* symfile-mem.c (symbol_file_add_from_memory): Call do_cleanups.
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23
24 #include "elf/external.h"
25 #include "elf/common.h"
26 #include "elf/mips.h"
27
28 #include "symtab.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbcore.h"
33 #include "target.h"
34 #include "inferior.h"
35 #include "regcache.h"
36 #include "gdbthread.h"
37 #include "observer.h"
38
39 #include "gdb_assert.h"
40
41 #include "solist.h"
42 #include "solib.h"
43 #include "solib-svr4.h"
44
45 #include "bfd-target.h"
46 #include "elf-bfd.h"
47 #include "exec.h"
48 #include "auxv.h"
49 #include "exceptions.h"
50
51 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
52 static int svr4_have_link_map_offsets (void);
53 static void svr4_relocate_main_executable (void);
54
55 /* Link map info to include in an allocated so_list entry. */
56
57 struct lm_info
58 {
59 /* Pointer to copy of link map from inferior. The type is char *
60 rather than void *, so that we may use byte offsets to find the
61 various fields without the need for a cast. */
62 gdb_byte *lm;
63
64 /* Amount by which addresses in the binary should be relocated to
65 match the inferior. This could most often be taken directly
66 from lm, but when prelinking is involved and the prelink base
67 address changes, we may need a different offset, we want to
68 warn about the difference and compute it only once. */
69 CORE_ADDR l_addr;
70
71 /* The target location of lm. */
72 CORE_ADDR lm_addr;
73 };
74
75 /* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
83 static const char * const solib_break_names[] =
84 {
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
89 "__dl_rtld_db_dlactivity",
90 "_rtld_debug_state",
91
92 NULL
93 };
94
95 static const char * const bkpt_names[] =
96 {
97 "_start",
98 "__start",
99 "main",
100 NULL
101 };
102
103 static const char * const main_name_list[] =
104 {
105 "main_$main",
106 NULL
107 };
108
109 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
110 the same shared library. */
111
112 static int
113 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
114 {
115 if (strcmp (gdb_so_name, inferior_so_name) == 0)
116 return 1;
117
118 /* On Solaris, when starting inferior we think that dynamic linker is
119 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
120 contains /lib/ld.so.1. Sometimes one file is a link to another, but
121 sometimes they have identical content, but are not linked to each
122 other. We don't restrict this check for Solaris, but the chances
123 of running into this situation elsewhere are very low. */
124 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
125 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
126 return 1;
127
128 /* Similarly, we observed the same issue with sparc64, but with
129 different locations. */
130 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
131 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
132 return 1;
133
134 return 0;
135 }
136
137 static int
138 svr4_same (struct so_list *gdb, struct so_list *inferior)
139 {
140 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
141 }
142
143 /* link map access functions. */
144
145 static CORE_ADDR
146 lm_addr_from_link_map (struct so_list *so)
147 {
148 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
149 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
150
151 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
152 ptr_type);
153 }
154
155 static int
156 has_lm_dynamic_from_link_map (void)
157 {
158 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
159
160 return lmo->l_ld_offset >= 0;
161 }
162
163 static CORE_ADDR
164 lm_dynamic_from_link_map (struct so_list *so)
165 {
166 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
167 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
168
169 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
170 ptr_type);
171 }
172
173 static CORE_ADDR
174 lm_addr_check (struct so_list *so, bfd *abfd)
175 {
176 if (so->lm_info->l_addr == (CORE_ADDR)-1)
177 {
178 struct bfd_section *dyninfo_sect;
179 CORE_ADDR l_addr, l_dynaddr, dynaddr;
180
181 l_addr = lm_addr_from_link_map (so);
182
183 if (! abfd || ! has_lm_dynamic_from_link_map ())
184 goto set_addr;
185
186 l_dynaddr = lm_dynamic_from_link_map (so);
187
188 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
189 if (dyninfo_sect == NULL)
190 goto set_addr;
191
192 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
193
194 if (dynaddr + l_addr != l_dynaddr)
195 {
196 CORE_ADDR align = 0x1000;
197 CORE_ADDR minpagesize = align;
198
199 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
200 {
201 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
202 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
203 int i;
204
205 align = 1;
206
207 for (i = 0; i < ehdr->e_phnum; i++)
208 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
209 align = phdr[i].p_align;
210
211 minpagesize = get_elf_backend_data (abfd)->minpagesize;
212 }
213
214 /* Turn it into a mask. */
215 align--;
216
217 /* If the changes match the alignment requirements, we
218 assume we're using a core file that was generated by the
219 same binary, just prelinked with a different base offset.
220 If it doesn't match, we may have a different binary, the
221 same binary with the dynamic table loaded at an unrelated
222 location, or anything, really. To avoid regressions,
223 don't adjust the base offset in the latter case, although
224 odds are that, if things really changed, debugging won't
225 quite work.
226
227 One could expect more the condition
228 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
229 but the one below is relaxed for PPC. The PPC kernel supports
230 either 4k or 64k page sizes. To be prepared for 64k pages,
231 PPC ELF files are built using an alignment requirement of 64k.
232 However, when running on a kernel supporting 4k pages, the memory
233 mapping of the library may not actually happen on a 64k boundary!
234
235 (In the usual case where (l_addr & align) == 0, this check is
236 equivalent to the possibly expected check above.)
237
238 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
239
240 l_addr = l_dynaddr - dynaddr;
241
242 if ((l_addr & (minpagesize - 1)) == 0
243 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
244 {
245 if (info_verbose)
246 printf_unfiltered (_("Using PIC (Position Independent Code) "
247 "prelink displacement %s for \"%s\".\n"),
248 paddress (target_gdbarch, l_addr),
249 so->so_name);
250 }
251 else
252 {
253 /* There is no way to verify the library file matches. prelink
254 can during prelinking of an unprelinked file (or unprelinking
255 of a prelinked file) shift the DYNAMIC segment by arbitrary
256 offset without any page size alignment. There is no way to
257 find out the ELF header and/or Program Headers for a limited
258 verification if it they match. One could do a verification
259 of the DYNAMIC segment. Still the found address is the best
260 one GDB could find. */
261
262 warning (_(".dynamic section for \"%s\" "
263 "is not at the expected address "
264 "(wrong library or version mismatch?)"), so->so_name);
265 }
266 }
267
268 set_addr:
269 so->lm_info->l_addr = l_addr;
270 }
271
272 return so->lm_info->l_addr;
273 }
274
275 static CORE_ADDR
276 lm_next (struct so_list *so)
277 {
278 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
279 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
280
281 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
282 ptr_type);
283 }
284
285 static CORE_ADDR
286 lm_prev (struct so_list *so)
287 {
288 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
289 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
290
291 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
292 ptr_type);
293 }
294
295 static CORE_ADDR
296 lm_name (struct so_list *so)
297 {
298 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
299 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
300
301 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
302 ptr_type);
303 }
304
305 static int
306 ignore_first_link_map_entry (struct so_list *so)
307 {
308 /* Assume that everything is a library if the dynamic loader was loaded
309 late by a static executable. */
310 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
311 return 0;
312
313 return lm_prev (so) == 0;
314 }
315
316 /* Per pspace SVR4 specific data. */
317
318 struct svr4_info
319 {
320 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
321
322 /* Validity flag for debug_loader_offset. */
323 int debug_loader_offset_p;
324
325 /* Load address for the dynamic linker, inferred. */
326 CORE_ADDR debug_loader_offset;
327
328 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
329 char *debug_loader_name;
330
331 /* Load map address for the main executable. */
332 CORE_ADDR main_lm_addr;
333
334 CORE_ADDR interp_text_sect_low;
335 CORE_ADDR interp_text_sect_high;
336 CORE_ADDR interp_plt_sect_low;
337 CORE_ADDR interp_plt_sect_high;
338 };
339
340 /* Per-program-space data key. */
341 static const struct program_space_data *solib_svr4_pspace_data;
342
343 static void
344 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
345 {
346 struct svr4_info *info;
347
348 info = program_space_data (pspace, solib_svr4_pspace_data);
349 xfree (info);
350 }
351
352 /* Get the current svr4 data. If none is found yet, add it now. This
353 function always returns a valid object. */
354
355 static struct svr4_info *
356 get_svr4_info (void)
357 {
358 struct svr4_info *info;
359
360 info = program_space_data (current_program_space, solib_svr4_pspace_data);
361 if (info != NULL)
362 return info;
363
364 info = XZALLOC (struct svr4_info);
365 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
366 return info;
367 }
368
369 /* Local function prototypes */
370
371 static int match_main (const char *);
372
373 /*
374
375 LOCAL FUNCTION
376
377 bfd_lookup_symbol -- lookup the value for a specific symbol
378
379 SYNOPSIS
380
381 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
382
383 DESCRIPTION
384
385 An expensive way to lookup the value of a single symbol for
386 bfd's that are only temporary anyway. This is used by the
387 shared library support to find the address of the debugger
388 notification routine in the shared library.
389
390 The returned symbol may be in a code or data section; functions
391 will normally be in a code section, but may be in a data section
392 if this architecture uses function descriptors.
393
394 Note that 0 is specifically allowed as an error return (no
395 such symbol).
396 */
397
398 static CORE_ADDR
399 bfd_lookup_symbol (bfd *abfd, const char *symname)
400 {
401 long storage_needed;
402 asymbol *sym;
403 asymbol **symbol_table;
404 unsigned int number_of_symbols;
405 unsigned int i;
406 struct cleanup *back_to;
407 CORE_ADDR symaddr = 0;
408
409 storage_needed = bfd_get_symtab_upper_bound (abfd);
410
411 if (storage_needed > 0)
412 {
413 symbol_table = (asymbol **) xmalloc (storage_needed);
414 back_to = make_cleanup (xfree, symbol_table);
415 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
416
417 for (i = 0; i < number_of_symbols; i++)
418 {
419 sym = *symbol_table++;
420 if (strcmp (sym->name, symname) == 0
421 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
422 {
423 /* BFD symbols are section relative. */
424 symaddr = sym->value + sym->section->vma;
425 break;
426 }
427 }
428 do_cleanups (back_to);
429 }
430
431 if (symaddr)
432 return symaddr;
433
434 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
435 have to check the dynamic string table too. */
436
437 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
438
439 if (storage_needed > 0)
440 {
441 symbol_table = (asymbol **) xmalloc (storage_needed);
442 back_to = make_cleanup (xfree, symbol_table);
443 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
444
445 for (i = 0; i < number_of_symbols; i++)
446 {
447 sym = *symbol_table++;
448
449 if (strcmp (sym->name, symname) == 0
450 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
451 {
452 /* BFD symbols are section relative. */
453 symaddr = sym->value + sym->section->vma;
454 break;
455 }
456 }
457 do_cleanups (back_to);
458 }
459
460 return symaddr;
461 }
462
463
464 /* Read program header TYPE from inferior memory. The header is found
465 by scanning the OS auxillary vector.
466
467 If TYPE == -1, return the program headers instead of the contents of
468 one program header.
469
470 Return a pointer to allocated memory holding the program header contents,
471 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
472 size of those contents is returned to P_SECT_SIZE. Likewise, the target
473 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
474
475 static gdb_byte *
476 read_program_header (int type, int *p_sect_size, int *p_arch_size)
477 {
478 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
479 CORE_ADDR at_phdr, at_phent, at_phnum;
480 int arch_size, sect_size;
481 CORE_ADDR sect_addr;
482 gdb_byte *buf;
483
484 /* Get required auxv elements from target. */
485 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
486 return 0;
487 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
488 return 0;
489 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
490 return 0;
491 if (!at_phdr || !at_phnum)
492 return 0;
493
494 /* Determine ELF architecture type. */
495 if (at_phent == sizeof (Elf32_External_Phdr))
496 arch_size = 32;
497 else if (at_phent == sizeof (Elf64_External_Phdr))
498 arch_size = 64;
499 else
500 return 0;
501
502 /* Find the requested segment. */
503 if (type == -1)
504 {
505 sect_addr = at_phdr;
506 sect_size = at_phent * at_phnum;
507 }
508 else if (arch_size == 32)
509 {
510 Elf32_External_Phdr phdr;
511 int i;
512
513 /* Search for requested PHDR. */
514 for (i = 0; i < at_phnum; i++)
515 {
516 if (target_read_memory (at_phdr + i * sizeof (phdr),
517 (gdb_byte *)&phdr, sizeof (phdr)))
518 return 0;
519
520 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
521 4, byte_order) == type)
522 break;
523 }
524
525 if (i == at_phnum)
526 return 0;
527
528 /* Retrieve address and size. */
529 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
530 4, byte_order);
531 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
532 4, byte_order);
533 }
534 else
535 {
536 Elf64_External_Phdr phdr;
537 int i;
538
539 /* Search for requested PHDR. */
540 for (i = 0; i < at_phnum; i++)
541 {
542 if (target_read_memory (at_phdr + i * sizeof (phdr),
543 (gdb_byte *)&phdr, sizeof (phdr)))
544 return 0;
545
546 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
547 4, byte_order) == type)
548 break;
549 }
550
551 if (i == at_phnum)
552 return 0;
553
554 /* Retrieve address and size. */
555 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
556 8, byte_order);
557 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
558 8, byte_order);
559 }
560
561 /* Read in requested program header. */
562 buf = xmalloc (sect_size);
563 if (target_read_memory (sect_addr, buf, sect_size))
564 {
565 xfree (buf);
566 return NULL;
567 }
568
569 if (p_arch_size)
570 *p_arch_size = arch_size;
571 if (p_sect_size)
572 *p_sect_size = sect_size;
573
574 return buf;
575 }
576
577
578 /* Return program interpreter string. */
579 static gdb_byte *
580 find_program_interpreter (void)
581 {
582 gdb_byte *buf = NULL;
583
584 /* If we have an exec_bfd, use its section table. */
585 if (exec_bfd
586 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
587 {
588 struct bfd_section *interp_sect;
589
590 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
591 if (interp_sect != NULL)
592 {
593 int sect_size = bfd_section_size (exec_bfd, interp_sect);
594
595 buf = xmalloc (sect_size);
596 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
597 }
598 }
599
600 /* If we didn't find it, use the target auxillary vector. */
601 if (!buf)
602 buf = read_program_header (PT_INTERP, NULL, NULL);
603
604 return buf;
605 }
606
607
608 /* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
609 returned and the corresponding PTR is set. */
610
611 static int
612 scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
613 {
614 int arch_size, step, sect_size;
615 long dyn_tag;
616 CORE_ADDR dyn_ptr, dyn_addr;
617 gdb_byte *bufend, *bufstart, *buf;
618 Elf32_External_Dyn *x_dynp_32;
619 Elf64_External_Dyn *x_dynp_64;
620 struct bfd_section *sect;
621 struct target_section *target_section;
622
623 if (abfd == NULL)
624 return 0;
625
626 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
627 return 0;
628
629 arch_size = bfd_get_arch_size (abfd);
630 if (arch_size == -1)
631 return 0;
632
633 /* Find the start address of the .dynamic section. */
634 sect = bfd_get_section_by_name (abfd, ".dynamic");
635 if (sect == NULL)
636 return 0;
637
638 for (target_section = current_target_sections->sections;
639 target_section < current_target_sections->sections_end;
640 target_section++)
641 if (sect == target_section->the_bfd_section)
642 break;
643 if (target_section < current_target_sections->sections_end)
644 dyn_addr = target_section->addr;
645 else
646 {
647 /* ABFD may come from OBJFILE acting only as a symbol file without being
648 loaded into the target (see add_symbol_file_command). This case is
649 such fallback to the file VMA address without the possibility of
650 having the section relocated to its actual in-memory address. */
651
652 dyn_addr = bfd_section_vma (abfd, sect);
653 }
654
655 /* Read in .dynamic from the BFD. We will get the actual value
656 from memory later. */
657 sect_size = bfd_section_size (abfd, sect);
658 buf = bufstart = alloca (sect_size);
659 if (!bfd_get_section_contents (abfd, sect,
660 buf, 0, sect_size))
661 return 0;
662
663 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
664 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
665 : sizeof (Elf64_External_Dyn);
666 for (bufend = buf + sect_size;
667 buf < bufend;
668 buf += step)
669 {
670 if (arch_size == 32)
671 {
672 x_dynp_32 = (Elf32_External_Dyn *) buf;
673 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
674 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
675 }
676 else
677 {
678 x_dynp_64 = (Elf64_External_Dyn *) buf;
679 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
680 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
681 }
682 if (dyn_tag == DT_NULL)
683 return 0;
684 if (dyn_tag == dyntag)
685 {
686 /* If requested, try to read the runtime value of this .dynamic
687 entry. */
688 if (ptr)
689 {
690 struct type *ptr_type;
691 gdb_byte ptr_buf[8];
692 CORE_ADDR ptr_addr;
693
694 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
695 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
696 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
697 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
698 *ptr = dyn_ptr;
699 }
700 return 1;
701 }
702 }
703
704 return 0;
705 }
706
707 /* Scan for DYNTAG in .dynamic section of the target's main executable,
708 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
709 returned and the corresponding PTR is set. */
710
711 static int
712 scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
713 {
714 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
715 int sect_size, arch_size, step;
716 long dyn_tag;
717 CORE_ADDR dyn_ptr;
718 gdb_byte *bufend, *bufstart, *buf;
719
720 /* Read in .dynamic section. */
721 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
722 if (!buf)
723 return 0;
724
725 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
726 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
727 : sizeof (Elf64_External_Dyn);
728 for (bufend = buf + sect_size;
729 buf < bufend;
730 buf += step)
731 {
732 if (arch_size == 32)
733 {
734 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
735
736 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
737 4, byte_order);
738 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
739 4, byte_order);
740 }
741 else
742 {
743 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
744
745 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
746 8, byte_order);
747 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
748 8, byte_order);
749 }
750 if (dyn_tag == DT_NULL)
751 break;
752
753 if (dyn_tag == dyntag)
754 {
755 if (ptr)
756 *ptr = dyn_ptr;
757
758 xfree (bufstart);
759 return 1;
760 }
761 }
762
763 xfree (bufstart);
764 return 0;
765 }
766
767
768 /*
769
770 LOCAL FUNCTION
771
772 elf_locate_base -- locate the base address of dynamic linker structs
773 for SVR4 elf targets.
774
775 SYNOPSIS
776
777 CORE_ADDR elf_locate_base (void)
778
779 DESCRIPTION
780
781 For SVR4 elf targets the address of the dynamic linker's runtime
782 structure is contained within the dynamic info section in the
783 executable file. The dynamic section is also mapped into the
784 inferior address space. Because the runtime loader fills in the
785 real address before starting the inferior, we have to read in the
786 dynamic info section from the inferior address space.
787 If there are any errors while trying to find the address, we
788 silently return 0, otherwise the found address is returned.
789
790 */
791
792 static CORE_ADDR
793 elf_locate_base (void)
794 {
795 struct minimal_symbol *msymbol;
796 CORE_ADDR dyn_ptr;
797
798 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
799 instead of DT_DEBUG, although they sometimes contain an unused
800 DT_DEBUG. */
801 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
802 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
803 {
804 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
805 gdb_byte *pbuf;
806 int pbuf_size = TYPE_LENGTH (ptr_type);
807
808 pbuf = alloca (pbuf_size);
809 /* DT_MIPS_RLD_MAP contains a pointer to the address
810 of the dynamic link structure. */
811 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
812 return 0;
813 return extract_typed_address (pbuf, ptr_type);
814 }
815
816 /* Find DT_DEBUG. */
817 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
818 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
819 return dyn_ptr;
820
821 /* This may be a static executable. Look for the symbol
822 conventionally named _r_debug, as a last resort. */
823 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
824 if (msymbol != NULL)
825 return SYMBOL_VALUE_ADDRESS (msymbol);
826
827 /* DT_DEBUG entry not found. */
828 return 0;
829 }
830
831 /*
832
833 LOCAL FUNCTION
834
835 locate_base -- locate the base address of dynamic linker structs
836
837 SYNOPSIS
838
839 CORE_ADDR locate_base (struct svr4_info *)
840
841 DESCRIPTION
842
843 For both the SunOS and SVR4 shared library implementations, if the
844 inferior executable has been linked dynamically, there is a single
845 address somewhere in the inferior's data space which is the key to
846 locating all of the dynamic linker's runtime structures. This
847 address is the value of the debug base symbol. The job of this
848 function is to find and return that address, or to return 0 if there
849 is no such address (the executable is statically linked for example).
850
851 For SunOS, the job is almost trivial, since the dynamic linker and
852 all of it's structures are statically linked to the executable at
853 link time. Thus the symbol for the address we are looking for has
854 already been added to the minimal symbol table for the executable's
855 objfile at the time the symbol file's symbols were read, and all we
856 have to do is look it up there. Note that we explicitly do NOT want
857 to find the copies in the shared library.
858
859 The SVR4 version is a bit more complicated because the address
860 is contained somewhere in the dynamic info section. We have to go
861 to a lot more work to discover the address of the debug base symbol.
862 Because of this complexity, we cache the value we find and return that
863 value on subsequent invocations. Note there is no copy in the
864 executable symbol tables.
865
866 */
867
868 static CORE_ADDR
869 locate_base (struct svr4_info *info)
870 {
871 /* Check to see if we have a currently valid address, and if so, avoid
872 doing all this work again and just return the cached address. If
873 we have no cached address, try to locate it in the dynamic info
874 section for ELF executables. There's no point in doing any of this
875 though if we don't have some link map offsets to work with. */
876
877 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
878 info->debug_base = elf_locate_base ();
879 return info->debug_base;
880 }
881
882 /* Find the first element in the inferior's dynamic link map, and
883 return its address in the inferior. Return zero if the address
884 could not be determined.
885
886 FIXME: Perhaps we should validate the info somehow, perhaps by
887 checking r_version for a known version number, or r_state for
888 RT_CONSISTENT. */
889
890 static CORE_ADDR
891 solib_svr4_r_map (struct svr4_info *info)
892 {
893 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
894 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
895 CORE_ADDR addr = 0;
896 volatile struct gdb_exception ex;
897
898 TRY_CATCH (ex, RETURN_MASK_ERROR)
899 {
900 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
901 ptr_type);
902 }
903 exception_print (gdb_stderr, ex);
904 return addr;
905 }
906
907 /* Find r_brk from the inferior's debug base. */
908
909 static CORE_ADDR
910 solib_svr4_r_brk (struct svr4_info *info)
911 {
912 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
913 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
914
915 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
916 ptr_type);
917 }
918
919 /* Find the link map for the dynamic linker (if it is not in the
920 normal list of loaded shared objects). */
921
922 static CORE_ADDR
923 solib_svr4_r_ldsomap (struct svr4_info *info)
924 {
925 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
926 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
927 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
928 ULONGEST version;
929
930 /* Check version, and return zero if `struct r_debug' doesn't have
931 the r_ldsomap member. */
932 version
933 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
934 lmo->r_version_size, byte_order);
935 if (version < 2 || lmo->r_ldsomap_offset == -1)
936 return 0;
937
938 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
939 ptr_type);
940 }
941
942 /* On Solaris systems with some versions of the dynamic linker,
943 ld.so's l_name pointer points to the SONAME in the string table
944 rather than into writable memory. So that GDB can find shared
945 libraries when loading a core file generated by gcore, ensure that
946 memory areas containing the l_name string are saved in the core
947 file. */
948
949 static int
950 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
951 {
952 struct svr4_info *info;
953 CORE_ADDR ldsomap;
954 struct so_list *new;
955 struct cleanup *old_chain;
956 struct link_map_offsets *lmo;
957 CORE_ADDR name_lm;
958
959 info = get_svr4_info ();
960
961 info->debug_base = 0;
962 locate_base (info);
963 if (!info->debug_base)
964 return 0;
965
966 ldsomap = solib_svr4_r_ldsomap (info);
967 if (!ldsomap)
968 return 0;
969
970 lmo = svr4_fetch_link_map_offsets ();
971 new = XZALLOC (struct so_list);
972 old_chain = make_cleanup (xfree, new);
973 new->lm_info = xmalloc (sizeof (struct lm_info));
974 make_cleanup (xfree, new->lm_info);
975 new->lm_info->l_addr = (CORE_ADDR)-1;
976 new->lm_info->lm_addr = ldsomap;
977 new->lm_info->lm = xzalloc (lmo->link_map_size);
978 make_cleanup (xfree, new->lm_info->lm);
979 read_memory (ldsomap, new->lm_info->lm, lmo->link_map_size);
980 name_lm = lm_name (new);
981 do_cleanups (old_chain);
982
983 return (name_lm >= vaddr && name_lm < vaddr + size);
984 }
985
986 /*
987
988 LOCAL FUNCTION
989
990 open_symbol_file_object
991
992 SYNOPSIS
993
994 void open_symbol_file_object (void *from_tty)
995
996 DESCRIPTION
997
998 If no open symbol file, attempt to locate and open the main symbol
999 file. On SVR4 systems, this is the first link map entry. If its
1000 name is here, we can open it. Useful when attaching to a process
1001 without first loading its symbol file.
1002
1003 If FROM_TTYP dereferences to a non-zero integer, allow messages to
1004 be printed. This parameter is a pointer rather than an int because
1005 open_symbol_file_object() is called via catch_errors() and
1006 catch_errors() requires a pointer argument. */
1007
1008 static int
1009 open_symbol_file_object (void *from_ttyp)
1010 {
1011 CORE_ADDR lm, l_name;
1012 char *filename;
1013 int errcode;
1014 int from_tty = *(int *)from_ttyp;
1015 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
1016 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
1017 int l_name_size = TYPE_LENGTH (ptr_type);
1018 gdb_byte *l_name_buf = xmalloc (l_name_size);
1019 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
1020 struct svr4_info *info = get_svr4_info ();
1021
1022 if (symfile_objfile)
1023 if (!query (_("Attempt to reload symbols from process? ")))
1024 {
1025 do_cleanups (cleanups);
1026 return 0;
1027 }
1028
1029 /* Always locate the debug struct, in case it has moved. */
1030 info->debug_base = 0;
1031 if (locate_base (info) == 0)
1032 {
1033 do_cleanups (cleanups);
1034 return 0; /* failed somehow... */
1035 }
1036
1037 /* First link map member should be the executable. */
1038 lm = solib_svr4_r_map (info);
1039 if (lm == 0)
1040 {
1041 do_cleanups (cleanups);
1042 return 0; /* failed somehow... */
1043 }
1044
1045 /* Read address of name from target memory to GDB. */
1046 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
1047
1048 /* Convert the address to host format. */
1049 l_name = extract_typed_address (l_name_buf, ptr_type);
1050
1051 if (l_name == 0)
1052 {
1053 do_cleanups (cleanups);
1054 return 0; /* No filename. */
1055 }
1056
1057 /* Now fetch the filename from target memory. */
1058 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1059 make_cleanup (xfree, filename);
1060
1061 if (errcode)
1062 {
1063 warning (_("failed to read exec filename from attached file: %s"),
1064 safe_strerror (errcode));
1065 do_cleanups (cleanups);
1066 return 0;
1067 }
1068
1069 /* Have a pathname: read the symbol file. */
1070 symbol_file_add_main (filename, from_tty);
1071
1072 do_cleanups (cleanups);
1073 return 1;
1074 }
1075
1076 /* If no shared library information is available from the dynamic
1077 linker, build a fallback list from other sources. */
1078
1079 static struct so_list *
1080 svr4_default_sos (void)
1081 {
1082 struct svr4_info *info = get_svr4_info ();
1083
1084 struct so_list *head = NULL;
1085 struct so_list **link_ptr = &head;
1086
1087 if (info->debug_loader_offset_p)
1088 {
1089 struct so_list *new = XZALLOC (struct so_list);
1090
1091 new->lm_info = xmalloc (sizeof (struct lm_info));
1092
1093 /* Nothing will ever check the cached copy of the link
1094 map if we set l_addr. */
1095 new->lm_info->l_addr = info->debug_loader_offset;
1096 new->lm_info->lm_addr = 0;
1097 new->lm_info->lm = NULL;
1098
1099 strncpy (new->so_name, info->debug_loader_name,
1100 SO_NAME_MAX_PATH_SIZE - 1);
1101 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1102 strcpy (new->so_original_name, new->so_name);
1103
1104 *link_ptr = new;
1105 link_ptr = &new->next;
1106 }
1107
1108 return head;
1109 }
1110
1111 /* LOCAL FUNCTION
1112
1113 current_sos -- build a list of currently loaded shared objects
1114
1115 SYNOPSIS
1116
1117 struct so_list *current_sos ()
1118
1119 DESCRIPTION
1120
1121 Build a list of `struct so_list' objects describing the shared
1122 objects currently loaded in the inferior. This list does not
1123 include an entry for the main executable file.
1124
1125 Note that we only gather information directly available from the
1126 inferior --- we don't examine any of the shared library files
1127 themselves. The declaration of `struct so_list' says which fields
1128 we provide values for. */
1129
1130 static struct so_list *
1131 svr4_current_sos (void)
1132 {
1133 CORE_ADDR lm, prev_lm;
1134 struct so_list *head = 0;
1135 struct so_list **link_ptr = &head;
1136 CORE_ADDR ldsomap = 0;
1137 struct svr4_info *info;
1138
1139 info = get_svr4_info ();
1140
1141 /* Always locate the debug struct, in case it has moved. */
1142 info->debug_base = 0;
1143 locate_base (info);
1144
1145 /* If we can't find the dynamic linker's base structure, this
1146 must not be a dynamically linked executable. Hmm. */
1147 if (! info->debug_base)
1148 return svr4_default_sos ();
1149
1150 /* Walk the inferior's link map list, and build our list of
1151 `struct so_list' nodes. */
1152 prev_lm = 0;
1153 lm = solib_svr4_r_map (info);
1154
1155 while (lm)
1156 {
1157 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
1158 struct so_list *new = XZALLOC (struct so_list);
1159 struct cleanup *old_chain = make_cleanup (xfree, new);
1160 CORE_ADDR next_lm;
1161
1162 new->lm_info = xmalloc (sizeof (struct lm_info));
1163 make_cleanup (xfree, new->lm_info);
1164
1165 new->lm_info->l_addr = (CORE_ADDR)-1;
1166 new->lm_info->lm_addr = lm;
1167 new->lm_info->lm = xzalloc (lmo->link_map_size);
1168 make_cleanup (xfree, new->lm_info->lm);
1169
1170 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1171
1172 next_lm = lm_next (new);
1173
1174 if (lm_prev (new) != prev_lm)
1175 {
1176 warning (_("Corrupted shared library list"));
1177 free_so (new);
1178 next_lm = 0;
1179 }
1180
1181 /* For SVR4 versions, the first entry in the link map is for the
1182 inferior executable, so we must ignore it. For some versions of
1183 SVR4, it has no name. For others (Solaris 2.3 for example), it
1184 does have a name, so we can no longer use a missing name to
1185 decide when to ignore it. */
1186 else if (ignore_first_link_map_entry (new) && ldsomap == 0)
1187 {
1188 info->main_lm_addr = new->lm_info->lm_addr;
1189 free_so (new);
1190 }
1191 else
1192 {
1193 int errcode;
1194 char *buffer;
1195
1196 /* Extract this shared object's name. */
1197 target_read_string (lm_name (new), &buffer,
1198 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1199 if (errcode != 0)
1200 warning (_("Can't read pathname for load map: %s."),
1201 safe_strerror (errcode));
1202 else
1203 {
1204 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1205 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1206 strcpy (new->so_original_name, new->so_name);
1207 }
1208 xfree (buffer);
1209
1210 /* If this entry has no name, or its name matches the name
1211 for the main executable, don't include it in the list. */
1212 if (! new->so_name[0]
1213 || match_main (new->so_name))
1214 free_so (new);
1215 else
1216 {
1217 new->next = 0;
1218 *link_ptr = new;
1219 link_ptr = &new->next;
1220 }
1221 }
1222
1223 prev_lm = lm;
1224 lm = next_lm;
1225
1226 /* On Solaris, the dynamic linker is not in the normal list of
1227 shared objects, so make sure we pick it up too. Having
1228 symbol information for the dynamic linker is quite crucial
1229 for skipping dynamic linker resolver code. */
1230 if (lm == 0 && ldsomap == 0)
1231 {
1232 lm = ldsomap = solib_svr4_r_ldsomap (info);
1233 prev_lm = 0;
1234 }
1235
1236 discard_cleanups (old_chain);
1237 }
1238
1239 if (head == NULL)
1240 return svr4_default_sos ();
1241
1242 return head;
1243 }
1244
1245 /* Get the address of the link_map for a given OBJFILE. */
1246
1247 CORE_ADDR
1248 svr4_fetch_objfile_link_map (struct objfile *objfile)
1249 {
1250 struct so_list *so;
1251 struct svr4_info *info = get_svr4_info ();
1252
1253 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1254 if (info->main_lm_addr == 0)
1255 solib_add (NULL, 0, &current_target, auto_solib_add);
1256
1257 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1258 if (objfile == symfile_objfile)
1259 return info->main_lm_addr;
1260
1261 /* The other link map addresses may be found by examining the list
1262 of shared libraries. */
1263 for (so = master_so_list (); so; so = so->next)
1264 if (so->objfile == objfile)
1265 return so->lm_info->lm_addr;
1266
1267 /* Not found! */
1268 return 0;
1269 }
1270
1271 /* On some systems, the only way to recognize the link map entry for
1272 the main executable file is by looking at its name. Return
1273 non-zero iff SONAME matches one of the known main executable names. */
1274
1275 static int
1276 match_main (const char *soname)
1277 {
1278 const char * const *mainp;
1279
1280 for (mainp = main_name_list; *mainp != NULL; mainp++)
1281 {
1282 if (strcmp (soname, *mainp) == 0)
1283 return (1);
1284 }
1285
1286 return (0);
1287 }
1288
1289 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1290 SVR4 run time loader. */
1291
1292 int
1293 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1294 {
1295 struct svr4_info *info = get_svr4_info ();
1296
1297 return ((pc >= info->interp_text_sect_low
1298 && pc < info->interp_text_sect_high)
1299 || (pc >= info->interp_plt_sect_low
1300 && pc < info->interp_plt_sect_high)
1301 || in_plt_section (pc, NULL)
1302 || in_gnu_ifunc_stub (pc));
1303 }
1304
1305 /* Given an executable's ABFD and target, compute the entry-point
1306 address. */
1307
1308 static CORE_ADDR
1309 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1310 {
1311 /* KevinB wrote ... for most targets, the address returned by
1312 bfd_get_start_address() is the entry point for the start
1313 function. But, for some targets, bfd_get_start_address() returns
1314 the address of a function descriptor from which the entry point
1315 address may be extracted. This address is extracted by
1316 gdbarch_convert_from_func_ptr_addr(). The method
1317 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1318 function for targets which don't use function descriptors. */
1319 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1320 bfd_get_start_address (abfd),
1321 targ);
1322 }
1323
1324 /*
1325
1326 LOCAL FUNCTION
1327
1328 enable_break -- arrange for dynamic linker to hit breakpoint
1329
1330 SYNOPSIS
1331
1332 int enable_break (void)
1333
1334 DESCRIPTION
1335
1336 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1337 debugger interface, support for arranging for the inferior to hit
1338 a breakpoint after mapping in the shared libraries. This function
1339 enables that breakpoint.
1340
1341 For SunOS, there is a special flag location (in_debugger) which we
1342 set to 1. When the dynamic linker sees this flag set, it will set
1343 a breakpoint at a location known only to itself, after saving the
1344 original contents of that place and the breakpoint address itself,
1345 in it's own internal structures. When we resume the inferior, it
1346 will eventually take a SIGTRAP when it runs into the breakpoint.
1347 We handle this (in a different place) by restoring the contents of
1348 the breakpointed location (which is only known after it stops),
1349 chasing around to locate the shared libraries that have been
1350 loaded, then resuming.
1351
1352 For SVR4, the debugger interface structure contains a member (r_brk)
1353 which is statically initialized at the time the shared library is
1354 built, to the offset of a function (_r_debug_state) which is guaran-
1355 teed to be called once before mapping in a library, and again when
1356 the mapping is complete. At the time we are examining this member,
1357 it contains only the unrelocated offset of the function, so we have
1358 to do our own relocation. Later, when the dynamic linker actually
1359 runs, it relocates r_brk to be the actual address of _r_debug_state().
1360
1361 The debugger interface structure also contains an enumeration which
1362 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1363 depending upon whether or not the library is being mapped or unmapped,
1364 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1365 */
1366
1367 static int
1368 enable_break (struct svr4_info *info, int from_tty)
1369 {
1370 struct minimal_symbol *msymbol;
1371 const char * const *bkpt_namep;
1372 asection *interp_sect;
1373 gdb_byte *interp_name;
1374 CORE_ADDR sym_addr;
1375
1376 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1377 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
1378
1379 /* If we already have a shared library list in the target, and
1380 r_debug contains r_brk, set the breakpoint there - this should
1381 mean r_brk has already been relocated. Assume the dynamic linker
1382 is the object containing r_brk. */
1383
1384 solib_add (NULL, from_tty, &current_target, auto_solib_add);
1385 sym_addr = 0;
1386 if (info->debug_base && solib_svr4_r_map (info) != 0)
1387 sym_addr = solib_svr4_r_brk (info);
1388
1389 if (sym_addr != 0)
1390 {
1391 struct obj_section *os;
1392
1393 sym_addr = gdbarch_addr_bits_remove
1394 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1395 sym_addr,
1396 &current_target));
1397
1398 /* On at least some versions of Solaris there's a dynamic relocation
1399 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
1400 we get control before the dynamic linker has self-relocated.
1401 Check if SYM_ADDR is in a known section, if it is assume we can
1402 trust its value. This is just a heuristic though, it could go away
1403 or be replaced if it's getting in the way.
1404
1405 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
1406 however it's spelled in your particular system) is ARM or Thumb.
1407 That knowledge is encoded in the address, if it's Thumb the low bit
1408 is 1. However, we've stripped that info above and it's not clear
1409 what all the consequences are of passing a non-addr_bits_remove'd
1410 address to create_solib_event_breakpoint. The call to
1411 find_pc_section verifies we know about the address and have some
1412 hope of computing the right kind of breakpoint to use (via
1413 symbol info). It does mean that GDB needs to be pointed at a
1414 non-stripped version of the dynamic linker in order to obtain
1415 information it already knows about. Sigh. */
1416
1417 os = find_pc_section (sym_addr);
1418 if (os != NULL)
1419 {
1420 /* Record the relocated start and end address of the dynamic linker
1421 text and plt section for svr4_in_dynsym_resolve_code. */
1422 bfd *tmp_bfd;
1423 CORE_ADDR load_addr;
1424
1425 tmp_bfd = os->objfile->obfd;
1426 load_addr = ANOFFSET (os->objfile->section_offsets,
1427 os->objfile->sect_index_text);
1428
1429 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1430 if (interp_sect)
1431 {
1432 info->interp_text_sect_low =
1433 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1434 info->interp_text_sect_high =
1435 info->interp_text_sect_low
1436 + bfd_section_size (tmp_bfd, interp_sect);
1437 }
1438 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1439 if (interp_sect)
1440 {
1441 info->interp_plt_sect_low =
1442 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1443 info->interp_plt_sect_high =
1444 info->interp_plt_sect_low
1445 + bfd_section_size (tmp_bfd, interp_sect);
1446 }
1447
1448 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1449 return 1;
1450 }
1451 }
1452
1453 /* Find the program interpreter; if not found, warn the user and drop
1454 into the old breakpoint at symbol code. */
1455 interp_name = find_program_interpreter ();
1456 if (interp_name)
1457 {
1458 CORE_ADDR load_addr = 0;
1459 int load_addr_found = 0;
1460 int loader_found_in_list = 0;
1461 struct so_list *so;
1462 bfd *tmp_bfd = NULL;
1463 struct target_ops *tmp_bfd_target;
1464 volatile struct gdb_exception ex;
1465
1466 sym_addr = 0;
1467
1468 /* Now we need to figure out where the dynamic linker was
1469 loaded so that we can load its symbols and place a breakpoint
1470 in the dynamic linker itself.
1471
1472 This address is stored on the stack. However, I've been unable
1473 to find any magic formula to find it for Solaris (appears to
1474 be trivial on GNU/Linux). Therefore, we have to try an alternate
1475 mechanism to find the dynamic linker's base address. */
1476
1477 TRY_CATCH (ex, RETURN_MASK_ALL)
1478 {
1479 tmp_bfd = solib_bfd_open (interp_name);
1480 }
1481 if (tmp_bfd == NULL)
1482 goto bkpt_at_symbol;
1483
1484 /* Now convert the TMP_BFD into a target. That way target, as
1485 well as BFD operations can be used. Note that closing the
1486 target will also close the underlying bfd. */
1487 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1488
1489 /* On a running target, we can get the dynamic linker's base
1490 address from the shared library table. */
1491 so = master_so_list ();
1492 while (so)
1493 {
1494 if (svr4_same_1 (interp_name, so->so_original_name))
1495 {
1496 load_addr_found = 1;
1497 loader_found_in_list = 1;
1498 load_addr = lm_addr_check (so, tmp_bfd);
1499 break;
1500 }
1501 so = so->next;
1502 }
1503
1504 /* If we were not able to find the base address of the loader
1505 from our so_list, then try using the AT_BASE auxilliary entry. */
1506 if (!load_addr_found)
1507 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
1508 {
1509 int addr_bit = gdbarch_addr_bit (target_gdbarch);
1510
1511 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
1512 that `+ load_addr' will overflow CORE_ADDR width not creating
1513 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
1514 GDB. */
1515
1516 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
1517 {
1518 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
1519 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
1520 tmp_bfd_target);
1521
1522 gdb_assert (load_addr < space_size);
1523
1524 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
1525 64bit ld.so with 32bit executable, it should not happen. */
1526
1527 if (tmp_entry_point < space_size
1528 && tmp_entry_point + load_addr >= space_size)
1529 load_addr -= space_size;
1530 }
1531
1532 load_addr_found = 1;
1533 }
1534
1535 /* Otherwise we find the dynamic linker's base address by examining
1536 the current pc (which should point at the entry point for the
1537 dynamic linker) and subtracting the offset of the entry point.
1538
1539 This is more fragile than the previous approaches, but is a good
1540 fallback method because it has actually been working well in
1541 most cases. */
1542 if (!load_addr_found)
1543 {
1544 struct regcache *regcache
1545 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1546
1547 load_addr = (regcache_read_pc (regcache)
1548 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1549 }
1550
1551 if (!loader_found_in_list)
1552 {
1553 info->debug_loader_name = xstrdup (interp_name);
1554 info->debug_loader_offset_p = 1;
1555 info->debug_loader_offset = load_addr;
1556 solib_add (NULL, from_tty, &current_target, auto_solib_add);
1557 }
1558
1559 /* Record the relocated start and end address of the dynamic linker
1560 text and plt section for svr4_in_dynsym_resolve_code. */
1561 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1562 if (interp_sect)
1563 {
1564 info->interp_text_sect_low =
1565 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1566 info->interp_text_sect_high =
1567 info->interp_text_sect_low
1568 + bfd_section_size (tmp_bfd, interp_sect);
1569 }
1570 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1571 if (interp_sect)
1572 {
1573 info->interp_plt_sect_low =
1574 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1575 info->interp_plt_sect_high =
1576 info->interp_plt_sect_low
1577 + bfd_section_size (tmp_bfd, interp_sect);
1578 }
1579
1580 /* Now try to set a breakpoint in the dynamic linker. */
1581 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1582 {
1583 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1584 if (sym_addr != 0)
1585 break;
1586 }
1587
1588 if (sym_addr != 0)
1589 /* Convert 'sym_addr' from a function pointer to an address.
1590 Because we pass tmp_bfd_target instead of the current
1591 target, this will always produce an unrelocated value. */
1592 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1593 sym_addr,
1594 tmp_bfd_target);
1595
1596 /* We're done with both the temporary bfd and target. Remember,
1597 closing the target closes the underlying bfd. */
1598 target_close (tmp_bfd_target, 0);
1599
1600 if (sym_addr != 0)
1601 {
1602 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
1603 xfree (interp_name);
1604 return 1;
1605 }
1606
1607 /* For whatever reason we couldn't set a breakpoint in the dynamic
1608 linker. Warn and drop into the old code. */
1609 bkpt_at_symbol:
1610 xfree (interp_name);
1611 warning (_("Unable to find dynamic linker breakpoint function.\n"
1612 "GDB will be unable to debug shared library initializers\n"
1613 "and track explicitly loaded dynamic code."));
1614 }
1615
1616 /* Scan through the lists of symbols, trying to look up the symbol and
1617 set a breakpoint there. Terminate loop when we/if we succeed. */
1618
1619 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1620 {
1621 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1622 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1623 {
1624 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1625 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1626 sym_addr,
1627 &current_target);
1628 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1629 return 1;
1630 }
1631 }
1632
1633 if (!current_inferior ()->attach_flag)
1634 {
1635 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1636 {
1637 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1638 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1639 {
1640 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1641 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1642 sym_addr,
1643 &current_target);
1644 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1645 return 1;
1646 }
1647 }
1648 }
1649 return 0;
1650 }
1651
1652 /*
1653
1654 LOCAL FUNCTION
1655
1656 special_symbol_handling -- additional shared library symbol handling
1657
1658 SYNOPSIS
1659
1660 void special_symbol_handling ()
1661
1662 DESCRIPTION
1663
1664 Once the symbols from a shared object have been loaded in the usual
1665 way, we are called to do any system specific symbol handling that
1666 is needed.
1667
1668 For SunOS4, this consisted of grunging around in the dynamic
1669 linkers structures to find symbol definitions for "common" symbols
1670 and adding them to the minimal symbol table for the runtime common
1671 objfile.
1672
1673 However, for SVR4, there's nothing to do.
1674
1675 */
1676
1677 static void
1678 svr4_special_symbol_handling (void)
1679 {
1680 }
1681
1682 /* Read the ELF program headers from ABFD. Return the contents and
1683 set *PHDRS_SIZE to the size of the program headers. */
1684
1685 static gdb_byte *
1686 read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
1687 {
1688 Elf_Internal_Ehdr *ehdr;
1689 gdb_byte *buf;
1690
1691 ehdr = elf_elfheader (abfd);
1692
1693 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
1694 if (*phdrs_size == 0)
1695 return NULL;
1696
1697 buf = xmalloc (*phdrs_size);
1698 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
1699 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
1700 {
1701 xfree (buf);
1702 return NULL;
1703 }
1704
1705 return buf;
1706 }
1707
1708 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
1709 exec_bfd. Otherwise return 0.
1710
1711 We relocate all of the sections by the same amount. This
1712 behavior is mandated by recent editions of the System V ABI.
1713 According to the System V Application Binary Interface,
1714 Edition 4.1, page 5-5:
1715
1716 ... Though the system chooses virtual addresses for
1717 individual processes, it maintains the segments' relative
1718 positions. Because position-independent code uses relative
1719 addressesing between segments, the difference between
1720 virtual addresses in memory must match the difference
1721 between virtual addresses in the file. The difference
1722 between the virtual address of any segment in memory and
1723 the corresponding virtual address in the file is thus a
1724 single constant value for any one executable or shared
1725 object in a given process. This difference is the base
1726 address. One use of the base address is to relocate the
1727 memory image of the program during dynamic linking.
1728
1729 The same language also appears in Edition 4.0 of the System V
1730 ABI and is left unspecified in some of the earlier editions.
1731
1732 Decide if the objfile needs to be relocated. As indicated above, we will
1733 only be here when execution is stopped. But during attachment PC can be at
1734 arbitrary address therefore regcache_read_pc can be misleading (contrary to
1735 the auxv AT_ENTRY value). Moreover for executable with interpreter section
1736 regcache_read_pc would point to the interpreter and not the main executable.
1737
1738 So, to summarize, relocations are necessary when the start address obtained
1739 from the executable is different from the address in auxv AT_ENTRY entry.
1740
1741 [ The astute reader will note that we also test to make sure that
1742 the executable in question has the DYNAMIC flag set. It is my
1743 opinion that this test is unnecessary (undesirable even). It
1744 was added to avoid inadvertent relocation of an executable
1745 whose e_type member in the ELF header is not ET_DYN. There may
1746 be a time in the future when it is desirable to do relocations
1747 on other types of files as well in which case this condition
1748 should either be removed or modified to accomodate the new file
1749 type. - Kevin, Nov 2000. ] */
1750
1751 static int
1752 svr4_exec_displacement (CORE_ADDR *displacementp)
1753 {
1754 /* ENTRY_POINT is a possible function descriptor - before
1755 a call to gdbarch_convert_from_func_ptr_addr. */
1756 CORE_ADDR entry_point, displacement;
1757
1758 if (exec_bfd == NULL)
1759 return 0;
1760
1761 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
1762 being executed themselves and PIE (Position Independent Executable)
1763 executables are ET_DYN. */
1764
1765 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
1766 return 0;
1767
1768 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
1769 return 0;
1770
1771 displacement = entry_point - bfd_get_start_address (exec_bfd);
1772
1773 /* Verify the DISPLACEMENT candidate complies with the required page
1774 alignment. It is cheaper than the program headers comparison below. */
1775
1776 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1777 {
1778 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
1779
1780 /* p_align of PT_LOAD segments does not specify any alignment but
1781 only congruency of addresses:
1782 p_offset % p_align == p_vaddr % p_align
1783 Kernel is free to load the executable with lower alignment. */
1784
1785 if ((displacement & (elf->minpagesize - 1)) != 0)
1786 return 0;
1787 }
1788
1789 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
1790 comparing their program headers. If the program headers in the auxilliary
1791 vector do not match the program headers in the executable, then we are
1792 looking at a different file than the one used by the kernel - for
1793 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
1794
1795 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1796 {
1797 /* Be optimistic and clear OK only if GDB was able to verify the headers
1798 really do not match. */
1799 int phdrs_size, phdrs2_size, ok = 1;
1800 gdb_byte *buf, *buf2;
1801 int arch_size;
1802
1803 buf = read_program_header (-1, &phdrs_size, &arch_size);
1804 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
1805 if (buf != NULL && buf2 != NULL)
1806 {
1807 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1808
1809 /* We are dealing with three different addresses. EXEC_BFD
1810 represents current address in on-disk file. target memory content
1811 may be different from EXEC_BFD as the file may have been prelinked
1812 to a different address after the executable has been loaded.
1813 Moreover the address of placement in target memory can be
1814 different from what the program headers in target memory say -
1815 this is the goal of PIE.
1816
1817 Detected DISPLACEMENT covers both the offsets of PIE placement and
1818 possible new prelink performed after start of the program. Here
1819 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
1820 content offset for the verification purpose. */
1821
1822 if (phdrs_size != phdrs2_size
1823 || bfd_get_arch_size (exec_bfd) != arch_size)
1824 ok = 0;
1825 else if (arch_size == 32
1826 && phdrs_size >= sizeof (Elf32_External_Phdr)
1827 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
1828 {
1829 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1830 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1831 CORE_ADDR displacement = 0;
1832 int i;
1833
1834 /* DISPLACEMENT could be found more easily by the difference of
1835 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1836 already have enough information to compute that displacement
1837 with what we've read. */
1838
1839 for (i = 0; i < ehdr2->e_phnum; i++)
1840 if (phdr2[i].p_type == PT_LOAD)
1841 {
1842 Elf32_External_Phdr *phdrp;
1843 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1844 CORE_ADDR vaddr, paddr;
1845 CORE_ADDR displacement_vaddr = 0;
1846 CORE_ADDR displacement_paddr = 0;
1847
1848 phdrp = &((Elf32_External_Phdr *) buf)[i];
1849 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1850 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1851
1852 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1853 byte_order);
1854 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1855
1856 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1857 byte_order);
1858 displacement_paddr = paddr - phdr2[i].p_paddr;
1859
1860 if (displacement_vaddr == displacement_paddr)
1861 displacement = displacement_vaddr;
1862
1863 break;
1864 }
1865
1866 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1867
1868 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
1869 {
1870 Elf32_External_Phdr *phdrp;
1871 Elf32_External_Phdr *phdr2p;
1872 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1873 CORE_ADDR vaddr, paddr;
1874 asection *plt2_asect;
1875
1876 phdrp = &((Elf32_External_Phdr *) buf)[i];
1877 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1878 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1879 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
1880
1881 /* PT_GNU_STACK is an exception by being never relocated by
1882 prelink as its addresses are always zero. */
1883
1884 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1885 continue;
1886
1887 /* Check also other adjustment combinations - PR 11786. */
1888
1889 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1890 byte_order);
1891 vaddr -= displacement;
1892 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
1893
1894 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1895 byte_order);
1896 paddr -= displacement;
1897 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
1898
1899 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1900 continue;
1901
1902 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
1903 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
1904 if (plt2_asect)
1905 {
1906 int content2;
1907 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
1908 CORE_ADDR filesz;
1909
1910 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
1911 & SEC_HAS_CONTENTS) != 0;
1912
1913 filesz = extract_unsigned_integer (buf_filesz_p, 4,
1914 byte_order);
1915
1916 /* PLT2_ASECT is from on-disk file (exec_bfd) while
1917 FILESZ is from the in-memory image. */
1918 if (content2)
1919 filesz += bfd_get_section_size (plt2_asect);
1920 else
1921 filesz -= bfd_get_section_size (plt2_asect);
1922
1923 store_unsigned_integer (buf_filesz_p, 4, byte_order,
1924 filesz);
1925
1926 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1927 continue;
1928 }
1929
1930 ok = 0;
1931 break;
1932 }
1933 }
1934 else if (arch_size == 64
1935 && phdrs_size >= sizeof (Elf64_External_Phdr)
1936 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
1937 {
1938 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1939 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1940 CORE_ADDR displacement = 0;
1941 int i;
1942
1943 /* DISPLACEMENT could be found more easily by the difference of
1944 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1945 already have enough information to compute that displacement
1946 with what we've read. */
1947
1948 for (i = 0; i < ehdr2->e_phnum; i++)
1949 if (phdr2[i].p_type == PT_LOAD)
1950 {
1951 Elf64_External_Phdr *phdrp;
1952 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1953 CORE_ADDR vaddr, paddr;
1954 CORE_ADDR displacement_vaddr = 0;
1955 CORE_ADDR displacement_paddr = 0;
1956
1957 phdrp = &((Elf64_External_Phdr *) buf)[i];
1958 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1959 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1960
1961 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
1962 byte_order);
1963 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1964
1965 paddr = extract_unsigned_integer (buf_paddr_p, 8,
1966 byte_order);
1967 displacement_paddr = paddr - phdr2[i].p_paddr;
1968
1969 if (displacement_vaddr == displacement_paddr)
1970 displacement = displacement_vaddr;
1971
1972 break;
1973 }
1974
1975 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1976
1977 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
1978 {
1979 Elf64_External_Phdr *phdrp;
1980 Elf64_External_Phdr *phdr2p;
1981 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1982 CORE_ADDR vaddr, paddr;
1983 asection *plt2_asect;
1984
1985 phdrp = &((Elf64_External_Phdr *) buf)[i];
1986 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1987 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1988 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
1989
1990 /* PT_GNU_STACK is an exception by being never relocated by
1991 prelink as its addresses are always zero. */
1992
1993 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1994 continue;
1995
1996 /* Check also other adjustment combinations - PR 11786. */
1997
1998 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
1999 byte_order);
2000 vaddr -= displacement;
2001 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2002
2003 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2004 byte_order);
2005 paddr -= displacement;
2006 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2007
2008 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2009 continue;
2010
2011 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2012 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2013 if (plt2_asect)
2014 {
2015 int content2;
2016 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2017 CORE_ADDR filesz;
2018
2019 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2020 & SEC_HAS_CONTENTS) != 0;
2021
2022 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2023 byte_order);
2024
2025 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2026 FILESZ is from the in-memory image. */
2027 if (content2)
2028 filesz += bfd_get_section_size (plt2_asect);
2029 else
2030 filesz -= bfd_get_section_size (plt2_asect);
2031
2032 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2033 filesz);
2034
2035 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2036 continue;
2037 }
2038
2039 ok = 0;
2040 break;
2041 }
2042 }
2043 else
2044 ok = 0;
2045 }
2046
2047 xfree (buf);
2048 xfree (buf2);
2049
2050 if (!ok)
2051 return 0;
2052 }
2053
2054 if (info_verbose)
2055 {
2056 /* It can be printed repeatedly as there is no easy way to check
2057 the executable symbols/file has been already relocated to
2058 displacement. */
2059
2060 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2061 "displacement %s for \"%s\".\n"),
2062 paddress (target_gdbarch, displacement),
2063 bfd_get_filename (exec_bfd));
2064 }
2065
2066 *displacementp = displacement;
2067 return 1;
2068 }
2069
2070 /* Relocate the main executable. This function should be called upon
2071 stopping the inferior process at the entry point to the program.
2072 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2073 different, the main executable is relocated by the proper amount. */
2074
2075 static void
2076 svr4_relocate_main_executable (void)
2077 {
2078 CORE_ADDR displacement;
2079
2080 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2081 probably contains the offsets computed using the PIE displacement
2082 from the previous run, which of course are irrelevant for this run.
2083 So we need to determine the new PIE displacement and recompute the
2084 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2085 already contains pre-computed offsets.
2086
2087 If we cannot compute the PIE displacement, either:
2088
2089 - The executable is not PIE.
2090
2091 - SYMFILE_OBJFILE does not match the executable started in the target.
2092 This can happen for main executable symbols loaded at the host while
2093 `ld.so --ld-args main-executable' is loaded in the target.
2094
2095 Then we leave the section offsets untouched and use them as is for
2096 this run. Either:
2097
2098 - These section offsets were properly reset earlier, and thus
2099 already contain the correct values. This can happen for instance
2100 when reconnecting via the remote protocol to a target that supports
2101 the `qOffsets' packet.
2102
2103 - The section offsets were not reset earlier, and the best we can
2104 hope is that the old offsets are still applicable to the new run. */
2105
2106 if (! svr4_exec_displacement (&displacement))
2107 return;
2108
2109 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2110 addresses. */
2111
2112 if (symfile_objfile)
2113 {
2114 struct section_offsets *new_offsets;
2115 int i;
2116
2117 new_offsets = alloca (symfile_objfile->num_sections
2118 * sizeof (*new_offsets));
2119
2120 for (i = 0; i < symfile_objfile->num_sections; i++)
2121 new_offsets->offsets[i] = displacement;
2122
2123 objfile_relocate (symfile_objfile, new_offsets);
2124 }
2125 else if (exec_bfd)
2126 {
2127 asection *asect;
2128
2129 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2130 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2131 (bfd_section_vma (exec_bfd, asect)
2132 + displacement));
2133 }
2134 }
2135
2136 /*
2137
2138 GLOBAL FUNCTION
2139
2140 svr4_solib_create_inferior_hook -- shared library startup support
2141
2142 SYNOPSIS
2143
2144 void svr4_solib_create_inferior_hook (int from_tty)
2145
2146 DESCRIPTION
2147
2148 When gdb starts up the inferior, it nurses it along (through the
2149 shell) until it is ready to execute it's first instruction. At this
2150 point, this function gets called via expansion of the macro
2151 SOLIB_CREATE_INFERIOR_HOOK.
2152
2153 For SunOS executables, this first instruction is typically the
2154 one at "_start", or a similar text label, regardless of whether
2155 the executable is statically or dynamically linked. The runtime
2156 startup code takes care of dynamically linking in any shared
2157 libraries, once gdb allows the inferior to continue.
2158
2159 For SVR4 executables, this first instruction is either the first
2160 instruction in the dynamic linker (for dynamically linked
2161 executables) or the instruction at "start" for statically linked
2162 executables. For dynamically linked executables, the system
2163 first exec's /lib/libc.so.N, which contains the dynamic linker,
2164 and starts it running. The dynamic linker maps in any needed
2165 shared libraries, maps in the actual user executable, and then
2166 jumps to "start" in the user executable.
2167
2168 For both SunOS shared libraries, and SVR4 shared libraries, we
2169 can arrange to cooperate with the dynamic linker to discover the
2170 names of shared libraries that are dynamically linked, and the
2171 base addresses to which they are linked.
2172
2173 This function is responsible for discovering those names and
2174 addresses, and saving sufficient information about them to allow
2175 their symbols to be read at a later time.
2176
2177 FIXME
2178
2179 Between enable_break() and disable_break(), this code does not
2180 properly handle hitting breakpoints which the user might have
2181 set in the startup code or in the dynamic linker itself. Proper
2182 handling will probably have to wait until the implementation is
2183 changed to use the "breakpoint handler function" method.
2184
2185 Also, what if child has exit()ed? Must exit loop somehow.
2186 */
2187
2188 static void
2189 svr4_solib_create_inferior_hook (int from_tty)
2190 {
2191 #if defined(_SCO_DS)
2192 struct inferior *inf;
2193 struct thread_info *tp;
2194 #endif /* defined(_SCO_DS) */
2195 struct svr4_info *info;
2196
2197 info = get_svr4_info ();
2198
2199 /* Relocate the main executable if necessary. */
2200 svr4_relocate_main_executable ();
2201
2202 /* No point setting a breakpoint in the dynamic linker if we can't
2203 hit it (e.g., a core file, or a trace file). */
2204 if (!target_has_execution)
2205 return;
2206
2207 if (!svr4_have_link_map_offsets ())
2208 return;
2209
2210 if (!enable_break (info, from_tty))
2211 return;
2212
2213 #if defined(_SCO_DS)
2214 /* SCO needs the loop below, other systems should be using the
2215 special shared library breakpoints and the shared library breakpoint
2216 service routine.
2217
2218 Now run the target. It will eventually hit the breakpoint, at
2219 which point all of the libraries will have been mapped in and we
2220 can go groveling around in the dynamic linker structures to find
2221 out what we need to know about them. */
2222
2223 inf = current_inferior ();
2224 tp = inferior_thread ();
2225
2226 clear_proceed_status ();
2227 inf->control.stop_soon = STOP_QUIETLY;
2228 tp->suspend.stop_signal = TARGET_SIGNAL_0;
2229 do
2230 {
2231 target_resume (pid_to_ptid (-1), 0, tp->suspend.stop_signal);
2232 wait_for_inferior ();
2233 }
2234 while (tp->suspend.stop_signal != TARGET_SIGNAL_TRAP);
2235 inf->control.stop_soon = NO_STOP_QUIETLY;
2236 #endif /* defined(_SCO_DS) */
2237 }
2238
2239 static void
2240 svr4_clear_solib (void)
2241 {
2242 struct svr4_info *info;
2243
2244 info = get_svr4_info ();
2245 info->debug_base = 0;
2246 info->debug_loader_offset_p = 0;
2247 info->debug_loader_offset = 0;
2248 xfree (info->debug_loader_name);
2249 info->debug_loader_name = NULL;
2250 }
2251
2252 static void
2253 svr4_free_so (struct so_list *so)
2254 {
2255 xfree (so->lm_info->lm);
2256 xfree (so->lm_info);
2257 }
2258
2259
2260 /* Clear any bits of ADDR that wouldn't fit in a target-format
2261 data pointer. "Data pointer" here refers to whatever sort of
2262 address the dynamic linker uses to manage its sections. At the
2263 moment, we don't support shared libraries on any processors where
2264 code and data pointers are different sizes.
2265
2266 This isn't really the right solution. What we really need here is
2267 a way to do arithmetic on CORE_ADDR values that respects the
2268 natural pointer/address correspondence. (For example, on the MIPS,
2269 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2270 sign-extend the value. There, simply truncating the bits above
2271 gdbarch_ptr_bit, as we do below, is no good.) This should probably
2272 be a new gdbarch method or something. */
2273 static CORE_ADDR
2274 svr4_truncate_ptr (CORE_ADDR addr)
2275 {
2276 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
2277 /* We don't need to truncate anything, and the bit twiddling below
2278 will fail due to overflow problems. */
2279 return addr;
2280 else
2281 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
2282 }
2283
2284
2285 static void
2286 svr4_relocate_section_addresses (struct so_list *so,
2287 struct target_section *sec)
2288 {
2289 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so,
2290 sec->bfd));
2291 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so,
2292 sec->bfd));
2293 }
2294 \f
2295
2296 /* Architecture-specific operations. */
2297
2298 /* Per-architecture data key. */
2299 static struct gdbarch_data *solib_svr4_data;
2300
2301 struct solib_svr4_ops
2302 {
2303 /* Return a description of the layout of `struct link_map'. */
2304 struct link_map_offsets *(*fetch_link_map_offsets)(void);
2305 };
2306
2307 /* Return a default for the architecture-specific operations. */
2308
2309 static void *
2310 solib_svr4_init (struct obstack *obstack)
2311 {
2312 struct solib_svr4_ops *ops;
2313
2314 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
2315 ops->fetch_link_map_offsets = NULL;
2316 return ops;
2317 }
2318
2319 /* Set the architecture-specific `struct link_map_offsets' fetcher for
2320 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
2321
2322 void
2323 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
2324 struct link_map_offsets *(*flmo) (void))
2325 {
2326 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
2327
2328 ops->fetch_link_map_offsets = flmo;
2329
2330 set_solib_ops (gdbarch, &svr4_so_ops);
2331 }
2332
2333 /* Fetch a link_map_offsets structure using the architecture-specific
2334 `struct link_map_offsets' fetcher. */
2335
2336 static struct link_map_offsets *
2337 svr4_fetch_link_map_offsets (void)
2338 {
2339 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
2340
2341 gdb_assert (ops->fetch_link_map_offsets);
2342 return ops->fetch_link_map_offsets ();
2343 }
2344
2345 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
2346
2347 static int
2348 svr4_have_link_map_offsets (void)
2349 {
2350 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
2351
2352 return (ops->fetch_link_map_offsets != NULL);
2353 }
2354 \f
2355
2356 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
2357 `struct r_debug' and a `struct link_map' that are binary compatible
2358 with the origional SVR4 implementation. */
2359
2360 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2361 for an ILP32 SVR4 system. */
2362
2363 struct link_map_offsets *
2364 svr4_ilp32_fetch_link_map_offsets (void)
2365 {
2366 static struct link_map_offsets lmo;
2367 static struct link_map_offsets *lmp = NULL;
2368
2369 if (lmp == NULL)
2370 {
2371 lmp = &lmo;
2372
2373 lmo.r_version_offset = 0;
2374 lmo.r_version_size = 4;
2375 lmo.r_map_offset = 4;
2376 lmo.r_brk_offset = 8;
2377 lmo.r_ldsomap_offset = 20;
2378
2379 /* Everything we need is in the first 20 bytes. */
2380 lmo.link_map_size = 20;
2381 lmo.l_addr_offset = 0;
2382 lmo.l_name_offset = 4;
2383 lmo.l_ld_offset = 8;
2384 lmo.l_next_offset = 12;
2385 lmo.l_prev_offset = 16;
2386 }
2387
2388 return lmp;
2389 }
2390
2391 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2392 for an LP64 SVR4 system. */
2393
2394 struct link_map_offsets *
2395 svr4_lp64_fetch_link_map_offsets (void)
2396 {
2397 static struct link_map_offsets lmo;
2398 static struct link_map_offsets *lmp = NULL;
2399
2400 if (lmp == NULL)
2401 {
2402 lmp = &lmo;
2403
2404 lmo.r_version_offset = 0;
2405 lmo.r_version_size = 4;
2406 lmo.r_map_offset = 8;
2407 lmo.r_brk_offset = 16;
2408 lmo.r_ldsomap_offset = 40;
2409
2410 /* Everything we need is in the first 40 bytes. */
2411 lmo.link_map_size = 40;
2412 lmo.l_addr_offset = 0;
2413 lmo.l_name_offset = 8;
2414 lmo.l_ld_offset = 16;
2415 lmo.l_next_offset = 24;
2416 lmo.l_prev_offset = 32;
2417 }
2418
2419 return lmp;
2420 }
2421 \f
2422
2423 struct target_so_ops svr4_so_ops;
2424
2425 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
2426 different rule for symbol lookup. The lookup begins here in the DSO, not in
2427 the main executable. */
2428
2429 static struct symbol *
2430 elf_lookup_lib_symbol (const struct objfile *objfile,
2431 const char *name,
2432 const domain_enum domain)
2433 {
2434 bfd *abfd;
2435
2436 if (objfile == symfile_objfile)
2437 abfd = exec_bfd;
2438 else
2439 {
2440 /* OBJFILE should have been passed as the non-debug one. */
2441 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
2442
2443 abfd = objfile->obfd;
2444 }
2445
2446 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
2447 return NULL;
2448
2449 return lookup_global_symbol_from_objfile (objfile, name, domain);
2450 }
2451
2452 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
2453
2454 void
2455 _initialize_svr4_solib (void)
2456 {
2457 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
2458 solib_svr4_pspace_data
2459 = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
2460
2461 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
2462 svr4_so_ops.free_so = svr4_free_so;
2463 svr4_so_ops.clear_solib = svr4_clear_solib;
2464 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
2465 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
2466 svr4_so_ops.current_sos = svr4_current_sos;
2467 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
2468 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
2469 svr4_so_ops.bfd_open = solib_bfd_open;
2470 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
2471 svr4_so_ops.same = svr4_same;
2472 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
2473 }
This page took 0.079544 seconds and 5 git commands to generate.