2013-07-24 Sergio Durigan Junior <sergiodj@redhat.com>
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "elf/external.h"
23 #include "elf/common.h"
24 #include "elf/mips.h"
25
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbcore.h"
31 #include "target.h"
32 #include "inferior.h"
33 #include "regcache.h"
34 #include "gdbthread.h"
35 #include "observer.h"
36
37 #include "gdb_assert.h"
38
39 #include "solist.h"
40 #include "solib.h"
41 #include "solib-svr4.h"
42
43 #include "bfd-target.h"
44 #include "elf-bfd.h"
45 #include "exec.h"
46 #include "auxv.h"
47 #include "exceptions.h"
48 #include "gdb_bfd.h"
49 #include "probe.h"
50
51 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
52 static int svr4_have_link_map_offsets (void);
53 static void svr4_relocate_main_executable (void);
54 static void svr4_free_library_list (void *p_list);
55
56 /* Link map info to include in an allocated so_list entry. */
57
58 struct lm_info
59 {
60 /* Amount by which addresses in the binary should be relocated to
61 match the inferior. The direct inferior value is L_ADDR_INFERIOR.
62 When prelinking is involved and the prelink base address changes,
63 we may need a different offset - the recomputed offset is in L_ADDR.
64 It is commonly the same value. It is cached as we want to warn about
65 the difference and compute it only once. L_ADDR is valid
66 iff L_ADDR_P. */
67 CORE_ADDR l_addr, l_addr_inferior;
68 unsigned int l_addr_p : 1;
69
70 /* The target location of lm. */
71 CORE_ADDR lm_addr;
72
73 /* Values read in from inferior's fields of the same name. */
74 CORE_ADDR l_ld, l_next, l_prev, l_name;
75 };
76
77 /* On SVR4 systems, a list of symbols in the dynamic linker where
78 GDB can try to place a breakpoint to monitor shared library
79 events.
80
81 If none of these symbols are found, or other errors occur, then
82 SVR4 systems will fall back to using a symbol as the "startup
83 mapping complete" breakpoint address. */
84
85 static const char * const solib_break_names[] =
86 {
87 "r_debug_state",
88 "_r_debug_state",
89 "_dl_debug_state",
90 "rtld_db_dlactivity",
91 "__dl_rtld_db_dlactivity",
92 "_rtld_debug_state",
93
94 NULL
95 };
96
97 static const char * const bkpt_names[] =
98 {
99 "_start",
100 "__start",
101 "main",
102 NULL
103 };
104
105 static const char * const main_name_list[] =
106 {
107 "main_$main",
108 NULL
109 };
110
111 /* What to do when a probe stop occurs. */
112
113 enum probe_action
114 {
115 /* Something went seriously wrong. Stop using probes and
116 revert to using the older interface. */
117 PROBES_INTERFACE_FAILED,
118
119 /* No action is required. The shared object list is still
120 valid. */
121 DO_NOTHING,
122
123 /* The shared object list should be reloaded entirely. */
124 FULL_RELOAD,
125
126 /* Attempt to incrementally update the shared object list. If
127 the update fails or is not possible, fall back to reloading
128 the list in full. */
129 UPDATE_OR_RELOAD,
130 };
131
132 /* A probe's name and its associated action. */
133
134 struct probe_info
135 {
136 /* The name of the probe. */
137 const char *name;
138
139 /* What to do when a probe stop occurs. */
140 enum probe_action action;
141 };
142
143 /* A list of named probes and their associated actions. If all
144 probes are present in the dynamic linker then the probes-based
145 interface will be used. */
146
147 static const struct probe_info probe_info[] =
148 {
149 { "init_start", DO_NOTHING },
150 { "init_complete", FULL_RELOAD },
151 { "map_start", DO_NOTHING },
152 { "map_failed", DO_NOTHING },
153 { "reloc_complete", UPDATE_OR_RELOAD },
154 { "unmap_start", DO_NOTHING },
155 { "unmap_complete", FULL_RELOAD },
156 };
157
158 #define NUM_PROBES ARRAY_SIZE (probe_info)
159
160 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
161 the same shared library. */
162
163 static int
164 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
165 {
166 if (strcmp (gdb_so_name, inferior_so_name) == 0)
167 return 1;
168
169 /* On Solaris, when starting inferior we think that dynamic linker is
170 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
171 contains /lib/ld.so.1. Sometimes one file is a link to another, but
172 sometimes they have identical content, but are not linked to each
173 other. We don't restrict this check for Solaris, but the chances
174 of running into this situation elsewhere are very low. */
175 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
176 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
177 return 1;
178
179 /* Similarly, we observed the same issue with sparc64, but with
180 different locations. */
181 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
182 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
183 return 1;
184
185 return 0;
186 }
187
188 static int
189 svr4_same (struct so_list *gdb, struct so_list *inferior)
190 {
191 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
192 }
193
194 static struct lm_info *
195 lm_info_read (CORE_ADDR lm_addr)
196 {
197 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
198 gdb_byte *lm;
199 struct lm_info *lm_info;
200 struct cleanup *back_to;
201
202 lm = xmalloc (lmo->link_map_size);
203 back_to = make_cleanup (xfree, lm);
204
205 if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
206 {
207 warning (_("Error reading shared library list entry at %s"),
208 paddress (target_gdbarch (), lm_addr)),
209 lm_info = NULL;
210 }
211 else
212 {
213 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
214
215 lm_info = xzalloc (sizeof (*lm_info));
216 lm_info->lm_addr = lm_addr;
217
218 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
219 ptr_type);
220 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
221 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
222 ptr_type);
223 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
224 ptr_type);
225 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
226 ptr_type);
227 }
228
229 do_cleanups (back_to);
230
231 return lm_info;
232 }
233
234 static int
235 has_lm_dynamic_from_link_map (void)
236 {
237 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
238
239 return lmo->l_ld_offset >= 0;
240 }
241
242 static CORE_ADDR
243 lm_addr_check (const struct so_list *so, bfd *abfd)
244 {
245 if (!so->lm_info->l_addr_p)
246 {
247 struct bfd_section *dyninfo_sect;
248 CORE_ADDR l_addr, l_dynaddr, dynaddr;
249
250 l_addr = so->lm_info->l_addr_inferior;
251
252 if (! abfd || ! has_lm_dynamic_from_link_map ())
253 goto set_addr;
254
255 l_dynaddr = so->lm_info->l_ld;
256
257 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
258 if (dyninfo_sect == NULL)
259 goto set_addr;
260
261 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
262
263 if (dynaddr + l_addr != l_dynaddr)
264 {
265 CORE_ADDR align = 0x1000;
266 CORE_ADDR minpagesize = align;
267
268 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
269 {
270 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
271 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
272 int i;
273
274 align = 1;
275
276 for (i = 0; i < ehdr->e_phnum; i++)
277 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
278 align = phdr[i].p_align;
279
280 minpagesize = get_elf_backend_data (abfd)->minpagesize;
281 }
282
283 /* Turn it into a mask. */
284 align--;
285
286 /* If the changes match the alignment requirements, we
287 assume we're using a core file that was generated by the
288 same binary, just prelinked with a different base offset.
289 If it doesn't match, we may have a different binary, the
290 same binary with the dynamic table loaded at an unrelated
291 location, or anything, really. To avoid regressions,
292 don't adjust the base offset in the latter case, although
293 odds are that, if things really changed, debugging won't
294 quite work.
295
296 One could expect more the condition
297 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
298 but the one below is relaxed for PPC. The PPC kernel supports
299 either 4k or 64k page sizes. To be prepared for 64k pages,
300 PPC ELF files are built using an alignment requirement of 64k.
301 However, when running on a kernel supporting 4k pages, the memory
302 mapping of the library may not actually happen on a 64k boundary!
303
304 (In the usual case where (l_addr & align) == 0, this check is
305 equivalent to the possibly expected check above.)
306
307 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
308
309 l_addr = l_dynaddr - dynaddr;
310
311 if ((l_addr & (minpagesize - 1)) == 0
312 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
313 {
314 if (info_verbose)
315 printf_unfiltered (_("Using PIC (Position Independent Code) "
316 "prelink displacement %s for \"%s\".\n"),
317 paddress (target_gdbarch (), l_addr),
318 so->so_name);
319 }
320 else
321 {
322 /* There is no way to verify the library file matches. prelink
323 can during prelinking of an unprelinked file (or unprelinking
324 of a prelinked file) shift the DYNAMIC segment by arbitrary
325 offset without any page size alignment. There is no way to
326 find out the ELF header and/or Program Headers for a limited
327 verification if it they match. One could do a verification
328 of the DYNAMIC segment. Still the found address is the best
329 one GDB could find. */
330
331 warning (_(".dynamic section for \"%s\" "
332 "is not at the expected address "
333 "(wrong library or version mismatch?)"), so->so_name);
334 }
335 }
336
337 set_addr:
338 so->lm_info->l_addr = l_addr;
339 so->lm_info->l_addr_p = 1;
340 }
341
342 return so->lm_info->l_addr;
343 }
344
345 /* Per pspace SVR4 specific data. */
346
347 struct svr4_info
348 {
349 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
350
351 /* Validity flag for debug_loader_offset. */
352 int debug_loader_offset_p;
353
354 /* Load address for the dynamic linker, inferred. */
355 CORE_ADDR debug_loader_offset;
356
357 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
358 char *debug_loader_name;
359
360 /* Load map address for the main executable. */
361 CORE_ADDR main_lm_addr;
362
363 CORE_ADDR interp_text_sect_low;
364 CORE_ADDR interp_text_sect_high;
365 CORE_ADDR interp_plt_sect_low;
366 CORE_ADDR interp_plt_sect_high;
367
368 /* Nonzero if the list of objects was last obtained from the target
369 via qXfer:libraries-svr4:read. */
370 int using_xfer;
371
372 /* Table of struct probe_and_action instances, used by the
373 probes-based interface to map breakpoint addresses to probes
374 and their associated actions. Lookup is performed using
375 probe_and_action->probe->address. */
376 htab_t probes_table;
377
378 /* List of objects loaded into the inferior, used by the probes-
379 based interface. */
380 struct so_list *solib_list;
381 };
382
383 /* Per-program-space data key. */
384 static const struct program_space_data *solib_svr4_pspace_data;
385
386 /* Free the probes table. */
387
388 static void
389 free_probes_table (struct svr4_info *info)
390 {
391 if (info->probes_table == NULL)
392 return;
393
394 htab_delete (info->probes_table);
395 info->probes_table = NULL;
396 }
397
398 /* Free the solib list. */
399
400 static void
401 free_solib_list (struct svr4_info *info)
402 {
403 svr4_free_library_list (&info->solib_list);
404 info->solib_list = NULL;
405 }
406
407 static void
408 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
409 {
410 struct svr4_info *info;
411
412 info = program_space_data (pspace, solib_svr4_pspace_data);
413 if (info == NULL)
414 return;
415
416 free_probes_table (info);
417 free_solib_list (info);
418
419 xfree (info);
420 }
421
422 /* Get the current svr4 data. If none is found yet, add it now. This
423 function always returns a valid object. */
424
425 static struct svr4_info *
426 get_svr4_info (void)
427 {
428 struct svr4_info *info;
429
430 info = program_space_data (current_program_space, solib_svr4_pspace_data);
431 if (info != NULL)
432 return info;
433
434 info = XZALLOC (struct svr4_info);
435 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
436 return info;
437 }
438
439 /* Local function prototypes */
440
441 static int match_main (const char *);
442
443 /* Read program header TYPE from inferior memory. The header is found
444 by scanning the OS auxillary vector.
445
446 If TYPE == -1, return the program headers instead of the contents of
447 one program header.
448
449 Return a pointer to allocated memory holding the program header contents,
450 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
451 size of those contents is returned to P_SECT_SIZE. Likewise, the target
452 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
453
454 static gdb_byte *
455 read_program_header (int type, int *p_sect_size, int *p_arch_size)
456 {
457 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
458 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
459 int arch_size, sect_size;
460 CORE_ADDR sect_addr;
461 gdb_byte *buf;
462 int pt_phdr_p = 0;
463
464 /* Get required auxv elements from target. */
465 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
466 return 0;
467 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
468 return 0;
469 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
470 return 0;
471 if (!at_phdr || !at_phnum)
472 return 0;
473
474 /* Determine ELF architecture type. */
475 if (at_phent == sizeof (Elf32_External_Phdr))
476 arch_size = 32;
477 else if (at_phent == sizeof (Elf64_External_Phdr))
478 arch_size = 64;
479 else
480 return 0;
481
482 /* Find the requested segment. */
483 if (type == -1)
484 {
485 sect_addr = at_phdr;
486 sect_size = at_phent * at_phnum;
487 }
488 else if (arch_size == 32)
489 {
490 Elf32_External_Phdr phdr;
491 int i;
492
493 /* Search for requested PHDR. */
494 for (i = 0; i < at_phnum; i++)
495 {
496 int p_type;
497
498 if (target_read_memory (at_phdr + i * sizeof (phdr),
499 (gdb_byte *)&phdr, sizeof (phdr)))
500 return 0;
501
502 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
503 4, byte_order);
504
505 if (p_type == PT_PHDR)
506 {
507 pt_phdr_p = 1;
508 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
509 4, byte_order);
510 }
511
512 if (p_type == type)
513 break;
514 }
515
516 if (i == at_phnum)
517 return 0;
518
519 /* Retrieve address and size. */
520 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
521 4, byte_order);
522 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
523 4, byte_order);
524 }
525 else
526 {
527 Elf64_External_Phdr phdr;
528 int i;
529
530 /* Search for requested PHDR. */
531 for (i = 0; i < at_phnum; i++)
532 {
533 int p_type;
534
535 if (target_read_memory (at_phdr + i * sizeof (phdr),
536 (gdb_byte *)&phdr, sizeof (phdr)))
537 return 0;
538
539 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
540 4, byte_order);
541
542 if (p_type == PT_PHDR)
543 {
544 pt_phdr_p = 1;
545 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
546 8, byte_order);
547 }
548
549 if (p_type == type)
550 break;
551 }
552
553 if (i == at_phnum)
554 return 0;
555
556 /* Retrieve address and size. */
557 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
558 8, byte_order);
559 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
560 8, byte_order);
561 }
562
563 /* PT_PHDR is optional, but we really need it
564 for PIE to make this work in general. */
565
566 if (pt_phdr_p)
567 {
568 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
569 Relocation offset is the difference between the two. */
570 sect_addr = sect_addr + (at_phdr - pt_phdr);
571 }
572
573 /* Read in requested program header. */
574 buf = xmalloc (sect_size);
575 if (target_read_memory (sect_addr, buf, sect_size))
576 {
577 xfree (buf);
578 return NULL;
579 }
580
581 if (p_arch_size)
582 *p_arch_size = arch_size;
583 if (p_sect_size)
584 *p_sect_size = sect_size;
585
586 return buf;
587 }
588
589
590 /* Return program interpreter string. */
591 static char *
592 find_program_interpreter (void)
593 {
594 gdb_byte *buf = NULL;
595
596 /* If we have an exec_bfd, use its section table. */
597 if (exec_bfd
598 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
599 {
600 struct bfd_section *interp_sect;
601
602 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
603 if (interp_sect != NULL)
604 {
605 int sect_size = bfd_section_size (exec_bfd, interp_sect);
606
607 buf = xmalloc (sect_size);
608 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
609 }
610 }
611
612 /* If we didn't find it, use the target auxillary vector. */
613 if (!buf)
614 buf = read_program_header (PT_INTERP, NULL, NULL);
615
616 return (char *) buf;
617 }
618
619
620 /* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
621 returned and the corresponding PTR is set. */
622
623 static int
624 scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
625 {
626 int arch_size, step, sect_size;
627 long dyn_tag;
628 CORE_ADDR dyn_ptr, dyn_addr;
629 gdb_byte *bufend, *bufstart, *buf;
630 Elf32_External_Dyn *x_dynp_32;
631 Elf64_External_Dyn *x_dynp_64;
632 struct bfd_section *sect;
633 struct target_section *target_section;
634
635 if (abfd == NULL)
636 return 0;
637
638 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
639 return 0;
640
641 arch_size = bfd_get_arch_size (abfd);
642 if (arch_size == -1)
643 return 0;
644
645 /* Find the start address of the .dynamic section. */
646 sect = bfd_get_section_by_name (abfd, ".dynamic");
647 if (sect == NULL)
648 return 0;
649
650 for (target_section = current_target_sections->sections;
651 target_section < current_target_sections->sections_end;
652 target_section++)
653 if (sect == target_section->the_bfd_section)
654 break;
655 if (target_section < current_target_sections->sections_end)
656 dyn_addr = target_section->addr;
657 else
658 {
659 /* ABFD may come from OBJFILE acting only as a symbol file without being
660 loaded into the target (see add_symbol_file_command). This case is
661 such fallback to the file VMA address without the possibility of
662 having the section relocated to its actual in-memory address. */
663
664 dyn_addr = bfd_section_vma (abfd, sect);
665 }
666
667 /* Read in .dynamic from the BFD. We will get the actual value
668 from memory later. */
669 sect_size = bfd_section_size (abfd, sect);
670 buf = bufstart = alloca (sect_size);
671 if (!bfd_get_section_contents (abfd, sect,
672 buf, 0, sect_size))
673 return 0;
674
675 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
676 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
677 : sizeof (Elf64_External_Dyn);
678 for (bufend = buf + sect_size;
679 buf < bufend;
680 buf += step)
681 {
682 if (arch_size == 32)
683 {
684 x_dynp_32 = (Elf32_External_Dyn *) buf;
685 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
686 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
687 }
688 else
689 {
690 x_dynp_64 = (Elf64_External_Dyn *) buf;
691 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
692 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
693 }
694 if (dyn_tag == DT_NULL)
695 return 0;
696 if (dyn_tag == dyntag)
697 {
698 /* If requested, try to read the runtime value of this .dynamic
699 entry. */
700 if (ptr)
701 {
702 struct type *ptr_type;
703 gdb_byte ptr_buf[8];
704 CORE_ADDR ptr_addr;
705
706 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
707 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
708 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
709 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
710 *ptr = dyn_ptr;
711 }
712 return 1;
713 }
714 }
715
716 return 0;
717 }
718
719 /* Scan for DYNTAG in .dynamic section of the target's main executable,
720 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
721 returned and the corresponding PTR is set. */
722
723 static int
724 scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
725 {
726 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
727 int sect_size, arch_size, step;
728 long dyn_tag;
729 CORE_ADDR dyn_ptr;
730 gdb_byte *bufend, *bufstart, *buf;
731
732 /* Read in .dynamic section. */
733 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
734 if (!buf)
735 return 0;
736
737 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
738 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
739 : sizeof (Elf64_External_Dyn);
740 for (bufend = buf + sect_size;
741 buf < bufend;
742 buf += step)
743 {
744 if (arch_size == 32)
745 {
746 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
747
748 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
749 4, byte_order);
750 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
751 4, byte_order);
752 }
753 else
754 {
755 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
756
757 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
758 8, byte_order);
759 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
760 8, byte_order);
761 }
762 if (dyn_tag == DT_NULL)
763 break;
764
765 if (dyn_tag == dyntag)
766 {
767 if (ptr)
768 *ptr = dyn_ptr;
769
770 xfree (bufstart);
771 return 1;
772 }
773 }
774
775 xfree (bufstart);
776 return 0;
777 }
778
779 /* Locate the base address of dynamic linker structs for SVR4 elf
780 targets.
781
782 For SVR4 elf targets the address of the dynamic linker's runtime
783 structure is contained within the dynamic info section in the
784 executable file. The dynamic section is also mapped into the
785 inferior address space. Because the runtime loader fills in the
786 real address before starting the inferior, we have to read in the
787 dynamic info section from the inferior address space.
788 If there are any errors while trying to find the address, we
789 silently return 0, otherwise the found address is returned. */
790
791 static CORE_ADDR
792 elf_locate_base (void)
793 {
794 struct minimal_symbol *msymbol;
795 CORE_ADDR dyn_ptr;
796
797 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
798 instead of DT_DEBUG, although they sometimes contain an unused
799 DT_DEBUG. */
800 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
801 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
802 {
803 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
804 gdb_byte *pbuf;
805 int pbuf_size = TYPE_LENGTH (ptr_type);
806
807 pbuf = alloca (pbuf_size);
808 /* DT_MIPS_RLD_MAP contains a pointer to the address
809 of the dynamic link structure. */
810 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
811 return 0;
812 return extract_typed_address (pbuf, ptr_type);
813 }
814
815 /* Find DT_DEBUG. */
816 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
817 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
818 return dyn_ptr;
819
820 /* This may be a static executable. Look for the symbol
821 conventionally named _r_debug, as a last resort. */
822 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
823 if (msymbol != NULL)
824 return SYMBOL_VALUE_ADDRESS (msymbol);
825
826 /* DT_DEBUG entry not found. */
827 return 0;
828 }
829
830 /* Locate the base address of dynamic linker structs.
831
832 For both the SunOS and SVR4 shared library implementations, if the
833 inferior executable has been linked dynamically, there is a single
834 address somewhere in the inferior's data space which is the key to
835 locating all of the dynamic linker's runtime structures. This
836 address is the value of the debug base symbol. The job of this
837 function is to find and return that address, or to return 0 if there
838 is no such address (the executable is statically linked for example).
839
840 For SunOS, the job is almost trivial, since the dynamic linker and
841 all of it's structures are statically linked to the executable at
842 link time. Thus the symbol for the address we are looking for has
843 already been added to the minimal symbol table for the executable's
844 objfile at the time the symbol file's symbols were read, and all we
845 have to do is look it up there. Note that we explicitly do NOT want
846 to find the copies in the shared library.
847
848 The SVR4 version is a bit more complicated because the address
849 is contained somewhere in the dynamic info section. We have to go
850 to a lot more work to discover the address of the debug base symbol.
851 Because of this complexity, we cache the value we find and return that
852 value on subsequent invocations. Note there is no copy in the
853 executable symbol tables. */
854
855 static CORE_ADDR
856 locate_base (struct svr4_info *info)
857 {
858 /* Check to see if we have a currently valid address, and if so, avoid
859 doing all this work again and just return the cached address. If
860 we have no cached address, try to locate it in the dynamic info
861 section for ELF executables. There's no point in doing any of this
862 though if we don't have some link map offsets to work with. */
863
864 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
865 info->debug_base = elf_locate_base ();
866 return info->debug_base;
867 }
868
869 /* Find the first element in the inferior's dynamic link map, and
870 return its address in the inferior. Return zero if the address
871 could not be determined.
872
873 FIXME: Perhaps we should validate the info somehow, perhaps by
874 checking r_version for a known version number, or r_state for
875 RT_CONSISTENT. */
876
877 static CORE_ADDR
878 solib_svr4_r_map (struct svr4_info *info)
879 {
880 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
881 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
882 CORE_ADDR addr = 0;
883 volatile struct gdb_exception ex;
884
885 TRY_CATCH (ex, RETURN_MASK_ERROR)
886 {
887 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
888 ptr_type);
889 }
890 exception_print (gdb_stderr, ex);
891 return addr;
892 }
893
894 /* Find r_brk from the inferior's debug base. */
895
896 static CORE_ADDR
897 solib_svr4_r_brk (struct svr4_info *info)
898 {
899 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
900 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
901
902 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
903 ptr_type);
904 }
905
906 /* Find the link map for the dynamic linker (if it is not in the
907 normal list of loaded shared objects). */
908
909 static CORE_ADDR
910 solib_svr4_r_ldsomap (struct svr4_info *info)
911 {
912 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
913 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
914 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
915 ULONGEST version;
916
917 /* Check version, and return zero if `struct r_debug' doesn't have
918 the r_ldsomap member. */
919 version
920 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
921 lmo->r_version_size, byte_order);
922 if (version < 2 || lmo->r_ldsomap_offset == -1)
923 return 0;
924
925 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
926 ptr_type);
927 }
928
929 /* On Solaris systems with some versions of the dynamic linker,
930 ld.so's l_name pointer points to the SONAME in the string table
931 rather than into writable memory. So that GDB can find shared
932 libraries when loading a core file generated by gcore, ensure that
933 memory areas containing the l_name string are saved in the core
934 file. */
935
936 static int
937 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
938 {
939 struct svr4_info *info;
940 CORE_ADDR ldsomap;
941 struct so_list *new;
942 struct cleanup *old_chain;
943 CORE_ADDR name_lm;
944
945 info = get_svr4_info ();
946
947 info->debug_base = 0;
948 locate_base (info);
949 if (!info->debug_base)
950 return 0;
951
952 ldsomap = solib_svr4_r_ldsomap (info);
953 if (!ldsomap)
954 return 0;
955
956 new = XZALLOC (struct so_list);
957 old_chain = make_cleanup (xfree, new);
958 new->lm_info = lm_info_read (ldsomap);
959 make_cleanup (xfree, new->lm_info);
960 name_lm = new->lm_info ? new->lm_info->l_name : 0;
961 do_cleanups (old_chain);
962
963 return (name_lm >= vaddr && name_lm < vaddr + size);
964 }
965
966 /* Implement the "open_symbol_file_object" target_so_ops method.
967
968 If no open symbol file, attempt to locate and open the main symbol
969 file. On SVR4 systems, this is the first link map entry. If its
970 name is here, we can open it. Useful when attaching to a process
971 without first loading its symbol file. */
972
973 static int
974 open_symbol_file_object (void *from_ttyp)
975 {
976 CORE_ADDR lm, l_name;
977 char *filename;
978 int errcode;
979 int from_tty = *(int *)from_ttyp;
980 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
981 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
982 int l_name_size = TYPE_LENGTH (ptr_type);
983 gdb_byte *l_name_buf = xmalloc (l_name_size);
984 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
985 struct svr4_info *info = get_svr4_info ();
986
987 if (symfile_objfile)
988 if (!query (_("Attempt to reload symbols from process? ")))
989 {
990 do_cleanups (cleanups);
991 return 0;
992 }
993
994 /* Always locate the debug struct, in case it has moved. */
995 info->debug_base = 0;
996 if (locate_base (info) == 0)
997 {
998 do_cleanups (cleanups);
999 return 0; /* failed somehow... */
1000 }
1001
1002 /* First link map member should be the executable. */
1003 lm = solib_svr4_r_map (info);
1004 if (lm == 0)
1005 {
1006 do_cleanups (cleanups);
1007 return 0; /* failed somehow... */
1008 }
1009
1010 /* Read address of name from target memory to GDB. */
1011 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
1012
1013 /* Convert the address to host format. */
1014 l_name = extract_typed_address (l_name_buf, ptr_type);
1015
1016 if (l_name == 0)
1017 {
1018 do_cleanups (cleanups);
1019 return 0; /* No filename. */
1020 }
1021
1022 /* Now fetch the filename from target memory. */
1023 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1024 make_cleanup (xfree, filename);
1025
1026 if (errcode)
1027 {
1028 warning (_("failed to read exec filename from attached file: %s"),
1029 safe_strerror (errcode));
1030 do_cleanups (cleanups);
1031 return 0;
1032 }
1033
1034 /* Have a pathname: read the symbol file. */
1035 symbol_file_add_main (filename, from_tty);
1036
1037 do_cleanups (cleanups);
1038 return 1;
1039 }
1040
1041 /* Data exchange structure for the XML parser as returned by
1042 svr4_current_sos_via_xfer_libraries. */
1043
1044 struct svr4_library_list
1045 {
1046 struct so_list *head, **tailp;
1047
1048 /* Inferior address of struct link_map used for the main executable. It is
1049 NULL if not known. */
1050 CORE_ADDR main_lm;
1051 };
1052
1053 /* Implementation for target_so_ops.free_so. */
1054
1055 static void
1056 svr4_free_so (struct so_list *so)
1057 {
1058 xfree (so->lm_info);
1059 }
1060
1061 /* Implement target_so_ops.clear_so. */
1062
1063 static void
1064 svr4_clear_so (struct so_list *so)
1065 {
1066 if (so->lm_info != NULL)
1067 so->lm_info->l_addr_p = 0;
1068 }
1069
1070 /* Free so_list built so far (called via cleanup). */
1071
1072 static void
1073 svr4_free_library_list (void *p_list)
1074 {
1075 struct so_list *list = *(struct so_list **) p_list;
1076
1077 while (list != NULL)
1078 {
1079 struct so_list *next = list->next;
1080
1081 free_so (list);
1082 list = next;
1083 }
1084 }
1085
1086 /* Copy library list. */
1087
1088 static struct so_list *
1089 svr4_copy_library_list (struct so_list *src)
1090 {
1091 struct so_list *dst = NULL;
1092 struct so_list **link = &dst;
1093
1094 while (src != NULL)
1095 {
1096 struct so_list *new;
1097
1098 new = xmalloc (sizeof (struct so_list));
1099 memcpy (new, src, sizeof (struct so_list));
1100
1101 new->lm_info = xmalloc (sizeof (struct lm_info));
1102 memcpy (new->lm_info, src->lm_info, sizeof (struct lm_info));
1103
1104 new->next = NULL;
1105 *link = new;
1106 link = &new->next;
1107
1108 src = src->next;
1109 }
1110
1111 return dst;
1112 }
1113
1114 #ifdef HAVE_LIBEXPAT
1115
1116 #include "xml-support.h"
1117
1118 /* Handle the start of a <library> element. Note: new elements are added
1119 at the tail of the list, keeping the list in order. */
1120
1121 static void
1122 library_list_start_library (struct gdb_xml_parser *parser,
1123 const struct gdb_xml_element *element,
1124 void *user_data, VEC(gdb_xml_value_s) *attributes)
1125 {
1126 struct svr4_library_list *list = user_data;
1127 const char *name = xml_find_attribute (attributes, "name")->value;
1128 ULONGEST *lmp = xml_find_attribute (attributes, "lm")->value;
1129 ULONGEST *l_addrp = xml_find_attribute (attributes, "l_addr")->value;
1130 ULONGEST *l_ldp = xml_find_attribute (attributes, "l_ld")->value;
1131 struct so_list *new_elem;
1132
1133 new_elem = XZALLOC (struct so_list);
1134 new_elem->lm_info = XZALLOC (struct lm_info);
1135 new_elem->lm_info->lm_addr = *lmp;
1136 new_elem->lm_info->l_addr_inferior = *l_addrp;
1137 new_elem->lm_info->l_ld = *l_ldp;
1138
1139 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1140 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1141 strcpy (new_elem->so_original_name, new_elem->so_name);
1142
1143 *list->tailp = new_elem;
1144 list->tailp = &new_elem->next;
1145 }
1146
1147 /* Handle the start of a <library-list-svr4> element. */
1148
1149 static void
1150 svr4_library_list_start_list (struct gdb_xml_parser *parser,
1151 const struct gdb_xml_element *element,
1152 void *user_data, VEC(gdb_xml_value_s) *attributes)
1153 {
1154 struct svr4_library_list *list = user_data;
1155 const char *version = xml_find_attribute (attributes, "version")->value;
1156 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1157
1158 if (strcmp (version, "1.0") != 0)
1159 gdb_xml_error (parser,
1160 _("SVR4 Library list has unsupported version \"%s\""),
1161 version);
1162
1163 if (main_lm)
1164 list->main_lm = *(ULONGEST *) main_lm->value;
1165 }
1166
1167 /* The allowed elements and attributes for an XML library list.
1168 The root element is a <library-list>. */
1169
1170 static const struct gdb_xml_attribute svr4_library_attributes[] =
1171 {
1172 { "name", GDB_XML_AF_NONE, NULL, NULL },
1173 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1174 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1175 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1176 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1177 };
1178
1179 static const struct gdb_xml_element svr4_library_list_children[] =
1180 {
1181 {
1182 "library", svr4_library_attributes, NULL,
1183 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1184 library_list_start_library, NULL
1185 },
1186 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1187 };
1188
1189 static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1190 {
1191 { "version", GDB_XML_AF_NONE, NULL, NULL },
1192 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1193 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1194 };
1195
1196 static const struct gdb_xml_element svr4_library_list_elements[] =
1197 {
1198 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1199 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1200 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1201 };
1202
1203 /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1204
1205 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1206 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1207 empty, caller is responsible for freeing all its entries. */
1208
1209 static int
1210 svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1211 {
1212 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1213 &list->head);
1214
1215 memset (list, 0, sizeof (*list));
1216 list->tailp = &list->head;
1217 if (gdb_xml_parse_quick (_("target library list"), "library-list.dtd",
1218 svr4_library_list_elements, document, list) == 0)
1219 {
1220 /* Parsed successfully, keep the result. */
1221 discard_cleanups (back_to);
1222 return 1;
1223 }
1224
1225 do_cleanups (back_to);
1226 return 0;
1227 }
1228
1229 /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
1230
1231 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1232 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1233 empty, caller is responsible for freeing all its entries.
1234
1235 Note that ANNEX must be NULL if the remote does not explicitly allow
1236 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1237 this can be checked using target_augmented_libraries_svr4_read (). */
1238
1239 static int
1240 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1241 const char *annex)
1242 {
1243 char *svr4_library_document;
1244 int result;
1245 struct cleanup *back_to;
1246
1247 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1248
1249 /* Fetch the list of shared libraries. */
1250 svr4_library_document = target_read_stralloc (&current_target,
1251 TARGET_OBJECT_LIBRARIES_SVR4,
1252 annex);
1253 if (svr4_library_document == NULL)
1254 return 0;
1255
1256 back_to = make_cleanup (xfree, svr4_library_document);
1257 result = svr4_parse_libraries (svr4_library_document, list);
1258 do_cleanups (back_to);
1259
1260 return result;
1261 }
1262
1263 #else
1264
1265 static int
1266 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1267 const char *annex)
1268 {
1269 return 0;
1270 }
1271
1272 #endif
1273
1274 /* If no shared library information is available from the dynamic
1275 linker, build a fallback list from other sources. */
1276
1277 static struct so_list *
1278 svr4_default_sos (void)
1279 {
1280 struct svr4_info *info = get_svr4_info ();
1281 struct so_list *new;
1282
1283 if (!info->debug_loader_offset_p)
1284 return NULL;
1285
1286 new = XZALLOC (struct so_list);
1287
1288 new->lm_info = xzalloc (sizeof (struct lm_info));
1289
1290 /* Nothing will ever check the other fields if we set l_addr_p. */
1291 new->lm_info->l_addr = info->debug_loader_offset;
1292 new->lm_info->l_addr_p = 1;
1293
1294 strncpy (new->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1295 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1296 strcpy (new->so_original_name, new->so_name);
1297
1298 return new;
1299 }
1300
1301 /* Read the whole inferior libraries chain starting at address LM.
1302 Expect the first entry in the chain's previous entry to be PREV_LM.
1303 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1304 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1305 to it. Returns nonzero upon success. If zero is returned the
1306 entries stored to LINK_PTR_PTR are still valid although they may
1307 represent only part of the inferior library list. */
1308
1309 static int
1310 svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1311 struct so_list ***link_ptr_ptr, int ignore_first)
1312 {
1313 CORE_ADDR next_lm;
1314
1315 for (; lm != 0; prev_lm = lm, lm = next_lm)
1316 {
1317 struct so_list *new;
1318 struct cleanup *old_chain;
1319 int errcode;
1320 char *buffer;
1321
1322 new = XZALLOC (struct so_list);
1323 old_chain = make_cleanup_free_so (new);
1324
1325 new->lm_info = lm_info_read (lm);
1326 if (new->lm_info == NULL)
1327 {
1328 do_cleanups (old_chain);
1329 return 0;
1330 }
1331
1332 next_lm = new->lm_info->l_next;
1333
1334 if (new->lm_info->l_prev != prev_lm)
1335 {
1336 warning (_("Corrupted shared library list: %s != %s"),
1337 paddress (target_gdbarch (), prev_lm),
1338 paddress (target_gdbarch (), new->lm_info->l_prev));
1339 do_cleanups (old_chain);
1340 return 0;
1341 }
1342
1343 /* For SVR4 versions, the first entry in the link map is for the
1344 inferior executable, so we must ignore it. For some versions of
1345 SVR4, it has no name. For others (Solaris 2.3 for example), it
1346 does have a name, so we can no longer use a missing name to
1347 decide when to ignore it. */
1348 if (ignore_first && new->lm_info->l_prev == 0)
1349 {
1350 struct svr4_info *info = get_svr4_info ();
1351
1352 info->main_lm_addr = new->lm_info->lm_addr;
1353 do_cleanups (old_chain);
1354 continue;
1355 }
1356
1357 /* Extract this shared object's name. */
1358 target_read_string (new->lm_info->l_name, &buffer,
1359 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1360 if (errcode != 0)
1361 {
1362 warning (_("Can't read pathname for load map: %s."),
1363 safe_strerror (errcode));
1364 do_cleanups (old_chain);
1365 continue;
1366 }
1367
1368 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1369 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1370 strcpy (new->so_original_name, new->so_name);
1371 xfree (buffer);
1372
1373 /* If this entry has no name, or its name matches the name
1374 for the main executable, don't include it in the list. */
1375 if (! new->so_name[0] || match_main (new->so_name))
1376 {
1377 do_cleanups (old_chain);
1378 continue;
1379 }
1380
1381 discard_cleanups (old_chain);
1382 new->next = 0;
1383 **link_ptr_ptr = new;
1384 *link_ptr_ptr = &new->next;
1385 }
1386
1387 return 1;
1388 }
1389
1390 /* Read the full list of currently loaded shared objects directly
1391 from the inferior, without referring to any libraries read and
1392 stored by the probes interface. Handle special cases relating
1393 to the first elements of the list. */
1394
1395 static struct so_list *
1396 svr4_current_sos_direct (struct svr4_info *info)
1397 {
1398 CORE_ADDR lm;
1399 struct so_list *head = NULL;
1400 struct so_list **link_ptr = &head;
1401 struct cleanup *back_to;
1402 int ignore_first;
1403 struct svr4_library_list library_list;
1404
1405 /* Fall back to manual examination of the target if the packet is not
1406 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1407 tests a case where gdbserver cannot find the shared libraries list while
1408 GDB itself is able to find it via SYMFILE_OBJFILE.
1409
1410 Unfortunately statically linked inferiors will also fall back through this
1411 suboptimal code path. */
1412
1413 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1414 NULL);
1415 if (info->using_xfer)
1416 {
1417 if (library_list.main_lm)
1418 info->main_lm_addr = library_list.main_lm;
1419
1420 return library_list.head ? library_list.head : svr4_default_sos ();
1421 }
1422
1423 /* Always locate the debug struct, in case it has moved. */
1424 info->debug_base = 0;
1425 locate_base (info);
1426
1427 /* If we can't find the dynamic linker's base structure, this
1428 must not be a dynamically linked executable. Hmm. */
1429 if (! info->debug_base)
1430 return svr4_default_sos ();
1431
1432 /* Assume that everything is a library if the dynamic loader was loaded
1433 late by a static executable. */
1434 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1435 ignore_first = 0;
1436 else
1437 ignore_first = 1;
1438
1439 back_to = make_cleanup (svr4_free_library_list, &head);
1440
1441 /* Walk the inferior's link map list, and build our list of
1442 `struct so_list' nodes. */
1443 lm = solib_svr4_r_map (info);
1444 if (lm)
1445 svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
1446
1447 /* On Solaris, the dynamic linker is not in the normal list of
1448 shared objects, so make sure we pick it up too. Having
1449 symbol information for the dynamic linker is quite crucial
1450 for skipping dynamic linker resolver code. */
1451 lm = solib_svr4_r_ldsomap (info);
1452 if (lm)
1453 svr4_read_so_list (lm, 0, &link_ptr, 0);
1454
1455 discard_cleanups (back_to);
1456
1457 if (head == NULL)
1458 return svr4_default_sos ();
1459
1460 return head;
1461 }
1462
1463 /* Implement the "current_sos" target_so_ops method. */
1464
1465 static struct so_list *
1466 svr4_current_sos (void)
1467 {
1468 struct svr4_info *info = get_svr4_info ();
1469
1470 /* If the solib list has been read and stored by the probes
1471 interface then we return a copy of the stored list. */
1472 if (info->solib_list != NULL)
1473 return svr4_copy_library_list (info->solib_list);
1474
1475 /* Otherwise obtain the solib list directly from the inferior. */
1476 return svr4_current_sos_direct (info);
1477 }
1478
1479 /* Get the address of the link_map for a given OBJFILE. */
1480
1481 CORE_ADDR
1482 svr4_fetch_objfile_link_map (struct objfile *objfile)
1483 {
1484 struct so_list *so;
1485 struct svr4_info *info = get_svr4_info ();
1486
1487 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1488 if (info->main_lm_addr == 0)
1489 solib_add (NULL, 0, &current_target, auto_solib_add);
1490
1491 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1492 if (objfile == symfile_objfile)
1493 return info->main_lm_addr;
1494
1495 /* The other link map addresses may be found by examining the list
1496 of shared libraries. */
1497 for (so = master_so_list (); so; so = so->next)
1498 if (so->objfile == objfile)
1499 return so->lm_info->lm_addr;
1500
1501 /* Not found! */
1502 return 0;
1503 }
1504
1505 /* On some systems, the only way to recognize the link map entry for
1506 the main executable file is by looking at its name. Return
1507 non-zero iff SONAME matches one of the known main executable names. */
1508
1509 static int
1510 match_main (const char *soname)
1511 {
1512 const char * const *mainp;
1513
1514 for (mainp = main_name_list; *mainp != NULL; mainp++)
1515 {
1516 if (strcmp (soname, *mainp) == 0)
1517 return (1);
1518 }
1519
1520 return (0);
1521 }
1522
1523 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1524 SVR4 run time loader. */
1525
1526 int
1527 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1528 {
1529 struct svr4_info *info = get_svr4_info ();
1530
1531 return ((pc >= info->interp_text_sect_low
1532 && pc < info->interp_text_sect_high)
1533 || (pc >= info->interp_plt_sect_low
1534 && pc < info->interp_plt_sect_high)
1535 || in_plt_section (pc)
1536 || in_gnu_ifunc_stub (pc));
1537 }
1538
1539 /* Given an executable's ABFD and target, compute the entry-point
1540 address. */
1541
1542 static CORE_ADDR
1543 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1544 {
1545 CORE_ADDR addr;
1546
1547 /* KevinB wrote ... for most targets, the address returned by
1548 bfd_get_start_address() is the entry point for the start
1549 function. But, for some targets, bfd_get_start_address() returns
1550 the address of a function descriptor from which the entry point
1551 address may be extracted. This address is extracted by
1552 gdbarch_convert_from_func_ptr_addr(). The method
1553 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1554 function for targets which don't use function descriptors. */
1555 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1556 bfd_get_start_address (abfd),
1557 targ);
1558 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
1559 }
1560
1561 /* A probe and its associated action. */
1562
1563 struct probe_and_action
1564 {
1565 /* The probe. */
1566 struct probe *probe;
1567
1568 /* The action. */
1569 enum probe_action action;
1570 };
1571
1572 /* Returns a hash code for the probe_and_action referenced by p. */
1573
1574 static hashval_t
1575 hash_probe_and_action (const void *p)
1576 {
1577 const struct probe_and_action *pa = p;
1578
1579 return (hashval_t) pa->probe->address;
1580 }
1581
1582 /* Returns non-zero if the probe_and_actions referenced by p1 and p2
1583 are equal. */
1584
1585 static int
1586 equal_probe_and_action (const void *p1, const void *p2)
1587 {
1588 const struct probe_and_action *pa1 = p1;
1589 const struct probe_and_action *pa2 = p2;
1590
1591 return pa1->probe->address == pa2->probe->address;
1592 }
1593
1594 /* Register a solib event probe and its associated action in the
1595 probes table. */
1596
1597 static void
1598 register_solib_event_probe (struct probe *probe, enum probe_action action)
1599 {
1600 struct svr4_info *info = get_svr4_info ();
1601 struct probe_and_action lookup, *pa;
1602 void **slot;
1603
1604 /* Create the probes table, if necessary. */
1605 if (info->probes_table == NULL)
1606 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1607 equal_probe_and_action,
1608 xfree, xcalloc, xfree);
1609
1610 lookup.probe = probe;
1611 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1612 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1613
1614 pa = XCNEW (struct probe_and_action);
1615 pa->probe = probe;
1616 pa->action = action;
1617
1618 *slot = pa;
1619 }
1620
1621 /* Get the solib event probe at the specified location, and the
1622 action associated with it. Returns NULL if no solib event probe
1623 was found. */
1624
1625 static struct probe_and_action *
1626 solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1627 {
1628 struct probe lookup_probe;
1629 struct probe_and_action lookup;
1630 void **slot;
1631
1632 lookup_probe.address = address;
1633 lookup.probe = &lookup_probe;
1634 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1635
1636 if (slot == NULL)
1637 return NULL;
1638
1639 return (struct probe_and_action *) *slot;
1640 }
1641
1642 /* Decide what action to take when the specified solib event probe is
1643 hit. */
1644
1645 static enum probe_action
1646 solib_event_probe_action (struct probe_and_action *pa)
1647 {
1648 enum probe_action action;
1649 unsigned probe_argc;
1650
1651 action = pa->action;
1652 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1653 return action;
1654
1655 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1656
1657 /* Check that an appropriate number of arguments has been supplied.
1658 We expect:
1659 arg0: Lmid_t lmid (mandatory)
1660 arg1: struct r_debug *debug_base (mandatory)
1661 arg2: struct link_map *new (optional, for incremental updates) */
1662 probe_argc = get_probe_argument_count (pa->probe);
1663 if (probe_argc == 2)
1664 action = FULL_RELOAD;
1665 else if (probe_argc < 2)
1666 action = PROBES_INTERFACE_FAILED;
1667
1668 return action;
1669 }
1670
1671 /* Populate the shared object list by reading the entire list of
1672 shared objects from the inferior. Handle special cases relating
1673 to the first elements of the list. Returns nonzero on success. */
1674
1675 static int
1676 solist_update_full (struct svr4_info *info)
1677 {
1678 free_solib_list (info);
1679 info->solib_list = svr4_current_sos_direct (info);
1680
1681 return 1;
1682 }
1683
1684 /* Update the shared object list starting from the link-map entry
1685 passed by the linker in the probe's third argument. Returns
1686 nonzero if the list was successfully updated, or zero to indicate
1687 failure. */
1688
1689 static int
1690 solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1691 {
1692 struct so_list *tail;
1693 CORE_ADDR prev_lm;
1694
1695 /* svr4_current_sos_direct contains logic to handle a number of
1696 special cases relating to the first elements of the list. To
1697 avoid duplicating this logic we defer to solist_update_full
1698 if the list is empty. */
1699 if (info->solib_list == NULL)
1700 return 0;
1701
1702 /* Fall back to a full update if we are using a remote target
1703 that does not support incremental transfers. */
1704 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1705 return 0;
1706
1707 /* Walk to the end of the list. */
1708 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1709 /* Nothing. */;
1710 prev_lm = tail->lm_info->lm_addr;
1711
1712 /* Read the new objects. */
1713 if (info->using_xfer)
1714 {
1715 struct svr4_library_list library_list;
1716 char annex[64];
1717
1718 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1719 phex_nz (lm, sizeof (lm)),
1720 phex_nz (prev_lm, sizeof (prev_lm)));
1721 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1722 return 0;
1723
1724 tail->next = library_list.head;
1725 }
1726 else
1727 {
1728 struct so_list **link = &tail->next;
1729
1730 /* IGNORE_FIRST may safely be set to zero here because the
1731 above check and deferral to solist_update_full ensures
1732 that this call to svr4_read_so_list will never see the
1733 first element. */
1734 if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1735 return 0;
1736 }
1737
1738 return 1;
1739 }
1740
1741 /* Disable the probes-based linker interface and revert to the
1742 original interface. We don't reset the breakpoints as the
1743 ones set up for the probes-based interface are adequate. */
1744
1745 static void
1746 disable_probes_interface_cleanup (void *arg)
1747 {
1748 struct svr4_info *info = get_svr4_info ();
1749
1750 warning (_("Probes-based dynamic linker interface failed.\n"
1751 "Reverting to original interface.\n"));
1752
1753 free_probes_table (info);
1754 free_solib_list (info);
1755 }
1756
1757 /* Update the solib list as appropriate when using the
1758 probes-based linker interface. Do nothing if using the
1759 standard interface. */
1760
1761 static void
1762 svr4_handle_solib_event (void)
1763 {
1764 struct svr4_info *info = get_svr4_info ();
1765 struct probe_and_action *pa;
1766 enum probe_action action;
1767 struct cleanup *old_chain, *usm_chain;
1768 struct value *val;
1769 CORE_ADDR pc, debug_base, lm = 0;
1770 int is_initial_ns;
1771
1772 /* Do nothing if not using the probes interface. */
1773 if (info->probes_table == NULL)
1774 return;
1775
1776 /* If anything goes wrong we revert to the original linker
1777 interface. */
1778 old_chain = make_cleanup (disable_probes_interface_cleanup, NULL);
1779
1780 pc = regcache_read_pc (get_current_regcache ());
1781 pa = solib_event_probe_at (info, pc);
1782 if (pa == NULL)
1783 {
1784 do_cleanups (old_chain);
1785 return;
1786 }
1787
1788 action = solib_event_probe_action (pa);
1789 if (action == PROBES_INTERFACE_FAILED)
1790 {
1791 do_cleanups (old_chain);
1792 return;
1793 }
1794
1795 if (action == DO_NOTHING)
1796 {
1797 discard_cleanups (old_chain);
1798 return;
1799 }
1800
1801 /* evaluate_probe_argument looks up symbols in the dynamic linker
1802 using find_pc_section. find_pc_section is accelerated by a cache
1803 called the section map. The section map is invalidated every
1804 time a shared library is loaded or unloaded, and if the inferior
1805 is generating a lot of shared library events then the section map
1806 will be updated every time svr4_handle_solib_event is called.
1807 We called find_pc_section in svr4_create_solib_event_breakpoints,
1808 so we can guarantee that the dynamic linker's sections are in the
1809 section map. We can therefore inhibit section map updates across
1810 these calls to evaluate_probe_argument and save a lot of time. */
1811 inhibit_section_map_updates (current_program_space);
1812 usm_chain = make_cleanup (resume_section_map_updates_cleanup,
1813 current_program_space);
1814
1815 val = evaluate_probe_argument (pa->probe, 1);
1816 if (val == NULL)
1817 {
1818 do_cleanups (old_chain);
1819 return;
1820 }
1821
1822 debug_base = value_as_address (val);
1823 if (debug_base == 0)
1824 {
1825 do_cleanups (old_chain);
1826 return;
1827 }
1828
1829 /* Always locate the debug struct, in case it moved. */
1830 info->debug_base = 0;
1831 if (locate_base (info) == 0)
1832 {
1833 do_cleanups (old_chain);
1834 return;
1835 }
1836
1837 /* GDB does not currently support libraries loaded via dlmopen
1838 into namespaces other than the initial one. We must ignore
1839 any namespace other than the initial namespace here until
1840 support for this is added to GDB. */
1841 if (debug_base != info->debug_base)
1842 action = DO_NOTHING;
1843
1844 if (action == UPDATE_OR_RELOAD)
1845 {
1846 val = evaluate_probe_argument (pa->probe, 2);
1847 if (val != NULL)
1848 lm = value_as_address (val);
1849
1850 if (lm == 0)
1851 action = FULL_RELOAD;
1852 }
1853
1854 /* Resume section map updates. */
1855 do_cleanups (usm_chain);
1856
1857 if (action == UPDATE_OR_RELOAD)
1858 {
1859 if (!solist_update_incremental (info, lm))
1860 action = FULL_RELOAD;
1861 }
1862
1863 if (action == FULL_RELOAD)
1864 {
1865 if (!solist_update_full (info))
1866 {
1867 do_cleanups (old_chain);
1868 return;
1869 }
1870 }
1871
1872 discard_cleanups (old_chain);
1873 }
1874
1875 /* Helper function for svr4_update_solib_event_breakpoints. */
1876
1877 static int
1878 svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
1879 {
1880 struct bp_location *loc;
1881
1882 if (b->type != bp_shlib_event)
1883 {
1884 /* Continue iterating. */
1885 return 0;
1886 }
1887
1888 for (loc = b->loc; loc != NULL; loc = loc->next)
1889 {
1890 struct svr4_info *info;
1891 struct probe_and_action *pa;
1892
1893 info = program_space_data (loc->pspace, solib_svr4_pspace_data);
1894 if (info == NULL || info->probes_table == NULL)
1895 continue;
1896
1897 pa = solib_event_probe_at (info, loc->address);
1898 if (pa == NULL)
1899 continue;
1900
1901 if (pa->action == DO_NOTHING)
1902 {
1903 if (b->enable_state == bp_disabled && stop_on_solib_events)
1904 enable_breakpoint (b);
1905 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
1906 disable_breakpoint (b);
1907 }
1908
1909 break;
1910 }
1911
1912 /* Continue iterating. */
1913 return 0;
1914 }
1915
1916 /* Enable or disable optional solib event breakpoints as appropriate.
1917 Called whenever stop_on_solib_events is changed. */
1918
1919 static void
1920 svr4_update_solib_event_breakpoints (void)
1921 {
1922 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
1923 }
1924
1925 /* Create and register solib event breakpoints. PROBES is an array
1926 of NUM_PROBES elements, each of which is vector of probes. A
1927 solib event breakpoint will be created and registered for each
1928 probe. */
1929
1930 static void
1931 svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
1932 VEC (probe_p) **probes)
1933 {
1934 int i;
1935
1936 for (i = 0; i < NUM_PROBES; i++)
1937 {
1938 enum probe_action action = probe_info[i].action;
1939 struct probe *probe;
1940 int ix;
1941
1942 for (ix = 0;
1943 VEC_iterate (probe_p, probes[i], ix, probe);
1944 ++ix)
1945 {
1946 create_solib_event_breakpoint (gdbarch, probe->address);
1947 register_solib_event_probe (probe, action);
1948 }
1949 }
1950
1951 svr4_update_solib_event_breakpoints ();
1952 }
1953
1954 /* Both the SunOS and the SVR4 dynamic linkers call a marker function
1955 before and after mapping and unmapping shared libraries. The sole
1956 purpose of this method is to allow debuggers to set a breakpoint so
1957 they can track these changes.
1958
1959 Some versions of the glibc dynamic linker contain named probes
1960 to allow more fine grained stopping. Given the address of the
1961 original marker function, this function attempts to find these
1962 probes, and if found, sets breakpoints on those instead. If the
1963 probes aren't found, a single breakpoint is set on the original
1964 marker function. */
1965
1966 static void
1967 svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
1968 CORE_ADDR address)
1969 {
1970 struct obj_section *os;
1971
1972 os = find_pc_section (address);
1973 if (os != NULL)
1974 {
1975 int with_prefix;
1976
1977 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
1978 {
1979 VEC (probe_p) *probes[NUM_PROBES];
1980 int all_probes_found = 1;
1981 int checked_can_use_probe_arguments = 0;
1982 int i;
1983
1984 memset (probes, 0, sizeof (probes));
1985 for (i = 0; i < NUM_PROBES; i++)
1986 {
1987 const char *name = probe_info[i].name;
1988 struct probe *p;
1989 char buf[32];
1990
1991 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
1992 shipped with an early version of the probes code in
1993 which the probes' names were prefixed with "rtld_"
1994 and the "map_failed" probe did not exist. The
1995 locations of the probes are otherwise the same, so
1996 we check for probes with prefixed names if probes
1997 with unprefixed names are not present. */
1998 if (with_prefix)
1999 {
2000 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2001 name = buf;
2002 }
2003
2004 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2005
2006 /* The "map_failed" probe did not exist in early
2007 versions of the probes code in which the probes'
2008 names were prefixed with "rtld_". */
2009 if (strcmp (name, "rtld_map_failed") == 0)
2010 continue;
2011
2012 if (VEC_empty (probe_p, probes[i]))
2013 {
2014 all_probes_found = 0;
2015 break;
2016 }
2017
2018 /* Ensure probe arguments can be evaluated. */
2019 if (!checked_can_use_probe_arguments)
2020 {
2021 p = VEC_index (probe_p, probes[i], 0);
2022 if (!can_evaluate_probe_arguments (p))
2023 {
2024 all_probes_found = 0;
2025 break;
2026 }
2027 checked_can_use_probe_arguments = 1;
2028 }
2029 }
2030
2031 if (all_probes_found)
2032 svr4_create_probe_breakpoints (gdbarch, probes);
2033
2034 for (i = 0; i < NUM_PROBES; i++)
2035 VEC_free (probe_p, probes[i]);
2036
2037 if (all_probes_found)
2038 return;
2039 }
2040 }
2041
2042 create_solib_event_breakpoint (gdbarch, address);
2043 }
2044
2045 /* Helper function for gdb_bfd_lookup_symbol. */
2046
2047 static int
2048 cmp_name_and_sec_flags (asymbol *sym, void *data)
2049 {
2050 return (strcmp (sym->name, (const char *) data) == 0
2051 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2052 }
2053 /* Arrange for dynamic linker to hit breakpoint.
2054
2055 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2056 debugger interface, support for arranging for the inferior to hit
2057 a breakpoint after mapping in the shared libraries. This function
2058 enables that breakpoint.
2059
2060 For SunOS, there is a special flag location (in_debugger) which we
2061 set to 1. When the dynamic linker sees this flag set, it will set
2062 a breakpoint at a location known only to itself, after saving the
2063 original contents of that place and the breakpoint address itself,
2064 in it's own internal structures. When we resume the inferior, it
2065 will eventually take a SIGTRAP when it runs into the breakpoint.
2066 We handle this (in a different place) by restoring the contents of
2067 the breakpointed location (which is only known after it stops),
2068 chasing around to locate the shared libraries that have been
2069 loaded, then resuming.
2070
2071 For SVR4, the debugger interface structure contains a member (r_brk)
2072 which is statically initialized at the time the shared library is
2073 built, to the offset of a function (_r_debug_state) which is guaran-
2074 teed to be called once before mapping in a library, and again when
2075 the mapping is complete. At the time we are examining this member,
2076 it contains only the unrelocated offset of the function, so we have
2077 to do our own relocation. Later, when the dynamic linker actually
2078 runs, it relocates r_brk to be the actual address of _r_debug_state().
2079
2080 The debugger interface structure also contains an enumeration which
2081 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2082 depending upon whether or not the library is being mapped or unmapped,
2083 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
2084
2085 static int
2086 enable_break (struct svr4_info *info, int from_tty)
2087 {
2088 struct minimal_symbol *msymbol;
2089 const char * const *bkpt_namep;
2090 asection *interp_sect;
2091 char *interp_name;
2092 CORE_ADDR sym_addr;
2093
2094 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2095 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
2096
2097 /* If we already have a shared library list in the target, and
2098 r_debug contains r_brk, set the breakpoint there - this should
2099 mean r_brk has already been relocated. Assume the dynamic linker
2100 is the object containing r_brk. */
2101
2102 solib_add (NULL, from_tty, &current_target, auto_solib_add);
2103 sym_addr = 0;
2104 if (info->debug_base && solib_svr4_r_map (info) != 0)
2105 sym_addr = solib_svr4_r_brk (info);
2106
2107 if (sym_addr != 0)
2108 {
2109 struct obj_section *os;
2110
2111 sym_addr = gdbarch_addr_bits_remove
2112 (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2113 sym_addr,
2114 &current_target));
2115
2116 /* On at least some versions of Solaris there's a dynamic relocation
2117 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2118 we get control before the dynamic linker has self-relocated.
2119 Check if SYM_ADDR is in a known section, if it is assume we can
2120 trust its value. This is just a heuristic though, it could go away
2121 or be replaced if it's getting in the way.
2122
2123 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2124 however it's spelled in your particular system) is ARM or Thumb.
2125 That knowledge is encoded in the address, if it's Thumb the low bit
2126 is 1. However, we've stripped that info above and it's not clear
2127 what all the consequences are of passing a non-addr_bits_remove'd
2128 address to svr4_create_solib_event_breakpoints. The call to
2129 find_pc_section verifies we know about the address and have some
2130 hope of computing the right kind of breakpoint to use (via
2131 symbol info). It does mean that GDB needs to be pointed at a
2132 non-stripped version of the dynamic linker in order to obtain
2133 information it already knows about. Sigh. */
2134
2135 os = find_pc_section (sym_addr);
2136 if (os != NULL)
2137 {
2138 /* Record the relocated start and end address of the dynamic linker
2139 text and plt section for svr4_in_dynsym_resolve_code. */
2140 bfd *tmp_bfd;
2141 CORE_ADDR load_addr;
2142
2143 tmp_bfd = os->objfile->obfd;
2144 load_addr = ANOFFSET (os->objfile->section_offsets,
2145 SECT_OFF_TEXT (os->objfile));
2146
2147 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2148 if (interp_sect)
2149 {
2150 info->interp_text_sect_low =
2151 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2152 info->interp_text_sect_high =
2153 info->interp_text_sect_low
2154 + bfd_section_size (tmp_bfd, interp_sect);
2155 }
2156 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2157 if (interp_sect)
2158 {
2159 info->interp_plt_sect_low =
2160 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2161 info->interp_plt_sect_high =
2162 info->interp_plt_sect_low
2163 + bfd_section_size (tmp_bfd, interp_sect);
2164 }
2165
2166 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2167 return 1;
2168 }
2169 }
2170
2171 /* Find the program interpreter; if not found, warn the user and drop
2172 into the old breakpoint at symbol code. */
2173 interp_name = find_program_interpreter ();
2174 if (interp_name)
2175 {
2176 CORE_ADDR load_addr = 0;
2177 int load_addr_found = 0;
2178 int loader_found_in_list = 0;
2179 struct so_list *so;
2180 bfd *tmp_bfd = NULL;
2181 struct target_ops *tmp_bfd_target;
2182 volatile struct gdb_exception ex;
2183
2184 sym_addr = 0;
2185
2186 /* Now we need to figure out where the dynamic linker was
2187 loaded so that we can load its symbols and place a breakpoint
2188 in the dynamic linker itself.
2189
2190 This address is stored on the stack. However, I've been unable
2191 to find any magic formula to find it for Solaris (appears to
2192 be trivial on GNU/Linux). Therefore, we have to try an alternate
2193 mechanism to find the dynamic linker's base address. */
2194
2195 TRY_CATCH (ex, RETURN_MASK_ALL)
2196 {
2197 tmp_bfd = solib_bfd_open (interp_name);
2198 }
2199 if (tmp_bfd == NULL)
2200 goto bkpt_at_symbol;
2201
2202 /* Now convert the TMP_BFD into a target. That way target, as
2203 well as BFD operations can be used. */
2204 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
2205 /* target_bfd_reopen acquired its own reference, so we can
2206 release ours now. */
2207 gdb_bfd_unref (tmp_bfd);
2208
2209 /* On a running target, we can get the dynamic linker's base
2210 address from the shared library table. */
2211 so = master_so_list ();
2212 while (so)
2213 {
2214 if (svr4_same_1 (interp_name, so->so_original_name))
2215 {
2216 load_addr_found = 1;
2217 loader_found_in_list = 1;
2218 load_addr = lm_addr_check (so, tmp_bfd);
2219 break;
2220 }
2221 so = so->next;
2222 }
2223
2224 /* If we were not able to find the base address of the loader
2225 from our so_list, then try using the AT_BASE auxilliary entry. */
2226 if (!load_addr_found)
2227 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
2228 {
2229 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
2230
2231 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2232 that `+ load_addr' will overflow CORE_ADDR width not creating
2233 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2234 GDB. */
2235
2236 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
2237 {
2238 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
2239 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
2240 tmp_bfd_target);
2241
2242 gdb_assert (load_addr < space_size);
2243
2244 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2245 64bit ld.so with 32bit executable, it should not happen. */
2246
2247 if (tmp_entry_point < space_size
2248 && tmp_entry_point + load_addr >= space_size)
2249 load_addr -= space_size;
2250 }
2251
2252 load_addr_found = 1;
2253 }
2254
2255 /* Otherwise we find the dynamic linker's base address by examining
2256 the current pc (which should point at the entry point for the
2257 dynamic linker) and subtracting the offset of the entry point.
2258
2259 This is more fragile than the previous approaches, but is a good
2260 fallback method because it has actually been working well in
2261 most cases. */
2262 if (!load_addr_found)
2263 {
2264 struct regcache *regcache
2265 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
2266
2267 load_addr = (regcache_read_pc (regcache)
2268 - exec_entry_point (tmp_bfd, tmp_bfd_target));
2269 }
2270
2271 if (!loader_found_in_list)
2272 {
2273 info->debug_loader_name = xstrdup (interp_name);
2274 info->debug_loader_offset_p = 1;
2275 info->debug_loader_offset = load_addr;
2276 solib_add (NULL, from_tty, &current_target, auto_solib_add);
2277 }
2278
2279 /* Record the relocated start and end address of the dynamic linker
2280 text and plt section for svr4_in_dynsym_resolve_code. */
2281 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2282 if (interp_sect)
2283 {
2284 info->interp_text_sect_low =
2285 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2286 info->interp_text_sect_high =
2287 info->interp_text_sect_low
2288 + bfd_section_size (tmp_bfd, interp_sect);
2289 }
2290 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2291 if (interp_sect)
2292 {
2293 info->interp_plt_sect_low =
2294 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2295 info->interp_plt_sect_high =
2296 info->interp_plt_sect_low
2297 + bfd_section_size (tmp_bfd, interp_sect);
2298 }
2299
2300 /* Now try to set a breakpoint in the dynamic linker. */
2301 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2302 {
2303 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name_and_sec_flags,
2304 (void *) *bkpt_namep);
2305 if (sym_addr != 0)
2306 break;
2307 }
2308
2309 if (sym_addr != 0)
2310 /* Convert 'sym_addr' from a function pointer to an address.
2311 Because we pass tmp_bfd_target instead of the current
2312 target, this will always produce an unrelocated value. */
2313 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2314 sym_addr,
2315 tmp_bfd_target);
2316
2317 /* We're done with both the temporary bfd and target. Closing
2318 the target closes the underlying bfd, because it holds the
2319 only remaining reference. */
2320 target_close (tmp_bfd_target);
2321
2322 if (sym_addr != 0)
2323 {
2324 svr4_create_solib_event_breakpoints (target_gdbarch (),
2325 load_addr + sym_addr);
2326 xfree (interp_name);
2327 return 1;
2328 }
2329
2330 /* For whatever reason we couldn't set a breakpoint in the dynamic
2331 linker. Warn and drop into the old code. */
2332 bkpt_at_symbol:
2333 xfree (interp_name);
2334 warning (_("Unable to find dynamic linker breakpoint function.\n"
2335 "GDB will be unable to debug shared library initializers\n"
2336 "and track explicitly loaded dynamic code."));
2337 }
2338
2339 /* Scan through the lists of symbols, trying to look up the symbol and
2340 set a breakpoint there. Terminate loop when we/if we succeed. */
2341
2342 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2343 {
2344 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2345 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
2346 {
2347 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2348 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2349 sym_addr,
2350 &current_target);
2351 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2352 return 1;
2353 }
2354 }
2355
2356 if (interp_name != NULL && !current_inferior ()->attach_flag)
2357 {
2358 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
2359 {
2360 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2361 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
2362 {
2363 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2364 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2365 sym_addr,
2366 &current_target);
2367 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2368 return 1;
2369 }
2370 }
2371 }
2372 return 0;
2373 }
2374
2375 /* Implement the "special_symbol_handling" target_so_ops method. */
2376
2377 static void
2378 svr4_special_symbol_handling (void)
2379 {
2380 /* Nothing to do. */
2381 }
2382
2383 /* Read the ELF program headers from ABFD. Return the contents and
2384 set *PHDRS_SIZE to the size of the program headers. */
2385
2386 static gdb_byte *
2387 read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
2388 {
2389 Elf_Internal_Ehdr *ehdr;
2390 gdb_byte *buf;
2391
2392 ehdr = elf_elfheader (abfd);
2393
2394 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2395 if (*phdrs_size == 0)
2396 return NULL;
2397
2398 buf = xmalloc (*phdrs_size);
2399 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2400 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
2401 {
2402 xfree (buf);
2403 return NULL;
2404 }
2405
2406 return buf;
2407 }
2408
2409 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2410 exec_bfd. Otherwise return 0.
2411
2412 We relocate all of the sections by the same amount. This
2413 behavior is mandated by recent editions of the System V ABI.
2414 According to the System V Application Binary Interface,
2415 Edition 4.1, page 5-5:
2416
2417 ... Though the system chooses virtual addresses for
2418 individual processes, it maintains the segments' relative
2419 positions. Because position-independent code uses relative
2420 addressesing between segments, the difference between
2421 virtual addresses in memory must match the difference
2422 between virtual addresses in the file. The difference
2423 between the virtual address of any segment in memory and
2424 the corresponding virtual address in the file is thus a
2425 single constant value for any one executable or shared
2426 object in a given process. This difference is the base
2427 address. One use of the base address is to relocate the
2428 memory image of the program during dynamic linking.
2429
2430 The same language also appears in Edition 4.0 of the System V
2431 ABI and is left unspecified in some of the earlier editions.
2432
2433 Decide if the objfile needs to be relocated. As indicated above, we will
2434 only be here when execution is stopped. But during attachment PC can be at
2435 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2436 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2437 regcache_read_pc would point to the interpreter and not the main executable.
2438
2439 So, to summarize, relocations are necessary when the start address obtained
2440 from the executable is different from the address in auxv AT_ENTRY entry.
2441
2442 [ The astute reader will note that we also test to make sure that
2443 the executable in question has the DYNAMIC flag set. It is my
2444 opinion that this test is unnecessary (undesirable even). It
2445 was added to avoid inadvertent relocation of an executable
2446 whose e_type member in the ELF header is not ET_DYN. There may
2447 be a time in the future when it is desirable to do relocations
2448 on other types of files as well in which case this condition
2449 should either be removed or modified to accomodate the new file
2450 type. - Kevin, Nov 2000. ] */
2451
2452 static int
2453 svr4_exec_displacement (CORE_ADDR *displacementp)
2454 {
2455 /* ENTRY_POINT is a possible function descriptor - before
2456 a call to gdbarch_convert_from_func_ptr_addr. */
2457 CORE_ADDR entry_point, displacement;
2458
2459 if (exec_bfd == NULL)
2460 return 0;
2461
2462 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2463 being executed themselves and PIE (Position Independent Executable)
2464 executables are ET_DYN. */
2465
2466 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2467 return 0;
2468
2469 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
2470 return 0;
2471
2472 displacement = entry_point - bfd_get_start_address (exec_bfd);
2473
2474 /* Verify the DISPLACEMENT candidate complies with the required page
2475 alignment. It is cheaper than the program headers comparison below. */
2476
2477 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2478 {
2479 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2480
2481 /* p_align of PT_LOAD segments does not specify any alignment but
2482 only congruency of addresses:
2483 p_offset % p_align == p_vaddr % p_align
2484 Kernel is free to load the executable with lower alignment. */
2485
2486 if ((displacement & (elf->minpagesize - 1)) != 0)
2487 return 0;
2488 }
2489
2490 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2491 comparing their program headers. If the program headers in the auxilliary
2492 vector do not match the program headers in the executable, then we are
2493 looking at a different file than the one used by the kernel - for
2494 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2495
2496 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2497 {
2498 /* Be optimistic and clear OK only if GDB was able to verify the headers
2499 really do not match. */
2500 int phdrs_size, phdrs2_size, ok = 1;
2501 gdb_byte *buf, *buf2;
2502 int arch_size;
2503
2504 buf = read_program_header (-1, &phdrs_size, &arch_size);
2505 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
2506 if (buf != NULL && buf2 != NULL)
2507 {
2508 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2509
2510 /* We are dealing with three different addresses. EXEC_BFD
2511 represents current address in on-disk file. target memory content
2512 may be different from EXEC_BFD as the file may have been prelinked
2513 to a different address after the executable has been loaded.
2514 Moreover the address of placement in target memory can be
2515 different from what the program headers in target memory say -
2516 this is the goal of PIE.
2517
2518 Detected DISPLACEMENT covers both the offsets of PIE placement and
2519 possible new prelink performed after start of the program. Here
2520 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2521 content offset for the verification purpose. */
2522
2523 if (phdrs_size != phdrs2_size
2524 || bfd_get_arch_size (exec_bfd) != arch_size)
2525 ok = 0;
2526 else if (arch_size == 32
2527 && phdrs_size >= sizeof (Elf32_External_Phdr)
2528 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
2529 {
2530 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2531 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2532 CORE_ADDR displacement = 0;
2533 int i;
2534
2535 /* DISPLACEMENT could be found more easily by the difference of
2536 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2537 already have enough information to compute that displacement
2538 with what we've read. */
2539
2540 for (i = 0; i < ehdr2->e_phnum; i++)
2541 if (phdr2[i].p_type == PT_LOAD)
2542 {
2543 Elf32_External_Phdr *phdrp;
2544 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2545 CORE_ADDR vaddr, paddr;
2546 CORE_ADDR displacement_vaddr = 0;
2547 CORE_ADDR displacement_paddr = 0;
2548
2549 phdrp = &((Elf32_External_Phdr *) buf)[i];
2550 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2551 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2552
2553 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2554 byte_order);
2555 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2556
2557 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2558 byte_order);
2559 displacement_paddr = paddr - phdr2[i].p_paddr;
2560
2561 if (displacement_vaddr == displacement_paddr)
2562 displacement = displacement_vaddr;
2563
2564 break;
2565 }
2566
2567 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2568
2569 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
2570 {
2571 Elf32_External_Phdr *phdrp;
2572 Elf32_External_Phdr *phdr2p;
2573 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2574 CORE_ADDR vaddr, paddr;
2575 asection *plt2_asect;
2576
2577 phdrp = &((Elf32_External_Phdr *) buf)[i];
2578 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2579 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2580 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
2581
2582 /* PT_GNU_STACK is an exception by being never relocated by
2583 prelink as its addresses are always zero. */
2584
2585 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2586 continue;
2587
2588 /* Check also other adjustment combinations - PR 11786. */
2589
2590 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2591 byte_order);
2592 vaddr -= displacement;
2593 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2594
2595 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2596 byte_order);
2597 paddr -= displacement;
2598 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2599
2600 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2601 continue;
2602
2603 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2604 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2605 if (plt2_asect)
2606 {
2607 int content2;
2608 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2609 CORE_ADDR filesz;
2610
2611 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2612 & SEC_HAS_CONTENTS) != 0;
2613
2614 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2615 byte_order);
2616
2617 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2618 FILESZ is from the in-memory image. */
2619 if (content2)
2620 filesz += bfd_get_section_size (plt2_asect);
2621 else
2622 filesz -= bfd_get_section_size (plt2_asect);
2623
2624 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2625 filesz);
2626
2627 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2628 continue;
2629 }
2630
2631 ok = 0;
2632 break;
2633 }
2634 }
2635 else if (arch_size == 64
2636 && phdrs_size >= sizeof (Elf64_External_Phdr)
2637 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
2638 {
2639 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2640 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2641 CORE_ADDR displacement = 0;
2642 int i;
2643
2644 /* DISPLACEMENT could be found more easily by the difference of
2645 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2646 already have enough information to compute that displacement
2647 with what we've read. */
2648
2649 for (i = 0; i < ehdr2->e_phnum; i++)
2650 if (phdr2[i].p_type == PT_LOAD)
2651 {
2652 Elf64_External_Phdr *phdrp;
2653 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2654 CORE_ADDR vaddr, paddr;
2655 CORE_ADDR displacement_vaddr = 0;
2656 CORE_ADDR displacement_paddr = 0;
2657
2658 phdrp = &((Elf64_External_Phdr *) buf)[i];
2659 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2660 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2661
2662 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2663 byte_order);
2664 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2665
2666 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2667 byte_order);
2668 displacement_paddr = paddr - phdr2[i].p_paddr;
2669
2670 if (displacement_vaddr == displacement_paddr)
2671 displacement = displacement_vaddr;
2672
2673 break;
2674 }
2675
2676 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2677
2678 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2679 {
2680 Elf64_External_Phdr *phdrp;
2681 Elf64_External_Phdr *phdr2p;
2682 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2683 CORE_ADDR vaddr, paddr;
2684 asection *plt2_asect;
2685
2686 phdrp = &((Elf64_External_Phdr *) buf)[i];
2687 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2688 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2689 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2690
2691 /* PT_GNU_STACK is an exception by being never relocated by
2692 prelink as its addresses are always zero. */
2693
2694 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2695 continue;
2696
2697 /* Check also other adjustment combinations - PR 11786. */
2698
2699 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2700 byte_order);
2701 vaddr -= displacement;
2702 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2703
2704 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2705 byte_order);
2706 paddr -= displacement;
2707 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2708
2709 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2710 continue;
2711
2712 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2713 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2714 if (plt2_asect)
2715 {
2716 int content2;
2717 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2718 CORE_ADDR filesz;
2719
2720 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2721 & SEC_HAS_CONTENTS) != 0;
2722
2723 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2724 byte_order);
2725
2726 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2727 FILESZ is from the in-memory image. */
2728 if (content2)
2729 filesz += bfd_get_section_size (plt2_asect);
2730 else
2731 filesz -= bfd_get_section_size (plt2_asect);
2732
2733 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2734 filesz);
2735
2736 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2737 continue;
2738 }
2739
2740 ok = 0;
2741 break;
2742 }
2743 }
2744 else
2745 ok = 0;
2746 }
2747
2748 xfree (buf);
2749 xfree (buf2);
2750
2751 if (!ok)
2752 return 0;
2753 }
2754
2755 if (info_verbose)
2756 {
2757 /* It can be printed repeatedly as there is no easy way to check
2758 the executable symbols/file has been already relocated to
2759 displacement. */
2760
2761 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2762 "displacement %s for \"%s\".\n"),
2763 paddress (target_gdbarch (), displacement),
2764 bfd_get_filename (exec_bfd));
2765 }
2766
2767 *displacementp = displacement;
2768 return 1;
2769 }
2770
2771 /* Relocate the main executable. This function should be called upon
2772 stopping the inferior process at the entry point to the program.
2773 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2774 different, the main executable is relocated by the proper amount. */
2775
2776 static void
2777 svr4_relocate_main_executable (void)
2778 {
2779 CORE_ADDR displacement;
2780
2781 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2782 probably contains the offsets computed using the PIE displacement
2783 from the previous run, which of course are irrelevant for this run.
2784 So we need to determine the new PIE displacement and recompute the
2785 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2786 already contains pre-computed offsets.
2787
2788 If we cannot compute the PIE displacement, either:
2789
2790 - The executable is not PIE.
2791
2792 - SYMFILE_OBJFILE does not match the executable started in the target.
2793 This can happen for main executable symbols loaded at the host while
2794 `ld.so --ld-args main-executable' is loaded in the target.
2795
2796 Then we leave the section offsets untouched and use them as is for
2797 this run. Either:
2798
2799 - These section offsets were properly reset earlier, and thus
2800 already contain the correct values. This can happen for instance
2801 when reconnecting via the remote protocol to a target that supports
2802 the `qOffsets' packet.
2803
2804 - The section offsets were not reset earlier, and the best we can
2805 hope is that the old offsets are still applicable to the new run. */
2806
2807 if (! svr4_exec_displacement (&displacement))
2808 return;
2809
2810 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2811 addresses. */
2812
2813 if (symfile_objfile)
2814 {
2815 struct section_offsets *new_offsets;
2816 int i;
2817
2818 new_offsets = alloca (symfile_objfile->num_sections
2819 * sizeof (*new_offsets));
2820
2821 for (i = 0; i < symfile_objfile->num_sections; i++)
2822 new_offsets->offsets[i] = displacement;
2823
2824 objfile_relocate (symfile_objfile, new_offsets);
2825 }
2826 else if (exec_bfd)
2827 {
2828 asection *asect;
2829
2830 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2831 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2832 (bfd_section_vma (exec_bfd, asect)
2833 + displacement));
2834 }
2835 }
2836
2837 /* Implement the "create_inferior_hook" target_solib_ops method.
2838
2839 For SVR4 executables, this first instruction is either the first
2840 instruction in the dynamic linker (for dynamically linked
2841 executables) or the instruction at "start" for statically linked
2842 executables. For dynamically linked executables, the system
2843 first exec's /lib/libc.so.N, which contains the dynamic linker,
2844 and starts it running. The dynamic linker maps in any needed
2845 shared libraries, maps in the actual user executable, and then
2846 jumps to "start" in the user executable.
2847
2848 We can arrange to cooperate with the dynamic linker to discover the
2849 names of shared libraries that are dynamically linked, and the base
2850 addresses to which they are linked.
2851
2852 This function is responsible for discovering those names and
2853 addresses, and saving sufficient information about them to allow
2854 their symbols to be read at a later time. */
2855
2856 static void
2857 svr4_solib_create_inferior_hook (int from_tty)
2858 {
2859 struct svr4_info *info;
2860
2861 info = get_svr4_info ();
2862
2863 /* Clear the probes-based interface's state. */
2864 free_probes_table (info);
2865 free_solib_list (info);
2866
2867 /* Relocate the main executable if necessary. */
2868 svr4_relocate_main_executable ();
2869
2870 /* No point setting a breakpoint in the dynamic linker if we can't
2871 hit it (e.g., a core file, or a trace file). */
2872 if (!target_has_execution)
2873 return;
2874
2875 if (!svr4_have_link_map_offsets ())
2876 return;
2877
2878 if (!enable_break (info, from_tty))
2879 return;
2880 }
2881
2882 static void
2883 svr4_clear_solib (void)
2884 {
2885 struct svr4_info *info;
2886
2887 info = get_svr4_info ();
2888 info->debug_base = 0;
2889 info->debug_loader_offset_p = 0;
2890 info->debug_loader_offset = 0;
2891 xfree (info->debug_loader_name);
2892 info->debug_loader_name = NULL;
2893 }
2894
2895 /* Clear any bits of ADDR that wouldn't fit in a target-format
2896 data pointer. "Data pointer" here refers to whatever sort of
2897 address the dynamic linker uses to manage its sections. At the
2898 moment, we don't support shared libraries on any processors where
2899 code and data pointers are different sizes.
2900
2901 This isn't really the right solution. What we really need here is
2902 a way to do arithmetic on CORE_ADDR values that respects the
2903 natural pointer/address correspondence. (For example, on the MIPS,
2904 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2905 sign-extend the value. There, simply truncating the bits above
2906 gdbarch_ptr_bit, as we do below, is no good.) This should probably
2907 be a new gdbarch method or something. */
2908 static CORE_ADDR
2909 svr4_truncate_ptr (CORE_ADDR addr)
2910 {
2911 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
2912 /* We don't need to truncate anything, and the bit twiddling below
2913 will fail due to overflow problems. */
2914 return addr;
2915 else
2916 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
2917 }
2918
2919
2920 static void
2921 svr4_relocate_section_addresses (struct so_list *so,
2922 struct target_section *sec)
2923 {
2924 bfd *abfd = sec->the_bfd_section->owner;
2925
2926 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
2927 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
2928 }
2929 \f
2930
2931 /* Architecture-specific operations. */
2932
2933 /* Per-architecture data key. */
2934 static struct gdbarch_data *solib_svr4_data;
2935
2936 struct solib_svr4_ops
2937 {
2938 /* Return a description of the layout of `struct link_map'. */
2939 struct link_map_offsets *(*fetch_link_map_offsets)(void);
2940 };
2941
2942 /* Return a default for the architecture-specific operations. */
2943
2944 static void *
2945 solib_svr4_init (struct obstack *obstack)
2946 {
2947 struct solib_svr4_ops *ops;
2948
2949 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
2950 ops->fetch_link_map_offsets = NULL;
2951 return ops;
2952 }
2953
2954 /* Set the architecture-specific `struct link_map_offsets' fetcher for
2955 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
2956
2957 void
2958 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
2959 struct link_map_offsets *(*flmo) (void))
2960 {
2961 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
2962
2963 ops->fetch_link_map_offsets = flmo;
2964
2965 set_solib_ops (gdbarch, &svr4_so_ops);
2966 }
2967
2968 /* Fetch a link_map_offsets structure using the architecture-specific
2969 `struct link_map_offsets' fetcher. */
2970
2971 static struct link_map_offsets *
2972 svr4_fetch_link_map_offsets (void)
2973 {
2974 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
2975
2976 gdb_assert (ops->fetch_link_map_offsets);
2977 return ops->fetch_link_map_offsets ();
2978 }
2979
2980 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
2981
2982 static int
2983 svr4_have_link_map_offsets (void)
2984 {
2985 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
2986
2987 return (ops->fetch_link_map_offsets != NULL);
2988 }
2989 \f
2990
2991 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
2992 `struct r_debug' and a `struct link_map' that are binary compatible
2993 with the origional SVR4 implementation. */
2994
2995 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2996 for an ILP32 SVR4 system. */
2997
2998 struct link_map_offsets *
2999 svr4_ilp32_fetch_link_map_offsets (void)
3000 {
3001 static struct link_map_offsets lmo;
3002 static struct link_map_offsets *lmp = NULL;
3003
3004 if (lmp == NULL)
3005 {
3006 lmp = &lmo;
3007
3008 lmo.r_version_offset = 0;
3009 lmo.r_version_size = 4;
3010 lmo.r_map_offset = 4;
3011 lmo.r_brk_offset = 8;
3012 lmo.r_ldsomap_offset = 20;
3013
3014 /* Everything we need is in the first 20 bytes. */
3015 lmo.link_map_size = 20;
3016 lmo.l_addr_offset = 0;
3017 lmo.l_name_offset = 4;
3018 lmo.l_ld_offset = 8;
3019 lmo.l_next_offset = 12;
3020 lmo.l_prev_offset = 16;
3021 }
3022
3023 return lmp;
3024 }
3025
3026 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3027 for an LP64 SVR4 system. */
3028
3029 struct link_map_offsets *
3030 svr4_lp64_fetch_link_map_offsets (void)
3031 {
3032 static struct link_map_offsets lmo;
3033 static struct link_map_offsets *lmp = NULL;
3034
3035 if (lmp == NULL)
3036 {
3037 lmp = &lmo;
3038
3039 lmo.r_version_offset = 0;
3040 lmo.r_version_size = 4;
3041 lmo.r_map_offset = 8;
3042 lmo.r_brk_offset = 16;
3043 lmo.r_ldsomap_offset = 40;
3044
3045 /* Everything we need is in the first 40 bytes. */
3046 lmo.link_map_size = 40;
3047 lmo.l_addr_offset = 0;
3048 lmo.l_name_offset = 8;
3049 lmo.l_ld_offset = 16;
3050 lmo.l_next_offset = 24;
3051 lmo.l_prev_offset = 32;
3052 }
3053
3054 return lmp;
3055 }
3056 \f
3057
3058 struct target_so_ops svr4_so_ops;
3059
3060 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3061 different rule for symbol lookup. The lookup begins here in the DSO, not in
3062 the main executable. */
3063
3064 static struct symbol *
3065 elf_lookup_lib_symbol (const struct objfile *objfile,
3066 const char *name,
3067 const domain_enum domain)
3068 {
3069 bfd *abfd;
3070
3071 if (objfile == symfile_objfile)
3072 abfd = exec_bfd;
3073 else
3074 {
3075 /* OBJFILE should have been passed as the non-debug one. */
3076 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3077
3078 abfd = objfile->obfd;
3079 }
3080
3081 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
3082 return NULL;
3083
3084 return lookup_global_symbol_from_objfile (objfile, name, domain);
3085 }
3086
3087 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
3088
3089 void
3090 _initialize_svr4_solib (void)
3091 {
3092 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3093 solib_svr4_pspace_data
3094 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
3095
3096 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
3097 svr4_so_ops.free_so = svr4_free_so;
3098 svr4_so_ops.clear_so = svr4_clear_so;
3099 svr4_so_ops.clear_solib = svr4_clear_solib;
3100 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3101 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
3102 svr4_so_ops.current_sos = svr4_current_sos;
3103 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
3104 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
3105 svr4_so_ops.bfd_open = solib_bfd_open;
3106 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
3107 svr4_so_ops.same = svr4_same;
3108 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
3109 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3110 svr4_so_ops.handle_event = svr4_handle_solib_event;
3111 }
This page took 0.159621 seconds and 5 git commands to generate.