* emultempl/elf32.em: Enable use of ld.so.conf for *-*-k*bsd-*.
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999,
4 2000, 2001, 2003, 2004, 2005
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25
26 #include "elf/external.h"
27 #include "elf/common.h"
28 #include "elf/mips.h"
29
30 #include "symtab.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdbcore.h"
35 #include "target.h"
36 #include "inferior.h"
37
38 #include "gdb_assert.h"
39
40 #include "solist.h"
41 #include "solib.h"
42 #include "solib-svr4.h"
43
44 #include "bfd-target.h"
45 #include "exec.h"
46
47 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
48 static int svr4_have_link_map_offsets (void);
49
50 /* This hook is set to a function that provides native link map
51 offsets if the code in solib-legacy.c is linked in. */
52 struct link_map_offsets *(*legacy_svr4_fetch_link_map_offsets_hook) (void);
53
54 /* Link map info to include in an allocated so_list entry */
55
56 struct lm_info
57 {
58 /* Pointer to copy of link map from inferior. The type is char *
59 rather than void *, so that we may use byte offsets to find the
60 various fields without the need for a cast. */
61 gdb_byte *lm;
62 };
63
64 /* On SVR4 systems, a list of symbols in the dynamic linker where
65 GDB can try to place a breakpoint to monitor shared library
66 events.
67
68 If none of these symbols are found, or other errors occur, then
69 SVR4 systems will fall back to using a symbol as the "startup
70 mapping complete" breakpoint address. */
71
72 static char *solib_break_names[] =
73 {
74 "r_debug_state",
75 "_r_debug_state",
76 "_dl_debug_state",
77 "rtld_db_dlactivity",
78 "_rtld_debug_state",
79
80 /* On the 64-bit PowerPC, the linker symbol with the same name as
81 the C function points to a function descriptor, not to the entry
82 point. The linker symbol whose name is the C function name
83 prefixed with a '.' points to the function's entry point. So
84 when we look through this table, we ignore symbols that point
85 into the data section (thus skipping the descriptor's symbol),
86 and eventually try this one, giving us the real entry point
87 address. */
88 "._dl_debug_state",
89
90 NULL
91 };
92
93 #define BKPT_AT_SYMBOL 1
94
95 #if defined (BKPT_AT_SYMBOL)
96 static char *bkpt_names[] =
97 {
98 #ifdef SOLIB_BKPT_NAME
99 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
100 #endif
101 "_start",
102 "__start",
103 "main",
104 NULL
105 };
106 #endif
107
108 static char *main_name_list[] =
109 {
110 "main_$main",
111 NULL
112 };
113
114 /* Macro to extract an address from a solib structure. When GDB is
115 configured for some 32-bit targets (e.g. Solaris 2.7 sparc), BFD is
116 configured to handle 64-bit targets, so CORE_ADDR is 64 bits. We
117 have to extract only the significant bits of addresses to get the
118 right address when accessing the core file BFD.
119
120 Assume that the address is unsigned. */
121
122 #define SOLIB_EXTRACT_ADDRESS(MEMBER) \
123 extract_unsigned_integer (&(MEMBER), sizeof (MEMBER))
124
125 /* local data declarations */
126
127 /* link map access functions */
128
129 static CORE_ADDR
130 LM_ADDR (struct so_list *so)
131 {
132 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
133
134 return (CORE_ADDR) extract_signed_integer (so->lm_info->lm + lmo->l_addr_offset,
135 lmo->l_addr_size);
136 }
137
138 static CORE_ADDR
139 LM_NEXT (struct so_list *so)
140 {
141 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
142
143 /* Assume that the address is unsigned. */
144 return extract_unsigned_integer (so->lm_info->lm + lmo->l_next_offset,
145 lmo->l_next_size);
146 }
147
148 static CORE_ADDR
149 LM_NAME (struct so_list *so)
150 {
151 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
152
153 /* Assume that the address is unsigned. */
154 return extract_unsigned_integer (so->lm_info->lm + lmo->l_name_offset,
155 lmo->l_name_size);
156 }
157
158 static int
159 IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
160 {
161 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
162
163 /* Assume that the address is unsigned. */
164 return extract_unsigned_integer (so->lm_info->lm + lmo->l_prev_offset,
165 lmo->l_prev_size) == 0;
166 }
167
168 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
169 static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
170
171 /* Local function prototypes */
172
173 static int match_main (char *);
174
175 static CORE_ADDR bfd_lookup_symbol (bfd *, char *, flagword);
176
177 /*
178
179 LOCAL FUNCTION
180
181 bfd_lookup_symbol -- lookup the value for a specific symbol
182
183 SYNOPSIS
184
185 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags)
186
187 DESCRIPTION
188
189 An expensive way to lookup the value of a single symbol for
190 bfd's that are only temporary anyway. This is used by the
191 shared library support to find the address of the debugger
192 interface structures in the shared library.
193
194 If SECT_FLAGS is non-zero, only match symbols in sections whose
195 flags include all those in SECT_FLAGS.
196
197 Note that 0 is specifically allowed as an error return (no
198 such symbol).
199 */
200
201 static CORE_ADDR
202 bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags)
203 {
204 long storage_needed;
205 asymbol *sym;
206 asymbol **symbol_table;
207 unsigned int number_of_symbols;
208 unsigned int i;
209 struct cleanup *back_to;
210 CORE_ADDR symaddr = 0;
211
212 storage_needed = bfd_get_symtab_upper_bound (abfd);
213
214 if (storage_needed > 0)
215 {
216 symbol_table = (asymbol **) xmalloc (storage_needed);
217 back_to = make_cleanup (xfree, symbol_table);
218 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
219
220 for (i = 0; i < number_of_symbols; i++)
221 {
222 sym = *symbol_table++;
223 if (strcmp (sym->name, symname) == 0
224 && (sym->section->flags & sect_flags) == sect_flags)
225 {
226 /* Bfd symbols are section relative. */
227 symaddr = sym->value + sym->section->vma;
228 break;
229 }
230 }
231 do_cleanups (back_to);
232 }
233
234 if (symaddr)
235 return symaddr;
236
237 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
238 have to check the dynamic string table too. */
239
240 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
241
242 if (storage_needed > 0)
243 {
244 symbol_table = (asymbol **) xmalloc (storage_needed);
245 back_to = make_cleanup (xfree, symbol_table);
246 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
247
248 for (i = 0; i < number_of_symbols; i++)
249 {
250 sym = *symbol_table++;
251
252 if (strcmp (sym->name, symname) == 0
253 && (sym->section->flags & sect_flags) == sect_flags)
254 {
255 /* Bfd symbols are section relative. */
256 symaddr = sym->value + sym->section->vma;
257 break;
258 }
259 }
260 do_cleanups (back_to);
261 }
262
263 return symaddr;
264 }
265
266 /*
267
268 LOCAL FUNCTION
269
270 elf_locate_base -- locate the base address of dynamic linker structs
271 for SVR4 elf targets.
272
273 SYNOPSIS
274
275 CORE_ADDR elf_locate_base (void)
276
277 DESCRIPTION
278
279 For SVR4 elf targets the address of the dynamic linker's runtime
280 structure is contained within the dynamic info section in the
281 executable file. The dynamic section is also mapped into the
282 inferior address space. Because the runtime loader fills in the
283 real address before starting the inferior, we have to read in the
284 dynamic info section from the inferior address space.
285 If there are any errors while trying to find the address, we
286 silently return 0, otherwise the found address is returned.
287
288 */
289
290 static CORE_ADDR
291 elf_locate_base (void)
292 {
293 struct bfd_section *dyninfo_sect;
294 int dyninfo_sect_size;
295 CORE_ADDR dyninfo_addr;
296 gdb_byte *buf;
297 gdb_byte *bufend;
298 int arch_size;
299
300 /* Find the start address of the .dynamic section. */
301 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
302 if (dyninfo_sect == NULL)
303 return 0;
304 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
305
306 /* Read in .dynamic section, silently ignore errors. */
307 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
308 buf = alloca (dyninfo_sect_size);
309 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
310 return 0;
311
312 /* Find the DT_DEBUG entry in the the .dynamic section.
313 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
314 no DT_DEBUG entries. */
315
316 arch_size = bfd_get_arch_size (exec_bfd);
317 if (arch_size == -1) /* failure */
318 return 0;
319
320 if (arch_size == 32)
321 { /* 32-bit elf */
322 for (bufend = buf + dyninfo_sect_size;
323 buf < bufend;
324 buf += sizeof (Elf32_External_Dyn))
325 {
326 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
327 long dyn_tag;
328 CORE_ADDR dyn_ptr;
329
330 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
331 if (dyn_tag == DT_NULL)
332 break;
333 else if (dyn_tag == DT_DEBUG)
334 {
335 dyn_ptr = bfd_h_get_32 (exec_bfd,
336 (bfd_byte *) x_dynp->d_un.d_ptr);
337 return dyn_ptr;
338 }
339 else if (dyn_tag == DT_MIPS_RLD_MAP)
340 {
341 gdb_byte *pbuf;
342 int pbuf_size = TARGET_PTR_BIT / HOST_CHAR_BIT;
343
344 pbuf = alloca (pbuf_size);
345 /* DT_MIPS_RLD_MAP contains a pointer to the address
346 of the dynamic link structure. */
347 dyn_ptr = bfd_h_get_32 (exec_bfd,
348 (bfd_byte *) x_dynp->d_un.d_ptr);
349 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
350 return 0;
351 return extract_unsigned_integer (pbuf, pbuf_size);
352 }
353 }
354 }
355 else /* 64-bit elf */
356 {
357 for (bufend = buf + dyninfo_sect_size;
358 buf < bufend;
359 buf += sizeof (Elf64_External_Dyn))
360 {
361 Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
362 long dyn_tag;
363 CORE_ADDR dyn_ptr;
364
365 dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
366 if (dyn_tag == DT_NULL)
367 break;
368 else if (dyn_tag == DT_DEBUG)
369 {
370 dyn_ptr = bfd_h_get_64 (exec_bfd,
371 (bfd_byte *) x_dynp->d_un.d_ptr);
372 return dyn_ptr;
373 }
374 else if (dyn_tag == DT_MIPS_RLD_MAP)
375 {
376 gdb_byte *pbuf;
377 int pbuf_size = TARGET_PTR_BIT / HOST_CHAR_BIT;
378
379 pbuf = alloca (pbuf_size);
380 /* DT_MIPS_RLD_MAP contains a pointer to the address
381 of the dynamic link structure. */
382 dyn_ptr = bfd_h_get_64 (exec_bfd,
383 (bfd_byte *) x_dynp->d_un.d_ptr);
384 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
385 return 0;
386 return extract_unsigned_integer (pbuf, pbuf_size);
387 }
388 }
389 }
390
391 /* DT_DEBUG entry not found. */
392 return 0;
393 }
394
395 /*
396
397 LOCAL FUNCTION
398
399 locate_base -- locate the base address of dynamic linker structs
400
401 SYNOPSIS
402
403 CORE_ADDR locate_base (void)
404
405 DESCRIPTION
406
407 For both the SunOS and SVR4 shared library implementations, if the
408 inferior executable has been linked dynamically, there is a single
409 address somewhere in the inferior's data space which is the key to
410 locating all of the dynamic linker's runtime structures. This
411 address is the value of the debug base symbol. The job of this
412 function is to find and return that address, or to return 0 if there
413 is no such address (the executable is statically linked for example).
414
415 For SunOS, the job is almost trivial, since the dynamic linker and
416 all of it's structures are statically linked to the executable at
417 link time. Thus the symbol for the address we are looking for has
418 already been added to the minimal symbol table for the executable's
419 objfile at the time the symbol file's symbols were read, and all we
420 have to do is look it up there. Note that we explicitly do NOT want
421 to find the copies in the shared library.
422
423 The SVR4 version is a bit more complicated because the address
424 is contained somewhere in the dynamic info section. We have to go
425 to a lot more work to discover the address of the debug base symbol.
426 Because of this complexity, we cache the value we find and return that
427 value on subsequent invocations. Note there is no copy in the
428 executable symbol tables.
429
430 */
431
432 static CORE_ADDR
433 locate_base (void)
434 {
435 /* Check to see if we have a currently valid address, and if so, avoid
436 doing all this work again and just return the cached address. If
437 we have no cached address, try to locate it in the dynamic info
438 section for ELF executables. There's no point in doing any of this
439 though if we don't have some link map offsets to work with. */
440
441 if (debug_base == 0 && svr4_have_link_map_offsets ())
442 {
443 if (exec_bfd != NULL
444 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
445 debug_base = elf_locate_base ();
446 }
447 return (debug_base);
448 }
449
450 /*
451
452 LOCAL FUNCTION
453
454 first_link_map_member -- locate first member in dynamic linker's map
455
456 SYNOPSIS
457
458 static CORE_ADDR first_link_map_member (void)
459
460 DESCRIPTION
461
462 Find the first element in the inferior's dynamic link map, and
463 return its address in the inferior. This function doesn't copy the
464 link map entry itself into our address space; current_sos actually
465 does the reading. */
466
467 static CORE_ADDR
468 first_link_map_member (void)
469 {
470 CORE_ADDR lm = 0;
471 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
472 gdb_byte *r_map_buf = xmalloc (lmo->r_map_size);
473 struct cleanup *cleanups = make_cleanup (xfree, r_map_buf);
474
475 read_memory (debug_base + lmo->r_map_offset, r_map_buf, lmo->r_map_size);
476
477 /* Assume that the address is unsigned. */
478 lm = extract_unsigned_integer (r_map_buf, lmo->r_map_size);
479
480 /* FIXME: Perhaps we should validate the info somehow, perhaps by
481 checking r_version for a known version number, or r_state for
482 RT_CONSISTENT. */
483
484 do_cleanups (cleanups);
485
486 return (lm);
487 }
488
489 /*
490
491 LOCAL FUNCTION
492
493 open_symbol_file_object
494
495 SYNOPSIS
496
497 void open_symbol_file_object (void *from_tty)
498
499 DESCRIPTION
500
501 If no open symbol file, attempt to locate and open the main symbol
502 file. On SVR4 systems, this is the first link map entry. If its
503 name is here, we can open it. Useful when attaching to a process
504 without first loading its symbol file.
505
506 If FROM_TTYP dereferences to a non-zero integer, allow messages to
507 be printed. This parameter is a pointer rather than an int because
508 open_symbol_file_object() is called via catch_errors() and
509 catch_errors() requires a pointer argument. */
510
511 static int
512 open_symbol_file_object (void *from_ttyp)
513 {
514 CORE_ADDR lm, l_name;
515 char *filename;
516 int errcode;
517 int from_tty = *(int *)from_ttyp;
518 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
519 gdb_byte *l_name_buf = xmalloc (lmo->l_name_size);
520 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
521
522 if (symfile_objfile)
523 if (!query ("Attempt to reload symbols from process? "))
524 return 0;
525
526 if ((debug_base = locate_base ()) == 0)
527 return 0; /* failed somehow... */
528
529 /* First link map member should be the executable. */
530 if ((lm = first_link_map_member ()) == 0)
531 return 0; /* failed somehow... */
532
533 /* Read address of name from target memory to GDB. */
534 read_memory (lm + lmo->l_name_offset, l_name_buf, lmo->l_name_size);
535
536 /* Convert the address to host format. Assume that the address is
537 unsigned. */
538 l_name = extract_unsigned_integer (l_name_buf, lmo->l_name_size);
539
540 /* Free l_name_buf. */
541 do_cleanups (cleanups);
542
543 if (l_name == 0)
544 return 0; /* No filename. */
545
546 /* Now fetch the filename from target memory. */
547 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
548
549 if (errcode)
550 {
551 warning (_("failed to read exec filename from attached file: %s"),
552 safe_strerror (errcode));
553 return 0;
554 }
555
556 make_cleanup (xfree, filename);
557 /* Have a pathname: read the symbol file. */
558 symbol_file_add_main (filename, from_tty);
559
560 return 1;
561 }
562
563 /* LOCAL FUNCTION
564
565 current_sos -- build a list of currently loaded shared objects
566
567 SYNOPSIS
568
569 struct so_list *current_sos ()
570
571 DESCRIPTION
572
573 Build a list of `struct so_list' objects describing the shared
574 objects currently loaded in the inferior. This list does not
575 include an entry for the main executable file.
576
577 Note that we only gather information directly available from the
578 inferior --- we don't examine any of the shared library files
579 themselves. The declaration of `struct so_list' says which fields
580 we provide values for. */
581
582 static struct so_list *
583 svr4_current_sos (void)
584 {
585 CORE_ADDR lm;
586 struct so_list *head = 0;
587 struct so_list **link_ptr = &head;
588
589 /* Make sure we've looked up the inferior's dynamic linker's base
590 structure. */
591 if (! debug_base)
592 {
593 debug_base = locate_base ();
594
595 /* If we can't find the dynamic linker's base structure, this
596 must not be a dynamically linked executable. Hmm. */
597 if (! debug_base)
598 return 0;
599 }
600
601 /* Walk the inferior's link map list, and build our list of
602 `struct so_list' nodes. */
603 lm = first_link_map_member ();
604 while (lm)
605 {
606 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
607 struct so_list *new
608 = (struct so_list *) xmalloc (sizeof (struct so_list));
609 struct cleanup *old_chain = make_cleanup (xfree, new);
610
611 memset (new, 0, sizeof (*new));
612
613 new->lm_info = xmalloc (sizeof (struct lm_info));
614 make_cleanup (xfree, new->lm_info);
615
616 new->lm_info->lm = xmalloc (lmo->link_map_size);
617 make_cleanup (xfree, new->lm_info->lm);
618 memset (new->lm_info->lm, 0, lmo->link_map_size);
619
620 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
621
622 lm = LM_NEXT (new);
623
624 /* For SVR4 versions, the first entry in the link map is for the
625 inferior executable, so we must ignore it. For some versions of
626 SVR4, it has no name. For others (Solaris 2.3 for example), it
627 does have a name, so we can no longer use a missing name to
628 decide when to ignore it. */
629 if (IGNORE_FIRST_LINK_MAP_ENTRY (new))
630 free_so (new);
631 else
632 {
633 int errcode;
634 char *buffer;
635
636 /* Extract this shared object's name. */
637 target_read_string (LM_NAME (new), &buffer,
638 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
639 if (errcode != 0)
640 warning (_("Can't read pathname for load map: %s."),
641 safe_strerror (errcode));
642 else
643 {
644 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
645 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
646 xfree (buffer);
647 strcpy (new->so_original_name, new->so_name);
648 }
649
650 /* If this entry has no name, or its name matches the name
651 for the main executable, don't include it in the list. */
652 if (! new->so_name[0]
653 || match_main (new->so_name))
654 free_so (new);
655 else
656 {
657 new->next = 0;
658 *link_ptr = new;
659 link_ptr = &new->next;
660 }
661 }
662
663 discard_cleanups (old_chain);
664 }
665
666 return head;
667 }
668
669 /* Get the address of the link_map for a given OBJFILE. Loop through
670 the link maps, and return the address of the one corresponding to
671 the given objfile. Note that this function takes into account that
672 objfile can be the main executable, not just a shared library. The
673 main executable has always an empty name field in the linkmap. */
674
675 CORE_ADDR
676 svr4_fetch_objfile_link_map (struct objfile *objfile)
677 {
678 CORE_ADDR lm;
679
680 if ((debug_base = locate_base ()) == 0)
681 return 0; /* failed somehow... */
682
683 /* Position ourselves on the first link map. */
684 lm = first_link_map_member ();
685 while (lm)
686 {
687 /* Get info on the layout of the r_debug and link_map structures. */
688 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
689 int errcode;
690 char *buffer;
691 struct lm_info objfile_lm_info;
692 struct cleanup *old_chain;
693 CORE_ADDR name_address;
694 gdb_byte *l_name_buf = xmalloc (lmo->l_name_size);
695 old_chain = make_cleanup (xfree, l_name_buf);
696
697 /* Set up the buffer to contain the portion of the link_map
698 structure that gdb cares about. Note that this is not the
699 whole link_map structure. */
700 objfile_lm_info.lm = xmalloc (lmo->link_map_size);
701 make_cleanup (xfree, objfile_lm_info.lm);
702 memset (objfile_lm_info.lm, 0, lmo->link_map_size);
703
704 /* Read the link map into our internal structure. */
705 read_memory (lm, objfile_lm_info.lm, lmo->link_map_size);
706
707 /* Read address of name from target memory to GDB. */
708 read_memory (lm + lmo->l_name_offset, l_name_buf, lmo->l_name_size);
709
710 /* Extract this object's name. Assume that the address is
711 unsigned. */
712 name_address = extract_unsigned_integer (l_name_buf, lmo->l_name_size);
713 target_read_string (name_address, &buffer,
714 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
715 make_cleanup (xfree, buffer);
716 if (errcode != 0)
717 warning (_("Can't read pathname for load map: %s."),
718 safe_strerror (errcode));
719 else
720 {
721 /* Is this the linkmap for the file we want? */
722 /* If the file is not a shared library and has no name,
723 we are sure it is the main executable, so we return that. */
724 if ((buffer && strcmp (buffer, objfile->name) == 0)
725 || (!(objfile->flags & OBJF_SHARED) && (strcmp (buffer, "") == 0)))
726 {
727 do_cleanups (old_chain);
728 return lm;
729 }
730 }
731 /* Not the file we wanted, continue checking. Assume that the
732 address is unsigned. */
733 lm = extract_unsigned_integer (objfile_lm_info.lm + lmo->l_next_offset,
734 lmo->l_next_size);
735 do_cleanups (old_chain);
736 }
737 return 0;
738 }
739
740 /* On some systems, the only way to recognize the link map entry for
741 the main executable file is by looking at its name. Return
742 non-zero iff SONAME matches one of the known main executable names. */
743
744 static int
745 match_main (char *soname)
746 {
747 char **mainp;
748
749 for (mainp = main_name_list; *mainp != NULL; mainp++)
750 {
751 if (strcmp (soname, *mainp) == 0)
752 return (1);
753 }
754
755 return (0);
756 }
757
758 /* Return 1 if PC lies in the dynamic symbol resolution code of the
759 SVR4 run time loader. */
760 static CORE_ADDR interp_text_sect_low;
761 static CORE_ADDR interp_text_sect_high;
762 static CORE_ADDR interp_plt_sect_low;
763 static CORE_ADDR interp_plt_sect_high;
764
765 static int
766 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
767 {
768 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
769 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
770 || in_plt_section (pc, NULL));
771 }
772
773 /* Given an executable's ABFD and target, compute the entry-point
774 address. */
775
776 static CORE_ADDR
777 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
778 {
779 /* KevinB wrote ... for most targets, the address returned by
780 bfd_get_start_address() is the entry point for the start
781 function. But, for some targets, bfd_get_start_address() returns
782 the address of a function descriptor from which the entry point
783 address may be extracted. This address is extracted by
784 gdbarch_convert_from_func_ptr_addr(). The method
785 gdbarch_convert_from_func_ptr_addr() is the merely the identify
786 function for targets which don't use function descriptors. */
787 return gdbarch_convert_from_func_ptr_addr (current_gdbarch,
788 bfd_get_start_address (abfd),
789 targ);
790 }
791
792 /*
793
794 LOCAL FUNCTION
795
796 enable_break -- arrange for dynamic linker to hit breakpoint
797
798 SYNOPSIS
799
800 int enable_break (void)
801
802 DESCRIPTION
803
804 Both the SunOS and the SVR4 dynamic linkers have, as part of their
805 debugger interface, support for arranging for the inferior to hit
806 a breakpoint after mapping in the shared libraries. This function
807 enables that breakpoint.
808
809 For SunOS, there is a special flag location (in_debugger) which we
810 set to 1. When the dynamic linker sees this flag set, it will set
811 a breakpoint at a location known only to itself, after saving the
812 original contents of that place and the breakpoint address itself,
813 in it's own internal structures. When we resume the inferior, it
814 will eventually take a SIGTRAP when it runs into the breakpoint.
815 We handle this (in a different place) by restoring the contents of
816 the breakpointed location (which is only known after it stops),
817 chasing around to locate the shared libraries that have been
818 loaded, then resuming.
819
820 For SVR4, the debugger interface structure contains a member (r_brk)
821 which is statically initialized at the time the shared library is
822 built, to the offset of a function (_r_debug_state) which is guaran-
823 teed to be called once before mapping in a library, and again when
824 the mapping is complete. At the time we are examining this member,
825 it contains only the unrelocated offset of the function, so we have
826 to do our own relocation. Later, when the dynamic linker actually
827 runs, it relocates r_brk to be the actual address of _r_debug_state().
828
829 The debugger interface structure also contains an enumeration which
830 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
831 depending upon whether or not the library is being mapped or unmapped,
832 and then set to RT_CONSISTENT after the library is mapped/unmapped.
833 */
834
835 static int
836 enable_break (void)
837 {
838 int success = 0;
839
840 #ifdef BKPT_AT_SYMBOL
841
842 struct minimal_symbol *msymbol;
843 char **bkpt_namep;
844 asection *interp_sect;
845
846 /* First, remove all the solib event breakpoints. Their addresses
847 may have changed since the last time we ran the program. */
848 remove_solib_event_breakpoints ();
849
850 interp_text_sect_low = interp_text_sect_high = 0;
851 interp_plt_sect_low = interp_plt_sect_high = 0;
852
853 /* Find the .interp section; if not found, warn the user and drop
854 into the old breakpoint at symbol code. */
855 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
856 if (interp_sect)
857 {
858 unsigned int interp_sect_size;
859 char *buf;
860 CORE_ADDR load_addr = 0;
861 int load_addr_found = 0;
862 struct so_list *so;
863 bfd *tmp_bfd = NULL;
864 struct target_ops *tmp_bfd_target;
865 int tmp_fd = -1;
866 char *tmp_pathname = NULL;
867 CORE_ADDR sym_addr = 0;
868
869 /* Read the contents of the .interp section into a local buffer;
870 the contents specify the dynamic linker this program uses. */
871 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
872 buf = alloca (interp_sect_size);
873 bfd_get_section_contents (exec_bfd, interp_sect,
874 buf, 0, interp_sect_size);
875
876 /* Now we need to figure out where the dynamic linker was
877 loaded so that we can load its symbols and place a breakpoint
878 in the dynamic linker itself.
879
880 This address is stored on the stack. However, I've been unable
881 to find any magic formula to find it for Solaris (appears to
882 be trivial on GNU/Linux). Therefore, we have to try an alternate
883 mechanism to find the dynamic linker's base address. */
884
885 tmp_fd = solib_open (buf, &tmp_pathname);
886 if (tmp_fd >= 0)
887 tmp_bfd = bfd_fopen (tmp_pathname, gnutarget, FOPEN_RB, tmp_fd);
888
889 if (tmp_bfd == NULL)
890 goto bkpt_at_symbol;
891
892 /* Make sure the dynamic linker's really a useful object. */
893 if (!bfd_check_format (tmp_bfd, bfd_object))
894 {
895 warning (_("Unable to grok dynamic linker %s as an object file"), buf);
896 bfd_close (tmp_bfd);
897 goto bkpt_at_symbol;
898 }
899
900 /* Now convert the TMP_BFD into a target. That way target, as
901 well as BFD operations can be used. Note that closing the
902 target will also close the underlying bfd. */
903 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
904
905 /* On a running target, we can get the dynamic linker's base
906 address from the shared library table. */
907 solib_add (NULL, 0, NULL, auto_solib_add);
908 so = master_so_list ();
909 while (so)
910 {
911 if (strcmp (buf, so->so_original_name) == 0)
912 {
913 load_addr_found = 1;
914 load_addr = LM_ADDR (so);
915 break;
916 }
917 so = so->next;
918 }
919
920 /* Otherwise we find the dynamic linker's base address by examining
921 the current pc (which should point at the entry point for the
922 dynamic linker) and subtracting the offset of the entry point. */
923 if (!load_addr_found)
924 load_addr = (read_pc ()
925 - exec_entry_point (tmp_bfd, tmp_bfd_target));
926
927 /* Record the relocated start and end address of the dynamic linker
928 text and plt section for svr4_in_dynsym_resolve_code. */
929 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
930 if (interp_sect)
931 {
932 interp_text_sect_low =
933 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
934 interp_text_sect_high =
935 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
936 }
937 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
938 if (interp_sect)
939 {
940 interp_plt_sect_low =
941 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
942 interp_plt_sect_high =
943 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
944 }
945
946 /* Now try to set a breakpoint in the dynamic linker. */
947 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
948 {
949 /* On ABI's that use function descriptors, there are usually
950 two linker symbols associated with each C function: one
951 pointing at the actual entry point of the machine code,
952 and one pointing at the function's descriptor. The
953 latter symbol has the same name as the C function.
954
955 What we're looking for here is the machine code entry
956 point, so we are only interested in symbols in code
957 sections. */
958 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep, SEC_CODE);
959 if (sym_addr != 0)
960 break;
961 }
962
963 /* We're done with both the temporary bfd and target. Remember,
964 closing the target closes the underlying bfd. */
965 target_close (tmp_bfd_target, 0);
966
967 if (sym_addr != 0)
968 {
969 create_solib_event_breakpoint (load_addr + sym_addr);
970 return 1;
971 }
972
973 /* For whatever reason we couldn't set a breakpoint in the dynamic
974 linker. Warn and drop into the old code. */
975 bkpt_at_symbol:
976 warning (_("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code."));
977 }
978
979 /* Scan through the list of symbols, trying to look up the symbol and
980 set a breakpoint there. Terminate loop when we/if we succeed. */
981
982 breakpoint_addr = 0;
983 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
984 {
985 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
986 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
987 {
988 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
989 return 1;
990 }
991 }
992
993 /* Nothing good happened. */
994 success = 0;
995
996 #endif /* BKPT_AT_SYMBOL */
997
998 return (success);
999 }
1000
1001 /*
1002
1003 LOCAL FUNCTION
1004
1005 special_symbol_handling -- additional shared library symbol handling
1006
1007 SYNOPSIS
1008
1009 void special_symbol_handling ()
1010
1011 DESCRIPTION
1012
1013 Once the symbols from a shared object have been loaded in the usual
1014 way, we are called to do any system specific symbol handling that
1015 is needed.
1016
1017 For SunOS4, this consisted of grunging around in the dynamic
1018 linkers structures to find symbol definitions for "common" symbols
1019 and adding them to the minimal symbol table for the runtime common
1020 objfile.
1021
1022 However, for SVR4, there's nothing to do.
1023
1024 */
1025
1026 static void
1027 svr4_special_symbol_handling (void)
1028 {
1029 }
1030
1031 /* Relocate the main executable. This function should be called upon
1032 stopping the inferior process at the entry point to the program.
1033 The entry point from BFD is compared to the PC and if they are
1034 different, the main executable is relocated by the proper amount.
1035
1036 As written it will only attempt to relocate executables which
1037 lack interpreter sections. It seems likely that only dynamic
1038 linker executables will get relocated, though it should work
1039 properly for a position-independent static executable as well. */
1040
1041 static void
1042 svr4_relocate_main_executable (void)
1043 {
1044 asection *interp_sect;
1045 CORE_ADDR pc = read_pc ();
1046
1047 /* Decide if the objfile needs to be relocated. As indicated above,
1048 we will only be here when execution is stopped at the beginning
1049 of the program. Relocation is necessary if the address at which
1050 we are presently stopped differs from the start address stored in
1051 the executable AND there's no interpreter section. The condition
1052 regarding the interpreter section is very important because if
1053 there *is* an interpreter section, execution will begin there
1054 instead. When there is an interpreter section, the start address
1055 is (presumably) used by the interpreter at some point to start
1056 execution of the program.
1057
1058 If there is an interpreter, it is normal for it to be set to an
1059 arbitrary address at the outset. The job of finding it is
1060 handled in enable_break().
1061
1062 So, to summarize, relocations are necessary when there is no
1063 interpreter section and the start address obtained from the
1064 executable is different from the address at which GDB is
1065 currently stopped.
1066
1067 [ The astute reader will note that we also test to make sure that
1068 the executable in question has the DYNAMIC flag set. It is my
1069 opinion that this test is unnecessary (undesirable even). It
1070 was added to avoid inadvertent relocation of an executable
1071 whose e_type member in the ELF header is not ET_DYN. There may
1072 be a time in the future when it is desirable to do relocations
1073 on other types of files as well in which case this condition
1074 should either be removed or modified to accomodate the new file
1075 type. (E.g, an ET_EXEC executable which has been built to be
1076 position-independent could safely be relocated by the OS if
1077 desired. It is true that this violates the ABI, but the ABI
1078 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1079 */
1080
1081 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1082 if (interp_sect == NULL
1083 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
1084 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
1085 {
1086 struct cleanup *old_chain;
1087 struct section_offsets *new_offsets;
1088 int i, changed;
1089 CORE_ADDR displacement;
1090
1091 /* It is necessary to relocate the objfile. The amount to
1092 relocate by is simply the address at which we are stopped
1093 minus the starting address from the executable.
1094
1095 We relocate all of the sections by the same amount. This
1096 behavior is mandated by recent editions of the System V ABI.
1097 According to the System V Application Binary Interface,
1098 Edition 4.1, page 5-5:
1099
1100 ... Though the system chooses virtual addresses for
1101 individual processes, it maintains the segments' relative
1102 positions. Because position-independent code uses relative
1103 addressesing between segments, the difference between
1104 virtual addresses in memory must match the difference
1105 between virtual addresses in the file. The difference
1106 between the virtual address of any segment in memory and
1107 the corresponding virtual address in the file is thus a
1108 single constant value for any one executable or shared
1109 object in a given process. This difference is the base
1110 address. One use of the base address is to relocate the
1111 memory image of the program during dynamic linking.
1112
1113 The same language also appears in Edition 4.0 of the System V
1114 ABI and is left unspecified in some of the earlier editions. */
1115
1116 displacement = pc - exec_entry_point (exec_bfd, &exec_ops);
1117 changed = 0;
1118
1119 new_offsets = xcalloc (symfile_objfile->num_sections,
1120 sizeof (struct section_offsets));
1121 old_chain = make_cleanup (xfree, new_offsets);
1122
1123 for (i = 0; i < symfile_objfile->num_sections; i++)
1124 {
1125 if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
1126 changed = 1;
1127 new_offsets->offsets[i] = displacement;
1128 }
1129
1130 if (changed)
1131 objfile_relocate (symfile_objfile, new_offsets);
1132
1133 do_cleanups (old_chain);
1134 }
1135 }
1136
1137 /*
1138
1139 GLOBAL FUNCTION
1140
1141 svr4_solib_create_inferior_hook -- shared library startup support
1142
1143 SYNOPSIS
1144
1145 void svr4_solib_create_inferior_hook ()
1146
1147 DESCRIPTION
1148
1149 When gdb starts up the inferior, it nurses it along (through the
1150 shell) until it is ready to execute it's first instruction. At this
1151 point, this function gets called via expansion of the macro
1152 SOLIB_CREATE_INFERIOR_HOOK.
1153
1154 For SunOS executables, this first instruction is typically the
1155 one at "_start", or a similar text label, regardless of whether
1156 the executable is statically or dynamically linked. The runtime
1157 startup code takes care of dynamically linking in any shared
1158 libraries, once gdb allows the inferior to continue.
1159
1160 For SVR4 executables, this first instruction is either the first
1161 instruction in the dynamic linker (for dynamically linked
1162 executables) or the instruction at "start" for statically linked
1163 executables. For dynamically linked executables, the system
1164 first exec's /lib/libc.so.N, which contains the dynamic linker,
1165 and starts it running. The dynamic linker maps in any needed
1166 shared libraries, maps in the actual user executable, and then
1167 jumps to "start" in the user executable.
1168
1169 For both SunOS shared libraries, and SVR4 shared libraries, we
1170 can arrange to cooperate with the dynamic linker to discover the
1171 names of shared libraries that are dynamically linked, and the
1172 base addresses to which they are linked.
1173
1174 This function is responsible for discovering those names and
1175 addresses, and saving sufficient information about them to allow
1176 their symbols to be read at a later time.
1177
1178 FIXME
1179
1180 Between enable_break() and disable_break(), this code does not
1181 properly handle hitting breakpoints which the user might have
1182 set in the startup code or in the dynamic linker itself. Proper
1183 handling will probably have to wait until the implementation is
1184 changed to use the "breakpoint handler function" method.
1185
1186 Also, what if child has exit()ed? Must exit loop somehow.
1187 */
1188
1189 static void
1190 svr4_solib_create_inferior_hook (void)
1191 {
1192 /* Relocate the main executable if necessary. */
1193 svr4_relocate_main_executable ();
1194
1195 if (!svr4_have_link_map_offsets ())
1196 {
1197 warning (_("no shared library support for this OS / ABI"));
1198 return;
1199
1200 }
1201
1202 if (!enable_break ())
1203 {
1204 warning (_("shared library handler failed to enable breakpoint"));
1205 return;
1206 }
1207
1208 #if defined(_SCO_DS)
1209 /* SCO needs the loop below, other systems should be using the
1210 special shared library breakpoints and the shared library breakpoint
1211 service routine.
1212
1213 Now run the target. It will eventually hit the breakpoint, at
1214 which point all of the libraries will have been mapped in and we
1215 can go groveling around in the dynamic linker structures to find
1216 out what we need to know about them. */
1217
1218 clear_proceed_status ();
1219 stop_soon = STOP_QUIETLY;
1220 stop_signal = TARGET_SIGNAL_0;
1221 do
1222 {
1223 target_resume (pid_to_ptid (-1), 0, stop_signal);
1224 wait_for_inferior ();
1225 }
1226 while (stop_signal != TARGET_SIGNAL_TRAP);
1227 stop_soon = NO_STOP_QUIETLY;
1228 #endif /* defined(_SCO_DS) */
1229 }
1230
1231 static void
1232 svr4_clear_solib (void)
1233 {
1234 debug_base = 0;
1235 }
1236
1237 static void
1238 svr4_free_so (struct so_list *so)
1239 {
1240 xfree (so->lm_info->lm);
1241 xfree (so->lm_info);
1242 }
1243
1244
1245 /* Clear any bits of ADDR that wouldn't fit in a target-format
1246 data pointer. "Data pointer" here refers to whatever sort of
1247 address the dynamic linker uses to manage its sections. At the
1248 moment, we don't support shared libraries on any processors where
1249 code and data pointers are different sizes.
1250
1251 This isn't really the right solution. What we really need here is
1252 a way to do arithmetic on CORE_ADDR values that respects the
1253 natural pointer/address correspondence. (For example, on the MIPS,
1254 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1255 sign-extend the value. There, simply truncating the bits above
1256 TARGET_PTR_BIT, as we do below, is no good.) This should probably
1257 be a new gdbarch method or something. */
1258 static CORE_ADDR
1259 svr4_truncate_ptr (CORE_ADDR addr)
1260 {
1261 if (TARGET_PTR_BIT == sizeof (CORE_ADDR) * 8)
1262 /* We don't need to truncate anything, and the bit twiddling below
1263 will fail due to overflow problems. */
1264 return addr;
1265 else
1266 return addr & (((CORE_ADDR) 1 << TARGET_PTR_BIT) - 1);
1267 }
1268
1269
1270 static void
1271 svr4_relocate_section_addresses (struct so_list *so,
1272 struct section_table *sec)
1273 {
1274 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR (so));
1275 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR (so));
1276 }
1277 \f
1278
1279 /* Architecture-specific operations. */
1280
1281 /* Per-architecture data key. */
1282 static struct gdbarch_data *solib_svr4_data;
1283
1284 struct solib_svr4_ops
1285 {
1286 /* Return a description of the layout of `struct link_map'. */
1287 struct link_map_offsets *(*fetch_link_map_offsets)(void);
1288 };
1289
1290 /* Return a default for the architecture-specific operations. */
1291
1292 static void *
1293 solib_svr4_init (struct obstack *obstack)
1294 {
1295 struct solib_svr4_ops *ops;
1296
1297 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
1298 ops->fetch_link_map_offsets = legacy_svr4_fetch_link_map_offsets_hook;
1299 return ops;
1300 }
1301
1302 /* Set the architecture-specific `struct link_map_offsets' fetcher for
1303 GDBARCH to FLMO. */
1304
1305 void
1306 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1307 struct link_map_offsets *(*flmo) (void))
1308 {
1309 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
1310
1311 ops->fetch_link_map_offsets = flmo;
1312 }
1313
1314 /* Fetch a link_map_offsets structure using the architecture-specific
1315 `struct link_map_offsets' fetcher. */
1316
1317 static struct link_map_offsets *
1318 svr4_fetch_link_map_offsets (void)
1319 {
1320 struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
1321
1322 gdb_assert (ops->fetch_link_map_offsets);
1323 return ops->fetch_link_map_offsets ();
1324 }
1325
1326 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1327
1328 static int
1329 svr4_have_link_map_offsets (void)
1330 {
1331 struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
1332 return (ops->fetch_link_map_offsets != NULL);
1333 }
1334 \f
1335
1336 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
1337 `struct r_debug' and a `struct link_map' that are binary compatible
1338 with the origional SVR4 implementation. */
1339
1340 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1341 for an ILP32 SVR4 system. */
1342
1343 struct link_map_offsets *
1344 svr4_ilp32_fetch_link_map_offsets (void)
1345 {
1346 static struct link_map_offsets lmo;
1347 static struct link_map_offsets *lmp = NULL;
1348
1349 if (lmp == NULL)
1350 {
1351 lmp = &lmo;
1352
1353 /* Everything we need is in the first 8 bytes. */
1354 lmo.r_debug_size = 8;
1355 lmo.r_map_offset = 4;
1356 lmo.r_map_size = 4;
1357
1358 /* Everything we need is in the first 20 bytes. */
1359 lmo.link_map_size = 20;
1360 lmo.l_addr_offset = 0;
1361 lmo.l_addr_size = 4;
1362 lmo.l_name_offset = 4;
1363 lmo.l_name_size = 4;
1364 lmo.l_next_offset = 12;
1365 lmo.l_next_size = 4;
1366 lmo.l_prev_offset = 16;
1367 lmo.l_prev_size = 4;
1368 }
1369
1370 return lmp;
1371 }
1372
1373 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1374 for an LP64 SVR4 system. */
1375
1376 struct link_map_offsets *
1377 svr4_lp64_fetch_link_map_offsets (void)
1378 {
1379 static struct link_map_offsets lmo;
1380 static struct link_map_offsets *lmp = NULL;
1381
1382 if (lmp == NULL)
1383 {
1384 lmp = &lmo;
1385
1386 /* Everything we need is in the first 16 bytes. */
1387 lmo.r_debug_size = 16;
1388 lmo.r_map_offset = 8;
1389 lmo.r_map_size = 8;
1390
1391 /* Everything we need is in the first 40 bytes. */
1392 lmo.link_map_size = 40;
1393 lmo.l_addr_offset = 0;
1394 lmo.l_addr_size = 8;
1395 lmo.l_name_offset = 8;
1396 lmo.l_name_size = 8;
1397 lmo.l_next_offset = 24;
1398 lmo.l_next_size = 8;
1399 lmo.l_prev_offset = 32;
1400 lmo.l_prev_size = 8;
1401 }
1402
1403 return lmp;
1404 }
1405 \f
1406
1407 static struct target_so_ops svr4_so_ops;
1408
1409 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
1410
1411 void
1412 _initialize_svr4_solib (void)
1413 {
1414 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
1415
1416 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
1417 svr4_so_ops.free_so = svr4_free_so;
1418 svr4_so_ops.clear_solib = svr4_clear_solib;
1419 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1420 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1421 svr4_so_ops.current_sos = svr4_current_sos;
1422 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
1423 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
1424
1425 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
1426 current_target_so_ops = &svr4_so_ops;
1427 }
This page took 0.058115 seconds and 4 git commands to generate.