gdb: make the target_sections table private within program_space
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "elf/external.h"
23 #include "elf/common.h"
24 #include "elf/mips.h"
25
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbcore.h"
31 #include "target.h"
32 #include "inferior.h"
33 #include "infrun.h"
34 #include "regcache.h"
35 #include "gdbthread.h"
36 #include "observable.h"
37
38 #include "solist.h"
39 #include "solib.h"
40 #include "solib-svr4.h"
41
42 #include "bfd-target.h"
43 #include "elf-bfd.h"
44 #include "exec.h"
45 #include "auxv.h"
46 #include "gdb_bfd.h"
47 #include "probe.h"
48
49 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
50 static int svr4_have_link_map_offsets (void);
51 static void svr4_relocate_main_executable (void);
52 static void svr4_free_library_list (void *p_list);
53 static void probes_table_remove_objfile_probes (struct objfile *objfile);
54 static void svr4_iterate_over_objfiles_in_search_order (
55 struct gdbarch *gdbarch, iterate_over_objfiles_in_search_order_cb_ftype *cb,
56 void *cb_data, struct objfile *objfile);
57
58
59 /* On SVR4 systems, a list of symbols in the dynamic linker where
60 GDB can try to place a breakpoint to monitor shared library
61 events.
62
63 If none of these symbols are found, or other errors occur, then
64 SVR4 systems will fall back to using a symbol as the "startup
65 mapping complete" breakpoint address. */
66
67 static const char * const solib_break_names[] =
68 {
69 "r_debug_state",
70 "_r_debug_state",
71 "_dl_debug_state",
72 "rtld_db_dlactivity",
73 "__dl_rtld_db_dlactivity",
74 "_rtld_debug_state",
75
76 NULL
77 };
78
79 static const char * const bkpt_names[] =
80 {
81 "_start",
82 "__start",
83 "main",
84 NULL
85 };
86
87 static const char * const main_name_list[] =
88 {
89 "main_$main",
90 NULL
91 };
92
93 /* What to do when a probe stop occurs. */
94
95 enum probe_action
96 {
97 /* Something went seriously wrong. Stop using probes and
98 revert to using the older interface. */
99 PROBES_INTERFACE_FAILED,
100
101 /* No action is required. The shared object list is still
102 valid. */
103 DO_NOTHING,
104
105 /* The shared object list should be reloaded entirely. */
106 FULL_RELOAD,
107
108 /* Attempt to incrementally update the shared object list. If
109 the update fails or is not possible, fall back to reloading
110 the list in full. */
111 UPDATE_OR_RELOAD,
112 };
113
114 /* A probe's name and its associated action. */
115
116 struct probe_info
117 {
118 /* The name of the probe. */
119 const char *name;
120
121 /* What to do when a probe stop occurs. */
122 enum probe_action action;
123 };
124
125 /* A list of named probes and their associated actions. If all
126 probes are present in the dynamic linker then the probes-based
127 interface will be used. */
128
129 static const struct probe_info probe_info[] =
130 {
131 { "init_start", DO_NOTHING },
132 { "init_complete", FULL_RELOAD },
133 { "map_start", DO_NOTHING },
134 { "map_failed", DO_NOTHING },
135 { "reloc_complete", UPDATE_OR_RELOAD },
136 { "unmap_start", DO_NOTHING },
137 { "unmap_complete", FULL_RELOAD },
138 };
139
140 #define NUM_PROBES ARRAY_SIZE (probe_info)
141
142 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
143 the same shared library. */
144
145 static int
146 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
147 {
148 if (strcmp (gdb_so_name, inferior_so_name) == 0)
149 return 1;
150
151 /* On Solaris, when starting inferior we think that dynamic linker is
152 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
153 contains /lib/ld.so.1. Sometimes one file is a link to another, but
154 sometimes they have identical content, but are not linked to each
155 other. We don't restrict this check for Solaris, but the chances
156 of running into this situation elsewhere are very low. */
157 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
158 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
159 return 1;
160
161 /* Similarly, we observed the same issue with amd64 and sparcv9, but with
162 different locations. */
163 if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0
164 && strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0)
165 return 1;
166
167 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
168 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
169 return 1;
170
171 return 0;
172 }
173
174 static int
175 svr4_same (struct so_list *gdb, struct so_list *inferior)
176 {
177 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
178 }
179
180 static std::unique_ptr<lm_info_svr4>
181 lm_info_read (CORE_ADDR lm_addr)
182 {
183 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
184 std::unique_ptr<lm_info_svr4> lm_info;
185
186 gdb::byte_vector lm (lmo->link_map_size);
187
188 if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
189 warning (_("Error reading shared library list entry at %s"),
190 paddress (target_gdbarch (), lm_addr));
191 else
192 {
193 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
194
195 lm_info.reset (new lm_info_svr4);
196 lm_info->lm_addr = lm_addr;
197
198 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
199 ptr_type);
200 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
201 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
202 ptr_type);
203 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
204 ptr_type);
205 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
206 ptr_type);
207 }
208
209 return lm_info;
210 }
211
212 static int
213 has_lm_dynamic_from_link_map (void)
214 {
215 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
216
217 return lmo->l_ld_offset >= 0;
218 }
219
220 static CORE_ADDR
221 lm_addr_check (const struct so_list *so, bfd *abfd)
222 {
223 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
224
225 if (!li->l_addr_p)
226 {
227 struct bfd_section *dyninfo_sect;
228 CORE_ADDR l_addr, l_dynaddr, dynaddr;
229
230 l_addr = li->l_addr_inferior;
231
232 if (! abfd || ! has_lm_dynamic_from_link_map ())
233 goto set_addr;
234
235 l_dynaddr = li->l_ld;
236
237 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
238 if (dyninfo_sect == NULL)
239 goto set_addr;
240
241 dynaddr = bfd_section_vma (dyninfo_sect);
242
243 if (dynaddr + l_addr != l_dynaddr)
244 {
245 CORE_ADDR align = 0x1000;
246 CORE_ADDR minpagesize = align;
247
248 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
249 {
250 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
251 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
252 int i;
253
254 align = 1;
255
256 for (i = 0; i < ehdr->e_phnum; i++)
257 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
258 align = phdr[i].p_align;
259
260 minpagesize = get_elf_backend_data (abfd)->minpagesize;
261 }
262
263 /* Turn it into a mask. */
264 align--;
265
266 /* If the changes match the alignment requirements, we
267 assume we're using a core file that was generated by the
268 same binary, just prelinked with a different base offset.
269 If it doesn't match, we may have a different binary, the
270 same binary with the dynamic table loaded at an unrelated
271 location, or anything, really. To avoid regressions,
272 don't adjust the base offset in the latter case, although
273 odds are that, if things really changed, debugging won't
274 quite work.
275
276 One could expect more the condition
277 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
278 but the one below is relaxed for PPC. The PPC kernel supports
279 either 4k or 64k page sizes. To be prepared for 64k pages,
280 PPC ELF files are built using an alignment requirement of 64k.
281 However, when running on a kernel supporting 4k pages, the memory
282 mapping of the library may not actually happen on a 64k boundary!
283
284 (In the usual case where (l_addr & align) == 0, this check is
285 equivalent to the possibly expected check above.)
286
287 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
288
289 l_addr = l_dynaddr - dynaddr;
290
291 if ((l_addr & (minpagesize - 1)) == 0
292 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
293 {
294 if (info_verbose)
295 printf_unfiltered (_("Using PIC (Position Independent Code) "
296 "prelink displacement %s for \"%s\".\n"),
297 paddress (target_gdbarch (), l_addr),
298 so->so_name);
299 }
300 else
301 {
302 /* There is no way to verify the library file matches. prelink
303 can during prelinking of an unprelinked file (or unprelinking
304 of a prelinked file) shift the DYNAMIC segment by arbitrary
305 offset without any page size alignment. There is no way to
306 find out the ELF header and/or Program Headers for a limited
307 verification if it they match. One could do a verification
308 of the DYNAMIC segment. Still the found address is the best
309 one GDB could find. */
310
311 warning (_(".dynamic section for \"%s\" "
312 "is not at the expected address "
313 "(wrong library or version mismatch?)"), so->so_name);
314 }
315 }
316
317 set_addr:
318 li->l_addr = l_addr;
319 li->l_addr_p = 1;
320 }
321
322 return li->l_addr;
323 }
324
325 /* Per pspace SVR4 specific data. */
326
327 struct svr4_info
328 {
329 svr4_info () = default;
330 ~svr4_info ();
331
332 /* Base of dynamic linker structures. */
333 CORE_ADDR debug_base = 0;
334
335 /* Validity flag for debug_loader_offset. */
336 int debug_loader_offset_p = 0;
337
338 /* Load address for the dynamic linker, inferred. */
339 CORE_ADDR debug_loader_offset = 0;
340
341 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
342 char *debug_loader_name = nullptr;
343
344 /* Load map address for the main executable. */
345 CORE_ADDR main_lm_addr = 0;
346
347 CORE_ADDR interp_text_sect_low = 0;
348 CORE_ADDR interp_text_sect_high = 0;
349 CORE_ADDR interp_plt_sect_low = 0;
350 CORE_ADDR interp_plt_sect_high = 0;
351
352 /* Nonzero if the list of objects was last obtained from the target
353 via qXfer:libraries-svr4:read. */
354 int using_xfer = 0;
355
356 /* Table of struct probe_and_action instances, used by the
357 probes-based interface to map breakpoint addresses to probes
358 and their associated actions. Lookup is performed using
359 probe_and_action->prob->address. */
360 htab_up probes_table;
361
362 /* List of objects loaded into the inferior, used by the probes-
363 based interface. */
364 struct so_list *solib_list = nullptr;
365 };
366
367 /* Per-program-space data key. */
368 static const struct program_space_key<svr4_info> solib_svr4_pspace_data;
369
370 /* Free the probes table. */
371
372 static void
373 free_probes_table (struct svr4_info *info)
374 {
375 info->probes_table.reset (nullptr);
376 }
377
378 /* Free the solib list. */
379
380 static void
381 free_solib_list (struct svr4_info *info)
382 {
383 svr4_free_library_list (&info->solib_list);
384 info->solib_list = NULL;
385 }
386
387 svr4_info::~svr4_info ()
388 {
389 free_solib_list (this);
390 }
391
392 /* Get the svr4 data for program space PSPACE. If none is found yet, add it now.
393 This function always returns a valid object. */
394
395 static struct svr4_info *
396 get_svr4_info (program_space *pspace)
397 {
398 struct svr4_info *info = solib_svr4_pspace_data.get (pspace);
399
400 if (info == NULL)
401 info = solib_svr4_pspace_data.emplace (pspace);
402
403 return info;
404 }
405
406 /* Local function prototypes */
407
408 static int match_main (const char *);
409
410 /* Read program header TYPE from inferior memory. The header is found
411 by scanning the OS auxiliary vector.
412
413 If TYPE == -1, return the program headers instead of the contents of
414 one program header.
415
416 Return vector of bytes holding the program header contents, or an empty
417 optional on failure. If successful and P_ARCH_SIZE is non-NULL, the target
418 architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE. Likewise,
419 the base address of the section is returned in *BASE_ADDR. */
420
421 static gdb::optional<gdb::byte_vector>
422 read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr)
423 {
424 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
425 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
426 int arch_size, sect_size;
427 CORE_ADDR sect_addr;
428 int pt_phdr_p = 0;
429
430 /* Get required auxv elements from target. */
431 if (target_auxv_search (current_top_target (), AT_PHDR, &at_phdr) <= 0)
432 return {};
433 if (target_auxv_search (current_top_target (), AT_PHENT, &at_phent) <= 0)
434 return {};
435 if (target_auxv_search (current_top_target (), AT_PHNUM, &at_phnum) <= 0)
436 return {};
437 if (!at_phdr || !at_phnum)
438 return {};
439
440 /* Determine ELF architecture type. */
441 if (at_phent == sizeof (Elf32_External_Phdr))
442 arch_size = 32;
443 else if (at_phent == sizeof (Elf64_External_Phdr))
444 arch_size = 64;
445 else
446 return {};
447
448 /* Find the requested segment. */
449 if (type == -1)
450 {
451 sect_addr = at_phdr;
452 sect_size = at_phent * at_phnum;
453 }
454 else if (arch_size == 32)
455 {
456 Elf32_External_Phdr phdr;
457 int i;
458
459 /* Search for requested PHDR. */
460 for (i = 0; i < at_phnum; i++)
461 {
462 int p_type;
463
464 if (target_read_memory (at_phdr + i * sizeof (phdr),
465 (gdb_byte *)&phdr, sizeof (phdr)))
466 return {};
467
468 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
469 4, byte_order);
470
471 if (p_type == PT_PHDR)
472 {
473 pt_phdr_p = 1;
474 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
475 4, byte_order);
476 }
477
478 if (p_type == type)
479 break;
480 }
481
482 if (i == at_phnum)
483 return {};
484
485 /* Retrieve address and size. */
486 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
487 4, byte_order);
488 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
489 4, byte_order);
490 }
491 else
492 {
493 Elf64_External_Phdr phdr;
494 int i;
495
496 /* Search for requested PHDR. */
497 for (i = 0; i < at_phnum; i++)
498 {
499 int p_type;
500
501 if (target_read_memory (at_phdr + i * sizeof (phdr),
502 (gdb_byte *)&phdr, sizeof (phdr)))
503 return {};
504
505 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
506 4, byte_order);
507
508 if (p_type == PT_PHDR)
509 {
510 pt_phdr_p = 1;
511 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
512 8, byte_order);
513 }
514
515 if (p_type == type)
516 break;
517 }
518
519 if (i == at_phnum)
520 return {};
521
522 /* Retrieve address and size. */
523 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
524 8, byte_order);
525 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
526 8, byte_order);
527 }
528
529 /* PT_PHDR is optional, but we really need it
530 for PIE to make this work in general. */
531
532 if (pt_phdr_p)
533 {
534 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
535 Relocation offset is the difference between the two. */
536 sect_addr = sect_addr + (at_phdr - pt_phdr);
537 }
538
539 /* Read in requested program header. */
540 gdb::byte_vector buf (sect_size);
541 if (target_read_memory (sect_addr, buf.data (), sect_size))
542 return {};
543
544 if (p_arch_size)
545 *p_arch_size = arch_size;
546 if (base_addr)
547 *base_addr = sect_addr;
548
549 return buf;
550 }
551
552
553 /* Return program interpreter string. */
554 static gdb::optional<gdb::byte_vector>
555 find_program_interpreter (void)
556 {
557 /* If we have a current exec_bfd, use its section table. */
558 if (current_program_space->exec_bfd ()
559 && (bfd_get_flavour (current_program_space->exec_bfd ())
560 == bfd_target_elf_flavour))
561 {
562 struct bfd_section *interp_sect;
563
564 interp_sect = bfd_get_section_by_name (current_program_space->exec_bfd (),
565 ".interp");
566 if (interp_sect != NULL)
567 {
568 int sect_size = bfd_section_size (interp_sect);
569
570 gdb::byte_vector buf (sect_size);
571 bfd_get_section_contents (current_program_space->exec_bfd (),
572 interp_sect, buf.data (), 0, sect_size);
573 return buf;
574 }
575 }
576
577 /* If we didn't find it, use the target auxiliary vector. */
578 return read_program_header (PT_INTERP, NULL, NULL);
579 }
580
581
582 /* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
583 found, 1 is returned and the corresponding PTR is set. */
584
585 static int
586 scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
587 CORE_ADDR *ptr_addr)
588 {
589 int arch_size, step, sect_size;
590 long current_dyntag;
591 CORE_ADDR dyn_ptr, dyn_addr;
592 gdb_byte *bufend, *bufstart, *buf;
593 Elf32_External_Dyn *x_dynp_32;
594 Elf64_External_Dyn *x_dynp_64;
595 struct bfd_section *sect;
596
597 if (abfd == NULL)
598 return 0;
599
600 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
601 return 0;
602
603 arch_size = bfd_get_arch_size (abfd);
604 if (arch_size == -1)
605 return 0;
606
607 /* Find the start address of the .dynamic section. */
608 sect = bfd_get_section_by_name (abfd, ".dynamic");
609 if (sect == NULL)
610 return 0;
611
612 bool found = false;
613 for (const target_section &target_section
614 : current_program_space->target_sections ())
615 if (sect == target_section.the_bfd_section)
616 {
617 dyn_addr = target_section.addr;
618 found = true;
619 break;
620 }
621 if (!found)
622 {
623 /* ABFD may come from OBJFILE acting only as a symbol file without being
624 loaded into the target (see add_symbol_file_command). This case is
625 such fallback to the file VMA address without the possibility of
626 having the section relocated to its actual in-memory address. */
627
628 dyn_addr = bfd_section_vma (sect);
629 }
630
631 /* Read in .dynamic from the BFD. We will get the actual value
632 from memory later. */
633 sect_size = bfd_section_size (sect);
634 buf = bufstart = (gdb_byte *) alloca (sect_size);
635 if (!bfd_get_section_contents (abfd, sect,
636 buf, 0, sect_size))
637 return 0;
638
639 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
640 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
641 : sizeof (Elf64_External_Dyn);
642 for (bufend = buf + sect_size;
643 buf < bufend;
644 buf += step)
645 {
646 if (arch_size == 32)
647 {
648 x_dynp_32 = (Elf32_External_Dyn *) buf;
649 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
650 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
651 }
652 else
653 {
654 x_dynp_64 = (Elf64_External_Dyn *) buf;
655 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
656 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
657 }
658 if (current_dyntag == DT_NULL)
659 return 0;
660 if (current_dyntag == desired_dyntag)
661 {
662 /* If requested, try to read the runtime value of this .dynamic
663 entry. */
664 if (ptr)
665 {
666 struct type *ptr_type;
667 gdb_byte ptr_buf[8];
668 CORE_ADDR ptr_addr_1;
669
670 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
671 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
672 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
673 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
674 *ptr = dyn_ptr;
675 if (ptr_addr)
676 *ptr_addr = dyn_addr + (buf - bufstart);
677 }
678 return 1;
679 }
680 }
681
682 return 0;
683 }
684
685 /* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
686 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
687 is returned and the corresponding PTR is set. */
688
689 static int
690 scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
691 CORE_ADDR *ptr_addr)
692 {
693 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
694 int arch_size, step;
695 long current_dyntag;
696 CORE_ADDR dyn_ptr;
697 CORE_ADDR base_addr;
698
699 /* Read in .dynamic section. */
700 gdb::optional<gdb::byte_vector> ph_data
701 = read_program_header (PT_DYNAMIC, &arch_size, &base_addr);
702 if (!ph_data)
703 return 0;
704
705 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
706 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
707 : sizeof (Elf64_External_Dyn);
708 for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size ();
709 buf < bufend; buf += step)
710 {
711 if (arch_size == 32)
712 {
713 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
714
715 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
716 4, byte_order);
717 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
718 4, byte_order);
719 }
720 else
721 {
722 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
723
724 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
725 8, byte_order);
726 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
727 8, byte_order);
728 }
729 if (current_dyntag == DT_NULL)
730 break;
731
732 if (current_dyntag == desired_dyntag)
733 {
734 if (ptr)
735 *ptr = dyn_ptr;
736
737 if (ptr_addr)
738 *ptr_addr = base_addr + buf - ph_data->data ();
739
740 return 1;
741 }
742 }
743
744 return 0;
745 }
746
747 /* Locate the base address of dynamic linker structs for SVR4 elf
748 targets.
749
750 For SVR4 elf targets the address of the dynamic linker's runtime
751 structure is contained within the dynamic info section in the
752 executable file. The dynamic section is also mapped into the
753 inferior address space. Because the runtime loader fills in the
754 real address before starting the inferior, we have to read in the
755 dynamic info section from the inferior address space.
756 If there are any errors while trying to find the address, we
757 silently return 0, otherwise the found address is returned. */
758
759 static CORE_ADDR
760 elf_locate_base (void)
761 {
762 struct bound_minimal_symbol msymbol;
763 CORE_ADDR dyn_ptr, dyn_ptr_addr;
764
765 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
766 instead of DT_DEBUG, although they sometimes contain an unused
767 DT_DEBUG. */
768 if (scan_dyntag (DT_MIPS_RLD_MAP, current_program_space->exec_bfd (),
769 &dyn_ptr, NULL)
770 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
771 {
772 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
773 gdb_byte *pbuf;
774 int pbuf_size = TYPE_LENGTH (ptr_type);
775
776 pbuf = (gdb_byte *) alloca (pbuf_size);
777 /* DT_MIPS_RLD_MAP contains a pointer to the address
778 of the dynamic link structure. */
779 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
780 return 0;
781 return extract_typed_address (pbuf, ptr_type);
782 }
783
784 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
785 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
786 in non-PIE. */
787 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, current_program_space->exec_bfd (),
788 &dyn_ptr, &dyn_ptr_addr)
789 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
790 {
791 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
792 gdb_byte *pbuf;
793 int pbuf_size = TYPE_LENGTH (ptr_type);
794
795 pbuf = (gdb_byte *) alloca (pbuf_size);
796 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
797 DT slot to the address of the dynamic link structure. */
798 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
799 return 0;
800 return extract_typed_address (pbuf, ptr_type);
801 }
802
803 /* Find DT_DEBUG. */
804 if (scan_dyntag (DT_DEBUG, current_program_space->exec_bfd (), &dyn_ptr, NULL)
805 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
806 return dyn_ptr;
807
808 /* This may be a static executable. Look for the symbol
809 conventionally named _r_debug, as a last resort. */
810 msymbol = lookup_minimal_symbol ("_r_debug", NULL,
811 current_program_space->symfile_object_file);
812 if (msymbol.minsym != NULL)
813 return BMSYMBOL_VALUE_ADDRESS (msymbol);
814
815 /* DT_DEBUG entry not found. */
816 return 0;
817 }
818
819 /* Locate the base address of dynamic linker structs.
820
821 For both the SunOS and SVR4 shared library implementations, if the
822 inferior executable has been linked dynamically, there is a single
823 address somewhere in the inferior's data space which is the key to
824 locating all of the dynamic linker's runtime structures. This
825 address is the value of the debug base symbol. The job of this
826 function is to find and return that address, or to return 0 if there
827 is no such address (the executable is statically linked for example).
828
829 For SunOS, the job is almost trivial, since the dynamic linker and
830 all of it's structures are statically linked to the executable at
831 link time. Thus the symbol for the address we are looking for has
832 already been added to the minimal symbol table for the executable's
833 objfile at the time the symbol file's symbols were read, and all we
834 have to do is look it up there. Note that we explicitly do NOT want
835 to find the copies in the shared library.
836
837 The SVR4 version is a bit more complicated because the address
838 is contained somewhere in the dynamic info section. We have to go
839 to a lot more work to discover the address of the debug base symbol.
840 Because of this complexity, we cache the value we find and return that
841 value on subsequent invocations. Note there is no copy in the
842 executable symbol tables. */
843
844 static CORE_ADDR
845 locate_base (struct svr4_info *info)
846 {
847 /* Check to see if we have a currently valid address, and if so, avoid
848 doing all this work again and just return the cached address. If
849 we have no cached address, try to locate it in the dynamic info
850 section for ELF executables. There's no point in doing any of this
851 though if we don't have some link map offsets to work with. */
852
853 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
854 info->debug_base = elf_locate_base ();
855 return info->debug_base;
856 }
857
858 /* Find the first element in the inferior's dynamic link map, and
859 return its address in the inferior. Return zero if the address
860 could not be determined.
861
862 FIXME: Perhaps we should validate the info somehow, perhaps by
863 checking r_version for a known version number, or r_state for
864 RT_CONSISTENT. */
865
866 static CORE_ADDR
867 solib_svr4_r_map (struct svr4_info *info)
868 {
869 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
870 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
871 CORE_ADDR addr = 0;
872
873 try
874 {
875 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
876 ptr_type);
877 }
878 catch (const gdb_exception_error &ex)
879 {
880 exception_print (gdb_stderr, ex);
881 }
882
883 return addr;
884 }
885
886 /* Find r_brk from the inferior's debug base. */
887
888 static CORE_ADDR
889 solib_svr4_r_brk (struct svr4_info *info)
890 {
891 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
892 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
893
894 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
895 ptr_type);
896 }
897
898 /* Find the link map for the dynamic linker (if it is not in the
899 normal list of loaded shared objects). */
900
901 static CORE_ADDR
902 solib_svr4_r_ldsomap (struct svr4_info *info)
903 {
904 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
905 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
906 enum bfd_endian byte_order = type_byte_order (ptr_type);
907 ULONGEST version = 0;
908
909 try
910 {
911 /* Check version, and return zero if `struct r_debug' doesn't have
912 the r_ldsomap member. */
913 version
914 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
915 lmo->r_version_size, byte_order);
916 }
917 catch (const gdb_exception_error &ex)
918 {
919 exception_print (gdb_stderr, ex);
920 }
921
922 if (version < 2 || lmo->r_ldsomap_offset == -1)
923 return 0;
924
925 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
926 ptr_type);
927 }
928
929 /* On Solaris systems with some versions of the dynamic linker,
930 ld.so's l_name pointer points to the SONAME in the string table
931 rather than into writable memory. So that GDB can find shared
932 libraries when loading a core file generated by gcore, ensure that
933 memory areas containing the l_name string are saved in the core
934 file. */
935
936 static int
937 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
938 {
939 struct svr4_info *info;
940 CORE_ADDR ldsomap;
941 CORE_ADDR name_lm;
942
943 info = get_svr4_info (current_program_space);
944
945 info->debug_base = 0;
946 locate_base (info);
947 if (!info->debug_base)
948 return 0;
949
950 ldsomap = solib_svr4_r_ldsomap (info);
951 if (!ldsomap)
952 return 0;
953
954 std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap);
955 name_lm = li != NULL ? li->l_name : 0;
956
957 return (name_lm >= vaddr && name_lm < vaddr + size);
958 }
959
960 /* See solist.h. */
961
962 static int
963 open_symbol_file_object (int from_tty)
964 {
965 CORE_ADDR lm, l_name;
966 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
967 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
968 int l_name_size = TYPE_LENGTH (ptr_type);
969 gdb::byte_vector l_name_buf (l_name_size);
970 struct svr4_info *info = get_svr4_info (current_program_space);
971 symfile_add_flags add_flags = 0;
972
973 if (from_tty)
974 add_flags |= SYMFILE_VERBOSE;
975
976 if (current_program_space->symfile_object_file)
977 if (!query (_("Attempt to reload symbols from process? ")))
978 return 0;
979
980 /* Always locate the debug struct, in case it has moved. */
981 info->debug_base = 0;
982 if (locate_base (info) == 0)
983 return 0; /* failed somehow... */
984
985 /* First link map member should be the executable. */
986 lm = solib_svr4_r_map (info);
987 if (lm == 0)
988 return 0; /* failed somehow... */
989
990 /* Read address of name from target memory to GDB. */
991 read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);
992
993 /* Convert the address to host format. */
994 l_name = extract_typed_address (l_name_buf.data (), ptr_type);
995
996 if (l_name == 0)
997 return 0; /* No filename. */
998
999 /* Now fetch the filename from target memory. */
1000 gdb::unique_xmalloc_ptr<char> filename
1001 = target_read_string (l_name, SO_NAME_MAX_PATH_SIZE - 1);
1002
1003 if (filename == nullptr)
1004 {
1005 warning (_("failed to read exec filename from attached file"));
1006 return 0;
1007 }
1008
1009 /* Have a pathname: read the symbol file. */
1010 symbol_file_add_main (filename.get (), add_flags);
1011
1012 return 1;
1013 }
1014
1015 /* Data exchange structure for the XML parser as returned by
1016 svr4_current_sos_via_xfer_libraries. */
1017
1018 struct svr4_library_list
1019 {
1020 struct so_list *head, **tailp;
1021
1022 /* Inferior address of struct link_map used for the main executable. It is
1023 NULL if not known. */
1024 CORE_ADDR main_lm;
1025 };
1026
1027 /* This module's 'free_objfile' observer. */
1028
1029 static void
1030 svr4_free_objfile_observer (struct objfile *objfile)
1031 {
1032 probes_table_remove_objfile_probes (objfile);
1033 }
1034
1035 /* Implementation for target_so_ops.free_so. */
1036
1037 static void
1038 svr4_free_so (struct so_list *so)
1039 {
1040 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1041
1042 delete li;
1043 }
1044
1045 /* Implement target_so_ops.clear_so. */
1046
1047 static void
1048 svr4_clear_so (struct so_list *so)
1049 {
1050 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1051
1052 if (li != NULL)
1053 li->l_addr_p = 0;
1054 }
1055
1056 /* Free so_list built so far (called via cleanup). */
1057
1058 static void
1059 svr4_free_library_list (void *p_list)
1060 {
1061 struct so_list *list = *(struct so_list **) p_list;
1062
1063 while (list != NULL)
1064 {
1065 struct so_list *next = list->next;
1066
1067 free_so (list);
1068 list = next;
1069 }
1070 }
1071
1072 /* Copy library list. */
1073
1074 static struct so_list *
1075 svr4_copy_library_list (struct so_list *src)
1076 {
1077 struct so_list *dst = NULL;
1078 struct so_list **link = &dst;
1079
1080 while (src != NULL)
1081 {
1082 struct so_list *newobj;
1083
1084 newobj = XNEW (struct so_list);
1085 memcpy (newobj, src, sizeof (struct so_list));
1086
1087 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1088 newobj->lm_info = new lm_info_svr4 (*src_li);
1089
1090 newobj->next = NULL;
1091 *link = newobj;
1092 link = &newobj->next;
1093
1094 src = src->next;
1095 }
1096
1097 return dst;
1098 }
1099
1100 #ifdef HAVE_LIBEXPAT
1101
1102 #include "xml-support.h"
1103
1104 /* Handle the start of a <library> element. Note: new elements are added
1105 at the tail of the list, keeping the list in order. */
1106
1107 static void
1108 library_list_start_library (struct gdb_xml_parser *parser,
1109 const struct gdb_xml_element *element,
1110 void *user_data,
1111 std::vector<gdb_xml_value> &attributes)
1112 {
1113 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1114 const char *name
1115 = (const char *) xml_find_attribute (attributes, "name")->value.get ();
1116 ULONGEST *lmp
1117 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
1118 ULONGEST *l_addrp
1119 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
1120 ULONGEST *l_ldp
1121 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
1122 struct so_list *new_elem;
1123
1124 new_elem = XCNEW (struct so_list);
1125 lm_info_svr4 *li = new lm_info_svr4;
1126 new_elem->lm_info = li;
1127 li->lm_addr = *lmp;
1128 li->l_addr_inferior = *l_addrp;
1129 li->l_ld = *l_ldp;
1130
1131 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1132 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1133 strcpy (new_elem->so_original_name, new_elem->so_name);
1134
1135 *list->tailp = new_elem;
1136 list->tailp = &new_elem->next;
1137 }
1138
1139 /* Handle the start of a <library-list-svr4> element. */
1140
1141 static void
1142 svr4_library_list_start_list (struct gdb_xml_parser *parser,
1143 const struct gdb_xml_element *element,
1144 void *user_data,
1145 std::vector<gdb_xml_value> &attributes)
1146 {
1147 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1148 const char *version
1149 = (const char *) xml_find_attribute (attributes, "version")->value.get ();
1150 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1151
1152 if (strcmp (version, "1.0") != 0)
1153 gdb_xml_error (parser,
1154 _("SVR4 Library list has unsupported version \"%s\""),
1155 version);
1156
1157 if (main_lm)
1158 list->main_lm = *(ULONGEST *) main_lm->value.get ();
1159 }
1160
1161 /* The allowed elements and attributes for an XML library list.
1162 The root element is a <library-list>. */
1163
1164 static const struct gdb_xml_attribute svr4_library_attributes[] =
1165 {
1166 { "name", GDB_XML_AF_NONE, NULL, NULL },
1167 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1168 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1169 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1170 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1171 };
1172
1173 static const struct gdb_xml_element svr4_library_list_children[] =
1174 {
1175 {
1176 "library", svr4_library_attributes, NULL,
1177 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1178 library_list_start_library, NULL
1179 },
1180 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1181 };
1182
1183 static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1184 {
1185 { "version", GDB_XML_AF_NONE, NULL, NULL },
1186 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1187 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1188 };
1189
1190 static const struct gdb_xml_element svr4_library_list_elements[] =
1191 {
1192 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1193 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1194 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1195 };
1196
1197 /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1198
1199 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1200 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1201 empty, caller is responsible for freeing all its entries. */
1202
1203 static int
1204 svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1205 {
1206 auto cleanup = make_scope_exit ([&] ()
1207 {
1208 svr4_free_library_list (&list->head);
1209 });
1210
1211 memset (list, 0, sizeof (*list));
1212 list->tailp = &list->head;
1213 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
1214 svr4_library_list_elements, document, list) == 0)
1215 {
1216 /* Parsed successfully, keep the result. */
1217 cleanup.release ();
1218 return 1;
1219 }
1220
1221 return 0;
1222 }
1223
1224 /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
1225
1226 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1227 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1228 empty, caller is responsible for freeing all its entries.
1229
1230 Note that ANNEX must be NULL if the remote does not explicitly allow
1231 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1232 this can be checked using target_augmented_libraries_svr4_read (). */
1233
1234 static int
1235 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1236 const char *annex)
1237 {
1238 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1239
1240 /* Fetch the list of shared libraries. */
1241 gdb::optional<gdb::char_vector> svr4_library_document
1242 = target_read_stralloc (current_top_target (), TARGET_OBJECT_LIBRARIES_SVR4,
1243 annex);
1244 if (!svr4_library_document)
1245 return 0;
1246
1247 return svr4_parse_libraries (svr4_library_document->data (), list);
1248 }
1249
1250 #else
1251
1252 static int
1253 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1254 const char *annex)
1255 {
1256 return 0;
1257 }
1258
1259 #endif
1260
1261 /* If no shared library information is available from the dynamic
1262 linker, build a fallback list from other sources. */
1263
1264 static struct so_list *
1265 svr4_default_sos (svr4_info *info)
1266 {
1267 struct so_list *newobj;
1268
1269 if (!info->debug_loader_offset_p)
1270 return NULL;
1271
1272 newobj = XCNEW (struct so_list);
1273 lm_info_svr4 *li = new lm_info_svr4;
1274 newobj->lm_info = li;
1275
1276 /* Nothing will ever check the other fields if we set l_addr_p. */
1277 li->l_addr = info->debug_loader_offset;
1278 li->l_addr_p = 1;
1279
1280 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1281 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1282 strcpy (newobj->so_original_name, newobj->so_name);
1283
1284 return newobj;
1285 }
1286
1287 /* Read the whole inferior libraries chain starting at address LM.
1288 Expect the first entry in the chain's previous entry to be PREV_LM.
1289 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1290 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1291 to it. Returns nonzero upon success. If zero is returned the
1292 entries stored to LINK_PTR_PTR are still valid although they may
1293 represent only part of the inferior library list. */
1294
1295 static int
1296 svr4_read_so_list (svr4_info *info, CORE_ADDR lm, CORE_ADDR prev_lm,
1297 struct so_list ***link_ptr_ptr, int ignore_first)
1298 {
1299 CORE_ADDR first_l_name = 0;
1300 CORE_ADDR next_lm;
1301
1302 for (; lm != 0; prev_lm = lm, lm = next_lm)
1303 {
1304 so_list_up newobj (XCNEW (struct so_list));
1305
1306 lm_info_svr4 *li = lm_info_read (lm).release ();
1307 newobj->lm_info = li;
1308 if (li == NULL)
1309 return 0;
1310
1311 next_lm = li->l_next;
1312
1313 if (li->l_prev != prev_lm)
1314 {
1315 warning (_("Corrupted shared library list: %s != %s"),
1316 paddress (target_gdbarch (), prev_lm),
1317 paddress (target_gdbarch (), li->l_prev));
1318 return 0;
1319 }
1320
1321 /* For SVR4 versions, the first entry in the link map is for the
1322 inferior executable, so we must ignore it. For some versions of
1323 SVR4, it has no name. For others (Solaris 2.3 for example), it
1324 does have a name, so we can no longer use a missing name to
1325 decide when to ignore it. */
1326 if (ignore_first && li->l_prev == 0)
1327 {
1328 first_l_name = li->l_name;
1329 info->main_lm_addr = li->lm_addr;
1330 continue;
1331 }
1332
1333 /* Extract this shared object's name. */
1334 gdb::unique_xmalloc_ptr<char> buffer
1335 = target_read_string (li->l_name, SO_NAME_MAX_PATH_SIZE - 1);
1336 if (buffer == nullptr)
1337 {
1338 /* If this entry's l_name address matches that of the
1339 inferior executable, then this is not a normal shared
1340 object, but (most likely) a vDSO. In this case, silently
1341 skip it; otherwise emit a warning. */
1342 if (first_l_name == 0 || li->l_name != first_l_name)
1343 warning (_("Can't read pathname for load map."));
1344 continue;
1345 }
1346
1347 strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1);
1348 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1349 strcpy (newobj->so_original_name, newobj->so_name);
1350
1351 /* If this entry has no name, or its name matches the name
1352 for the main executable, don't include it in the list. */
1353 if (! newobj->so_name[0] || match_main (newobj->so_name))
1354 continue;
1355
1356 newobj->next = 0;
1357 /* Don't free it now. */
1358 **link_ptr_ptr = newobj.release ();
1359 *link_ptr_ptr = &(**link_ptr_ptr)->next;
1360 }
1361
1362 return 1;
1363 }
1364
1365 /* Read the full list of currently loaded shared objects directly
1366 from the inferior, without referring to any libraries read and
1367 stored by the probes interface. Handle special cases relating
1368 to the first elements of the list. */
1369
1370 static struct so_list *
1371 svr4_current_sos_direct (struct svr4_info *info)
1372 {
1373 CORE_ADDR lm;
1374 struct so_list *head = NULL;
1375 struct so_list **link_ptr = &head;
1376 int ignore_first;
1377 struct svr4_library_list library_list;
1378
1379 /* Fall back to manual examination of the target if the packet is not
1380 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1381 tests a case where gdbserver cannot find the shared libraries list while
1382 GDB itself is able to find it via SYMFILE_OBJFILE.
1383
1384 Unfortunately statically linked inferiors will also fall back through this
1385 suboptimal code path. */
1386
1387 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1388 NULL);
1389 if (info->using_xfer)
1390 {
1391 if (library_list.main_lm)
1392 info->main_lm_addr = library_list.main_lm;
1393
1394 return library_list.head ? library_list.head : svr4_default_sos (info);
1395 }
1396
1397 /* Always locate the debug struct, in case it has moved. */
1398 info->debug_base = 0;
1399 locate_base (info);
1400
1401 /* If we can't find the dynamic linker's base structure, this
1402 must not be a dynamically linked executable. Hmm. */
1403 if (! info->debug_base)
1404 return svr4_default_sos (info);
1405
1406 /* Assume that everything is a library if the dynamic loader was loaded
1407 late by a static executable. */
1408 if (current_program_space->exec_bfd ()
1409 && bfd_get_section_by_name (current_program_space->exec_bfd (),
1410 ".dynamic") == NULL)
1411 ignore_first = 0;
1412 else
1413 ignore_first = 1;
1414
1415 auto cleanup = make_scope_exit ([&] ()
1416 {
1417 svr4_free_library_list (&head);
1418 });
1419
1420 /* Walk the inferior's link map list, and build our list of
1421 `struct so_list' nodes. */
1422 lm = solib_svr4_r_map (info);
1423 if (lm)
1424 svr4_read_so_list (info, lm, 0, &link_ptr, ignore_first);
1425
1426 /* On Solaris, the dynamic linker is not in the normal list of
1427 shared objects, so make sure we pick it up too. Having
1428 symbol information for the dynamic linker is quite crucial
1429 for skipping dynamic linker resolver code. */
1430 lm = solib_svr4_r_ldsomap (info);
1431 if (lm)
1432 svr4_read_so_list (info, lm, 0, &link_ptr, 0);
1433
1434 cleanup.release ();
1435
1436 if (head == NULL)
1437 return svr4_default_sos (info);
1438
1439 return head;
1440 }
1441
1442 /* Implement the main part of the "current_sos" target_so_ops
1443 method. */
1444
1445 static struct so_list *
1446 svr4_current_sos_1 (svr4_info *info)
1447 {
1448 /* If the solib list has been read and stored by the probes
1449 interface then we return a copy of the stored list. */
1450 if (info->solib_list != NULL)
1451 return svr4_copy_library_list (info->solib_list);
1452
1453 /* Otherwise obtain the solib list directly from the inferior. */
1454 return svr4_current_sos_direct (info);
1455 }
1456
1457 /* Implement the "current_sos" target_so_ops method. */
1458
1459 static struct so_list *
1460 svr4_current_sos (void)
1461 {
1462 svr4_info *info = get_svr4_info (current_program_space);
1463 struct so_list *so_head = svr4_current_sos_1 (info);
1464 struct mem_range vsyscall_range;
1465
1466 /* Filter out the vDSO module, if present. Its symbol file would
1467 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1468 managed by symfile-mem.c:add_vsyscall_page. */
1469 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1470 && vsyscall_range.length != 0)
1471 {
1472 struct so_list **sop;
1473
1474 sop = &so_head;
1475 while (*sop != NULL)
1476 {
1477 struct so_list *so = *sop;
1478
1479 /* We can't simply match the vDSO by starting address alone,
1480 because lm_info->l_addr_inferior (and also l_addr) do not
1481 necessarily represent the real starting address of the
1482 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1483 field (the ".dynamic" section of the shared object)
1484 always points at the absolute/resolved address though.
1485 So check whether that address is inside the vDSO's
1486 mapping instead.
1487
1488 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1489 0-based ELF, and we see:
1490
1491 (gdb) info auxv
1492 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1493 (gdb) p/x *_r_debug.r_map.l_next
1494 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1495
1496 And on Linux 2.6.32 (x86_64) we see:
1497
1498 (gdb) info auxv
1499 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1500 (gdb) p/x *_r_debug.r_map.l_next
1501 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1502
1503 Dumping that vDSO shows:
1504
1505 (gdb) info proc mappings
1506 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1507 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1508 # readelf -Wa vdso.bin
1509 [...]
1510 Entry point address: 0xffffffffff700700
1511 [...]
1512 Section Headers:
1513 [Nr] Name Type Address Off Size
1514 [ 0] NULL 0000000000000000 000000 000000
1515 [ 1] .hash HASH ffffffffff700120 000120 000038
1516 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1517 [...]
1518 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1519 */
1520
1521 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1522
1523 if (address_in_mem_range (li->l_ld, &vsyscall_range))
1524 {
1525 *sop = so->next;
1526 free_so (so);
1527 break;
1528 }
1529
1530 sop = &so->next;
1531 }
1532 }
1533
1534 return so_head;
1535 }
1536
1537 /* Get the address of the link_map for a given OBJFILE. */
1538
1539 CORE_ADDR
1540 svr4_fetch_objfile_link_map (struct objfile *objfile)
1541 {
1542 struct svr4_info *info = get_svr4_info (objfile->pspace);
1543
1544 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1545 if (info->main_lm_addr == 0)
1546 solib_add (NULL, 0, auto_solib_add);
1547
1548 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1549 if (objfile == current_program_space->symfile_object_file)
1550 return info->main_lm_addr;
1551
1552 /* If OBJFILE is a separate debug object file, look for the
1553 original object file. */
1554 if (objfile->separate_debug_objfile_backlink != NULL)
1555 objfile = objfile->separate_debug_objfile_backlink;
1556
1557 /* The other link map addresses may be found by examining the list
1558 of shared libraries. */
1559 for (struct so_list *so : current_program_space->solibs ())
1560 if (so->objfile == objfile)
1561 {
1562 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1563
1564 return li->lm_addr;
1565 }
1566
1567 /* Not found! */
1568 return 0;
1569 }
1570
1571 /* On some systems, the only way to recognize the link map entry for
1572 the main executable file is by looking at its name. Return
1573 non-zero iff SONAME matches one of the known main executable names. */
1574
1575 static int
1576 match_main (const char *soname)
1577 {
1578 const char * const *mainp;
1579
1580 for (mainp = main_name_list; *mainp != NULL; mainp++)
1581 {
1582 if (strcmp (soname, *mainp) == 0)
1583 return (1);
1584 }
1585
1586 return (0);
1587 }
1588
1589 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1590 SVR4 run time loader. */
1591
1592 int
1593 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1594 {
1595 struct svr4_info *info = get_svr4_info (current_program_space);
1596
1597 return ((pc >= info->interp_text_sect_low
1598 && pc < info->interp_text_sect_high)
1599 || (pc >= info->interp_plt_sect_low
1600 && pc < info->interp_plt_sect_high)
1601 || in_plt_section (pc)
1602 || in_gnu_ifunc_stub (pc));
1603 }
1604
1605 /* Given an executable's ABFD and target, compute the entry-point
1606 address. */
1607
1608 static CORE_ADDR
1609 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1610 {
1611 CORE_ADDR addr;
1612
1613 /* KevinB wrote ... for most targets, the address returned by
1614 bfd_get_start_address() is the entry point for the start
1615 function. But, for some targets, bfd_get_start_address() returns
1616 the address of a function descriptor from which the entry point
1617 address may be extracted. This address is extracted by
1618 gdbarch_convert_from_func_ptr_addr(). The method
1619 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1620 function for targets which don't use function descriptors. */
1621 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1622 bfd_get_start_address (abfd),
1623 targ);
1624 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
1625 }
1626
1627 /* A probe and its associated action. */
1628
1629 struct probe_and_action
1630 {
1631 /* The probe. */
1632 probe *prob;
1633
1634 /* The relocated address of the probe. */
1635 CORE_ADDR address;
1636
1637 /* The action. */
1638 enum probe_action action;
1639
1640 /* The objfile where this probe was found. */
1641 struct objfile *objfile;
1642 };
1643
1644 /* Returns a hash code for the probe_and_action referenced by p. */
1645
1646 static hashval_t
1647 hash_probe_and_action (const void *p)
1648 {
1649 const struct probe_and_action *pa = (const struct probe_and_action *) p;
1650
1651 return (hashval_t) pa->address;
1652 }
1653
1654 /* Returns non-zero if the probe_and_actions referenced by p1 and p2
1655 are equal. */
1656
1657 static int
1658 equal_probe_and_action (const void *p1, const void *p2)
1659 {
1660 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1661 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
1662
1663 return pa1->address == pa2->address;
1664 }
1665
1666 /* Traversal function for probes_table_remove_objfile_probes. */
1667
1668 static int
1669 probes_table_htab_remove_objfile_probes (void **slot, void *info)
1670 {
1671 probe_and_action *pa = (probe_and_action *) *slot;
1672 struct objfile *objfile = (struct objfile *) info;
1673
1674 if (pa->objfile == objfile)
1675 htab_clear_slot (get_svr4_info (objfile->pspace)->probes_table.get (),
1676 slot);
1677
1678 return 1;
1679 }
1680
1681 /* Remove all probes that belong to OBJFILE from the probes table. */
1682
1683 static void
1684 probes_table_remove_objfile_probes (struct objfile *objfile)
1685 {
1686 svr4_info *info = get_svr4_info (objfile->pspace);
1687 if (info->probes_table != nullptr)
1688 htab_traverse_noresize (info->probes_table.get (),
1689 probes_table_htab_remove_objfile_probes, objfile);
1690 }
1691
1692 /* Register a solib event probe and its associated action in the
1693 probes table. */
1694
1695 static void
1696 register_solib_event_probe (svr4_info *info, struct objfile *objfile,
1697 probe *prob, CORE_ADDR address,
1698 enum probe_action action)
1699 {
1700 struct probe_and_action lookup, *pa;
1701 void **slot;
1702
1703 /* Create the probes table, if necessary. */
1704 if (info->probes_table == NULL)
1705 info->probes_table.reset (htab_create_alloc (1, hash_probe_and_action,
1706 equal_probe_and_action,
1707 xfree, xcalloc, xfree));
1708
1709 lookup.address = address;
1710 slot = htab_find_slot (info->probes_table.get (), &lookup, INSERT);
1711 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1712
1713 pa = XCNEW (struct probe_and_action);
1714 pa->prob = prob;
1715 pa->address = address;
1716 pa->action = action;
1717 pa->objfile = objfile;
1718
1719 *slot = pa;
1720 }
1721
1722 /* Get the solib event probe at the specified location, and the
1723 action associated with it. Returns NULL if no solib event probe
1724 was found. */
1725
1726 static struct probe_and_action *
1727 solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1728 {
1729 struct probe_and_action lookup;
1730 void **slot;
1731
1732 lookup.address = address;
1733 slot = htab_find_slot (info->probes_table.get (), &lookup, NO_INSERT);
1734
1735 if (slot == NULL)
1736 return NULL;
1737
1738 return (struct probe_and_action *) *slot;
1739 }
1740
1741 /* Decide what action to take when the specified solib event probe is
1742 hit. */
1743
1744 static enum probe_action
1745 solib_event_probe_action (struct probe_and_action *pa)
1746 {
1747 enum probe_action action;
1748 unsigned probe_argc = 0;
1749 struct frame_info *frame = get_current_frame ();
1750
1751 action = pa->action;
1752 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1753 return action;
1754
1755 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1756
1757 /* Check that an appropriate number of arguments has been supplied.
1758 We expect:
1759 arg0: Lmid_t lmid (mandatory)
1760 arg1: struct r_debug *debug_base (mandatory)
1761 arg2: struct link_map *new (optional, for incremental updates) */
1762 try
1763 {
1764 probe_argc = pa->prob->get_argument_count (get_frame_arch (frame));
1765 }
1766 catch (const gdb_exception_error &ex)
1767 {
1768 exception_print (gdb_stderr, ex);
1769 probe_argc = 0;
1770 }
1771
1772 /* If get_argument_count throws an exception, probe_argc will be set
1773 to zero. However, if pa->prob does not have arguments, then
1774 get_argument_count will succeed but probe_argc will also be zero.
1775 Both cases happen because of different things, but they are
1776 treated equally here: action will be set to
1777 PROBES_INTERFACE_FAILED. */
1778 if (probe_argc == 2)
1779 action = FULL_RELOAD;
1780 else if (probe_argc < 2)
1781 action = PROBES_INTERFACE_FAILED;
1782
1783 return action;
1784 }
1785
1786 /* Populate the shared object list by reading the entire list of
1787 shared objects from the inferior. Handle special cases relating
1788 to the first elements of the list. Returns nonzero on success. */
1789
1790 static int
1791 solist_update_full (struct svr4_info *info)
1792 {
1793 free_solib_list (info);
1794 info->solib_list = svr4_current_sos_direct (info);
1795
1796 return 1;
1797 }
1798
1799 /* Update the shared object list starting from the link-map entry
1800 passed by the linker in the probe's third argument. Returns
1801 nonzero if the list was successfully updated, or zero to indicate
1802 failure. */
1803
1804 static int
1805 solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1806 {
1807 struct so_list *tail;
1808 CORE_ADDR prev_lm;
1809
1810 /* svr4_current_sos_direct contains logic to handle a number of
1811 special cases relating to the first elements of the list. To
1812 avoid duplicating this logic we defer to solist_update_full
1813 if the list is empty. */
1814 if (info->solib_list == NULL)
1815 return 0;
1816
1817 /* Fall back to a full update if we are using a remote target
1818 that does not support incremental transfers. */
1819 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1820 return 0;
1821
1822 /* Walk to the end of the list. */
1823 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1824 /* Nothing. */;
1825
1826 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1827 prev_lm = li->lm_addr;
1828
1829 /* Read the new objects. */
1830 if (info->using_xfer)
1831 {
1832 struct svr4_library_list library_list;
1833 char annex[64];
1834
1835 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1836 phex_nz (lm, sizeof (lm)),
1837 phex_nz (prev_lm, sizeof (prev_lm)));
1838 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1839 return 0;
1840
1841 tail->next = library_list.head;
1842 }
1843 else
1844 {
1845 struct so_list **link = &tail->next;
1846
1847 /* IGNORE_FIRST may safely be set to zero here because the
1848 above check and deferral to solist_update_full ensures
1849 that this call to svr4_read_so_list will never see the
1850 first element. */
1851 if (!svr4_read_so_list (info, lm, prev_lm, &link, 0))
1852 return 0;
1853 }
1854
1855 return 1;
1856 }
1857
1858 /* Disable the probes-based linker interface and revert to the
1859 original interface. We don't reset the breakpoints as the
1860 ones set up for the probes-based interface are adequate. */
1861
1862 static void
1863 disable_probes_interface (svr4_info *info)
1864 {
1865 warning (_("Probes-based dynamic linker interface failed.\n"
1866 "Reverting to original interface."));
1867
1868 free_probes_table (info);
1869 free_solib_list (info);
1870 }
1871
1872 /* Update the solib list as appropriate when using the
1873 probes-based linker interface. Do nothing if using the
1874 standard interface. */
1875
1876 static void
1877 svr4_handle_solib_event (void)
1878 {
1879 struct svr4_info *info = get_svr4_info (current_program_space);
1880 struct probe_and_action *pa;
1881 enum probe_action action;
1882 struct value *val = NULL;
1883 CORE_ADDR pc, debug_base, lm = 0;
1884 struct frame_info *frame = get_current_frame ();
1885
1886 /* Do nothing if not using the probes interface. */
1887 if (info->probes_table == NULL)
1888 return;
1889
1890 /* If anything goes wrong we revert to the original linker
1891 interface. */
1892 auto cleanup = make_scope_exit ([info] ()
1893 {
1894 disable_probes_interface (info);
1895 });
1896
1897 pc = regcache_read_pc (get_current_regcache ());
1898 pa = solib_event_probe_at (info, pc);
1899 if (pa == NULL)
1900 return;
1901
1902 action = solib_event_probe_action (pa);
1903 if (action == PROBES_INTERFACE_FAILED)
1904 return;
1905
1906 if (action == DO_NOTHING)
1907 {
1908 cleanup.release ();
1909 return;
1910 }
1911
1912 /* evaluate_argument looks up symbols in the dynamic linker
1913 using find_pc_section. find_pc_section is accelerated by a cache
1914 called the section map. The section map is invalidated every
1915 time a shared library is loaded or unloaded, and if the inferior
1916 is generating a lot of shared library events then the section map
1917 will be updated every time svr4_handle_solib_event is called.
1918 We called find_pc_section in svr4_create_solib_event_breakpoints,
1919 so we can guarantee that the dynamic linker's sections are in the
1920 section map. We can therefore inhibit section map updates across
1921 these calls to evaluate_argument and save a lot of time. */
1922 {
1923 scoped_restore inhibit_updates
1924 = inhibit_section_map_updates (current_program_space);
1925
1926 try
1927 {
1928 val = pa->prob->evaluate_argument (1, frame);
1929 }
1930 catch (const gdb_exception_error &ex)
1931 {
1932 exception_print (gdb_stderr, ex);
1933 val = NULL;
1934 }
1935
1936 if (val == NULL)
1937 return;
1938
1939 debug_base = value_as_address (val);
1940 if (debug_base == 0)
1941 return;
1942
1943 /* Always locate the debug struct, in case it moved. */
1944 info->debug_base = 0;
1945 if (locate_base (info) == 0)
1946 {
1947 /* It's possible for the reloc_complete probe to be triggered before
1948 the linker has set the DT_DEBUG pointer (for example, when the
1949 linker has finished relocating an LD_AUDIT library or its
1950 dependencies). Since we can't yet handle libraries from other link
1951 namespaces, we don't lose anything by ignoring them here. */
1952 struct value *link_map_id_val;
1953 try
1954 {
1955 link_map_id_val = pa->prob->evaluate_argument (0, frame);
1956 }
1957 catch (const gdb_exception_error)
1958 {
1959 link_map_id_val = NULL;
1960 }
1961 /* glibc and illumos' libc both define LM_ID_BASE as zero. */
1962 if (link_map_id_val != NULL && value_as_long (link_map_id_val) != 0)
1963 action = DO_NOTHING;
1964 else
1965 return;
1966 }
1967
1968 /* GDB does not currently support libraries loaded via dlmopen
1969 into namespaces other than the initial one. We must ignore
1970 any namespace other than the initial namespace here until
1971 support for this is added to GDB. */
1972 if (debug_base != info->debug_base)
1973 action = DO_NOTHING;
1974
1975 if (action == UPDATE_OR_RELOAD)
1976 {
1977 try
1978 {
1979 val = pa->prob->evaluate_argument (2, frame);
1980 }
1981 catch (const gdb_exception_error &ex)
1982 {
1983 exception_print (gdb_stderr, ex);
1984 return;
1985 }
1986
1987 if (val != NULL)
1988 lm = value_as_address (val);
1989
1990 if (lm == 0)
1991 action = FULL_RELOAD;
1992 }
1993
1994 /* Resume section map updates. Closing the scope is
1995 sufficient. */
1996 }
1997
1998 if (action == UPDATE_OR_RELOAD)
1999 {
2000 if (!solist_update_incremental (info, lm))
2001 action = FULL_RELOAD;
2002 }
2003
2004 if (action == FULL_RELOAD)
2005 {
2006 if (!solist_update_full (info))
2007 return;
2008 }
2009
2010 cleanup.release ();
2011 }
2012
2013 /* Helper function for svr4_update_solib_event_breakpoints. */
2014
2015 static bool
2016 svr4_update_solib_event_breakpoint (struct breakpoint *b)
2017 {
2018 struct bp_location *loc;
2019
2020 if (b->type != bp_shlib_event)
2021 {
2022 /* Continue iterating. */
2023 return false;
2024 }
2025
2026 for (loc = b->loc; loc != NULL; loc = loc->next)
2027 {
2028 struct svr4_info *info;
2029 struct probe_and_action *pa;
2030
2031 info = solib_svr4_pspace_data.get (loc->pspace);
2032 if (info == NULL || info->probes_table == NULL)
2033 continue;
2034
2035 pa = solib_event_probe_at (info, loc->address);
2036 if (pa == NULL)
2037 continue;
2038
2039 if (pa->action == DO_NOTHING)
2040 {
2041 if (b->enable_state == bp_disabled && stop_on_solib_events)
2042 enable_breakpoint (b);
2043 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2044 disable_breakpoint (b);
2045 }
2046
2047 break;
2048 }
2049
2050 /* Continue iterating. */
2051 return false;
2052 }
2053
2054 /* Enable or disable optional solib event breakpoints as appropriate.
2055 Called whenever stop_on_solib_events is changed. */
2056
2057 static void
2058 svr4_update_solib_event_breakpoints (void)
2059 {
2060 iterate_over_breakpoints (svr4_update_solib_event_breakpoint);
2061 }
2062
2063 /* Create and register solib event breakpoints. PROBES is an array
2064 of NUM_PROBES elements, each of which is vector of probes. A
2065 solib event breakpoint will be created and registered for each
2066 probe. */
2067
2068 static void
2069 svr4_create_probe_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
2070 const std::vector<probe *> *probes,
2071 struct objfile *objfile)
2072 {
2073 for (int i = 0; i < NUM_PROBES; i++)
2074 {
2075 enum probe_action action = probe_info[i].action;
2076
2077 for (probe *p : probes[i])
2078 {
2079 CORE_ADDR address = p->get_relocated_address (objfile);
2080
2081 create_solib_event_breakpoint (gdbarch, address);
2082 register_solib_event_probe (info, objfile, p, address, action);
2083 }
2084 }
2085
2086 svr4_update_solib_event_breakpoints ();
2087 }
2088
2089 /* Find all the glibc named probes. Only if all of the probes are found, then
2090 create them and return true. Otherwise return false. If WITH_PREFIX is set
2091 then add "rtld" to the front of the probe names. */
2092 static bool
2093 svr4_find_and_create_probe_breakpoints (svr4_info *info,
2094 struct gdbarch *gdbarch,
2095 struct obj_section *os,
2096 bool with_prefix)
2097 {
2098 std::vector<probe *> probes[NUM_PROBES];
2099
2100 for (int i = 0; i < NUM_PROBES; i++)
2101 {
2102 const char *name = probe_info[i].name;
2103 char buf[32];
2104
2105 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4 shipped with an early
2106 version of the probes code in which the probes' names were prefixed
2107 with "rtld_" and the "map_failed" probe did not exist. The locations
2108 of the probes are otherwise the same, so we check for probes with
2109 prefixed names if probes with unprefixed names are not present. */
2110 if (with_prefix)
2111 {
2112 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2113 name = buf;
2114 }
2115
2116 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2117
2118 /* The "map_failed" probe did not exist in early
2119 versions of the probes code in which the probes'
2120 names were prefixed with "rtld_". */
2121 if (with_prefix && streq (name, "rtld_map_failed"))
2122 continue;
2123
2124 /* Ensure at least one probe for the current name was found. */
2125 if (probes[i].empty ())
2126 return false;
2127
2128 /* Ensure probe arguments can be evaluated. */
2129 for (probe *p : probes[i])
2130 {
2131 if (!p->can_evaluate_arguments ())
2132 return false;
2133 /* This will fail if the probe is invalid. This has been seen on Arm
2134 due to references to symbols that have been resolved away. */
2135 try
2136 {
2137 p->get_argument_count (gdbarch);
2138 }
2139 catch (const gdb_exception_error &ex)
2140 {
2141 exception_print (gdb_stderr, ex);
2142 warning (_("Initializing probes-based dynamic linker interface "
2143 "failed.\nReverting to original interface."));
2144 return false;
2145 }
2146 }
2147 }
2148
2149 /* All probes found. Now create them. */
2150 svr4_create_probe_breakpoints (info, gdbarch, probes, os->objfile);
2151 return true;
2152 }
2153
2154 /* Both the SunOS and the SVR4 dynamic linkers call a marker function
2155 before and after mapping and unmapping shared libraries. The sole
2156 purpose of this method is to allow debuggers to set a breakpoint so
2157 they can track these changes.
2158
2159 Some versions of the glibc dynamic linker contain named probes
2160 to allow more fine grained stopping. Given the address of the
2161 original marker function, this function attempts to find these
2162 probes, and if found, sets breakpoints on those instead. If the
2163 probes aren't found, a single breakpoint is set on the original
2164 marker function. */
2165
2166 static void
2167 svr4_create_solib_event_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
2168 CORE_ADDR address)
2169 {
2170 struct obj_section *os = find_pc_section (address);
2171
2172 if (os == nullptr
2173 || (!svr4_find_and_create_probe_breakpoints (info, gdbarch, os, false)
2174 && !svr4_find_and_create_probe_breakpoints (info, gdbarch, os, true)))
2175 create_solib_event_breakpoint (gdbarch, address);
2176 }
2177
2178 /* Helper function for gdb_bfd_lookup_symbol. */
2179
2180 static int
2181 cmp_name_and_sec_flags (const asymbol *sym, const void *data)
2182 {
2183 return (strcmp (sym->name, (const char *) data) == 0
2184 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2185 }
2186 /* Arrange for dynamic linker to hit breakpoint.
2187
2188 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2189 debugger interface, support for arranging for the inferior to hit
2190 a breakpoint after mapping in the shared libraries. This function
2191 enables that breakpoint.
2192
2193 For SunOS, there is a special flag location (in_debugger) which we
2194 set to 1. When the dynamic linker sees this flag set, it will set
2195 a breakpoint at a location known only to itself, after saving the
2196 original contents of that place and the breakpoint address itself,
2197 in it's own internal structures. When we resume the inferior, it
2198 will eventually take a SIGTRAP when it runs into the breakpoint.
2199 We handle this (in a different place) by restoring the contents of
2200 the breakpointed location (which is only known after it stops),
2201 chasing around to locate the shared libraries that have been
2202 loaded, then resuming.
2203
2204 For SVR4, the debugger interface structure contains a member (r_brk)
2205 which is statically initialized at the time the shared library is
2206 built, to the offset of a function (_r_debug_state) which is guaran-
2207 teed to be called once before mapping in a library, and again when
2208 the mapping is complete. At the time we are examining this member,
2209 it contains only the unrelocated offset of the function, so we have
2210 to do our own relocation. Later, when the dynamic linker actually
2211 runs, it relocates r_brk to be the actual address of _r_debug_state().
2212
2213 The debugger interface structure also contains an enumeration which
2214 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2215 depending upon whether or not the library is being mapped or unmapped,
2216 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
2217
2218 static int
2219 enable_break (struct svr4_info *info, int from_tty)
2220 {
2221 struct bound_minimal_symbol msymbol;
2222 const char * const *bkpt_namep;
2223 asection *interp_sect;
2224 CORE_ADDR sym_addr;
2225
2226 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2227 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
2228
2229 /* If we already have a shared library list in the target, and
2230 r_debug contains r_brk, set the breakpoint there - this should
2231 mean r_brk has already been relocated. Assume the dynamic linker
2232 is the object containing r_brk. */
2233
2234 solib_add (NULL, from_tty, auto_solib_add);
2235 sym_addr = 0;
2236 if (info->debug_base && solib_svr4_r_map (info) != 0)
2237 sym_addr = solib_svr4_r_brk (info);
2238
2239 if (sym_addr != 0)
2240 {
2241 struct obj_section *os;
2242
2243 sym_addr = gdbarch_addr_bits_remove
2244 (target_gdbarch (),
2245 gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2246 sym_addr,
2247 current_top_target ()));
2248
2249 /* On at least some versions of Solaris there's a dynamic relocation
2250 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2251 we get control before the dynamic linker has self-relocated.
2252 Check if SYM_ADDR is in a known section, if it is assume we can
2253 trust its value. This is just a heuristic though, it could go away
2254 or be replaced if it's getting in the way.
2255
2256 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2257 however it's spelled in your particular system) is ARM or Thumb.
2258 That knowledge is encoded in the address, if it's Thumb the low bit
2259 is 1. However, we've stripped that info above and it's not clear
2260 what all the consequences are of passing a non-addr_bits_remove'd
2261 address to svr4_create_solib_event_breakpoints. The call to
2262 find_pc_section verifies we know about the address and have some
2263 hope of computing the right kind of breakpoint to use (via
2264 symbol info). It does mean that GDB needs to be pointed at a
2265 non-stripped version of the dynamic linker in order to obtain
2266 information it already knows about. Sigh. */
2267
2268 os = find_pc_section (sym_addr);
2269 if (os != NULL)
2270 {
2271 /* Record the relocated start and end address of the dynamic linker
2272 text and plt section for svr4_in_dynsym_resolve_code. */
2273 bfd *tmp_bfd;
2274 CORE_ADDR load_addr;
2275
2276 tmp_bfd = os->objfile->obfd;
2277 load_addr = os->objfile->text_section_offset ();
2278
2279 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2280 if (interp_sect)
2281 {
2282 info->interp_text_sect_low
2283 = bfd_section_vma (interp_sect) + load_addr;
2284 info->interp_text_sect_high
2285 = info->interp_text_sect_low + bfd_section_size (interp_sect);
2286 }
2287 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2288 if (interp_sect)
2289 {
2290 info->interp_plt_sect_low
2291 = bfd_section_vma (interp_sect) + load_addr;
2292 info->interp_plt_sect_high
2293 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
2294 }
2295
2296 svr4_create_solib_event_breakpoints (info, target_gdbarch (), sym_addr);
2297 return 1;
2298 }
2299 }
2300
2301 /* Find the program interpreter; if not found, warn the user and drop
2302 into the old breakpoint at symbol code. */
2303 gdb::optional<gdb::byte_vector> interp_name_holder
2304 = find_program_interpreter ();
2305 if (interp_name_holder)
2306 {
2307 const char *interp_name = (const char *) interp_name_holder->data ();
2308 CORE_ADDR load_addr = 0;
2309 int load_addr_found = 0;
2310 int loader_found_in_list = 0;
2311 struct target_ops *tmp_bfd_target;
2312
2313 sym_addr = 0;
2314
2315 /* Now we need to figure out where the dynamic linker was
2316 loaded so that we can load its symbols and place a breakpoint
2317 in the dynamic linker itself.
2318
2319 This address is stored on the stack. However, I've been unable
2320 to find any magic formula to find it for Solaris (appears to
2321 be trivial on GNU/Linux). Therefore, we have to try an alternate
2322 mechanism to find the dynamic linker's base address. */
2323
2324 gdb_bfd_ref_ptr tmp_bfd;
2325 try
2326 {
2327 tmp_bfd = solib_bfd_open (interp_name);
2328 }
2329 catch (const gdb_exception &ex)
2330 {
2331 }
2332
2333 if (tmp_bfd == NULL)
2334 goto bkpt_at_symbol;
2335
2336 /* Now convert the TMP_BFD into a target. That way target, as
2337 well as BFD operations can be used. */
2338 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
2339
2340 /* On a running target, we can get the dynamic linker's base
2341 address from the shared library table. */
2342 for (struct so_list *so : current_program_space->solibs ())
2343 {
2344 if (svr4_same_1 (interp_name, so->so_original_name))
2345 {
2346 load_addr_found = 1;
2347 loader_found_in_list = 1;
2348 load_addr = lm_addr_check (so, tmp_bfd.get ());
2349 break;
2350 }
2351 }
2352
2353 /* If we were not able to find the base address of the loader
2354 from our so_list, then try using the AT_BASE auxilliary entry. */
2355 if (!load_addr_found)
2356 if (target_auxv_search (current_top_target (), AT_BASE, &load_addr) > 0)
2357 {
2358 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
2359
2360 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2361 that `+ load_addr' will overflow CORE_ADDR width not creating
2362 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2363 GDB. */
2364
2365 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
2366 {
2367 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
2368 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
2369 tmp_bfd_target);
2370
2371 gdb_assert (load_addr < space_size);
2372
2373 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2374 64bit ld.so with 32bit executable, it should not happen. */
2375
2376 if (tmp_entry_point < space_size
2377 && tmp_entry_point + load_addr >= space_size)
2378 load_addr -= space_size;
2379 }
2380
2381 load_addr_found = 1;
2382 }
2383
2384 /* Otherwise we find the dynamic linker's base address by examining
2385 the current pc (which should point at the entry point for the
2386 dynamic linker) and subtracting the offset of the entry point.
2387
2388 This is more fragile than the previous approaches, but is a good
2389 fallback method because it has actually been working well in
2390 most cases. */
2391 if (!load_addr_found)
2392 {
2393 struct regcache *regcache
2394 = get_thread_arch_regcache (current_inferior ()->process_target (),
2395 inferior_ptid, target_gdbarch ());
2396
2397 load_addr = (regcache_read_pc (regcache)
2398 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
2399 }
2400
2401 if (!loader_found_in_list)
2402 {
2403 info->debug_loader_name = xstrdup (interp_name);
2404 info->debug_loader_offset_p = 1;
2405 info->debug_loader_offset = load_addr;
2406 solib_add (NULL, from_tty, auto_solib_add);
2407 }
2408
2409 /* Record the relocated start and end address of the dynamic linker
2410 text and plt section for svr4_in_dynsym_resolve_code. */
2411 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
2412 if (interp_sect)
2413 {
2414 info->interp_text_sect_low
2415 = bfd_section_vma (interp_sect) + load_addr;
2416 info->interp_text_sect_high
2417 = info->interp_text_sect_low + bfd_section_size (interp_sect);
2418 }
2419 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
2420 if (interp_sect)
2421 {
2422 info->interp_plt_sect_low
2423 = bfd_section_vma (interp_sect) + load_addr;
2424 info->interp_plt_sect_high
2425 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
2426 }
2427
2428 /* Now try to set a breakpoint in the dynamic linker. */
2429 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2430 {
2431 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2432 cmp_name_and_sec_flags,
2433 *bkpt_namep);
2434 if (sym_addr != 0)
2435 break;
2436 }
2437
2438 if (sym_addr != 0)
2439 /* Convert 'sym_addr' from a function pointer to an address.
2440 Because we pass tmp_bfd_target instead of the current
2441 target, this will always produce an unrelocated value. */
2442 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2443 sym_addr,
2444 tmp_bfd_target);
2445
2446 /* We're done with both the temporary bfd and target. Closing
2447 the target closes the underlying bfd, because it holds the
2448 only remaining reference. */
2449 target_close (tmp_bfd_target);
2450
2451 if (sym_addr != 0)
2452 {
2453 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2454 load_addr + sym_addr);
2455 return 1;
2456 }
2457
2458 /* For whatever reason we couldn't set a breakpoint in the dynamic
2459 linker. Warn and drop into the old code. */
2460 bkpt_at_symbol:
2461 warning (_("Unable to find dynamic linker breakpoint function.\n"
2462 "GDB will be unable to debug shared library initializers\n"
2463 "and track explicitly loaded dynamic code."));
2464 }
2465
2466 /* Scan through the lists of symbols, trying to look up the symbol and
2467 set a breakpoint there. Terminate loop when we/if we succeed. */
2468
2469 objfile *objf = current_program_space->symfile_object_file;
2470 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2471 {
2472 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, objf);
2473 if ((msymbol.minsym != NULL)
2474 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2475 {
2476 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2477 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2478 sym_addr,
2479 current_top_target ());
2480 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2481 sym_addr);
2482 return 1;
2483 }
2484 }
2485
2486 if (interp_name_holder && !current_inferior ()->attach_flag)
2487 {
2488 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
2489 {
2490 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, objf);
2491 if ((msymbol.minsym != NULL)
2492 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2493 {
2494 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2495 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2496 sym_addr,
2497 current_top_target ());
2498 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2499 sym_addr);
2500 return 1;
2501 }
2502 }
2503 }
2504 return 0;
2505 }
2506
2507 /* Read the ELF program headers from ABFD. */
2508
2509 static gdb::optional<gdb::byte_vector>
2510 read_program_headers_from_bfd (bfd *abfd)
2511 {
2512 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
2513 int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2514 if (phdrs_size == 0)
2515 return {};
2516
2517 gdb::byte_vector buf (phdrs_size);
2518 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2519 || bfd_bread (buf.data (), phdrs_size, abfd) != phdrs_size)
2520 return {};
2521
2522 return buf;
2523 }
2524
2525 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2526 exec_bfd. Otherwise return 0.
2527
2528 We relocate all of the sections by the same amount. This
2529 behavior is mandated by recent editions of the System V ABI.
2530 According to the System V Application Binary Interface,
2531 Edition 4.1, page 5-5:
2532
2533 ... Though the system chooses virtual addresses for
2534 individual processes, it maintains the segments' relative
2535 positions. Because position-independent code uses relative
2536 addressing between segments, the difference between
2537 virtual addresses in memory must match the difference
2538 between virtual addresses in the file. The difference
2539 between the virtual address of any segment in memory and
2540 the corresponding virtual address in the file is thus a
2541 single constant value for any one executable or shared
2542 object in a given process. This difference is the base
2543 address. One use of the base address is to relocate the
2544 memory image of the program during dynamic linking.
2545
2546 The same language also appears in Edition 4.0 of the System V
2547 ABI and is left unspecified in some of the earlier editions.
2548
2549 Decide if the objfile needs to be relocated. As indicated above, we will
2550 only be here when execution is stopped. But during attachment PC can be at
2551 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2552 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2553 regcache_read_pc would point to the interpreter and not the main executable.
2554
2555 So, to summarize, relocations are necessary when the start address obtained
2556 from the executable is different from the address in auxv AT_ENTRY entry.
2557
2558 [ The astute reader will note that we also test to make sure that
2559 the executable in question has the DYNAMIC flag set. It is my
2560 opinion that this test is unnecessary (undesirable even). It
2561 was added to avoid inadvertent relocation of an executable
2562 whose e_type member in the ELF header is not ET_DYN. There may
2563 be a time in the future when it is desirable to do relocations
2564 on other types of files as well in which case this condition
2565 should either be removed or modified to accomodate the new file
2566 type. - Kevin, Nov 2000. ] */
2567
2568 static int
2569 svr4_exec_displacement (CORE_ADDR *displacementp)
2570 {
2571 /* ENTRY_POINT is a possible function descriptor - before
2572 a call to gdbarch_convert_from_func_ptr_addr. */
2573 CORE_ADDR entry_point, exec_displacement;
2574
2575 if (current_program_space->exec_bfd () == NULL)
2576 return 0;
2577
2578 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2579 being executed themselves and PIE (Position Independent Executable)
2580 executables are ET_DYN. */
2581
2582 if ((bfd_get_file_flags (current_program_space->exec_bfd ()) & DYNAMIC) == 0)
2583 return 0;
2584
2585 if (target_auxv_search (current_top_target (), AT_ENTRY, &entry_point) <= 0)
2586 return 0;
2587
2588 exec_displacement
2589 = entry_point - bfd_get_start_address (current_program_space->exec_bfd ());
2590
2591 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
2592 alignment. It is cheaper than the program headers comparison below. */
2593
2594 if (bfd_get_flavour (current_program_space->exec_bfd ())
2595 == bfd_target_elf_flavour)
2596 {
2597 const struct elf_backend_data *elf
2598 = get_elf_backend_data (current_program_space->exec_bfd ());
2599
2600 /* p_align of PT_LOAD segments does not specify any alignment but
2601 only congruency of addresses:
2602 p_offset % p_align == p_vaddr % p_align
2603 Kernel is free to load the executable with lower alignment. */
2604
2605 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
2606 return 0;
2607 }
2608
2609 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2610 comparing their program headers. If the program headers in the auxilliary
2611 vector do not match the program headers in the executable, then we are
2612 looking at a different file than the one used by the kernel - for
2613 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2614
2615 if (bfd_get_flavour (current_program_space->exec_bfd ())
2616 == bfd_target_elf_flavour)
2617 {
2618 /* Be optimistic and return 0 only if GDB was able to verify the headers
2619 really do not match. */
2620 int arch_size;
2621
2622 gdb::optional<gdb::byte_vector> phdrs_target
2623 = read_program_header (-1, &arch_size, NULL);
2624 gdb::optional<gdb::byte_vector> phdrs_binary
2625 = read_program_headers_from_bfd (current_program_space->exec_bfd ());
2626 if (phdrs_target && phdrs_binary)
2627 {
2628 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2629
2630 /* We are dealing with three different addresses. EXEC_BFD
2631 represents current address in on-disk file. target memory content
2632 may be different from EXEC_BFD as the file may have been prelinked
2633 to a different address after the executable has been loaded.
2634 Moreover the address of placement in target memory can be
2635 different from what the program headers in target memory say -
2636 this is the goal of PIE.
2637
2638 Detected DISPLACEMENT covers both the offsets of PIE placement and
2639 possible new prelink performed after start of the program. Here
2640 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2641 content offset for the verification purpose. */
2642
2643 if (phdrs_target->size () != phdrs_binary->size ()
2644 || bfd_get_arch_size (current_program_space->exec_bfd ()) != arch_size)
2645 return 0;
2646 else if (arch_size == 32
2647 && phdrs_target->size () >= sizeof (Elf32_External_Phdr)
2648 && phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0)
2649 {
2650 Elf_Internal_Ehdr *ehdr2
2651 = elf_tdata (current_program_space->exec_bfd ())->elf_header;
2652 Elf_Internal_Phdr *phdr2
2653 = elf_tdata (current_program_space->exec_bfd ())->phdr;
2654 CORE_ADDR displacement = 0;
2655 int i;
2656
2657 /* DISPLACEMENT could be found more easily by the difference of
2658 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2659 already have enough information to compute that displacement
2660 with what we've read. */
2661
2662 for (i = 0; i < ehdr2->e_phnum; i++)
2663 if (phdr2[i].p_type == PT_LOAD)
2664 {
2665 Elf32_External_Phdr *phdrp;
2666 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2667 CORE_ADDR vaddr, paddr;
2668 CORE_ADDR displacement_vaddr = 0;
2669 CORE_ADDR displacement_paddr = 0;
2670
2671 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
2672 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2673 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2674
2675 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2676 byte_order);
2677 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2678
2679 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2680 byte_order);
2681 displacement_paddr = paddr - phdr2[i].p_paddr;
2682
2683 if (displacement_vaddr == displacement_paddr)
2684 displacement = displacement_vaddr;
2685
2686 break;
2687 }
2688
2689 /* Now compare program headers from the target and the binary
2690 with optional DISPLACEMENT. */
2691
2692 for (i = 0;
2693 i < phdrs_target->size () / sizeof (Elf32_External_Phdr);
2694 i++)
2695 {
2696 Elf32_External_Phdr *phdrp;
2697 Elf32_External_Phdr *phdr2p;
2698 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2699 CORE_ADDR vaddr, paddr;
2700 asection *plt2_asect;
2701
2702 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
2703 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2704 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2705 phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i];
2706
2707 /* PT_GNU_STACK is an exception by being never relocated by
2708 prelink as its addresses are always zero. */
2709
2710 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2711 continue;
2712
2713 /* Check also other adjustment combinations - PR 11786. */
2714
2715 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2716 byte_order);
2717 vaddr -= displacement;
2718 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2719
2720 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2721 byte_order);
2722 paddr -= displacement;
2723 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2724
2725 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2726 continue;
2727
2728 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2729 CentOS-5 has problems with filesz, memsz as well.
2730 Strip also modifies memsz of PT_TLS.
2731 See PR 11786. */
2732 if (phdr2[i].p_type == PT_GNU_RELRO
2733 || phdr2[i].p_type == PT_TLS)
2734 {
2735 Elf32_External_Phdr tmp_phdr = *phdrp;
2736 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2737
2738 memset (tmp_phdr.p_filesz, 0, 4);
2739 memset (tmp_phdr.p_memsz, 0, 4);
2740 memset (tmp_phdr.p_flags, 0, 4);
2741 memset (tmp_phdr.p_align, 0, 4);
2742 memset (tmp_phdr2.p_filesz, 0, 4);
2743 memset (tmp_phdr2.p_memsz, 0, 4);
2744 memset (tmp_phdr2.p_flags, 0, 4);
2745 memset (tmp_phdr2.p_align, 0, 4);
2746
2747 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2748 == 0)
2749 continue;
2750 }
2751
2752 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2753 bfd *exec_bfd = current_program_space->exec_bfd ();
2754 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2755 if (plt2_asect)
2756 {
2757 int content2;
2758 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2759 CORE_ADDR filesz;
2760
2761 content2 = (bfd_section_flags (plt2_asect)
2762 & SEC_HAS_CONTENTS) != 0;
2763
2764 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2765 byte_order);
2766
2767 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2768 FILESZ is from the in-memory image. */
2769 if (content2)
2770 filesz += bfd_section_size (plt2_asect);
2771 else
2772 filesz -= bfd_section_size (plt2_asect);
2773
2774 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2775 filesz);
2776
2777 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2778 continue;
2779 }
2780
2781 return 0;
2782 }
2783 }
2784 else if (arch_size == 64
2785 && phdrs_target->size () >= sizeof (Elf64_External_Phdr)
2786 && phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0)
2787 {
2788 Elf_Internal_Ehdr *ehdr2
2789 = elf_tdata (current_program_space->exec_bfd ())->elf_header;
2790 Elf_Internal_Phdr *phdr2
2791 = elf_tdata (current_program_space->exec_bfd ())->phdr;
2792 CORE_ADDR displacement = 0;
2793 int i;
2794
2795 /* DISPLACEMENT could be found more easily by the difference of
2796 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2797 already have enough information to compute that displacement
2798 with what we've read. */
2799
2800 for (i = 0; i < ehdr2->e_phnum; i++)
2801 if (phdr2[i].p_type == PT_LOAD)
2802 {
2803 Elf64_External_Phdr *phdrp;
2804 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2805 CORE_ADDR vaddr, paddr;
2806 CORE_ADDR displacement_vaddr = 0;
2807 CORE_ADDR displacement_paddr = 0;
2808
2809 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
2810 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2811 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2812
2813 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2814 byte_order);
2815 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2816
2817 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2818 byte_order);
2819 displacement_paddr = paddr - phdr2[i].p_paddr;
2820
2821 if (displacement_vaddr == displacement_paddr)
2822 displacement = displacement_vaddr;
2823
2824 break;
2825 }
2826
2827 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2828
2829 for (i = 0;
2830 i < phdrs_target->size () / sizeof (Elf64_External_Phdr);
2831 i++)
2832 {
2833 Elf64_External_Phdr *phdrp;
2834 Elf64_External_Phdr *phdr2p;
2835 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2836 CORE_ADDR vaddr, paddr;
2837 asection *plt2_asect;
2838
2839 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
2840 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2841 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2842 phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i];
2843
2844 /* PT_GNU_STACK is an exception by being never relocated by
2845 prelink as its addresses are always zero. */
2846
2847 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2848 continue;
2849
2850 /* Check also other adjustment combinations - PR 11786. */
2851
2852 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2853 byte_order);
2854 vaddr -= displacement;
2855 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2856
2857 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2858 byte_order);
2859 paddr -= displacement;
2860 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2861
2862 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2863 continue;
2864
2865 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2866 CentOS-5 has problems with filesz, memsz as well.
2867 Strip also modifies memsz of PT_TLS.
2868 See PR 11786. */
2869 if (phdr2[i].p_type == PT_GNU_RELRO
2870 || phdr2[i].p_type == PT_TLS)
2871 {
2872 Elf64_External_Phdr tmp_phdr = *phdrp;
2873 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2874
2875 memset (tmp_phdr.p_filesz, 0, 8);
2876 memset (tmp_phdr.p_memsz, 0, 8);
2877 memset (tmp_phdr.p_flags, 0, 4);
2878 memset (tmp_phdr.p_align, 0, 8);
2879 memset (tmp_phdr2.p_filesz, 0, 8);
2880 memset (tmp_phdr2.p_memsz, 0, 8);
2881 memset (tmp_phdr2.p_flags, 0, 4);
2882 memset (tmp_phdr2.p_align, 0, 8);
2883
2884 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2885 == 0)
2886 continue;
2887 }
2888
2889 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2890 plt2_asect
2891 = bfd_get_section_by_name (current_program_space->exec_bfd (),
2892 ".plt");
2893 if (plt2_asect)
2894 {
2895 int content2;
2896 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2897 CORE_ADDR filesz;
2898
2899 content2 = (bfd_section_flags (plt2_asect)
2900 & SEC_HAS_CONTENTS) != 0;
2901
2902 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2903 byte_order);
2904
2905 /* PLT2_ASECT is from on-disk file (current
2906 exec_bfd) while FILESZ is from the in-memory
2907 image. */
2908 if (content2)
2909 filesz += bfd_section_size (plt2_asect);
2910 else
2911 filesz -= bfd_section_size (plt2_asect);
2912
2913 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2914 filesz);
2915
2916 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2917 continue;
2918 }
2919
2920 return 0;
2921 }
2922 }
2923 else
2924 return 0;
2925 }
2926 }
2927
2928 if (info_verbose)
2929 {
2930 /* It can be printed repeatedly as there is no easy way to check
2931 the executable symbols/file has been already relocated to
2932 displacement. */
2933
2934 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2935 "displacement %s for \"%s\".\n"),
2936 paddress (target_gdbarch (), exec_displacement),
2937 bfd_get_filename (current_program_space->exec_bfd ()));
2938 }
2939
2940 *displacementp = exec_displacement;
2941 return 1;
2942 }
2943
2944 /* Relocate the main executable. This function should be called upon
2945 stopping the inferior process at the entry point to the program.
2946 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2947 different, the main executable is relocated by the proper amount. */
2948
2949 static void
2950 svr4_relocate_main_executable (void)
2951 {
2952 CORE_ADDR displacement;
2953
2954 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2955 probably contains the offsets computed using the PIE displacement
2956 from the previous run, which of course are irrelevant for this run.
2957 So we need to determine the new PIE displacement and recompute the
2958 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2959 already contains pre-computed offsets.
2960
2961 If we cannot compute the PIE displacement, either:
2962
2963 - The executable is not PIE.
2964
2965 - SYMFILE_OBJFILE does not match the executable started in the target.
2966 This can happen for main executable symbols loaded at the host while
2967 `ld.so --ld-args main-executable' is loaded in the target.
2968
2969 Then we leave the section offsets untouched and use them as is for
2970 this run. Either:
2971
2972 - These section offsets were properly reset earlier, and thus
2973 already contain the correct values. This can happen for instance
2974 when reconnecting via the remote protocol to a target that supports
2975 the `qOffsets' packet.
2976
2977 - The section offsets were not reset earlier, and the best we can
2978 hope is that the old offsets are still applicable to the new run. */
2979
2980 if (! svr4_exec_displacement (&displacement))
2981 return;
2982
2983 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2984 addresses. */
2985
2986 objfile *objf = current_program_space->symfile_object_file;
2987 if (objf)
2988 {
2989 section_offsets new_offsets (objf->section_offsets.size (),
2990 displacement);
2991 objfile_relocate (objf, new_offsets);
2992 }
2993 else if (current_program_space->exec_bfd ())
2994 {
2995 asection *asect;
2996
2997 bfd *exec_bfd = current_program_space->exec_bfd ();
2998 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2999 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
3000 bfd_section_vma (asect) + displacement);
3001 }
3002 }
3003
3004 /* Implement the "create_inferior_hook" target_solib_ops method.
3005
3006 For SVR4 executables, this first instruction is either the first
3007 instruction in the dynamic linker (for dynamically linked
3008 executables) or the instruction at "start" for statically linked
3009 executables. For dynamically linked executables, the system
3010 first exec's /lib/libc.so.N, which contains the dynamic linker,
3011 and starts it running. The dynamic linker maps in any needed
3012 shared libraries, maps in the actual user executable, and then
3013 jumps to "start" in the user executable.
3014
3015 We can arrange to cooperate with the dynamic linker to discover the
3016 names of shared libraries that are dynamically linked, and the base
3017 addresses to which they are linked.
3018
3019 This function is responsible for discovering those names and
3020 addresses, and saving sufficient information about them to allow
3021 their symbols to be read at a later time. */
3022
3023 static void
3024 svr4_solib_create_inferior_hook (int from_tty)
3025 {
3026 struct svr4_info *info;
3027
3028 info = get_svr4_info (current_program_space);
3029
3030 /* Clear the probes-based interface's state. */
3031 free_probes_table (info);
3032 free_solib_list (info);
3033
3034 /* Relocate the main executable if necessary. */
3035 svr4_relocate_main_executable ();
3036
3037 /* No point setting a breakpoint in the dynamic linker if we can't
3038 hit it (e.g., a core file, or a trace file). */
3039 if (!target_has_execution ())
3040 return;
3041
3042 if (!svr4_have_link_map_offsets ())
3043 return;
3044
3045 if (!enable_break (info, from_tty))
3046 return;
3047 }
3048
3049 static void
3050 svr4_clear_solib (void)
3051 {
3052 struct svr4_info *info;
3053
3054 info = get_svr4_info (current_program_space);
3055 info->debug_base = 0;
3056 info->debug_loader_offset_p = 0;
3057 info->debug_loader_offset = 0;
3058 xfree (info->debug_loader_name);
3059 info->debug_loader_name = NULL;
3060 }
3061
3062 /* Clear any bits of ADDR that wouldn't fit in a target-format
3063 data pointer. "Data pointer" here refers to whatever sort of
3064 address the dynamic linker uses to manage its sections. At the
3065 moment, we don't support shared libraries on any processors where
3066 code and data pointers are different sizes.
3067
3068 This isn't really the right solution. What we really need here is
3069 a way to do arithmetic on CORE_ADDR values that respects the
3070 natural pointer/address correspondence. (For example, on the MIPS,
3071 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3072 sign-extend the value. There, simply truncating the bits above
3073 gdbarch_ptr_bit, as we do below, is no good.) This should probably
3074 be a new gdbarch method or something. */
3075 static CORE_ADDR
3076 svr4_truncate_ptr (CORE_ADDR addr)
3077 {
3078 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
3079 /* We don't need to truncate anything, and the bit twiddling below
3080 will fail due to overflow problems. */
3081 return addr;
3082 else
3083 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
3084 }
3085
3086
3087 static void
3088 svr4_relocate_section_addresses (struct so_list *so,
3089 struct target_section *sec)
3090 {
3091 bfd *abfd = sec->the_bfd_section->owner;
3092
3093 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3094 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
3095 }
3096 \f
3097
3098 /* Architecture-specific operations. */
3099
3100 /* Per-architecture data key. */
3101 static struct gdbarch_data *solib_svr4_data;
3102
3103 struct solib_svr4_ops
3104 {
3105 /* Return a description of the layout of `struct link_map'. */
3106 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3107 };
3108
3109 /* Return a default for the architecture-specific operations. */
3110
3111 static void *
3112 solib_svr4_init (struct obstack *obstack)
3113 {
3114 struct solib_svr4_ops *ops;
3115
3116 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
3117 ops->fetch_link_map_offsets = NULL;
3118 return ops;
3119 }
3120
3121 /* Set the architecture-specific `struct link_map_offsets' fetcher for
3122 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
3123
3124 void
3125 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3126 struct link_map_offsets *(*flmo) (void))
3127 {
3128 struct solib_svr4_ops *ops
3129 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
3130
3131 ops->fetch_link_map_offsets = flmo;
3132
3133 set_solib_ops (gdbarch, &svr4_so_ops);
3134 set_gdbarch_iterate_over_objfiles_in_search_order
3135 (gdbarch, svr4_iterate_over_objfiles_in_search_order);
3136 }
3137
3138 /* Fetch a link_map_offsets structure using the architecture-specific
3139 `struct link_map_offsets' fetcher. */
3140
3141 static struct link_map_offsets *
3142 svr4_fetch_link_map_offsets (void)
3143 {
3144 struct solib_svr4_ops *ops
3145 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3146 solib_svr4_data);
3147
3148 gdb_assert (ops->fetch_link_map_offsets);
3149 return ops->fetch_link_map_offsets ();
3150 }
3151
3152 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3153
3154 static int
3155 svr4_have_link_map_offsets (void)
3156 {
3157 struct solib_svr4_ops *ops
3158 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3159 solib_svr4_data);
3160
3161 return (ops->fetch_link_map_offsets != NULL);
3162 }
3163 \f
3164
3165 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
3166 `struct r_debug' and a `struct link_map' that are binary compatible
3167 with the original SVR4 implementation. */
3168
3169 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3170 for an ILP32 SVR4 system. */
3171
3172 struct link_map_offsets *
3173 svr4_ilp32_fetch_link_map_offsets (void)
3174 {
3175 static struct link_map_offsets lmo;
3176 static struct link_map_offsets *lmp = NULL;
3177
3178 if (lmp == NULL)
3179 {
3180 lmp = &lmo;
3181
3182 lmo.r_version_offset = 0;
3183 lmo.r_version_size = 4;
3184 lmo.r_map_offset = 4;
3185 lmo.r_brk_offset = 8;
3186 lmo.r_ldsomap_offset = 20;
3187
3188 /* Everything we need is in the first 20 bytes. */
3189 lmo.link_map_size = 20;
3190 lmo.l_addr_offset = 0;
3191 lmo.l_name_offset = 4;
3192 lmo.l_ld_offset = 8;
3193 lmo.l_next_offset = 12;
3194 lmo.l_prev_offset = 16;
3195 }
3196
3197 return lmp;
3198 }
3199
3200 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3201 for an LP64 SVR4 system. */
3202
3203 struct link_map_offsets *
3204 svr4_lp64_fetch_link_map_offsets (void)
3205 {
3206 static struct link_map_offsets lmo;
3207 static struct link_map_offsets *lmp = NULL;
3208
3209 if (lmp == NULL)
3210 {
3211 lmp = &lmo;
3212
3213 lmo.r_version_offset = 0;
3214 lmo.r_version_size = 4;
3215 lmo.r_map_offset = 8;
3216 lmo.r_brk_offset = 16;
3217 lmo.r_ldsomap_offset = 40;
3218
3219 /* Everything we need is in the first 40 bytes. */
3220 lmo.link_map_size = 40;
3221 lmo.l_addr_offset = 0;
3222 lmo.l_name_offset = 8;
3223 lmo.l_ld_offset = 16;
3224 lmo.l_next_offset = 24;
3225 lmo.l_prev_offset = 32;
3226 }
3227
3228 return lmp;
3229 }
3230 \f
3231
3232 struct target_so_ops svr4_so_ops;
3233
3234 /* Search order for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3235 different rule for symbol lookup. The lookup begins here in the DSO, not in
3236 the main executable. */
3237
3238 static void
3239 svr4_iterate_over_objfiles_in_search_order
3240 (struct gdbarch *gdbarch,
3241 iterate_over_objfiles_in_search_order_cb_ftype *cb,
3242 void *cb_data, struct objfile *current_objfile)
3243 {
3244 bool checked_current_objfile = false;
3245 if (current_objfile != nullptr)
3246 {
3247 bfd *abfd;
3248
3249 if (current_objfile->separate_debug_objfile_backlink != nullptr)
3250 current_objfile = current_objfile->separate_debug_objfile_backlink;
3251
3252 if (current_objfile == current_program_space->symfile_object_file)
3253 abfd = current_program_space->exec_bfd ();
3254 else
3255 abfd = current_objfile->obfd;
3256
3257 if (abfd != nullptr
3258 && scan_dyntag (DT_SYMBOLIC, abfd, nullptr, nullptr) == 1)
3259 {
3260 checked_current_objfile = true;
3261 if (cb (current_objfile, cb_data) != 0)
3262 return;
3263 }
3264 }
3265
3266 for (objfile *objfile : current_program_space->objfiles ())
3267 {
3268 if (checked_current_objfile && objfile == current_objfile)
3269 continue;
3270 if (cb (objfile, cb_data) != 0)
3271 return;
3272 }
3273 }
3274
3275 void _initialize_svr4_solib ();
3276 void
3277 _initialize_svr4_solib ()
3278 {
3279 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3280
3281 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
3282 svr4_so_ops.free_so = svr4_free_so;
3283 svr4_so_ops.clear_so = svr4_clear_so;
3284 svr4_so_ops.clear_solib = svr4_clear_solib;
3285 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3286 svr4_so_ops.current_sos = svr4_current_sos;
3287 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
3288 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
3289 svr4_so_ops.bfd_open = solib_bfd_open;
3290 svr4_so_ops.same = svr4_same;
3291 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
3292 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3293 svr4_so_ops.handle_event = svr4_handle_solib_event;
3294
3295 gdb::observers::free_objfile.attach (svr4_free_objfile_observer);
3296 }
This page took 0.10105 seconds and 5 git commands to generate.