_tag == DT_NULL)
740 break;
741
742 if (dyn_tag == dyntag)
743 {
744 if (ptr)
745 *ptr = dyn_ptr;
746
747 xfree (bufstart);
748 return 1;
749 }
750 }
751
752 xfree (bufstart);
753 return 0;
754 }
755
756
757 /*
758
759 LOCAL FUNCTION
760
761 elf_locate_base -- locate the base address of dynamic linker structs
762 for SVR4 elf targets.
763
764 SYNOPSIS
765
766 CORE_ADDR elf_locate_base (void)
767
768 DESCRIPTION
769
770 For SVR4 elf targets the address of the dynamic linker's runtime
771 structure is contained within the dynamic info section in the
772 executable file. The dynamic section is also mapped into the
773 inferior address space. Because the runtime loader fills in the
774 real address before starting the inferior, we have to read in the
775 dynamic info section from the inferior address space.
776 If there are any errors while trying to find the address, we
777 silently return 0, otherwise the found address is returned.
778
779 */
780
781 static CORE_ADDR
782 elf_locate_base (void)
783 {
784 struct minimal_symbol *msymbol;
785 CORE_ADDR dyn_ptr;
786
787 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
788 instead of DT_DEBUG, although they sometimes contain an unused
789 DT_DEBUG. */
790 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
791 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
792 {
793 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
794 gdb_byte *pbuf;
795 int pbuf_size = TYPE_LENGTH (ptr_type);
796
797 pbuf = alloca (pbuf_size);
798 /* DT_MIPS_RLD_MAP contains a pointer to the address
799 of the dynamic link structure. */
800 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
801 return 0;
802 return extract_typed_address (pbuf, ptr_type);
803 }
804
805 /* Find DT_DEBUG. */
806 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
807 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
808 return dyn_ptr;
809
810 /* This may be a static executable. Look for the symbol
811 conventionally named _r_debug, as a last resort. */
812 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
813 if (msymbol != NULL)
814 return SYMBOL_VALUE_ADDRESS (msymbol);
815
816 /* DT_DEBUG entry not found. */
817 return 0;
818 }
819
820 /*
821
822 LOCAL FUNCTION
823
824 locate_base -- locate the base address of dynamic linker structs
825
826 SYNOPSIS
827
828 CORE_ADDR locate_base (struct svr4_info *)
829
830 DESCRIPTION
831
832 For both the SunOS and SVR4 shared library implementations, if the
833 inferior executable has been linked dynamically, there is a single
834 address somewhere in the inferior's data space which is the key to
835 locating all of the dynamic linker's runtime structures. This
836 address is the value of the debug base symbol. The job of this
837 function is to find and return that address, or to return 0 if there
838 is no such address (the executable is statically linked for example).
839
840 For SunOS, the job is almost trivial, since the dynamic linker and
841 all of it's structures are statically linked to the executable at
842 link time. Thus the symbol for the address we are looking for has
843 already been added to the minimal symbol table for the executable's
844 objfile at the time the symbol file's symbols were read, and all we
845 have to do is look it up there. Note that we explicitly do NOT want
846 to find the copies in the shared library.
847
848 The SVR4 version is a bit more complicated because the address
849 is contained somewhere in the dynamic info section. We have to go
850 to a lot more work to discover the address of the debug base symbol.
851 Because of this complexity, we cache the value we find and return that
852 value on subsequent invocations. Note there is no copy in the
853 executable symbol tables.
854
855 */
856
857 static CORE_ADDR
858 locate_base (struct svr4_info *info)
859 {
860 /* Check to see if we have a currently valid address, and if so, avoid
861 doing all this work again and just return the cached address. If
862 we have no cached address, try to locate it in the dynamic info
863 section for ELF executables. There's no point in doing any of this
864 though if we don't have some link map offsets to work with. */
865
866 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
867 info->debug_base = elf_locate_base ();
868 return info->debug_base;
869 }
870
871 /* Find the first element in the inferior's dynamic link map, and
872 return its address in the inferior. Return zero if the address
873 could not be determined.
874
875 FIXME: Perhaps we should validate the info somehow, perhaps by
876 checking r_version for a known version number, or r_state for
877 RT_CONSISTENT. */
878
879 static CORE_ADDR
880 solib_svr4_r_map (struct svr4_info *info)
881 {
882 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
883 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
884 CORE_ADDR addr = 0;
885 volatile struct gdb_exception ex;
886
887 TRY_CATCH (ex, RETURN_MASK_ERROR)
888 {
889 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
890 ptr_type);
891 }
892 exception_print (gdb_stderr, ex);
893 return addr;
894 }
895
896 /* Find r_brk from the inferior's debug base. */
897
898 static CORE_ADDR
899 solib_svr4_r_brk (struct svr4_info *info)
900 {
901 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
902 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
903
904 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
905 ptr_type);
906 }
907
908 /* Find the link map for the dynamic linker (if it is not in the
909 normal list of loaded shared objects). */
910
911 static CORE_ADDR
912 solib_svr4_r_ldsomap (struct svr4_info *info)
913 {
914 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
915 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
916 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
917 ULONGEST version;
918
919 /* Check version, and return zero if `struct r_debug' doesn't have
920 the r_ldsomap member. */
921 version
922 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
923 lmo->r_version_size, byte_order);
924 if (version < 2 || lmo->r_ldsomap_offset == -1)
925 return 0;
926
927 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
928 ptr_type);
929 }
930
931 /* On Solaris systems with some versions of the dynamic linker,
932 ld.so's l_name pointer points to the SONAME in the string table
933 rather than into writable memory. So that GDB can find shared
934 libraries when loading a core file generated by gcore, ensure that
935 memory areas containing the l_name string are saved in the core
936 file. */
937
938 static int
939 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
940 {
941 struct svr4_info *info;
942 CORE_ADDR ldsomap;
943 struct so_list *new;
944 struct cleanup *old_chain;
945 struct link_map_offsets *lmo;
946 CORE_ADDR lm_name;
947
948 info = get_svr4_info ();
949
950 info->debug_base = 0;
951 locate_base (info);
952 if (!info->debug_base)
953 return 0;
954
955 ldsomap = solib_svr4_r_ldsomap (info);
956 if (!ldsomap)
957 return 0;
958
959 lmo = svr4_fetch_link_map_offsets ();
960 new = XZALLOC (struct so_list);
961 old_chain = make_cleanup (xfree, new);
962 new->lm_info = xmalloc (sizeof (struct lm_info));
963 make_cleanup (xfree, new->lm_info);
964 new->lm_info->l_addr = (CORE_ADDR)-1;
965 new->lm_info->lm_addr = ldsomap;
966 new->lm_info->lm = xzalloc (lmo->link_map_size);
967 make_cleanup (xfree, new->lm_info->lm);
968 read_memory (ldsomap, new->lm_info->lm, lmo->link_map_size);
969 lm_name = LM_NAME (new);
970 do_cleanups (old_chain);
971
972 return (lm_name >= vaddr && lm_name < vaddr + size);
973 }
974
975 /*
976
977 LOCAL FUNCTION
978
979 open_symbol_file_object
980
981 SYNOPSIS
982
983 void open_symbol_file_object (void *from_tty)
984
985 DESCRIPTION
986
987 If no open symbol file, attempt to locate and open the main symbol
988 file. On SVR4 systems, this is the first link map entry. If its
989 name is here, we can open it. Useful when attaching to a process
990 without first loading its symbol file.
991
992 If FROM_TTYP dereferences to a non-zero integer, allow messages to
993 be printed. This parameter is a pointer rather than an int because
994 open_symbol_file_object() is called via catch_errors() and
995 catch_errors() requires a pointer argument. */
996
997 static int
998 open_symbol_file_object (void *from_ttyp)
999 {
1000 CORE_ADDR lm, l_name;
1001 char *filename;
1002 int errcode;
1003 int from_tty = *(int *)from_ttyp;
1004 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
1005 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
1006 int l_name_size = TYPE_LENGTH (ptr_type);
1007 gdb_byte *l_name_buf = xmalloc (l_name_size);
1008 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
1009 struct svr4_info *info = get_svr4_info ();
1010
1011 if (symfile_objfile)
1012 if (!query (_("Attempt to reload symbols from process? ")))
1013 return 0;
1014
1015 /* Always locate the debug struct, in case it has moved. */
1016 info->debug_base = 0;
1017 if (locate_base (info) == 0)
1018 return 0; /* failed somehow... */
1019
1020 /* First link map member should be the executable. */
1021 lm = solib_svr4_r_map (info);
1022 if (lm == 0)
1023 return 0; /* failed somehow... */
1024
1025 /* Read address of name from target memory to GDB. */
1026 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
1027
1028 /* Convert the address to host format. */
1029 l_name = extract_typed_address (l_name_buf, ptr_type);
1030
1031 /* Free l_name_buf. */
1032 do_cleanups (cleanups);
1033
1034 if (l_name == 0)
1035 return 0; /* No filename. */
1036
1037 /* Now fetch the filename from target memory. */
1038 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1039 make_cleanup (xfree, filename);
1040
1041 if (errcode)
1042 {
1043 warning (_("failed to read exec filename from attached file: %s"),
1044 safe_strerror (errcode));
1045 return 0;
1046 }
1047
1048 /* Have a pathname: read the symbol file. */
1049 symbol_file_add_main (filename, from_tty);
1050
1051 return 1;
1052 }
1053
1054 /* If no shared library information is available from the dynamic
1055 linker, build a fallback list from other sources. */
1056
1057 static struct so_list *
1058 svr4_default_sos (void)
1059 {
1060 struct svr4_info *info = get_svr4_info ();
1061
1062 struct so_list *head = NULL;
1063 struct so_list **link_ptr = &head;
1064
1065 if (info->debug_loader_offset_p)
1066 {
1067 struct so_list *new = XZALLOC (struct so_list);
1068
1069 new->lm_info = xmalloc (sizeof (struct lm_info));
1070
1071 /* Nothing will ever check the cached copy of the link
1072 map if we set l_addr. */
1073 new->lm_info->l_addr = info->debug_loader_offset;
1074 new->lm_info->lm_addr = 0;
1075 new->lm_info->lm = NULL;
1076
1077 strncpy (new->so_name, info->debug_loader_name,
1078 SO_NAME_MAX_PATH_SIZE - 1);
1079 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1080 strcpy (new->so_original_name, new->so_name);
1081
1082 *link_ptr = new;
1083 link_ptr = &new->next;
1084 }
1085
1086 return head;
1087 }
1088
1089 /* LOCAL FUNCTION
1090
1091 current_sos -- build a list of currently loaded shared objects
1092
1093 SYNOPSIS
1094
1095 struct so_list *current_sos ()
1096
1097 DESCRIPTION
1098
1099 Build a list of `struct so_list' objects describing the shared
1100 objects currently loaded in the inferior. This list does not
1101 include an entry for the main executable file.
1102
1103 Note that we only gather information directly available from the
1104 inferior --- we don't examine any of the shared library files
1105 themselves. The declaration of `struct so_list' says which fields
1106 we provide values for. */
1107
1108 static struct so_list *
1109 svr4_current_sos (void)
1110 {
1111 CORE_ADDR lm, prev_lm;
1112 struct so_list *head = 0;
1113 struct so_list **link_ptr = &head;
1114 CORE_ADDR ldsomap = 0;
1115 struct svr4_info *info;
1116
1117 info = get_svr4_info ();
1118
1119 /* Always locate the debug struct, in case it has moved. */
1120 info->debug_base = 0;
1121 locate_base (info);
1122
1123 /* If we can't find the dynamic linker's base structure, this
1124 must not be a dynamically linked executable. Hmm. */
1125 if (! info->debug_base)
1126 return svr4_default_sos ();
1127
1128 /* Walk the inferior's link map list, and build our list of
1129 `struct so_list' nodes. */
1130 prev_lm = 0;
1131 lm = solib_svr4_r_map (info);
1132
1133 while (lm)
1134 {
1135 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
1136 struct so_list *new = XZALLOC (struct so_list);
1137 struct cleanup *old_chain = make_cleanup (xfree, new);
1138 CORE_ADDR next_lm;
1139
1140 new->lm_info = xmalloc (sizeof (struct lm_info));
1141 make_cleanup (xfree, new->lm_info);
1142
1143 new->lm_info->l_addr = (CORE_ADDR)-1;
1144 new->lm_info->lm_addr = lm;
1145 new->lm_info->lm = xzalloc (lmo->link_map_size);
1146 make_cleanup (xfree, new->lm_info->lm);
1147
1148 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1149
1150 next_lm = LM_NEXT (new);
1151
1152 if (LM_PREV (new) != prev_lm)
1153 {
1154 warning (_("Corrupted shared library list"));
1155 free_so (new);
1156 next_lm = 0;
1157 }
1158
1159 /* For SVR4 versions, the first entry in the link map is for the
1160 inferior executable, so we must ignore it. For some versions of
1161 SVR4, it has no name. For others (Solaris 2.3 for example), it
1162 does have a name, so we can no longer use a missing name to
1163 decide when to ignore it. */
1164 else if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
1165 {
1166 info->main_lm_addr = new->lm_info->lm_addr;
1167 free_so (new);
1168 }
1169 else
1170 {
1171 int errcode;
1172 char *buffer;
1173
1174 /* Extract this shared object's name. */
1175 target_read_string (LM_NAME (new), &buffer,
1176 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1177 if (errcode != 0)
1178 warning (_("Can't read pathname for load map: %s."),
1179 safe_strerror (errcode));
1180 else
1181 {
1182 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1183 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1184 strcpy (new->so_original_name, new->so_name);
1185 }
1186 xfree (buffer);
1187
1188 /* If this entry has no name, or its name matches the name
1189 for the main executable, don't include it in the list. */
1190 if (! new->so_name[0]
1191 || match_main (new->so_name))
1192 free_so (new);
1193 else
1194 {
1195 new->next = 0;
1196 *link_ptr = new;
1197 link_ptr = &new->next;
1198 }
1199 }
1200
1201 prev_lm = lm;
1202 lm = next_lm;
1203
1204 /* On Solaris, the dynamic linker is not in the normal list of
1205 shared objects, so make sure we pick it up too. Having
1206 symbol information for the dynamic linker is quite crucial
1207 for skipping dynamic linker resolver code. */
1208 if (lm == 0 && ldsomap == 0)
1209 {
1210 lm = ldsomap = solib_svr4_r_ldsomap (info);
1211 prev_lm = 0;
1212 }
1213
1214 discard_cleanups (old_chain);
1215 }
1216
1217 if (head == NULL)
1218 return svr4_default_sos ();
1219
1220 return head;
1221 }
1222
1223 /* Get the address of the link_map for a given OBJFILE. */
1224
1225 CORE_ADDR
1226 svr4_fetch_objfile_link_map (struct objfile *objfile)
1227 {
1228 struct so_list *so;
1229 struct svr4_info *info = get_svr4_info ();
1230
1231 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1232 if (info->main_lm_addr == 0)
1233 solib_add (NULL, 0, &current_target, auto_solib_add);
1234
1235 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1236 if (objfile == symfile_objfile)
1237 return info->main_lm_addr;
1238
1239 /* The other link map addresses may be found by examining the list
1240 of shared libraries. */
1241 for (so = master_so_list (); so; so = so->next)
1242 if (so->objfile == objfile)
1243 return so->lm_info->lm_addr;
1244
1245 /* Not found! */
1246 return 0;
1247 }
1248
1249 /* On some systems, the only way to recognize the link map entry for
1250 the main executable file is by looking at its name. Return
1251 non-zero iff SONAME matches one of the known main executable names. */
1252
1253 static int
1254 match_main (const char *soname)
1255 {
1256 const char * const *mainp;
1257
1258 for (mainp = main_name_list; *mainp != NULL; mainp++)
1259 {
1260 if (strcmp (soname, *mainp) == 0)
1261 return (1);
1262 }
1263
1264 return (0);
1265 }
1266
1267 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1268 SVR4 run time loader. */
1269
1270 int
1271 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1272 {
1273 struct svr4_info *info = get_svr4_info ();
1274
1275 return ((pc >= info->interp_text_sect_low
1276 && pc < info->interp_text_sect_high)
1277 || (pc >= info->interp_plt_sect_low
1278 && pc < info->interp_plt_sect_high)
1279 || in_plt_section (pc, NULL));
1280 }
1281
1282 /* Given an executable's ABFD and target, compute the entry-point
1283 address. */
1284
1285 static CORE_ADDR
1286 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1287 {
1288 /* KevinB wrote ... for most targets, the address returned by
1289 bfd_get_start_address() is the entry point for the start
1290 function. But, for some targets, bfd_get_start_address() returns
1291 the address of a function descriptor from which the entry point
1292 address may be extracted. This address is extracted by
1293 gdbarch_convert_from_func_ptr_addr(). The method
1294 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1295 function for targets which don't use function descriptors. */
1296 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1297 bfd_get_start_address (abfd),
1298 targ);
1299 }
1300
1301 /*
1302
1303 LOCAL FUNCTION
1304
1305 enable_break -- arrange for dynamic linker to hit breakpoint
1306
1307 SYNOPSIS
1308
1309 int enable_break (void)
1310
1311 DESCRIPTION
1312
1313 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1314 debugger interface, support for arranging for the inferior to hit
1315 a breakpoint after mapping in the shared libraries. This function
1316 enables that breakpoint.
1317
1318 For SunOS, there is a special flag location (in_debugger) which we
1319 set to 1. When the dynamic linker sees this flag set, it will set
1320 a breakpoint at a location known only to itself, after saving the
1321 original contents of that place and the breakpoint address itself,
1322 in it's own internal structures. When we resume the inferior, it
1323 will eventually take a SIGTRAP when it runs into the breakpoint.
1324 We handle this (in a different place) by restoring the contents of
1325 the breakpointed location (which is only known after it stops),
1326 chasing around to locate the shared libraries that have been
1327 loaded, then resuming.
1328
1329 For SVR4, the debugger interface structure contains a member (r_brk)
1330 which is statically initialized at the time the shared library is
1331 built, to the offset of a function (_r_debug_state) which is guaran-
1332 teed to be called once before mapping in a library, and again when
1333 the mapping is complete. At the time we are examining this member,
1334 it contains only the unrelocated offset of the function, so we have
1335 to do our own relocation. Later, when the dynamic linker actually
1336 runs, it relocates r_brk to be the actual address of _r_debug_state().
1337
1338 The debugger interface structure also contains an enumeration which
1339 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1340 depending upon whether or not the library is being mapped or unmapped,
1341 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1342 */
1343
1344 static int
1345 enable_break (struct svr4_info *info, int from_tty)
1346 {
1347 struct minimal_symbol *msymbol;
1348 const char * const *bkpt_namep;
1349 asection *interp_sect;
1350 gdb_byte *interp_name;
1351 CORE_ADDR sym_addr;
1352
1353 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1354 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
1355
1356 /* If we already have a shared library list in the target, and
1357 r_debug contains r_brk, set the breakpoint there - this should
1358 mean r_brk has already been relocated. Assume the dynamic linker
1359 is the object containing r_brk. */
1360
1361 solib_add (NULL, from_tty, &current_target, auto_solib_add);
1362 sym_addr = 0;
1363 if (info->debug_base && solib_svr4_r_map (info) != 0)
1364 sym_addr = solib_svr4_r_brk (info);
1365
1366 if (sym_addr != 0)
1367 {
1368 struct obj_section *os;
1369
1370 sym_addr = gdbarch_addr_bits_remove
1371 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1372 sym_addr,
1373 &current_target));
1374
1375 /* On at least some versions of Solaris there's a dynamic relocation
1376 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
1377 we get control before the dynamic linker has self-relocated.
1378 Check if SYM_ADDR is in a known section, if it is assume we can
1379 trust its value. This is just a heuristic though, it could go away
1380 or be replaced if it's getting in the way.
1381
1382 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
1383 however it's spelled in your particular system) is ARM or Thumb.
1384 That knowledge is encoded in the address, if it's Thumb the low bit
1385 is 1. However, we've stripped that info above and it's not clear
1386 what all the consequences are of passing a non-addr_bits_remove'd
1387 address to create_solib_event_breakpoint. The call to
1388 find_pc_section verifies we know about the address and have some
1389 hope of computing the right kind of breakpoint to use (via
1390 symbol info). It does mean that GDB needs to be pointed at a
1391 non-stripped version of the dynamic linker in order to obtain
1392 information it already knows about. Sigh. */
1393
1394 os = find_pc_section (sym_addr);
1395 if (os != NULL)
1396 {
1397 /* Record the relocated start and end address of the dynamic linker
1398 text and plt section for svr4_in_dynsym_resolve_code. */
1399 bfd *tmp_bfd;
1400 CORE_ADDR load_addr;
1401
1402 tmp_bfd = os->objfile->obfd;
1403 load_addr = ANOFFSET (os->objfile->section_offsets,
1404 os->objfile->sect_index_text);
1405
1406 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1407 if (interp_sect)
1408 {
1409 info->interp_text_sect_low =
1410 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1411 info->interp_text_sect_high =
1412 info->interp_text_sect_low
1413 + bfd_section_size (tmp_bfd, interp_sect);
1414 }
1415 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1416 if (interp_sect)
1417 {
1418 info->interp_plt_sect_low =
1419 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1420 info->interp_plt_sect_high =
1421 info->interp_plt_sect_low
1422 + bfd_section_size (tmp_bfd, interp_sect);
1423 }
1424
1425 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1426 return 1;
1427 }
1428 }
1429
1430 /* Find the program interpreter; if not found, warn the user and drop
1431 into the old breakpoint at symbol code. */
1432 interp_name = find_program_interpreter ();
1433 if (interp_name)
1434 {
1435 CORE_ADDR load_addr = 0;
1436 int load_addr_found = 0;
1437 int loader_found_in_list = 0;
1438 struct so_list *so;
1439 bfd *tmp_bfd = NULL;
1440 struct target_ops *tmp_bfd_target;
1441 volatile struct gdb_exception ex;
1442
1443 sym_addr = 0;
1444
1445 /* Now we need to figure out where the dynamic linker was
1446 loaded so that we can load its symbols and place a breakpoint
1447 in the dynamic linker itself.
1448
1449 This address is stored on the stack. However, I've been unable
1450 to find any magic formula to find it for Solaris (appears to
1451 be trivial on GNU/Linux). Therefore, we have to try an alternate
1452 mechanism to find the dynamic linker's base address. */
1453
1454 TRY_CATCH (ex, RETURN_MASK_ALL)
1455 {
1456 tmp_bfd = solib_bfd_open (interp_name);
1457 }
1458 if (tmp_bfd == NULL)
1459 goto bkpt_at_symbol;
1460
1461 /* Now convert the TMP_BFD into a target. That way target, as
1462 well as BFD operations can be used. Note that closing the
1463 target will also close the underlying bfd. */
1464 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1465
1466 /* On a running target, we can get the dynamic linker's base
1467 address from the shared library table. */
1468 so = master_so_list ();
1469 while (so)
1470 {
1471 if (svr4_same_1 (interp_name, so->so_original_name))
1472 {
1473 load_addr_found = 1;
1474 loader_found_in_list = 1;
1475 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
1476 break;
1477 }
1478 so = so->next;
1479 }
1480
1481 /* If we were not able to find the base address of the loader
1482 from our so_list, then try using the AT_BASE auxilliary entry. */
1483 if (!load_addr_found)
1484 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
1485 {
1486 int addr_bit = gdbarch_addr_bit (target_gdbarch);
1487
1488 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
1489 that `+ load_addr' will overflow CORE_ADDR width not creating
1490 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
1491 GDB. */
1492
1493 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
1494 {
1495 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
1496 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
1497 tmp_bfd_target);
1498
1499 gdb_assert (load_addr < space_size);
1500
1501 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
1502 64bit ld.so with 32bit executable, it should not happen. */
1503
1504 if (tmp_entry_point < space_size
1505 && tmp_entry_point + load_addr >= space_size)
1506 load_addr -= space_size;
1507 }
1508
1509 load_addr_found = 1;
1510 }
1511
1512 /* Otherwise we find the dynamic linker's base address by examining
1513 the current pc (which should point at the entry point for the
1514 dynamic linker) and subtracting the offset of the entry point.
1515
1516 This is more fragile than the previous approaches, but is a good
1517 fallback method because it has actually been working well in
1518 most cases. */
1519 if (!load_addr_found)
1520 {
1521 struct regcache *regcache
1522 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1523
1524 load_addr = (regcache_read_pc (regcache)
1525 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1526 }
1527
1528 if (!loader_found_in_list)
1529 {
1530 info->debug_loader_name = xstrdup (interp_name);
1531 info->debug_loader_offset_p = 1;
1532 info->debug_loader_offset = load_addr;
1533 solib_add (NULL, from_tty, &current_target, auto_solib_add);
1534 }
1535
1536 /* Record the relocated start and end address of the dynamic linker
1537 text and plt section for svr4_in_dynsym_resolve_code. */
1538 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1539 if (interp_sect)
1540 {
1541 info->interp_text_sect_low =
1542 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1543 info->interp_text_sect_high =
1544 info->interp_text_sect_low
1545 + bfd_section_size (tmp_bfd, interp_sect);
1546 }
1547 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1548 if (interp_sect)
1549 {
1550 info->interp_plt_sect_low =
1551 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1552 info->interp_plt_sect_high =
1553 info->interp_plt_sect_low
1554 + bfd_section_size (tmp_bfd, interp_sect);
1555 }
1556
1557 /* Now try to set a breakpoint in the dynamic linker. */
1558 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1559 {
1560 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1561 if (sym_addr != 0)
1562 break;
1563 }
1564
1565 if (sym_addr != 0)
1566 /* Convert 'sym_addr' from a function pointer to an address.
1567 Because we pass tmp_bfd_target instead of the current
1568 target, this will always produce an unrelocated value. */
1569 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1570 sym_addr,
1571 tmp_bfd_target);
1572
1573 /* We're done with both the temporary bfd and target. Remember,
1574 closing the target closes the underlying bfd. */
1575 target_close (tmp_bfd_target, 0);
1576
1577 if (sym_addr != 0)
1578 {
1579 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
1580 xfree (interp_name);
1581 return 1;
1582 }
1583
1584 /* For whatever reason we couldn't set a breakpoint in the dynamic
1585 linker. Warn and drop into the old code. */
1586 bkpt_at_symbol:
1587 xfree (interp_name);
1588 warning (_("Unable to find dynamic linker breakpoint function.\n"
1589 "GDB will be unable to debug shared library initializers\n"
1590 "and track explicitly loaded dynamic code."));
1591 }
1592
1593 /* Scan through the lists of symbols, trying to look up the symbol and
1594 set a breakpoint there. Terminate loop when we/if we succeed. */
1595
1596 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1597 {
1598 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1599 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1600 {
1601 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1602 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1603 sym_addr,
1604 &current_target);
1605 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1606 return 1;
1607 }
1608 }
1609
1610 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1611 {
1612 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1613 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1614 {
1615 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1616 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1617 sym_addr,
1618 &current_target);
1619 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1620 return 1;
1621 }
1622 }
1623 return 0;
1624 }
1625
1626 /*
1627
1628 LOCAL FUNCTION
1629
1630 special_symbol_handling -- additional shared library symbol handling
1631
1632 SYNOPSIS
1633
1634 void special_symbol_handling ()
1635
1636 DESCRIPTION
1637
1638 Once the symbols from a shared object have been loaded in the usual
1639 way, we are called to do any system specific symbol handling that
1640 is needed.
1641
1642 For SunOS4, this consisted of grunging around in the dynamic
1643 linkers structures to find symbol definitions for "common" symbols
1644 and adding them to the minimal symbol table for the runtime common
1645 objfile.
1646
1647 However, for SVR4, there's nothing to do.
1648
1649 */
1650
1651 static void
1652 svr4_special_symbol_handling (void)
1653 {
1654 }
1655
1656 /* Read the ELF program headers from ABFD. Return the contents and
1657 set *PHDRS_SIZE to the size of the program headers. */
1658
1659 static gdb_byte *
1660 read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
1661 {
1662 Elf_Internal_Ehdr *ehdr;
1663 gdb_byte *buf;
1664
1665 ehdr = elf_elfheader (abfd);
1666
1667 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
1668 if (*phdrs_size == 0)
1669 return NULL;
1670
1671 buf = xmalloc (*phdrs_size);
1672 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
1673 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
1674 {
1675 xfree (buf);
1676 return NULL;
1677 }
1678
1679 return buf;
1680 }
1681
1682 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
1683 exec_bfd. Otherwise return 0.
1684
1685 We relocate all of the sections by the same amount. This
1686 behavior is mandated by recent editions of the System V ABI.
1687 According to the System V Application Binary Interface,
1688 Edition 4.1, page 5-5:
1689
1690 ... Though the system chooses virtual addresses for
1691 individual processes, it maintains the segments' relative
1692 positions. Because position-independent code uses relative
1693 addressesing between segments, the difference between
1694 virtual addresses in memory must match the difference
1695 between virtual addresses in the file. The difference
1696 between the virtual address of any segment in memory and
1697 the corresponding virtual address in the file is thus a
1698 single constant value for any one executable or shared
1699 object in a given process. This difference is the base
1700 address. One use of the base address is to relocate the
1701 memory image of the program during dynamic linking.
1702
1703 The same language also appears in Edition 4.0 of the System V
1704 ABI and is left unspecified in some of the earlier editions.
1705
1706 Decide if the objfile needs to be relocated. As indicated above, we will
1707 only be here when execution is stopped. But during attachment PC can be at
1708 arbitrary address therefore regcache_read_pc can be misleading (contrary to
1709 the auxv AT_ENTRY value). Moreover for executable with interpreter section
1710 regcache_read_pc would point to the interpreter and not the main executable.
1711
1712 So, to summarize, relocations are necessary when the start address obtained
1713 from the executable is different from the address in auxv AT_ENTRY entry.
1714
1715 [ The astute reader will note that we also test to make sure that
1716 the executable in question has the DYNAMIC flag set. It is my
1717 opinion that this test is unnecessary (undesirable even). It
1718 was added to avoid inadvertent relocation of an executable
1719 whose e_type member in the ELF header is not ET_DYN. There may
1720 be a time in the future when it is desirable to do relocations
1721 on other types of files as well in which case this condition
1722 should either be removed or modified to accomodate the new file
1723 type. - Kevin, Nov 2000. ] */
1724
1725 static int
1726 svr4_exec_displacement (CORE_ADDR *displacementp)
1727 {
1728 /* ENTRY_POINT is a possible function descriptor - before
1729 a call to gdbarch_convert_from_func_ptr_addr. */
1730 CORE_ADDR entry_point, displacement;
1731
1732 if (exec_bfd == NULL)
1733 return 0;
1734
1735 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
1736 being executed themselves and PIE (Position Independent Executable)
1737 executables are ET_DYN. */
1738
1739 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
1740 return 0;
1741
1742 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
1743 return 0;
1744
1745 displacement = entry_point - bfd_get_start_address (exec_bfd);
1746
1747 /* Verify the DISPLACEMENT candidate complies with the required page
1748 alignment. It is cheaper than the program headers comparison below. */
1749
1750 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1751 {
1752 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
1753
1754 /* p_align of PT_LOAD segments does not specify any alignment but
1755 only congruency of addresses:
1756 p_offset % p_align == p_vaddr % p_align
1757 Kernel is free to load the executable with lower alignment. */
1758
1759 if ((displacement & (elf->minpagesize - 1)) != 0)
1760 return 0;
1761 }
1762
1763 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
1764 comparing their program headers. If the program headers in the auxilliary
1765 vector do not match the program headers in the executable, then we are
1766 looking at a different file than the one used by the kernel - for
1767 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
1768
1769 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1770 {
1771 /* Be optimistic and clear OK only if GDB was able to verify the headers
1772 really do not match. */
1773 int phdrs_size, phdrs2_size, ok = 1;
1774 gdb_byte *buf, *buf2;
1775 int arch_size;
1776
1777 buf = read_program_header (-1, &phdrs_size, &arch_size);
1778 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
1779 if (buf != NULL && buf2 != NULL)
1780 {
1781 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1782
1783 /* We are dealing with three different addresses. EXEC_BFD
1784 represents current address in on-disk file. target memory content
1785 may be different from EXEC_BFD as the file may have been prelinked
1786 to a different address after the executable has been loaded.
1787 Moreover the address of placement in target memory can be
1788 different from what the program headers in target memory say - this
1789 is the goal of PIE.
1790
1791 Detected DISPLACEMENT covers both the offsets of PIE placement and
1792 possible new prelink performed after start of the program. Here
1793 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
1794 content offset for the verification purpose. */
1795
1796 if (phdrs_size != phdrs2_size
1797 || bfd_get_arch_size (exec_bfd) != arch_size)
1798 ok = 0;
1799 else if (arch_size == 32 && phdrs_size >= sizeof (Elf32_External_Phdr)
1800 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
1801 {
1802 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1803 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1804 CORE_ADDR displacement = 0;
1805 int i;
1806
1807 /* DISPLACEMENT could be found more easily by the difference of
1808 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1809 already have enough information to compute that displacement
1810 with what we've read. */
1811
1812 for (i = 0; i < ehdr2->e_phnum; i++)
1813 if (phdr2[i].p_type == PT_LOAD)
1814 {
1815 Elf32_External_Phdr *phdrp;
1816 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1817 CORE_ADDR vaddr, paddr;
1818 CORE_ADDR displacement_vaddr = 0;
1819 CORE_ADDR displacement_paddr = 0;
1820
1821 phdrp = &((Elf32_External_Phdr *) buf)[i];
1822 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1823 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1824
1825 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1826 byte_order);
1827 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1828
1829 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1830 byte_order);
1831 displacement_paddr = paddr - phdr2[i].p_paddr;
1832
1833 if (displacement_vaddr == displacement_paddr)
1834 displacement = displacement_vaddr;
1835
1836 break;
1837 }
1838
1839 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1840
1841 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
1842 {
1843 Elf32_External_Phdr *phdrp;
1844 Elf32_External_Phdr *phdr2p;
1845 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1846 CORE_ADDR vaddr, paddr;
1847 asection *plt2_asect;
1848
1849 phdrp = &((Elf32_External_Phdr *) buf)[i];
1850 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1851 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1852 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
1853
1854 /* PT_GNU_STACK is an exception by being never relocated by
1855 prelink as its addresses are always zero. */
1856
1857 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1858 continue;
1859
1860 /* Check also other adjustment combinations - PR 11786. */
1861
1862 vaddr = extract_unsigned_integer (buf_vaddr_p, 4, byte_order);
1863 vaddr -= displacement;
1864 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
1865
1866 paddr = extract_unsigned_integer (buf_paddr_p, 4, byte_order);
1867 paddr -= displacement;
1868 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
1869
1870 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1871 continue;
1872
1873 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
1874 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
1875 if (plt2_asect)
1876 {
1877 int content2;
1878 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
1879 CORE_ADDR filesz;
1880
1881 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
1882 & SEC_HAS_CONTENTS) != 0;
1883
1884 filesz = extract_unsigned_integer (buf_filesz_p, 4,
1885 byte_order);
1886
1887 /* PLT2_ASECT is from on-disk file (exec_bfd) while
1888 FILESZ is from the in-memory image. */
1889 if (content2)
1890 filesz += bfd_get_section_size (plt2_asect);
1891 else
1892 filesz -= bfd_get_section_size (plt2_asect);
1893
1894 store_unsigned_integer (buf_filesz_p, 4, byte_order,
1895 filesz);
1896
1897 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1898 continue;
1899 }
1900
1901 ok = 0;
1902 break;
1903 }
1904 }
1905 else if (arch_size == 64 && phdrs_size >= sizeof (Elf64_External_Phdr)
1906 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
1907 {
1908 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1909 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1910 CORE_ADDR displacement = 0;
1911 int i;
1912
1913 /* DISPLACEMENT could be found more easily by the difference of
1914 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1915 already have enough information to compute that displacement
1916 with what we've read. */
1917
1918 for (i = 0; i < ehdr2->e_phnum; i++)
1919 if (phdr2[i].p_type == PT_LOAD)
1920 {
1921 Elf64_External_Phdr *phdrp;
1922 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1923 CORE_ADDR vaddr, paddr;
1924 CORE_ADDR displacement_vaddr = 0;
1925 CORE_ADDR displacement_paddr = 0;
1926
1927 phdrp = &((Elf64_External_Phdr *) buf)[i];
1928 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1929 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1930
1931 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
1932 byte_order);
1933 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1934
1935 paddr = extract_unsigned_integer (buf_paddr_p, 8,
1936 byte_order);
1937 displacement_paddr = paddr - phdr2[i].p_paddr;
1938
1939 if (displacement_vaddr == displacement_paddr)
1940 displacement = displacement_vaddr;
1941
1942 break;
1943 }
1944
1945 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1946
1947 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
1948 {
1949 Elf64_External_Phdr *phdrp;
1950 Elf64_External_Phdr *phdr2p;
1951 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1952 CORE_ADDR vaddr, paddr;
1953 asection *plt2_asect;
1954
1955 phdrp = &((Elf64_External_Phdr *) buf)[i];
1956 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1957 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1958 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
1959
1960 /* PT_GNU_STACK is an exception by being never relocated by
1961 prelink as its addresses are always zero. */
1962
1963 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1964 continue;
1965
1966 /* Check also other adjustment combinations - PR 11786. */
1967
1968 vaddr = extract_unsigned_integer (buf_vaddr_p, 8, byte_order);
1969 vaddr -= displacement;
1970 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
1971
1972 paddr = extract_unsigned_integer (buf_paddr_p, 8, byte_order);
1973 paddr -= displacement;
1974 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
1975
1976 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1977 continue;
1978
1979 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
1980 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
1981 if (plt2_asect)
1982 {
1983 int content2;
1984 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
1985 CORE_ADDR filesz;
1986
1987 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
1988 & SEC_HAS_CONTENTS) != 0;
1989
1990 filesz = extract_unsigned_integer (buf_filesz_p, 8,
1991 byte_order);
1992
1993 /* PLT2_ASECT is from on-disk file (exec_bfd) while
1994 FILESZ is from the in-memory image. */
1995 if (content2)
1996 filesz += bfd_get_section_size (plt2_asect);
1997 else
1998 filesz -= bfd_get_section_size (plt2_asect);
1999
2000 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2001 filesz);
2002
2003 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2004 continue;
2005 }
2006
2007 ok = 0;
2008 break;
2009 }
2010 }
2011 else
2012 ok = 0;
2013 }
2014
2015 xfree (buf);
2016 xfree (buf2);
2017
2018 if (!ok)
2019 return 0;
2020 }
2021
2022 if (info_verbose)
2023 {
2024 /* It can be printed repeatedly as there is no easy way to check
2025 the executable symbols/file has been already relocated to
2026 displacement. */
2027
2028 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2029 "displacement %s for \"%s\".\n"),
2030 paddress (target_gdbarch, displacement),
2031 bfd_get_filename (exec_bfd));
2032 }
2033
2034 *displacementp = displacement;
2035 return 1;
2036 }
2037
2038 /* Relocate the main executable. This function should be called upon
2039 stopping the inferior process at the entry point to the program.
2040 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2041 different, the main executable is relocated by the proper amount. */
2042
2043 static void
2044 svr4_relocate_main_executable (void)
2045 {
2046 CORE_ADDR displacement;
2047
2048 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2049 probably contains the offsets computed using the PIE displacement
2050 from the previous run, which of course are irrelevant for this run.
2051 So we need to determine the new PIE displacement and recompute the
2052 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2053 already contains pre-computed offsets.
2054
2055 If we cannot compute the PIE displacement, either:
2056
2057 - The executable is not PIE.
2058
2059 - SYMFILE_OBJFILE does not match the executable started in the target.
2060 This can happen for main executable symbols loaded at the host while
2061 `ld.so --ld-args main-executable' is loaded in the target.
2062
2063 Then we leave the section offsets untouched and use them as is for
2064 this run. Either:
2065
2066 - These section offsets were properly reset earlier, and thus
2067 already contain the correct values. This can happen for instance
2068 when reconnecting via the remote protocol to a target that supports
2069 the `qOffsets' packet.
2070
2071 - The section offsets were not reset earlier, and the best we can
2072 hope is that the old offsets are still applicable to the new run.
2073 */
2074
2075 if (! svr4_exec_displacement (&displacement))
2076 return;
2077
2078 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2079 addresses. */
2080
2081 if (symfile_objfile)
2082 {
2083 struct section_offsets *new_offsets;
2084 int i;
2085
2086 new_offsets = alloca (symfile_objfile->num_sections
2087 * sizeof (*new_offsets));
2088
2089 for (i = 0; i < symfile_objfile->num_sections; i++)
2090 new_offsets->offsets[i] = displacement;
2091
2092 objfile_relocate (symfile_objfile, new_offsets);
2093 }
2094 else if (exec_bfd)
2095 {
2096 asection *asect;
2097
2098 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2099 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2100 (bfd_section_vma (exec_bfd, asect)
2101 + displacement));
2102 }
2103 }
2104
2105 /*
2106
2107 GLOBAL FUNCTION
2108
2109 svr4_solib_create_inferior_hook -- shared library startup support
2110
2111 SYNOPSIS
2112
2113 void svr4_solib_create_inferior_hook (int from_tty)
2114
2115 DESCRIPTION
2116
2117 When gdb starts up the inferior, it nurses it along (through the
2118 shell) until it is ready to execute it's first instruction. At this
2119 point, this function gets called via expansion of the macro
2120 SOLIB_CREATE_INFERIOR_HOOK.
2121
2122 For SunOS executables, this first instruction is typically the
2123 one at "_start", or a similar text label, regardless of whether
2124 the executable is statically or dynamically linked. The runtime
2125 startup code takes care of dynamically linking in any shared
2126 libraries, once gdb allows the inferior to continue.
2127
2128 For SVR4 executables, this first instruction is either the first
2129 instruction in the dynamic linker (for dynamically linked
2130 executables) or the instruction at "start" for statically linked
2131 executables. For dynamically linked executables, the system
2132 first exec's /lib/libc.so.N, which contains the dynamic linker,
2133 and starts it running. The dynamic linker maps in any needed
2134 shared libraries, maps in the actual user executable, and then
2135 jumps to "start" in the user executable.
2136
2137 For both SunOS shared libraries, and SVR4 shared libraries, we
2138 can arrange to cooperate with the dynamic linker to discover the
2139 names of shared libraries that are dynamically linked, and the
2140 base addresses to which they are linked.
2141
2142 This function is responsible for discovering those names and
2143 addresses, and saving sufficient information about them to allow
2144 their symbols to be read at a later time.
2145
2146 FIXME
2147
2148 Between enable_break() and disable_break(), this code does not
2149 properly handle hitting breakpoints which the user might have
2150 set in the startup code or in the dynamic linker itself. Proper
2151 handling will probably have to wait until the implementation is
2152 changed to use the "breakpoint handler function" method.
2153
2154 Also, what if child has exit()ed? Must exit loop somehow.
2155 */
2156
2157 static void
2158 svr4_solib_create_inferior_hook (int from_tty)
2159 {
2160 #if defined(_SCO_DS)
2161 struct inferior *inf;
2162 struct thread_info *tp;
2163 #endif /* defined(_SCO_DS) */
2164 struct svr4_info *info;
2165
2166 info = get_svr4_info ();
2167
2168 /* Relocate the main executable if necessary. */
2169 svr4_relocate_main_executable ();
2170
2171 if (!svr4_have_link_map_offsets ())
2172 return;
2173
2174 if (!enable_break (info, from_tty))
2175 return;
2176
2177 #if defined(_SCO_DS)
2178 /* SCO needs the loop below, other systems should be using the
2179 special shared library breakpoints and the shared library breakpoint
2180 service routine.
2181
2182 Now run the target. It will eventually hit the breakpoint, at
2183 which point all of the libraries will have been mapped in and we
2184 can go groveling around in the dynamic linker structures to find
2185 out what we need to know about them. */
2186
2187 inf = current_inferior ();
2188 tp = inferior_thread ();
2189
2190 clear_proceed_status ();
2191 inf->stop_soon = STOP_QUIETLY;
2192 tp->stop_signal = TARGET_SIGNAL_0;
2193 do
2194 {
2195 target_resume (pid_to_ptid (-1), 0, tp->stop_signal);
2196 wait_for_inferior (0);
2197 }
2198 while (tp->stop_signal != TARGET_SIGNAL_TRAP);
2199 inf->stop_soon = NO_STOP_QUIETLY;
2200 #endif /* defined(_SCO_DS) */
2201 }
2202
2203 static void
2204 svr4_clear_solib (void)
2205 {
2206 struct svr4_info *info;
2207
2208 info = get_svr4_info ();
2209 info->debug_base = 0;
2210 info->debug_loader_offset_p = 0;
2211 info->debug_loader_offset = 0;
2212 xfree (info->debug_loader_name);
2213 info->debug_loader_name = NULL;
2214 }
2215
2216 static void
2217 svr4_free_so (struct so_list *so)
2218 {
2219 xfree (so->lm_info->lm);
2220 xfree (so->lm_info);
2221 }
2222
2223
2224 /* Clear any bits of ADDR that wouldn't fit in a target-format
2225 data pointer. "Data pointer" here refers to whatever sort of
2226 address the dynamic linker uses to manage its sections. At the
2227 moment, we don't support shared libraries on any processors where
2228 code and data pointers are different sizes.
2229
2230 This isn't really the right solution. What we really need here is
2231 a way to do arithmetic on CORE_ADDR values that respects the
2232 natural pointer/address correspondence. (For example, on the MIPS,
2233 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2234 sign-extend the value. There, simply truncating the bits above
2235 gdbarch_ptr_bit, as we do below, is no good.) This should probably
2236 be a new gdbarch method or something. */
2237 static CORE_ADDR
2238 svr4_truncate_ptr (CORE_ADDR addr)
2239 {
2240 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
2241 /* We don't need to truncate anything, and the bit twiddling below
2242 will fail due to overflow problems. */
2243 return addr;
2244 else
2245 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
2246 }
2247
2248
2249 static void
2250 svr4_relocate_section_addresses (struct so_list *so,
2251 struct target_section *sec)
2252 {
2253 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
2254 sec->bfd));
2255 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
2256 sec->bfd));
2257 }
2258 \f
2259
2260 /* Architecture-specific operations. */
2261
2262 /* Per-architecture data key. */
2263 static struct gdbarch_data *solib_svr4_data;
2264
2265 struct solib_svr4_ops
2266 {
2267 /* Return a description of the layout of `struct link_map'. */
2268 struct link_map_offsets *(*fetch_link_map_offsets)(void);
2269 };
2270
2271 /* Return a default for the architecture-specific operations. */
2272
2273 static void *
2274 solib_svr4_init (struct obstack *obstack)
2275 {
2276 struct solib_svr4_ops *ops;
2277
2278 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
2279 ops->fetch_link_map_offsets = NULL;
2280 return ops;
2281 }
2282
2283 /* Set the architecture-specific `struct link_map_offsets' fetcher for
2284 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
2285
2286 void
2287 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
2288 struct link_map_offsets *(*flmo) (void))
2289 {
2290 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
2291
2292 ops->fetch_link_map_offsets = flmo;
2293
2294 set_solib_ops (gdbarch, &svr4_so_ops);
2295 }
2296
2297 /* Fetch a link_map_offsets structure using the architecture-specific
2298 `struct link_map_offsets' fetcher. */
2299
2300 static struct link_map_offsets *
2301 svr4_fetch_link_map_offsets (void)
2302 {
2303 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
2304
2305 gdb_assert (ops->fetch_link_map_offsets);
2306 return ops->fetch_link_map_offsets ();
2307 }
2308
2309 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
2310
2311 static int
2312 svr4_have_link_map_offsets (void)
2313 {
2314 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
2315
2316 return (ops->fetch_link_map_offsets != NULL);
2317 }
2318 \f
2319
2320 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
2321 `struct r_debug' and a `struct link_map' that are binary compatible
2322 with the origional SVR4 implementation. */
2323
2324 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2325 for an ILP32 SVR4 system. */
2326
2327 struct link_map_offsets *
2328 svr4_ilp32_fetch_link_map_offsets (void)
2329 {
2330 static struct link_map_offsets lmo;
2331 static struct link_map_offsets *lmp = NULL;
2332
2333 if (lmp == NULL)
2334 {
2335 lmp = &lmo;
2336
2337 lmo.r_version_offset = 0;
2338 lmo.r_version_size = 4;
2339 lmo.r_map_offset = 4;
2340 lmo.r_brk_offset = 8;
2341 lmo.r_ldsomap_offset = 20;
2342
2343 /* Everything we need is in the first 20 bytes. */
2344 lmo.link_map_size = 20;
2345 lmo.l_addr_offset = 0;
2346 lmo.l_name_offset = 4;
2347 lmo.l_ld_offset = 8;
2348 lmo.l_next_offset = 12;
2349 lmo.l_prev_offset = 16;
2350 }
2351
2352 return lmp;
2353 }
2354
2355 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2356 for an LP64 SVR4 system. */
2357
2358 struct link_map_offsets *
2359 svr4_lp64_fetch_link_map_offsets (void)
2360 {
2361 static struct link_map_offsets lmo;
2362 static struct link_map_offsets *lmp = NULL;
2363
2364 if (lmp == NULL)
2365 {
2366 lmp = &lmo;
2367
2368 lmo.r_version_offset = 0;
2369 lmo.r_version_size = 4;
2370 lmo.r_map_offset = 8;
2371 lmo.r_brk_offset = 16;
2372 lmo.r_ldsomap_offset = 40;
2373
2374 /* Everything we need is in the first 40 bytes. */
2375 lmo.link_map_size = 40;
2376 lmo.l_addr_offset = 0;
2377 lmo.l_name_offset = 8;
2378 lmo.l_ld_offset = 16;
2379 lmo.l_next_offset = 24;
2380 lmo.l_prev_offset = 32;
2381 }
2382
2383 return lmp;
2384 }
2385 \f
2386
2387 struct target_so_ops svr4_so_ops;
2388
2389 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
2390 different rule for symbol lookup. The lookup begins here in the DSO, not in
2391 the main executable. */
2392
2393 static struct symbol *
2394 elf_lookup_lib_symbol (const struct objfile *objfile,
2395 const char *name,
2396 const domain_enum domain)
2397 {
2398 bfd *abfd;
2399
2400 if (objfile == symfile_objfile)
2401 abfd = exec_bfd;
2402 else
2403 {
2404 /* OBJFILE should have been passed as the non-debug one. */
2405 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
2406
2407 abfd = objfile->obfd;
2408 }
2409
2410 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
2411 return NULL;
2412
2413 return lookup_global_symbol_from_objfile (objfile, name, domain);
2414 }
2415
2416 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
2417
2418 void
2419 _initialize_svr4_solib (void)
2420 {
2421 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
2422 solib_svr4_pspace_data
2423 = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
2424
2425 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
2426 svr4_so_ops.free_so = svr4_free_so;
2427 svr4_so_ops.clear_solib = svr4_clear_solib;
2428 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
2429 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
2430 svr4_so_ops.current_sos = svr4_current_sos;
2431 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
2432 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
2433 svr4_so_ops.bfd_open = solib_bfd_open;
2434 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
2435 svr4_so_ops.same = svr4_same;
2436 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
2437 }
This page took 0.130083 seconds and 4 git commands to generate.