Copyright year update in most files of the GDB Project.
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990-1996, 1998-2001, 2003-2012 Free Software
4 Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22
23 #include "elf/external.h"
24 #include "elf/common.h"
25 #include "elf/mips.h"
26
27 #include "symtab.h"
28 #include "bfd.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcore.h"
32 #include "target.h"
33 #include "inferior.h"
34 #include "regcache.h"
35 #include "gdbthread.h"
36 #include "observer.h"
37
38 #include "gdb_assert.h"
39
40 #include "solist.h"
41 #include "solib.h"
42 #include "solib-svr4.h"
43
44 #include "bfd-target.h"
45 #include "elf-bfd.h"
46 #include "exec.h"
47 #include "auxv.h"
48 #include "exceptions.h"
49
50 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
51 static int svr4_have_link_map_offsets (void);
52 static void svr4_relocate_main_executable (void);
53
54 /* Link map info to include in an allocated so_list entry. */
55
56 struct lm_info
57 {
58 /* Amount by which addresses in the binary should be relocated to
59 match the inferior. The direct inferior value is L_ADDR_INFERIOR.
60 When prelinking is involved and the prelink base address changes,
61 we may need a different offset - the recomputed offset is in L_ADDR.
62 It is commonly the same value. It is cached as we want to warn about
63 the difference and compute it only once. L_ADDR is valid
64 iff L_ADDR_P. */
65 CORE_ADDR l_addr, l_addr_inferior;
66 unsigned int l_addr_p : 1;
67
68 /* The target location of lm. */
69 CORE_ADDR lm_addr;
70
71 /* Values read in from inferior's fields of the same name. */
72 CORE_ADDR l_ld, l_next, l_prev, l_name;
73 };
74
75 /* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
83 static const char * const solib_break_names[] =
84 {
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
89 "__dl_rtld_db_dlactivity",
90 "_rtld_debug_state",
91
92 NULL
93 };
94
95 static const char * const bkpt_names[] =
96 {
97 "_start",
98 "__start",
99 "main",
100 NULL
101 };
102
103 static const char * const main_name_list[] =
104 {
105 "main_$main",
106 NULL
107 };
108
109 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
110 the same shared library. */
111
112 static int
113 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
114 {
115 if (strcmp (gdb_so_name, inferior_so_name) == 0)
116 return 1;
117
118 /* On Solaris, when starting inferior we think that dynamic linker is
119 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
120 contains /lib/ld.so.1. Sometimes one file is a link to another, but
121 sometimes they have identical content, but are not linked to each
122 other. We don't restrict this check for Solaris, but the chances
123 of running into this situation elsewhere are very low. */
124 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
125 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
126 return 1;
127
128 /* Similarly, we observed the same issue with sparc64, but with
129 different locations. */
130 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
131 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
132 return 1;
133
134 return 0;
135 }
136
137 static int
138 svr4_same (struct so_list *gdb, struct so_list *inferior)
139 {
140 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
141 }
142
143 static struct lm_info *
144 lm_info_read (CORE_ADDR lm_addr)
145 {
146 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
147 gdb_byte *lm;
148 struct lm_info *lm_info;
149 struct cleanup *back_to;
150
151 lm = xmalloc (lmo->link_map_size);
152 back_to = make_cleanup (xfree, lm);
153
154 if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
155 {
156 warning (_("Error reading shared library list entry at %s"),
157 paddress (target_gdbarch, lm_addr)),
158 lm_info = NULL;
159 }
160 else
161 {
162 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
163
164 lm_info = xzalloc (sizeof (*lm_info));
165 lm_info->lm_addr = lm_addr;
166
167 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
168 ptr_type);
169 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
170 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
171 ptr_type);
172 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
173 ptr_type);
174 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
175 ptr_type);
176 }
177
178 do_cleanups (back_to);
179
180 return lm_info;
181 }
182
183 static int
184 has_lm_dynamic_from_link_map (void)
185 {
186 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
187
188 return lmo->l_ld_offset >= 0;
189 }
190
191 static CORE_ADDR
192 lm_addr_check (struct so_list *so, bfd *abfd)
193 {
194 if (!so->lm_info->l_addr_p)
195 {
196 struct bfd_section *dyninfo_sect;
197 CORE_ADDR l_addr, l_dynaddr, dynaddr;
198
199 l_addr = so->lm_info->l_addr_inferior;
200
201 if (! abfd || ! has_lm_dynamic_from_link_map ())
202 goto set_addr;
203
204 l_dynaddr = so->lm_info->l_ld;
205
206 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
207 if (dyninfo_sect == NULL)
208 goto set_addr;
209
210 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
211
212 if (dynaddr + l_addr != l_dynaddr)
213 {
214 CORE_ADDR align = 0x1000;
215 CORE_ADDR minpagesize = align;
216
217 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
218 {
219 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
220 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
221 int i;
222
223 align = 1;
224
225 for (i = 0; i < ehdr->e_phnum; i++)
226 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
227 align = phdr[i].p_align;
228
229 minpagesize = get_elf_backend_data (abfd)->minpagesize;
230 }
231
232 /* Turn it into a mask. */
233 align--;
234
235 /* If the changes match the alignment requirements, we
236 assume we're using a core file that was generated by the
237 same binary, just prelinked with a different base offset.
238 If it doesn't match, we may have a different binary, the
239 same binary with the dynamic table loaded at an unrelated
240 location, or anything, really. To avoid regressions,
241 don't adjust the base offset in the latter case, although
242 odds are that, if things really changed, debugging won't
243 quite work.
244
245 One could expect more the condition
246 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
247 but the one below is relaxed for PPC. The PPC kernel supports
248 either 4k or 64k page sizes. To be prepared for 64k pages,
249 PPC ELF files are built using an alignment requirement of 64k.
250 However, when running on a kernel supporting 4k pages, the memory
251 mapping of the library may not actually happen on a 64k boundary!
252
253 (In the usual case where (l_addr & align) == 0, this check is
254 equivalent to the possibly expected check above.)
255
256 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
257
258 l_addr = l_dynaddr - dynaddr;
259
260 if ((l_addr & (minpagesize - 1)) == 0
261 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
262 {
263 if (info_verbose)
264 printf_unfiltered (_("Using PIC (Position Independent Code) "
265 "prelink displacement %s for \"%s\".\n"),
266 paddress (target_gdbarch, l_addr),
267 so->so_name);
268 }
269 else
270 {
271 /* There is no way to verify the library file matches. prelink
272 can during prelinking of an unprelinked file (or unprelinking
273 of a prelinked file) shift the DYNAMIC segment by arbitrary
274 offset without any page size alignment. There is no way to
275 find out the ELF header and/or Program Headers for a limited
276 verification if it they match. One could do a verification
277 of the DYNAMIC segment. Still the found address is the best
278 one GDB could find. */
279
280 warning (_(".dynamic section for \"%s\" "
281 "is not at the expected address "
282 "(wrong library or version mismatch?)"), so->so_name);
283 }
284 }
285
286 set_addr:
287 so->lm_info->l_addr = l_addr;
288 so->lm_info->l_addr_p = 1;
289 }
290
291 return so->lm_info->l_addr;
292 }
293
294 /* Per pspace SVR4 specific data. */
295
296 struct svr4_info
297 {
298 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
299
300 /* Validity flag for debug_loader_offset. */
301 int debug_loader_offset_p;
302
303 /* Load address for the dynamic linker, inferred. */
304 CORE_ADDR debug_loader_offset;
305
306 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
307 char *debug_loader_name;
308
309 /* Load map address for the main executable. */
310 CORE_ADDR main_lm_addr;
311
312 CORE_ADDR interp_text_sect_low;
313 CORE_ADDR interp_text_sect_high;
314 CORE_ADDR interp_plt_sect_low;
315 CORE_ADDR interp_plt_sect_high;
316 };
317
318 /* Per-program-space data key. */
319 static const struct program_space_data *solib_svr4_pspace_data;
320
321 static void
322 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
323 {
324 struct svr4_info *info;
325
326 info = program_space_data (pspace, solib_svr4_pspace_data);
327 xfree (info);
328 }
329
330 /* Get the current svr4 data. If none is found yet, add it now. This
331 function always returns a valid object. */
332
333 static struct svr4_info *
334 get_svr4_info (void)
335 {
336 struct svr4_info *info;
337
338 info = program_space_data (current_program_space, solib_svr4_pspace_data);
339 if (info != NULL)
340 return info;
341
342 info = XZALLOC (struct svr4_info);
343 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
344 return info;
345 }
346
347 /* Local function prototypes */
348
349 static int match_main (const char *);
350
351 /* Read program header TYPE from inferior memory. The header is found
352 by scanning the OS auxillary vector.
353
354 If TYPE == -1, return the program headers instead of the contents of
355 one program header.
356
357 Return a pointer to allocated memory holding the program header contents,
358 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
359 size of those contents is returned to P_SECT_SIZE. Likewise, the target
360 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
361
362 static gdb_byte *
363 read_program_header (int type, int *p_sect_size, int *p_arch_size)
364 {
365 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
366 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
367 int arch_size, sect_size;
368 CORE_ADDR sect_addr;
369 gdb_byte *buf;
370 int pt_phdr_p = 0;
371
372 /* Get required auxv elements from target. */
373 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
374 return 0;
375 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
376 return 0;
377 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
378 return 0;
379 if (!at_phdr || !at_phnum)
380 return 0;
381
382 /* Determine ELF architecture type. */
383 if (at_phent == sizeof (Elf32_External_Phdr))
384 arch_size = 32;
385 else if (at_phent == sizeof (Elf64_External_Phdr))
386 arch_size = 64;
387 else
388 return 0;
389
390 /* Find the requested segment. */
391 if (type == -1)
392 {
393 sect_addr = at_phdr;
394 sect_size = at_phent * at_phnum;
395 }
396 else if (arch_size == 32)
397 {
398 Elf32_External_Phdr phdr;
399 int i;
400
401 /* Search for requested PHDR. */
402 for (i = 0; i < at_phnum; i++)
403 {
404 int p_type;
405
406 if (target_read_memory (at_phdr + i * sizeof (phdr),
407 (gdb_byte *)&phdr, sizeof (phdr)))
408 return 0;
409
410 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
411 4, byte_order);
412
413 if (p_type == PT_PHDR)
414 {
415 pt_phdr_p = 1;
416 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
417 4, byte_order);
418 }
419
420 if (p_type == type)
421 break;
422 }
423
424 if (i == at_phnum)
425 return 0;
426
427 /* Retrieve address and size. */
428 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
429 4, byte_order);
430 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
431 4, byte_order);
432 }
433 else
434 {
435 Elf64_External_Phdr phdr;
436 int i;
437
438 /* Search for requested PHDR. */
439 for (i = 0; i < at_phnum; i++)
440 {
441 int p_type;
442
443 if (target_read_memory (at_phdr + i * sizeof (phdr),
444 (gdb_byte *)&phdr, sizeof (phdr)))
445 return 0;
446
447 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
448 4, byte_order);
449
450 if (p_type == PT_PHDR)
451 {
452 pt_phdr_p = 1;
453 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
454 8, byte_order);
455 }
456
457 if (p_type == type)
458 break;
459 }
460
461 if (i == at_phnum)
462 return 0;
463
464 /* Retrieve address and size. */
465 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
466 8, byte_order);
467 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
468 8, byte_order);
469 }
470
471 /* PT_PHDR is optional, but we really need it
472 for PIE to make this work in general. */
473
474 if (pt_phdr_p)
475 {
476 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
477 Relocation offset is the difference between the two. */
478 sect_addr = sect_addr + (at_phdr - pt_phdr);
479 }
480
481 /* Read in requested program header. */
482 buf = xmalloc (sect_size);
483 if (target_read_memory (sect_addr, buf, sect_size))
484 {
485 xfree (buf);
486 return NULL;
487 }
488
489 if (p_arch_size)
490 *p_arch_size = arch_size;
491 if (p_sect_size)
492 *p_sect_size = sect_size;
493
494 return buf;
495 }
496
497
498 /* Return program interpreter string. */
499 static gdb_byte *
500 find_program_interpreter (void)
501 {
502 gdb_byte *buf = NULL;
503
504 /* If we have an exec_bfd, use its section table. */
505 if (exec_bfd
506 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
507 {
508 struct bfd_section *interp_sect;
509
510 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
511 if (interp_sect != NULL)
512 {
513 int sect_size = bfd_section_size (exec_bfd, interp_sect);
514
515 buf = xmalloc (sect_size);
516 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
517 }
518 }
519
520 /* If we didn't find it, use the target auxillary vector. */
521 if (!buf)
522 buf = read_program_header (PT_INTERP, NULL, NULL);
523
524 return buf;
525 }
526
527
528 /* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
529 returned and the corresponding PTR is set. */
530
531 static int
532 scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
533 {
534 int arch_size, step, sect_size;
535 long dyn_tag;
536 CORE_ADDR dyn_ptr, dyn_addr;
537 gdb_byte *bufend, *bufstart, *buf;
538 Elf32_External_Dyn *x_dynp_32;
539 Elf64_External_Dyn *x_dynp_64;
540 struct bfd_section *sect;
541 struct target_section *target_section;
542
543 if (abfd == NULL)
544 return 0;
545
546 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
547 return 0;
548
549 arch_size = bfd_get_arch_size (abfd);
550 if (arch_size == -1)
551 return 0;
552
553 /* Find the start address of the .dynamic section. */
554 sect = bfd_get_section_by_name (abfd, ".dynamic");
555 if (sect == NULL)
556 return 0;
557
558 for (target_section = current_target_sections->sections;
559 target_section < current_target_sections->sections_end;
560 target_section++)
561 if (sect == target_section->the_bfd_section)
562 break;
563 if (target_section < current_target_sections->sections_end)
564 dyn_addr = target_section->addr;
565 else
566 {
567 /* ABFD may come from OBJFILE acting only as a symbol file without being
568 loaded into the target (see add_symbol_file_command). This case is
569 such fallback to the file VMA address without the possibility of
570 having the section relocated to its actual in-memory address. */
571
572 dyn_addr = bfd_section_vma (abfd, sect);
573 }
574
575 /* Read in .dynamic from the BFD. We will get the actual value
576 from memory later. */
577 sect_size = bfd_section_size (abfd, sect);
578 buf = bufstart = alloca (sect_size);
579 if (!bfd_get_section_contents (abfd, sect,
580 buf, 0, sect_size))
581 return 0;
582
583 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
584 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
585 : sizeof (Elf64_External_Dyn);
586 for (bufend = buf + sect_size;
587 buf < bufend;
588 buf += step)
589 {
590 if (arch_size == 32)
591 {
592 x_dynp_32 = (Elf32_External_Dyn *) buf;
593 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
594 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
595 }
596 else
597 {
598 x_dynp_64 = (Elf64_External_Dyn *) buf;
599 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
600 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
601 }
602 if (dyn_tag == DT_NULL)
603 return 0;
604 if (dyn_tag == dyntag)
605 {
606 /* If requested, try to read the runtime value of this .dynamic
607 entry. */
608 if (ptr)
609 {
610 struct type *ptr_type;
611 gdb_byte ptr_buf[8];
612 CORE_ADDR ptr_addr;
613
614 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
615 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
616 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
617 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
618 *ptr = dyn_ptr;
619 }
620 return 1;
621 }
622 }
623
624 return 0;
625 }
626
627 /* Scan for DYNTAG in .dynamic section of the target's main executable,
628 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
629 returned and the corresponding PTR is set. */
630
631 static int
632 scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
633 {
634 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
635 int sect_size, arch_size, step;
636 long dyn_tag;
637 CORE_ADDR dyn_ptr;
638 gdb_byte *bufend, *bufstart, *buf;
639
640 /* Read in .dynamic section. */
641 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
642 if (!buf)
643 return 0;
644
645 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
646 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
647 : sizeof (Elf64_External_Dyn);
648 for (bufend = buf + sect_size;
649 buf < bufend;
650 buf += step)
651 {
652 if (arch_size == 32)
653 {
654 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
655
656 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
657 4, byte_order);
658 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
659 4, byte_order);
660 }
661 else
662 {
663 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
664
665 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
666 8, byte_order);
667 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
668 8, byte_order);
669 }
670 if (dyn_tag == DT_NULL)
671 break;
672
673 if (dyn_tag == dyntag)
674 {
675 if (ptr)
676 *ptr = dyn_ptr;
677
678 xfree (bufstart);
679 return 1;
680 }
681 }
682
683 xfree (bufstart);
684 return 0;
685 }
686
687 /* Locate the base address of dynamic linker structs for SVR4 elf
688 targets.
689
690 For SVR4 elf targets the address of the dynamic linker's runtime
691 structure is contained within the dynamic info section in the
692 executable file. The dynamic section is also mapped into the
693 inferior address space. Because the runtime loader fills in the
694 real address before starting the inferior, we have to read in the
695 dynamic info section from the inferior address space.
696 If there are any errors while trying to find the address, we
697 silently return 0, otherwise the found address is returned. */
698
699 static CORE_ADDR
700 elf_locate_base (void)
701 {
702 struct minimal_symbol *msymbol;
703 CORE_ADDR dyn_ptr;
704
705 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
706 instead of DT_DEBUG, although they sometimes contain an unused
707 DT_DEBUG. */
708 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
709 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
710 {
711 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
712 gdb_byte *pbuf;
713 int pbuf_size = TYPE_LENGTH (ptr_type);
714
715 pbuf = alloca (pbuf_size);
716 /* DT_MIPS_RLD_MAP contains a pointer to the address
717 of the dynamic link structure. */
718 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
719 return 0;
720 return extract_typed_address (pbuf, ptr_type);
721 }
722
723 /* Find DT_DEBUG. */
724 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
725 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
726 return dyn_ptr;
727
728 /* This may be a static executable. Look for the symbol
729 conventionally named _r_debug, as a last resort. */
730 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
731 if (msymbol != NULL)
732 return SYMBOL_VALUE_ADDRESS (msymbol);
733
734 /* DT_DEBUG entry not found. */
735 return 0;
736 }
737
738 /* Locate the base address of dynamic linker structs.
739
740 For both the SunOS and SVR4 shared library implementations, if the
741 inferior executable has been linked dynamically, there is a single
742 address somewhere in the inferior's data space which is the key to
743 locating all of the dynamic linker's runtime structures. This
744 address is the value of the debug base symbol. The job of this
745 function is to find and return that address, or to return 0 if there
746 is no such address (the executable is statically linked for example).
747
748 For SunOS, the job is almost trivial, since the dynamic linker and
749 all of it's structures are statically linked to the executable at
750 link time. Thus the symbol for the address we are looking for has
751 already been added to the minimal symbol table for the executable's
752 objfile at the time the symbol file's symbols were read, and all we
753 have to do is look it up there. Note that we explicitly do NOT want
754 to find the copies in the shared library.
755
756 The SVR4 version is a bit more complicated because the address
757 is contained somewhere in the dynamic info section. We have to go
758 to a lot more work to discover the address of the debug base symbol.
759 Because of this complexity, we cache the value we find and return that
760 value on subsequent invocations. Note there is no copy in the
761 executable symbol tables. */
762
763 static CORE_ADDR
764 locate_base (struct svr4_info *info)
765 {
766 /* Check to see if we have a currently valid address, and if so, avoid
767 doing all this work again and just return the cached address. If
768 we have no cached address, try to locate it in the dynamic info
769 section for ELF executables. There's no point in doing any of this
770 though if we don't have some link map offsets to work with. */
771
772 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
773 info->debug_base = elf_locate_base ();
774 return info->debug_base;
775 }
776
777 /* Find the first element in the inferior's dynamic link map, and
778 return its address in the inferior. Return zero if the address
779 could not be determined.
780
781 FIXME: Perhaps we should validate the info somehow, perhaps by
782 checking r_version for a known version number, or r_state for
783 RT_CONSISTENT. */
784
785 static CORE_ADDR
786 solib_svr4_r_map (struct svr4_info *info)
787 {
788 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
789 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
790 CORE_ADDR addr = 0;
791 volatile struct gdb_exception ex;
792
793 TRY_CATCH (ex, RETURN_MASK_ERROR)
794 {
795 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
796 ptr_type);
797 }
798 exception_print (gdb_stderr, ex);
799 return addr;
800 }
801
802 /* Find r_brk from the inferior's debug base. */
803
804 static CORE_ADDR
805 solib_svr4_r_brk (struct svr4_info *info)
806 {
807 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
808 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
809
810 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
811 ptr_type);
812 }
813
814 /* Find the link map for the dynamic linker (if it is not in the
815 normal list of loaded shared objects). */
816
817 static CORE_ADDR
818 solib_svr4_r_ldsomap (struct svr4_info *info)
819 {
820 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
821 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
822 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
823 ULONGEST version;
824
825 /* Check version, and return zero if `struct r_debug' doesn't have
826 the r_ldsomap member. */
827 version
828 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
829 lmo->r_version_size, byte_order);
830 if (version < 2 || lmo->r_ldsomap_offset == -1)
831 return 0;
832
833 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
834 ptr_type);
835 }
836
837 /* On Solaris systems with some versions of the dynamic linker,
838 ld.so's l_name pointer points to the SONAME in the string table
839 rather than into writable memory. So that GDB can find shared
840 libraries when loading a core file generated by gcore, ensure that
841 memory areas containing the l_name string are saved in the core
842 file. */
843
844 static int
845 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
846 {
847 struct svr4_info *info;
848 CORE_ADDR ldsomap;
849 struct so_list *new;
850 struct cleanup *old_chain;
851 struct link_map_offsets *lmo;
852 CORE_ADDR name_lm;
853
854 info = get_svr4_info ();
855
856 info->debug_base = 0;
857 locate_base (info);
858 if (!info->debug_base)
859 return 0;
860
861 ldsomap = solib_svr4_r_ldsomap (info);
862 if (!ldsomap)
863 return 0;
864
865 lmo = svr4_fetch_link_map_offsets ();
866 new = XZALLOC (struct so_list);
867 old_chain = make_cleanup (xfree, new);
868 new->lm_info = lm_info_read (ldsomap);
869 make_cleanup (xfree, new->lm_info);
870 name_lm = new->lm_info ? new->lm_info->l_name : 0;
871 do_cleanups (old_chain);
872
873 return (name_lm >= vaddr && name_lm < vaddr + size);
874 }
875
876 /* Implement the "open_symbol_file_object" target_so_ops method.
877
878 If no open symbol file, attempt to locate and open the main symbol
879 file. On SVR4 systems, this is the first link map entry. If its
880 name is here, we can open it. Useful when attaching to a process
881 without first loading its symbol file. */
882
883 static int
884 open_symbol_file_object (void *from_ttyp)
885 {
886 CORE_ADDR lm, l_name;
887 char *filename;
888 int errcode;
889 int from_tty = *(int *)from_ttyp;
890 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
891 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
892 int l_name_size = TYPE_LENGTH (ptr_type);
893 gdb_byte *l_name_buf = xmalloc (l_name_size);
894 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
895 struct svr4_info *info = get_svr4_info ();
896
897 if (symfile_objfile)
898 if (!query (_("Attempt to reload symbols from process? ")))
899 {
900 do_cleanups (cleanups);
901 return 0;
902 }
903
904 /* Always locate the debug struct, in case it has moved. */
905 info->debug_base = 0;
906 if (locate_base (info) == 0)
907 {
908 do_cleanups (cleanups);
909 return 0; /* failed somehow... */
910 }
911
912 /* First link map member should be the executable. */
913 lm = solib_svr4_r_map (info);
914 if (lm == 0)
915 {
916 do_cleanups (cleanups);
917 return 0; /* failed somehow... */
918 }
919
920 /* Read address of name from target memory to GDB. */
921 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
922
923 /* Convert the address to host format. */
924 l_name = extract_typed_address (l_name_buf, ptr_type);
925
926 if (l_name == 0)
927 {
928 do_cleanups (cleanups);
929 return 0; /* No filename. */
930 }
931
932 /* Now fetch the filename from target memory. */
933 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
934 make_cleanup (xfree, filename);
935
936 if (errcode)
937 {
938 warning (_("failed to read exec filename from attached file: %s"),
939 safe_strerror (errcode));
940 do_cleanups (cleanups);
941 return 0;
942 }
943
944 /* Have a pathname: read the symbol file. */
945 symbol_file_add_main (filename, from_tty);
946
947 do_cleanups (cleanups);
948 return 1;
949 }
950
951 /* Data exchange structure for the XML parser as returned by
952 svr4_current_sos_via_xfer_libraries. */
953
954 struct svr4_library_list
955 {
956 struct so_list *head, **tailp;
957
958 /* Inferior address of struct link_map used for the main executable. It is
959 NULL if not known. */
960 CORE_ADDR main_lm;
961 };
962
963 /* Implementation for target_so_ops.free_so. */
964
965 static void
966 svr4_free_so (struct so_list *so)
967 {
968 xfree (so->lm_info);
969 }
970
971 /* Free so_list built so far (called via cleanup). */
972
973 static void
974 svr4_free_library_list (void *p_list)
975 {
976 struct so_list *list = *(struct so_list **) p_list;
977
978 while (list != NULL)
979 {
980 struct so_list *next = list->next;
981
982 svr4_free_so (list);
983 list = next;
984 }
985 }
986
987 #ifdef HAVE_LIBEXPAT
988
989 #include "xml-support.h"
990
991 /* Handle the start of a <library> element. Note: new elements are added
992 at the tail of the list, keeping the list in order. */
993
994 static void
995 library_list_start_library (struct gdb_xml_parser *parser,
996 const struct gdb_xml_element *element,
997 void *user_data, VEC(gdb_xml_value_s) *attributes)
998 {
999 struct svr4_library_list *list = user_data;
1000 const char *name = xml_find_attribute (attributes, "name")->value;
1001 ULONGEST *lmp = xml_find_attribute (attributes, "lm")->value;
1002 ULONGEST *l_addrp = xml_find_attribute (attributes, "l_addr")->value;
1003 ULONGEST *l_ldp = xml_find_attribute (attributes, "l_ld")->value;
1004 struct so_list *new_elem;
1005
1006 new_elem = XZALLOC (struct so_list);
1007 new_elem->lm_info = XZALLOC (struct lm_info);
1008 new_elem->lm_info->lm_addr = *lmp;
1009 new_elem->lm_info->l_addr_inferior = *l_addrp;
1010 new_elem->lm_info->l_ld = *l_ldp;
1011
1012 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1013 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1014 strcpy (new_elem->so_original_name, new_elem->so_name);
1015
1016 *list->tailp = new_elem;
1017 list->tailp = &new_elem->next;
1018 }
1019
1020 /* Handle the start of a <library-list-svr4> element. */
1021
1022 static void
1023 svr4_library_list_start_list (struct gdb_xml_parser *parser,
1024 const struct gdb_xml_element *element,
1025 void *user_data, VEC(gdb_xml_value_s) *attributes)
1026 {
1027 struct svr4_library_list *list = user_data;
1028 const char *version = xml_find_attribute (attributes, "version")->value;
1029 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1030
1031 if (strcmp (version, "1.0") != 0)
1032 gdb_xml_error (parser,
1033 _("SVR4 Library list has unsupported version \"%s\""),
1034 version);
1035
1036 if (main_lm)
1037 list->main_lm = *(ULONGEST *) main_lm->value;
1038 }
1039
1040 /* The allowed elements and attributes for an XML library list.
1041 The root element is a <library-list>. */
1042
1043 static const struct gdb_xml_attribute svr4_library_attributes[] =
1044 {
1045 { "name", GDB_XML_AF_NONE, NULL, NULL },
1046 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1047 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1048 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1049 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1050 };
1051
1052 static const struct gdb_xml_element svr4_library_list_children[] =
1053 {
1054 {
1055 "library", svr4_library_attributes, NULL,
1056 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1057 library_list_start_library, NULL
1058 },
1059 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1060 };
1061
1062 static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1063 {
1064 { "version", GDB_XML_AF_NONE, NULL, NULL },
1065 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1066 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1067 };
1068
1069 static const struct gdb_xml_element svr4_library_list_elements[] =
1070 {
1071 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1072 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1073 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1074 };
1075
1076 /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1077
1078 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1079 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1080 empty, caller is responsible for freeing all its entries. */
1081
1082 static int
1083 svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1084 {
1085 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1086 &list->head);
1087
1088 memset (list, 0, sizeof (*list));
1089 list->tailp = &list->head;
1090 if (gdb_xml_parse_quick (_("target library list"), "library-list.dtd",
1091 svr4_library_list_elements, document, list) == 0)
1092 {
1093 /* Parsed successfully, keep the result. */
1094 discard_cleanups (back_to);
1095 return 1;
1096 }
1097
1098 do_cleanups (back_to);
1099 return 0;
1100 }
1101
1102 /* Attempt to get so_list from target via qXfer:libraries:read packet.
1103
1104 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1105 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1106 empty, caller is responsible for freeing all its entries. */
1107
1108 static int
1109 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list)
1110 {
1111 char *svr4_library_document;
1112 int result;
1113 struct cleanup *back_to;
1114
1115 /* Fetch the list of shared libraries. */
1116 svr4_library_document = target_read_stralloc (&current_target,
1117 TARGET_OBJECT_LIBRARIES_SVR4,
1118 NULL);
1119 if (svr4_library_document == NULL)
1120 return 0;
1121
1122 back_to = make_cleanup (xfree, svr4_library_document);
1123 result = svr4_parse_libraries (svr4_library_document, list);
1124 do_cleanups (back_to);
1125
1126 return result;
1127 }
1128
1129 #else
1130
1131 static int
1132 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list)
1133 {
1134 return 0;
1135 }
1136
1137 #endif
1138
1139 /* If no shared library information is available from the dynamic
1140 linker, build a fallback list from other sources. */
1141
1142 static struct so_list *
1143 svr4_default_sos (void)
1144 {
1145 struct svr4_info *info = get_svr4_info ();
1146 struct so_list *new;
1147
1148 if (!info->debug_loader_offset_p)
1149 return NULL;
1150
1151 new = XZALLOC (struct so_list);
1152
1153 new->lm_info = xzalloc (sizeof (struct lm_info));
1154
1155 /* Nothing will ever check the other fields if we set l_addr_p. */
1156 new->lm_info->l_addr = info->debug_loader_offset;
1157 new->lm_info->l_addr_p = 1;
1158
1159 strncpy (new->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1160 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1161 strcpy (new->so_original_name, new->so_name);
1162
1163 return new;
1164 }
1165
1166 /* Read the whole inferior libraries chain starting at address LM. Add the
1167 entries to the tail referenced by LINK_PTR_PTR. Ignore the first entry if
1168 IGNORE_FIRST and set global MAIN_LM_ADDR according to it. */
1169
1170 static void
1171 svr4_read_so_list (CORE_ADDR lm, struct so_list ***link_ptr_ptr,
1172 int ignore_first)
1173 {
1174 CORE_ADDR prev_lm = 0, next_lm;
1175
1176 for (; lm != 0; prev_lm = lm, lm = next_lm)
1177 {
1178 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
1179 struct so_list *new;
1180 struct cleanup *old_chain;
1181 int errcode;
1182 char *buffer;
1183
1184 new = XZALLOC (struct so_list);
1185 old_chain = make_cleanup_free_so (new);
1186
1187 new->lm_info = lm_info_read (lm);
1188 if (new->lm_info == NULL)
1189 {
1190 do_cleanups (old_chain);
1191 break;
1192 }
1193
1194 next_lm = new->lm_info->l_next;
1195
1196 if (new->lm_info->l_prev != prev_lm)
1197 {
1198 warning (_("Corrupted shared library list: %s != %s"),
1199 paddress (target_gdbarch, prev_lm),
1200 paddress (target_gdbarch, new->lm_info->l_prev));
1201 do_cleanups (old_chain);
1202 break;
1203 }
1204
1205 /* For SVR4 versions, the first entry in the link map is for the
1206 inferior executable, so we must ignore it. For some versions of
1207 SVR4, it has no name. For others (Solaris 2.3 for example), it
1208 does have a name, so we can no longer use a missing name to
1209 decide when to ignore it. */
1210 if (ignore_first && new->lm_info->l_prev == 0)
1211 {
1212 struct svr4_info *info = get_svr4_info ();
1213
1214 info->main_lm_addr = new->lm_info->lm_addr;
1215 do_cleanups (old_chain);
1216 continue;
1217 }
1218
1219 /* Extract this shared object's name. */
1220 target_read_string (new->lm_info->l_name, &buffer,
1221 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1222 if (errcode != 0)
1223 {
1224 warning (_("Can't read pathname for load map: %s."),
1225 safe_strerror (errcode));
1226 do_cleanups (old_chain);
1227 continue;
1228 }
1229
1230 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1231 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1232 strcpy (new->so_original_name, new->so_name);
1233 xfree (buffer);
1234
1235 /* If this entry has no name, or its name matches the name
1236 for the main executable, don't include it in the list. */
1237 if (! new->so_name[0] || match_main (new->so_name))
1238 {
1239 do_cleanups (old_chain);
1240 continue;
1241 }
1242
1243 discard_cleanups (old_chain);
1244 new->next = 0;
1245 **link_ptr_ptr = new;
1246 *link_ptr_ptr = &new->next;
1247 }
1248 }
1249
1250 /* Implement the "current_sos" target_so_ops method. */
1251
1252 static struct so_list *
1253 svr4_current_sos (void)
1254 {
1255 CORE_ADDR lm;
1256 struct so_list *head = NULL;
1257 struct so_list **link_ptr = &head;
1258 struct svr4_info *info;
1259 struct cleanup *back_to;
1260 int ignore_first;
1261 struct svr4_library_list library_list;
1262
1263 if (svr4_current_sos_via_xfer_libraries (&library_list))
1264 {
1265 if (library_list.main_lm)
1266 {
1267 info = get_svr4_info ();
1268 info->main_lm_addr = library_list.main_lm;
1269 }
1270
1271 return library_list.head ? library_list.head : svr4_default_sos ();
1272 }
1273
1274 info = get_svr4_info ();
1275
1276 /* Always locate the debug struct, in case it has moved. */
1277 info->debug_base = 0;
1278 locate_base (info);
1279
1280 /* If we can't find the dynamic linker's base structure, this
1281 must not be a dynamically linked executable. Hmm. */
1282 if (! info->debug_base)
1283 return svr4_default_sos ();
1284
1285 /* Assume that everything is a library if the dynamic loader was loaded
1286 late by a static executable. */
1287 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1288 ignore_first = 0;
1289 else
1290 ignore_first = 1;
1291
1292 back_to = make_cleanup (svr4_free_library_list, &head);
1293
1294 /* Walk the inferior's link map list, and build our list of
1295 `struct so_list' nodes. */
1296 lm = solib_svr4_r_map (info);
1297 if (lm)
1298 svr4_read_so_list (lm, &link_ptr, ignore_first);
1299
1300 /* On Solaris, the dynamic linker is not in the normal list of
1301 shared objects, so make sure we pick it up too. Having
1302 symbol information for the dynamic linker is quite crucial
1303 for skipping dynamic linker resolver code. */
1304 lm = solib_svr4_r_ldsomap (info);
1305 if (lm)
1306 svr4_read_so_list (lm, &link_ptr, 0);
1307
1308 discard_cleanups (back_to);
1309
1310 if (head == NULL)
1311 return svr4_default_sos ();
1312
1313 return head;
1314 }
1315
1316 /* Get the address of the link_map for a given OBJFILE. */
1317
1318 CORE_ADDR
1319 svr4_fetch_objfile_link_map (struct objfile *objfile)
1320 {
1321 struct so_list *so;
1322 struct svr4_info *info = get_svr4_info ();
1323
1324 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1325 if (info->main_lm_addr == 0)
1326 solib_add (NULL, 0, &current_target, auto_solib_add);
1327
1328 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1329 if (objfile == symfile_objfile)
1330 return info->main_lm_addr;
1331
1332 /* The other link map addresses may be found by examining the list
1333 of shared libraries. */
1334 for (so = master_so_list (); so; so = so->next)
1335 if (so->objfile == objfile)
1336 return so->lm_info->lm_addr;
1337
1338 /* Not found! */
1339 return 0;
1340 }
1341
1342 /* On some systems, the only way to recognize the link map entry for
1343 the main executable file is by looking at its name. Return
1344 non-zero iff SONAME matches one of the known main executable names. */
1345
1346 static int
1347 match_main (const char *soname)
1348 {
1349 const char * const *mainp;
1350
1351 for (mainp = main_name_list; *mainp != NULL; mainp++)
1352 {
1353 if (strcmp (soname, *mainp) == 0)
1354 return (1);
1355 }
1356
1357 return (0);
1358 }
1359
1360 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1361 SVR4 run time loader. */
1362
1363 int
1364 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1365 {
1366 struct svr4_info *info = get_svr4_info ();
1367
1368 return ((pc >= info->interp_text_sect_low
1369 && pc < info->interp_text_sect_high)
1370 || (pc >= info->interp_plt_sect_low
1371 && pc < info->interp_plt_sect_high)
1372 || in_plt_section (pc, NULL)
1373 || in_gnu_ifunc_stub (pc));
1374 }
1375
1376 /* Given an executable's ABFD and target, compute the entry-point
1377 address. */
1378
1379 static CORE_ADDR
1380 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1381 {
1382 /* KevinB wrote ... for most targets, the address returned by
1383 bfd_get_start_address() is the entry point for the start
1384 function. But, for some targets, bfd_get_start_address() returns
1385 the address of a function descriptor from which the entry point
1386 address may be extracted. This address is extracted by
1387 gdbarch_convert_from_func_ptr_addr(). The method
1388 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1389 function for targets which don't use function descriptors. */
1390 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1391 bfd_get_start_address (abfd),
1392 targ);
1393 }
1394
1395 /* Helper function for gdb_bfd_lookup_symbol. */
1396
1397 static int
1398 cmp_name_and_sec_flags (asymbol *sym, void *data)
1399 {
1400 return (strcmp (sym->name, (const char *) data) == 0
1401 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
1402 }
1403 /* Arrange for dynamic linker to hit breakpoint.
1404
1405 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1406 debugger interface, support for arranging for the inferior to hit
1407 a breakpoint after mapping in the shared libraries. This function
1408 enables that breakpoint.
1409
1410 For SunOS, there is a special flag location (in_debugger) which we
1411 set to 1. When the dynamic linker sees this flag set, it will set
1412 a breakpoint at a location known only to itself, after saving the
1413 original contents of that place and the breakpoint address itself,
1414 in it's own internal structures. When we resume the inferior, it
1415 will eventually take a SIGTRAP when it runs into the breakpoint.
1416 We handle this (in a different place) by restoring the contents of
1417 the breakpointed location (which is only known after it stops),
1418 chasing around to locate the shared libraries that have been
1419 loaded, then resuming.
1420
1421 For SVR4, the debugger interface structure contains a member (r_brk)
1422 which is statically initialized at the time the shared library is
1423 built, to the offset of a function (_r_debug_state) which is guaran-
1424 teed to be called once before mapping in a library, and again when
1425 the mapping is complete. At the time we are examining this member,
1426 it contains only the unrelocated offset of the function, so we have
1427 to do our own relocation. Later, when the dynamic linker actually
1428 runs, it relocates r_brk to be the actual address of _r_debug_state().
1429
1430 The debugger interface structure also contains an enumeration which
1431 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1432 depending upon whether or not the library is being mapped or unmapped,
1433 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
1434
1435 static int
1436 enable_break (struct svr4_info *info, int from_tty)
1437 {
1438 struct minimal_symbol *msymbol;
1439 const char * const *bkpt_namep;
1440 asection *interp_sect;
1441 gdb_byte *interp_name;
1442 CORE_ADDR sym_addr;
1443
1444 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1445 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
1446
1447 /* If we already have a shared library list in the target, and
1448 r_debug contains r_brk, set the breakpoint there - this should
1449 mean r_brk has already been relocated. Assume the dynamic linker
1450 is the object containing r_brk. */
1451
1452 solib_add (NULL, from_tty, &current_target, auto_solib_add);
1453 sym_addr = 0;
1454 if (info->debug_base && solib_svr4_r_map (info) != 0)
1455 sym_addr = solib_svr4_r_brk (info);
1456
1457 if (sym_addr != 0)
1458 {
1459 struct obj_section *os;
1460
1461 sym_addr = gdbarch_addr_bits_remove
1462 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1463 sym_addr,
1464 &current_target));
1465
1466 /* On at least some versions of Solaris there's a dynamic relocation
1467 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
1468 we get control before the dynamic linker has self-relocated.
1469 Check if SYM_ADDR is in a known section, if it is assume we can
1470 trust its value. This is just a heuristic though, it could go away
1471 or be replaced if it's getting in the way.
1472
1473 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
1474 however it's spelled in your particular system) is ARM or Thumb.
1475 That knowledge is encoded in the address, if it's Thumb the low bit
1476 is 1. However, we've stripped that info above and it's not clear
1477 what all the consequences are of passing a non-addr_bits_remove'd
1478 address to create_solib_event_breakpoint. The call to
1479 find_pc_section verifies we know about the address and have some
1480 hope of computing the right kind of breakpoint to use (via
1481 symbol info). It does mean that GDB needs to be pointed at a
1482 non-stripped version of the dynamic linker in order to obtain
1483 information it already knows about. Sigh. */
1484
1485 os = find_pc_section (sym_addr);
1486 if (os != NULL)
1487 {
1488 /* Record the relocated start and end address of the dynamic linker
1489 text and plt section for svr4_in_dynsym_resolve_code. */
1490 bfd *tmp_bfd;
1491 CORE_ADDR load_addr;
1492
1493 tmp_bfd = os->objfile->obfd;
1494 load_addr = ANOFFSET (os->objfile->section_offsets,
1495 os->objfile->sect_index_text);
1496
1497 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1498 if (interp_sect)
1499 {
1500 info->interp_text_sect_low =
1501 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1502 info->interp_text_sect_high =
1503 info->interp_text_sect_low
1504 + bfd_section_size (tmp_bfd, interp_sect);
1505 }
1506 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1507 if (interp_sect)
1508 {
1509 info->interp_plt_sect_low =
1510 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1511 info->interp_plt_sect_high =
1512 info->interp_plt_sect_low
1513 + bfd_section_size (tmp_bfd, interp_sect);
1514 }
1515
1516 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1517 return 1;
1518 }
1519 }
1520
1521 /* Find the program interpreter; if not found, warn the user and drop
1522 into the old breakpoint at symbol code. */
1523 interp_name = find_program_interpreter ();
1524 if (interp_name)
1525 {
1526 CORE_ADDR load_addr = 0;
1527 int load_addr_found = 0;
1528 int loader_found_in_list = 0;
1529 struct so_list *so;
1530 bfd *tmp_bfd = NULL;
1531 struct target_ops *tmp_bfd_target;
1532 volatile struct gdb_exception ex;
1533
1534 sym_addr = 0;
1535
1536 /* Now we need to figure out where the dynamic linker was
1537 loaded so that we can load its symbols and place a breakpoint
1538 in the dynamic linker itself.
1539
1540 This address is stored on the stack. However, I've been unable
1541 to find any magic formula to find it for Solaris (appears to
1542 be trivial on GNU/Linux). Therefore, we have to try an alternate
1543 mechanism to find the dynamic linker's base address. */
1544
1545 TRY_CATCH (ex, RETURN_MASK_ALL)
1546 {
1547 tmp_bfd = solib_bfd_open (interp_name);
1548 }
1549 if (tmp_bfd == NULL)
1550 goto bkpt_at_symbol;
1551
1552 /* Now convert the TMP_BFD into a target. That way target, as
1553 well as BFD operations can be used. Note that closing the
1554 target will also close the underlying bfd. */
1555 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1556
1557 /* On a running target, we can get the dynamic linker's base
1558 address from the shared library table. */
1559 so = master_so_list ();
1560 while (so)
1561 {
1562 if (svr4_same_1 (interp_name, so->so_original_name))
1563 {
1564 load_addr_found = 1;
1565 loader_found_in_list = 1;
1566 load_addr = lm_addr_check (so, tmp_bfd);
1567 break;
1568 }
1569 so = so->next;
1570 }
1571
1572 /* If we were not able to find the base address of the loader
1573 from our so_list, then try using the AT_BASE auxilliary entry. */
1574 if (!load_addr_found)
1575 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
1576 {
1577 int addr_bit = gdbarch_addr_bit (target_gdbarch);
1578
1579 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
1580 that `+ load_addr' will overflow CORE_ADDR width not creating
1581 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
1582 GDB. */
1583
1584 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
1585 {
1586 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
1587 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
1588 tmp_bfd_target);
1589
1590 gdb_assert (load_addr < space_size);
1591
1592 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
1593 64bit ld.so with 32bit executable, it should not happen. */
1594
1595 if (tmp_entry_point < space_size
1596 && tmp_entry_point + load_addr >= space_size)
1597 load_addr -= space_size;
1598 }
1599
1600 load_addr_found = 1;
1601 }
1602
1603 /* Otherwise we find the dynamic linker's base address by examining
1604 the current pc (which should point at the entry point for the
1605 dynamic linker) and subtracting the offset of the entry point.
1606
1607 This is more fragile than the previous approaches, but is a good
1608 fallback method because it has actually been working well in
1609 most cases. */
1610 if (!load_addr_found)
1611 {
1612 struct regcache *regcache
1613 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1614
1615 load_addr = (regcache_read_pc (regcache)
1616 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1617 }
1618
1619 if (!loader_found_in_list)
1620 {
1621 info->debug_loader_name = xstrdup (interp_name);
1622 info->debug_loader_offset_p = 1;
1623 info->debug_loader_offset = load_addr;
1624 solib_add (NULL, from_tty, &current_target, auto_solib_add);
1625 }
1626
1627 /* Record the relocated start and end address of the dynamic linker
1628 text and plt section for svr4_in_dynsym_resolve_code. */
1629 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1630 if (interp_sect)
1631 {
1632 info->interp_text_sect_low =
1633 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1634 info->interp_text_sect_high =
1635 info->interp_text_sect_low
1636 + bfd_section_size (tmp_bfd, interp_sect);
1637 }
1638 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1639 if (interp_sect)
1640 {
1641 info->interp_plt_sect_low =
1642 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1643 info->interp_plt_sect_high =
1644 info->interp_plt_sect_low
1645 + bfd_section_size (tmp_bfd, interp_sect);
1646 }
1647
1648 /* Now try to set a breakpoint in the dynamic linker. */
1649 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1650 {
1651 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name_and_sec_flags,
1652 (void *) *bkpt_namep);
1653 if (sym_addr != 0)
1654 break;
1655 }
1656
1657 if (sym_addr != 0)
1658 /* Convert 'sym_addr' from a function pointer to an address.
1659 Because we pass tmp_bfd_target instead of the current
1660 target, this will always produce an unrelocated value. */
1661 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1662 sym_addr,
1663 tmp_bfd_target);
1664
1665 /* We're done with both the temporary bfd and target. Remember,
1666 closing the target closes the underlying bfd. */
1667 target_close (tmp_bfd_target, 0);
1668
1669 if (sym_addr != 0)
1670 {
1671 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
1672 xfree (interp_name);
1673 return 1;
1674 }
1675
1676 /* For whatever reason we couldn't set a breakpoint in the dynamic
1677 linker. Warn and drop into the old code. */
1678 bkpt_at_symbol:
1679 xfree (interp_name);
1680 warning (_("Unable to find dynamic linker breakpoint function.\n"
1681 "GDB will be unable to debug shared library initializers\n"
1682 "and track explicitly loaded dynamic code."));
1683 }
1684
1685 /* Scan through the lists of symbols, trying to look up the symbol and
1686 set a breakpoint there. Terminate loop when we/if we succeed. */
1687
1688 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1689 {
1690 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1691 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1692 {
1693 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1694 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1695 sym_addr,
1696 &current_target);
1697 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1698 return 1;
1699 }
1700 }
1701
1702 if (!current_inferior ()->attach_flag)
1703 {
1704 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1705 {
1706 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1707 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1708 {
1709 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1710 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1711 sym_addr,
1712 &current_target);
1713 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1714 return 1;
1715 }
1716 }
1717 }
1718 return 0;
1719 }
1720
1721 /* Implement the "special_symbol_handling" target_so_ops method. */
1722
1723 static void
1724 svr4_special_symbol_handling (void)
1725 {
1726 /* Nothing to do. */
1727 }
1728
1729 /* Read the ELF program headers from ABFD. Return the contents and
1730 set *PHDRS_SIZE to the size of the program headers. */
1731
1732 static gdb_byte *
1733 read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
1734 {
1735 Elf_Internal_Ehdr *ehdr;
1736 gdb_byte *buf;
1737
1738 ehdr = elf_elfheader (abfd);
1739
1740 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
1741 if (*phdrs_size == 0)
1742 return NULL;
1743
1744 buf = xmalloc (*phdrs_size);
1745 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
1746 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
1747 {
1748 xfree (buf);
1749 return NULL;
1750 }
1751
1752 return buf;
1753 }
1754
1755 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
1756 exec_bfd. Otherwise return 0.
1757
1758 We relocate all of the sections by the same amount. This
1759 behavior is mandated by recent editions of the System V ABI.
1760 According to the System V Application Binary Interface,
1761 Edition 4.1, page 5-5:
1762
1763 ... Though the system chooses virtual addresses for
1764 individual processes, it maintains the segments' relative
1765 positions. Because position-independent code uses relative
1766 addressesing between segments, the difference between
1767 virtual addresses in memory must match the difference
1768 between virtual addresses in the file. The difference
1769 between the virtual address of any segment in memory and
1770 the corresponding virtual address in the file is thus a
1771 single constant value for any one executable or shared
1772 object in a given process. This difference is the base
1773 address. One use of the base address is to relocate the
1774 memory image of the program during dynamic linking.
1775
1776 The same language also appears in Edition 4.0 of the System V
1777 ABI and is left unspecified in some of the earlier editions.
1778
1779 Decide if the objfile needs to be relocated. As indicated above, we will
1780 only be here when execution is stopped. But during attachment PC can be at
1781 arbitrary address therefore regcache_read_pc can be misleading (contrary to
1782 the auxv AT_ENTRY value). Moreover for executable with interpreter section
1783 regcache_read_pc would point to the interpreter and not the main executable.
1784
1785 So, to summarize, relocations are necessary when the start address obtained
1786 from the executable is different from the address in auxv AT_ENTRY entry.
1787
1788 [ The astute reader will note that we also test to make sure that
1789 the executable in question has the DYNAMIC flag set. It is my
1790 opinion that this test is unnecessary (undesirable even). It
1791 was added to avoid inadvertent relocation of an executable
1792 whose e_type member in the ELF header is not ET_DYN. There may
1793 be a time in the future when it is desirable to do relocations
1794 on other types of files as well in which case this condition
1795 should either be removed or modified to accomodate the new file
1796 type. - Kevin, Nov 2000. ] */
1797
1798 static int
1799 svr4_exec_displacement (CORE_ADDR *displacementp)
1800 {
1801 /* ENTRY_POINT is a possible function descriptor - before
1802 a call to gdbarch_convert_from_func_ptr_addr. */
1803 CORE_ADDR entry_point, displacement;
1804
1805 if (exec_bfd == NULL)
1806 return 0;
1807
1808 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
1809 being executed themselves and PIE (Position Independent Executable)
1810 executables are ET_DYN. */
1811
1812 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
1813 return 0;
1814
1815 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
1816 return 0;
1817
1818 displacement = entry_point - bfd_get_start_address (exec_bfd);
1819
1820 /* Verify the DISPLACEMENT candidate complies with the required page
1821 alignment. It is cheaper than the program headers comparison below. */
1822
1823 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1824 {
1825 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
1826
1827 /* p_align of PT_LOAD segments does not specify any alignment but
1828 only congruency of addresses:
1829 p_offset % p_align == p_vaddr % p_align
1830 Kernel is free to load the executable with lower alignment. */
1831
1832 if ((displacement & (elf->minpagesize - 1)) != 0)
1833 return 0;
1834 }
1835
1836 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
1837 comparing their program headers. If the program headers in the auxilliary
1838 vector do not match the program headers in the executable, then we are
1839 looking at a different file than the one used by the kernel - for
1840 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
1841
1842 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1843 {
1844 /* Be optimistic and clear OK only if GDB was able to verify the headers
1845 really do not match. */
1846 int phdrs_size, phdrs2_size, ok = 1;
1847 gdb_byte *buf, *buf2;
1848 int arch_size;
1849
1850 buf = read_program_header (-1, &phdrs_size, &arch_size);
1851 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
1852 if (buf != NULL && buf2 != NULL)
1853 {
1854 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1855
1856 /* We are dealing with three different addresses. EXEC_BFD
1857 represents current address in on-disk file. target memory content
1858 may be different from EXEC_BFD as the file may have been prelinked
1859 to a different address after the executable has been loaded.
1860 Moreover the address of placement in target memory can be
1861 different from what the program headers in target memory say -
1862 this is the goal of PIE.
1863
1864 Detected DISPLACEMENT covers both the offsets of PIE placement and
1865 possible new prelink performed after start of the program. Here
1866 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
1867 content offset for the verification purpose. */
1868
1869 if (phdrs_size != phdrs2_size
1870 || bfd_get_arch_size (exec_bfd) != arch_size)
1871 ok = 0;
1872 else if (arch_size == 32
1873 && phdrs_size >= sizeof (Elf32_External_Phdr)
1874 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
1875 {
1876 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1877 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1878 CORE_ADDR displacement = 0;
1879 int i;
1880
1881 /* DISPLACEMENT could be found more easily by the difference of
1882 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1883 already have enough information to compute that displacement
1884 with what we've read. */
1885
1886 for (i = 0; i < ehdr2->e_phnum; i++)
1887 if (phdr2[i].p_type == PT_LOAD)
1888 {
1889 Elf32_External_Phdr *phdrp;
1890 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1891 CORE_ADDR vaddr, paddr;
1892 CORE_ADDR displacement_vaddr = 0;
1893 CORE_ADDR displacement_paddr = 0;
1894
1895 phdrp = &((Elf32_External_Phdr *) buf)[i];
1896 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1897 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1898
1899 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1900 byte_order);
1901 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1902
1903 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1904 byte_order);
1905 displacement_paddr = paddr - phdr2[i].p_paddr;
1906
1907 if (displacement_vaddr == displacement_paddr)
1908 displacement = displacement_vaddr;
1909
1910 break;
1911 }
1912
1913 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1914
1915 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
1916 {
1917 Elf32_External_Phdr *phdrp;
1918 Elf32_External_Phdr *phdr2p;
1919 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1920 CORE_ADDR vaddr, paddr;
1921 asection *plt2_asect;
1922
1923 phdrp = &((Elf32_External_Phdr *) buf)[i];
1924 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1925 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1926 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
1927
1928 /* PT_GNU_STACK is an exception by being never relocated by
1929 prelink as its addresses are always zero. */
1930
1931 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1932 continue;
1933
1934 /* Check also other adjustment combinations - PR 11786. */
1935
1936 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1937 byte_order);
1938 vaddr -= displacement;
1939 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
1940
1941 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1942 byte_order);
1943 paddr -= displacement;
1944 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
1945
1946 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1947 continue;
1948
1949 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
1950 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
1951 if (plt2_asect)
1952 {
1953 int content2;
1954 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
1955 CORE_ADDR filesz;
1956
1957 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
1958 & SEC_HAS_CONTENTS) != 0;
1959
1960 filesz = extract_unsigned_integer (buf_filesz_p, 4,
1961 byte_order);
1962
1963 /* PLT2_ASECT is from on-disk file (exec_bfd) while
1964 FILESZ is from the in-memory image. */
1965 if (content2)
1966 filesz += bfd_get_section_size (plt2_asect);
1967 else
1968 filesz -= bfd_get_section_size (plt2_asect);
1969
1970 store_unsigned_integer (buf_filesz_p, 4, byte_order,
1971 filesz);
1972
1973 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1974 continue;
1975 }
1976
1977 ok = 0;
1978 break;
1979 }
1980 }
1981 else if (arch_size == 64
1982 && phdrs_size >= sizeof (Elf64_External_Phdr)
1983 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
1984 {
1985 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1986 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1987 CORE_ADDR displacement = 0;
1988 int i;
1989
1990 /* DISPLACEMENT could be found more easily by the difference of
1991 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1992 already have enough information to compute that displacement
1993 with what we've read. */
1994
1995 for (i = 0; i < ehdr2->e_phnum; i++)
1996 if (phdr2[i].p_type == PT_LOAD)
1997 {
1998 Elf64_External_Phdr *phdrp;
1999 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2000 CORE_ADDR vaddr, paddr;
2001 CORE_ADDR displacement_vaddr = 0;
2002 CORE_ADDR displacement_paddr = 0;
2003
2004 phdrp = &((Elf64_External_Phdr *) buf)[i];
2005 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2006 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2007
2008 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2009 byte_order);
2010 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2011
2012 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2013 byte_order);
2014 displacement_paddr = paddr - phdr2[i].p_paddr;
2015
2016 if (displacement_vaddr == displacement_paddr)
2017 displacement = displacement_vaddr;
2018
2019 break;
2020 }
2021
2022 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2023
2024 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2025 {
2026 Elf64_External_Phdr *phdrp;
2027 Elf64_External_Phdr *phdr2p;
2028 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2029 CORE_ADDR vaddr, paddr;
2030 asection *plt2_asect;
2031
2032 phdrp = &((Elf64_External_Phdr *) buf)[i];
2033 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2034 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2035 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2036
2037 /* PT_GNU_STACK is an exception by being never relocated by
2038 prelink as its addresses are always zero. */
2039
2040 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2041 continue;
2042
2043 /* Check also other adjustment combinations - PR 11786. */
2044
2045 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2046 byte_order);
2047 vaddr -= displacement;
2048 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2049
2050 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2051 byte_order);
2052 paddr -= displacement;
2053 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2054
2055 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2056 continue;
2057
2058 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2059 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2060 if (plt2_asect)
2061 {
2062 int content2;
2063 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2064 CORE_ADDR filesz;
2065
2066 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2067 & SEC_HAS_CONTENTS) != 0;
2068
2069 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2070 byte_order);
2071
2072 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2073 FILESZ is from the in-memory image. */
2074 if (content2)
2075 filesz += bfd_get_section_size (plt2_asect);
2076 else
2077 filesz -= bfd_get_section_size (plt2_asect);
2078
2079 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2080 filesz);
2081
2082 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2083 continue;
2084 }
2085
2086 ok = 0;
2087 break;
2088 }
2089 }
2090 else
2091 ok = 0;
2092 }
2093
2094 xfree (buf);
2095 xfree (buf2);
2096
2097 if (!ok)
2098 return 0;
2099 }
2100
2101 if (info_verbose)
2102 {
2103 /* It can be printed repeatedly as there is no easy way to check
2104 the executable symbols/file has been already relocated to
2105 displacement. */
2106
2107 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2108 "displacement %s for \"%s\".\n"),
2109 paddress (target_gdbarch, displacement),
2110 bfd_get_filename (exec_bfd));
2111 }
2112
2113 *displacementp = displacement;
2114 return 1;
2115 }
2116
2117 /* Relocate the main executable. This function should be called upon
2118 stopping the inferior process at the entry point to the program.
2119 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2120 different, the main executable is relocated by the proper amount. */
2121
2122 static void
2123 svr4_relocate_main_executable (void)
2124 {
2125 CORE_ADDR displacement;
2126
2127 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2128 probably contains the offsets computed using the PIE displacement
2129 from the previous run, which of course are irrelevant for this run.
2130 So we need to determine the new PIE displacement and recompute the
2131 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2132 already contains pre-computed offsets.
2133
2134 If we cannot compute the PIE displacement, either:
2135
2136 - The executable is not PIE.
2137
2138 - SYMFILE_OBJFILE does not match the executable started in the target.
2139 This can happen for main executable symbols loaded at the host while
2140 `ld.so --ld-args main-executable' is loaded in the target.
2141
2142 Then we leave the section offsets untouched and use them as is for
2143 this run. Either:
2144
2145 - These section offsets were properly reset earlier, and thus
2146 already contain the correct values. This can happen for instance
2147 when reconnecting via the remote protocol to a target that supports
2148 the `qOffsets' packet.
2149
2150 - The section offsets were not reset earlier, and the best we can
2151 hope is that the old offsets are still applicable to the new run. */
2152
2153 if (! svr4_exec_displacement (&displacement))
2154 return;
2155
2156 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2157 addresses. */
2158
2159 if (symfile_objfile)
2160 {
2161 struct section_offsets *new_offsets;
2162 int i;
2163
2164 new_offsets = alloca (symfile_objfile->num_sections
2165 * sizeof (*new_offsets));
2166
2167 for (i = 0; i < symfile_objfile->num_sections; i++)
2168 new_offsets->offsets[i] = displacement;
2169
2170 objfile_relocate (symfile_objfile, new_offsets);
2171 }
2172 else if (exec_bfd)
2173 {
2174 asection *asect;
2175
2176 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2177 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2178 (bfd_section_vma (exec_bfd, asect)
2179 + displacement));
2180 }
2181 }
2182
2183 /* Implement the "create_inferior_hook" target_solib_ops method.
2184
2185 For SVR4 executables, this first instruction is either the first
2186 instruction in the dynamic linker (for dynamically linked
2187 executables) or the instruction at "start" for statically linked
2188 executables. For dynamically linked executables, the system
2189 first exec's /lib/libc.so.N, which contains the dynamic linker,
2190 and starts it running. The dynamic linker maps in any needed
2191 shared libraries, maps in the actual user executable, and then
2192 jumps to "start" in the user executable.
2193
2194 We can arrange to cooperate with the dynamic linker to discover the
2195 names of shared libraries that are dynamically linked, and the base
2196 addresses to which they are linked.
2197
2198 This function is responsible for discovering those names and
2199 addresses, and saving sufficient information about them to allow
2200 their symbols to be read at a later time.
2201
2202 FIXME
2203
2204 Between enable_break() and disable_break(), this code does not
2205 properly handle hitting breakpoints which the user might have
2206 set in the startup code or in the dynamic linker itself. Proper
2207 handling will probably have to wait until the implementation is
2208 changed to use the "breakpoint handler function" method.
2209
2210 Also, what if child has exit()ed? Must exit loop somehow. */
2211
2212 static void
2213 svr4_solib_create_inferior_hook (int from_tty)
2214 {
2215 #if defined(_SCO_DS)
2216 struct inferior *inf;
2217 struct thread_info *tp;
2218 #endif /* defined(_SCO_DS) */
2219 struct svr4_info *info;
2220
2221 info = get_svr4_info ();
2222
2223 /* Relocate the main executable if necessary. */
2224 svr4_relocate_main_executable ();
2225
2226 /* No point setting a breakpoint in the dynamic linker if we can't
2227 hit it (e.g., a core file, or a trace file). */
2228 if (!target_has_execution)
2229 return;
2230
2231 if (!svr4_have_link_map_offsets ())
2232 return;
2233
2234 if (!enable_break (info, from_tty))
2235 return;
2236
2237 #if defined(_SCO_DS)
2238 /* SCO needs the loop below, other systems should be using the
2239 special shared library breakpoints and the shared library breakpoint
2240 service routine.
2241
2242 Now run the target. It will eventually hit the breakpoint, at
2243 which point all of the libraries will have been mapped in and we
2244 can go groveling around in the dynamic linker structures to find
2245 out what we need to know about them. */
2246
2247 inf = current_inferior ();
2248 tp = inferior_thread ();
2249
2250 clear_proceed_status ();
2251 inf->control.stop_soon = STOP_QUIETLY;
2252 tp->suspend.stop_signal = TARGET_SIGNAL_0;
2253 do
2254 {
2255 target_resume (pid_to_ptid (-1), 0, tp->suspend.stop_signal);
2256 wait_for_inferior ();
2257 }
2258 while (tp->suspend.stop_signal != TARGET_SIGNAL_TRAP);
2259 inf->control.stop_soon = NO_STOP_QUIETLY;
2260 #endif /* defined(_SCO_DS) */
2261 }
2262
2263 static void
2264 svr4_clear_solib (void)
2265 {
2266 struct svr4_info *info;
2267
2268 info = get_svr4_info ();
2269 info->debug_base = 0;
2270 info->debug_loader_offset_p = 0;
2271 info->debug_loader_offset = 0;
2272 xfree (info->debug_loader_name);
2273 info->debug_loader_name = NULL;
2274 }
2275
2276 /* Clear any bits of ADDR that wouldn't fit in a target-format
2277 data pointer. "Data pointer" here refers to whatever sort of
2278 address the dynamic linker uses to manage its sections. At the
2279 moment, we don't support shared libraries on any processors where
2280 code and data pointers are different sizes.
2281
2282 This isn't really the right solution. What we really need here is
2283 a way to do arithmetic on CORE_ADDR values that respects the
2284 natural pointer/address correspondence. (For example, on the MIPS,
2285 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2286 sign-extend the value. There, simply truncating the bits above
2287 gdbarch_ptr_bit, as we do below, is no good.) This should probably
2288 be a new gdbarch method or something. */
2289 static CORE_ADDR
2290 svr4_truncate_ptr (CORE_ADDR addr)
2291 {
2292 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
2293 /* We don't need to truncate anything, and the bit twiddling below
2294 will fail due to overflow problems. */
2295 return addr;
2296 else
2297 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
2298 }
2299
2300
2301 static void
2302 svr4_relocate_section_addresses (struct so_list *so,
2303 struct target_section *sec)
2304 {
2305 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so,
2306 sec->bfd));
2307 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so,
2308 sec->bfd));
2309 }
2310 \f
2311
2312 /* Architecture-specific operations. */
2313
2314 /* Per-architecture data key. */
2315 static struct gdbarch_data *solib_svr4_data;
2316
2317 struct solib_svr4_ops
2318 {
2319 /* Return a description of the layout of `struct link_map'. */
2320 struct link_map_offsets *(*fetch_link_map_offsets)(void);
2321 };
2322
2323 /* Return a default for the architecture-specific operations. */
2324
2325 static void *
2326 solib_svr4_init (struct obstack *obstack)
2327 {
2328 struct solib_svr4_ops *ops;
2329
2330 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
2331 ops->fetch_link_map_offsets = NULL;
2332 return ops;
2333 }
2334
2335 /* Set the architecture-specific `struct link_map_offsets' fetcher for
2336 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
2337
2338 void
2339 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
2340 struct link_map_offsets *(*flmo) (void))
2341 {
2342 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
2343
2344 ops->fetch_link_map_offsets = flmo;
2345
2346 set_solib_ops (gdbarch, &svr4_so_ops);
2347 }
2348
2349 /* Fetch a link_map_offsets structure using the architecture-specific
2350 `struct link_map_offsets' fetcher. */
2351
2352 static struct link_map_offsets *
2353 svr4_fetch_link_map_offsets (void)
2354 {
2355 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
2356
2357 gdb_assert (ops->fetch_link_map_offsets);
2358 return ops->fetch_link_map_offsets ();
2359 }
2360
2361 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
2362
2363 static int
2364 svr4_have_link_map_offsets (void)
2365 {
2366 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
2367
2368 return (ops->fetch_link_map_offsets != NULL);
2369 }
2370 \f
2371
2372 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
2373 `struct r_debug' and a `struct link_map' that are binary compatible
2374 with the origional SVR4 implementation. */
2375
2376 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2377 for an ILP32 SVR4 system. */
2378
2379 struct link_map_offsets *
2380 svr4_ilp32_fetch_link_map_offsets (void)
2381 {
2382 static struct link_map_offsets lmo;
2383 static struct link_map_offsets *lmp = NULL;
2384
2385 if (lmp == NULL)
2386 {
2387 lmp = &lmo;
2388
2389 lmo.r_version_offset = 0;
2390 lmo.r_version_size = 4;
2391 lmo.r_map_offset = 4;
2392 lmo.r_brk_offset = 8;
2393 lmo.r_ldsomap_offset = 20;
2394
2395 /* Everything we need is in the first 20 bytes. */
2396 lmo.link_map_size = 20;
2397 lmo.l_addr_offset = 0;
2398 lmo.l_name_offset = 4;
2399 lmo.l_ld_offset = 8;
2400 lmo.l_next_offset = 12;
2401 lmo.l_prev_offset = 16;
2402 }
2403
2404 return lmp;
2405 }
2406
2407 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2408 for an LP64 SVR4 system. */
2409
2410 struct link_map_offsets *
2411 svr4_lp64_fetch_link_map_offsets (void)
2412 {
2413 static struct link_map_offsets lmo;
2414 static struct link_map_offsets *lmp = NULL;
2415
2416 if (lmp == NULL)
2417 {
2418 lmp = &lmo;
2419
2420 lmo.r_version_offset = 0;
2421 lmo.r_version_size = 4;
2422 lmo.r_map_offset = 8;
2423 lmo.r_brk_offset = 16;
2424 lmo.r_ldsomap_offset = 40;
2425
2426 /* Everything we need is in the first 40 bytes. */
2427 lmo.link_map_size = 40;
2428 lmo.l_addr_offset = 0;
2429 lmo.l_name_offset = 8;
2430 lmo.l_ld_offset = 16;
2431 lmo.l_next_offset = 24;
2432 lmo.l_prev_offset = 32;
2433 }
2434
2435 return lmp;
2436 }
2437 \f
2438
2439 struct target_so_ops svr4_so_ops;
2440
2441 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
2442 different rule for symbol lookup. The lookup begins here in the DSO, not in
2443 the main executable. */
2444
2445 static struct symbol *
2446 elf_lookup_lib_symbol (const struct objfile *objfile,
2447 const char *name,
2448 const domain_enum domain)
2449 {
2450 bfd *abfd;
2451
2452 if (objfile == symfile_objfile)
2453 abfd = exec_bfd;
2454 else
2455 {
2456 /* OBJFILE should have been passed as the non-debug one. */
2457 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
2458
2459 abfd = objfile->obfd;
2460 }
2461
2462 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
2463 return NULL;
2464
2465 return lookup_global_symbol_from_objfile (objfile, name, domain);
2466 }
2467
2468 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
2469
2470 void
2471 _initialize_svr4_solib (void)
2472 {
2473 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
2474 solib_svr4_pspace_data
2475 = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
2476
2477 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
2478 svr4_so_ops.free_so = svr4_free_so;
2479 svr4_so_ops.clear_solib = svr4_clear_solib;
2480 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
2481 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
2482 svr4_so_ops.current_sos = svr4_current_sos;
2483 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
2484 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
2485 svr4_so_ops.bfd_open = solib_bfd_open;
2486 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
2487 svr4_so_ops.same = svr4_same;
2488 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
2489 }
This page took 0.123665 seconds and 5 git commands to generate.