Update copyright year range in all GDB files.
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "elf/external.h"
23 #include "elf/common.h"
24 #include "elf/mips.h"
25
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbcore.h"
31 #include "target.h"
32 #include "inferior.h"
33 #include "infrun.h"
34 #include "regcache.h"
35 #include "gdbthread.h"
36 #include "observable.h"
37
38 #include "solist.h"
39 #include "solib.h"
40 #include "solib-svr4.h"
41
42 #include "bfd-target.h"
43 #include "elf-bfd.h"
44 #include "exec.h"
45 #include "auxv.h"
46 #include "gdb_bfd.h"
47 #include "probe.h"
48
49 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
50 static int svr4_have_link_map_offsets (void);
51 static void svr4_relocate_main_executable (void);
52 static void svr4_free_library_list (void *p_list);
53
54 /* On SVR4 systems, a list of symbols in the dynamic linker where
55 GDB can try to place a breakpoint to monitor shared library
56 events.
57
58 If none of these symbols are found, or other errors occur, then
59 SVR4 systems will fall back to using a symbol as the "startup
60 mapping complete" breakpoint address. */
61
62 static const char * const solib_break_names[] =
63 {
64 "r_debug_state",
65 "_r_debug_state",
66 "_dl_debug_state",
67 "rtld_db_dlactivity",
68 "__dl_rtld_db_dlactivity",
69 "_rtld_debug_state",
70
71 NULL
72 };
73
74 static const char * const bkpt_names[] =
75 {
76 "_start",
77 "__start",
78 "main",
79 NULL
80 };
81
82 static const char * const main_name_list[] =
83 {
84 "main_$main",
85 NULL
86 };
87
88 /* What to do when a probe stop occurs. */
89
90 enum probe_action
91 {
92 /* Something went seriously wrong. Stop using probes and
93 revert to using the older interface. */
94 PROBES_INTERFACE_FAILED,
95
96 /* No action is required. The shared object list is still
97 valid. */
98 DO_NOTHING,
99
100 /* The shared object list should be reloaded entirely. */
101 FULL_RELOAD,
102
103 /* Attempt to incrementally update the shared object list. If
104 the update fails or is not possible, fall back to reloading
105 the list in full. */
106 UPDATE_OR_RELOAD,
107 };
108
109 /* A probe's name and its associated action. */
110
111 struct probe_info
112 {
113 /* The name of the probe. */
114 const char *name;
115
116 /* What to do when a probe stop occurs. */
117 enum probe_action action;
118 };
119
120 /* A list of named probes and their associated actions. If all
121 probes are present in the dynamic linker then the probes-based
122 interface will be used. */
123
124 static const struct probe_info probe_info[] =
125 {
126 { "init_start", DO_NOTHING },
127 { "init_complete", FULL_RELOAD },
128 { "map_start", DO_NOTHING },
129 { "map_failed", DO_NOTHING },
130 { "reloc_complete", UPDATE_OR_RELOAD },
131 { "unmap_start", DO_NOTHING },
132 { "unmap_complete", FULL_RELOAD },
133 };
134
135 #define NUM_PROBES ARRAY_SIZE (probe_info)
136
137 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
138 the same shared library. */
139
140 static int
141 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
142 {
143 if (strcmp (gdb_so_name, inferior_so_name) == 0)
144 return 1;
145
146 /* On Solaris, when starting inferior we think that dynamic linker is
147 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
148 contains /lib/ld.so.1. Sometimes one file is a link to another, but
149 sometimes they have identical content, but are not linked to each
150 other. We don't restrict this check for Solaris, but the chances
151 of running into this situation elsewhere are very low. */
152 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
153 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
154 return 1;
155
156 /* Similarly, we observed the same issue with amd64 and sparcv9, but with
157 different locations. */
158 if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0
159 && strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0)
160 return 1;
161
162 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
163 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
164 return 1;
165
166 return 0;
167 }
168
169 static int
170 svr4_same (struct so_list *gdb, struct so_list *inferior)
171 {
172 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
173 }
174
175 static std::unique_ptr<lm_info_svr4>
176 lm_info_read (CORE_ADDR lm_addr)
177 {
178 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
179 std::unique_ptr<lm_info_svr4> lm_info;
180
181 gdb::byte_vector lm (lmo->link_map_size);
182
183 if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
184 warning (_("Error reading shared library list entry at %s"),
185 paddress (target_gdbarch (), lm_addr));
186 else
187 {
188 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
189
190 lm_info.reset (new lm_info_svr4);
191 lm_info->lm_addr = lm_addr;
192
193 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
194 ptr_type);
195 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
196 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
197 ptr_type);
198 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
199 ptr_type);
200 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
201 ptr_type);
202 }
203
204 return lm_info;
205 }
206
207 static int
208 has_lm_dynamic_from_link_map (void)
209 {
210 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
211
212 return lmo->l_ld_offset >= 0;
213 }
214
215 static CORE_ADDR
216 lm_addr_check (const struct so_list *so, bfd *abfd)
217 {
218 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
219
220 if (!li->l_addr_p)
221 {
222 struct bfd_section *dyninfo_sect;
223 CORE_ADDR l_addr, l_dynaddr, dynaddr;
224
225 l_addr = li->l_addr_inferior;
226
227 if (! abfd || ! has_lm_dynamic_from_link_map ())
228 goto set_addr;
229
230 l_dynaddr = li->l_ld;
231
232 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
233 if (dyninfo_sect == NULL)
234 goto set_addr;
235
236 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
237
238 if (dynaddr + l_addr != l_dynaddr)
239 {
240 CORE_ADDR align = 0x1000;
241 CORE_ADDR minpagesize = align;
242
243 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
244 {
245 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
246 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
247 int i;
248
249 align = 1;
250
251 for (i = 0; i < ehdr->e_phnum; i++)
252 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
253 align = phdr[i].p_align;
254
255 minpagesize = get_elf_backend_data (abfd)->minpagesize;
256 }
257
258 /* Turn it into a mask. */
259 align--;
260
261 /* If the changes match the alignment requirements, we
262 assume we're using a core file that was generated by the
263 same binary, just prelinked with a different base offset.
264 If it doesn't match, we may have a different binary, the
265 same binary with the dynamic table loaded at an unrelated
266 location, or anything, really. To avoid regressions,
267 don't adjust the base offset in the latter case, although
268 odds are that, if things really changed, debugging won't
269 quite work.
270
271 One could expect more the condition
272 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
273 but the one below is relaxed for PPC. The PPC kernel supports
274 either 4k or 64k page sizes. To be prepared for 64k pages,
275 PPC ELF files are built using an alignment requirement of 64k.
276 However, when running on a kernel supporting 4k pages, the memory
277 mapping of the library may not actually happen on a 64k boundary!
278
279 (In the usual case where (l_addr & align) == 0, this check is
280 equivalent to the possibly expected check above.)
281
282 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
283
284 l_addr = l_dynaddr - dynaddr;
285
286 if ((l_addr & (minpagesize - 1)) == 0
287 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
288 {
289 if (info_verbose)
290 printf_unfiltered (_("Using PIC (Position Independent Code) "
291 "prelink displacement %s for \"%s\".\n"),
292 paddress (target_gdbarch (), l_addr),
293 so->so_name);
294 }
295 else
296 {
297 /* There is no way to verify the library file matches. prelink
298 can during prelinking of an unprelinked file (or unprelinking
299 of a prelinked file) shift the DYNAMIC segment by arbitrary
300 offset without any page size alignment. There is no way to
301 find out the ELF header and/or Program Headers for a limited
302 verification if it they match. One could do a verification
303 of the DYNAMIC segment. Still the found address is the best
304 one GDB could find. */
305
306 warning (_(".dynamic section for \"%s\" "
307 "is not at the expected address "
308 "(wrong library or version mismatch?)"), so->so_name);
309 }
310 }
311
312 set_addr:
313 li->l_addr = l_addr;
314 li->l_addr_p = 1;
315 }
316
317 return li->l_addr;
318 }
319
320 /* Per pspace SVR4 specific data. */
321
322 struct svr4_info
323 {
324 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
325
326 /* Validity flag for debug_loader_offset. */
327 int debug_loader_offset_p;
328
329 /* Load address for the dynamic linker, inferred. */
330 CORE_ADDR debug_loader_offset;
331
332 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
333 char *debug_loader_name;
334
335 /* Load map address for the main executable. */
336 CORE_ADDR main_lm_addr;
337
338 CORE_ADDR interp_text_sect_low;
339 CORE_ADDR interp_text_sect_high;
340 CORE_ADDR interp_plt_sect_low;
341 CORE_ADDR interp_plt_sect_high;
342
343 /* Nonzero if the list of objects was last obtained from the target
344 via qXfer:libraries-svr4:read. */
345 int using_xfer;
346
347 /* Table of struct probe_and_action instances, used by the
348 probes-based interface to map breakpoint addresses to probes
349 and their associated actions. Lookup is performed using
350 probe_and_action->prob->address. */
351 htab_t probes_table;
352
353 /* List of objects loaded into the inferior, used by the probes-
354 based interface. */
355 struct so_list *solib_list;
356 };
357
358 /* Per-program-space data key. */
359 static const struct program_space_data *solib_svr4_pspace_data;
360
361 /* Free the probes table. */
362
363 static void
364 free_probes_table (struct svr4_info *info)
365 {
366 if (info->probes_table == NULL)
367 return;
368
369 htab_delete (info->probes_table);
370 info->probes_table = NULL;
371 }
372
373 /* Free the solib list. */
374
375 static void
376 free_solib_list (struct svr4_info *info)
377 {
378 svr4_free_library_list (&info->solib_list);
379 info->solib_list = NULL;
380 }
381
382 static void
383 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
384 {
385 struct svr4_info *info = (struct svr4_info *) arg;
386
387 free_probes_table (info);
388 free_solib_list (info);
389
390 xfree (info);
391 }
392
393 /* Get the current svr4 data. If none is found yet, add it now. This
394 function always returns a valid object. */
395
396 static struct svr4_info *
397 get_svr4_info (void)
398 {
399 struct svr4_info *info;
400
401 info = (struct svr4_info *) program_space_data (current_program_space,
402 solib_svr4_pspace_data);
403 if (info != NULL)
404 return info;
405
406 info = XCNEW (struct svr4_info);
407 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
408 return info;
409 }
410
411 /* Local function prototypes */
412
413 static int match_main (const char *);
414
415 /* Read program header TYPE from inferior memory. The header is found
416 by scanning the OS auxiliary vector.
417
418 If TYPE == -1, return the program headers instead of the contents of
419 one program header.
420
421 Return vector of bytes holding the program header contents, or an empty
422 optional on failure. If successful and P_ARCH_SIZE is non-NULL, the target
423 architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE. Likewise,
424 the base address of the section is returned in *BASE_ADDR. */
425
426 static gdb::optional<gdb::byte_vector>
427 read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr)
428 {
429 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
430 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
431 int arch_size, sect_size;
432 CORE_ADDR sect_addr;
433 int pt_phdr_p = 0;
434
435 /* Get required auxv elements from target. */
436 if (target_auxv_search (current_top_target (), AT_PHDR, &at_phdr) <= 0)
437 return {};
438 if (target_auxv_search (current_top_target (), AT_PHENT, &at_phent) <= 0)
439 return {};
440 if (target_auxv_search (current_top_target (), AT_PHNUM, &at_phnum) <= 0)
441 return {};
442 if (!at_phdr || !at_phnum)
443 return {};
444
445 /* Determine ELF architecture type. */
446 if (at_phent == sizeof (Elf32_External_Phdr))
447 arch_size = 32;
448 else if (at_phent == sizeof (Elf64_External_Phdr))
449 arch_size = 64;
450 else
451 return {};
452
453 /* Find the requested segment. */
454 if (type == -1)
455 {
456 sect_addr = at_phdr;
457 sect_size = at_phent * at_phnum;
458 }
459 else if (arch_size == 32)
460 {
461 Elf32_External_Phdr phdr;
462 int i;
463
464 /* Search for requested PHDR. */
465 for (i = 0; i < at_phnum; i++)
466 {
467 int p_type;
468
469 if (target_read_memory (at_phdr + i * sizeof (phdr),
470 (gdb_byte *)&phdr, sizeof (phdr)))
471 return {};
472
473 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
474 4, byte_order);
475
476 if (p_type == PT_PHDR)
477 {
478 pt_phdr_p = 1;
479 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
480 4, byte_order);
481 }
482
483 if (p_type == type)
484 break;
485 }
486
487 if (i == at_phnum)
488 return {};
489
490 /* Retrieve address and size. */
491 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
492 4, byte_order);
493 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
494 4, byte_order);
495 }
496 else
497 {
498 Elf64_External_Phdr phdr;
499 int i;
500
501 /* Search for requested PHDR. */
502 for (i = 0; i < at_phnum; i++)
503 {
504 int p_type;
505
506 if (target_read_memory (at_phdr + i * sizeof (phdr),
507 (gdb_byte *)&phdr, sizeof (phdr)))
508 return {};
509
510 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
511 4, byte_order);
512
513 if (p_type == PT_PHDR)
514 {
515 pt_phdr_p = 1;
516 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
517 8, byte_order);
518 }
519
520 if (p_type == type)
521 break;
522 }
523
524 if (i == at_phnum)
525 return {};
526
527 /* Retrieve address and size. */
528 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
529 8, byte_order);
530 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
531 8, byte_order);
532 }
533
534 /* PT_PHDR is optional, but we really need it
535 for PIE to make this work in general. */
536
537 if (pt_phdr_p)
538 {
539 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
540 Relocation offset is the difference between the two. */
541 sect_addr = sect_addr + (at_phdr - pt_phdr);
542 }
543
544 /* Read in requested program header. */
545 gdb::byte_vector buf (sect_size);
546 if (target_read_memory (sect_addr, buf.data (), sect_size))
547 return {};
548
549 if (p_arch_size)
550 *p_arch_size = arch_size;
551 if (base_addr)
552 *base_addr = sect_addr;
553
554 return buf;
555 }
556
557
558 /* Return program interpreter string. */
559 static gdb::optional<gdb::byte_vector>
560 find_program_interpreter (void)
561 {
562 /* If we have an exec_bfd, use its section table. */
563 if (exec_bfd
564 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
565 {
566 struct bfd_section *interp_sect;
567
568 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
569 if (interp_sect != NULL)
570 {
571 int sect_size = bfd_section_size (exec_bfd, interp_sect);
572
573 gdb::byte_vector buf (sect_size);
574 bfd_get_section_contents (exec_bfd, interp_sect, buf.data (), 0,
575 sect_size);
576 return buf;
577 }
578 }
579
580 /* If we didn't find it, use the target auxiliary vector. */
581 return read_program_header (PT_INTERP, NULL, NULL);
582 }
583
584
585 /* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
586 found, 1 is returned and the corresponding PTR is set. */
587
588 static int
589 scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
590 CORE_ADDR *ptr_addr)
591 {
592 int arch_size, step, sect_size;
593 long current_dyntag;
594 CORE_ADDR dyn_ptr, dyn_addr;
595 gdb_byte *bufend, *bufstart, *buf;
596 Elf32_External_Dyn *x_dynp_32;
597 Elf64_External_Dyn *x_dynp_64;
598 struct bfd_section *sect;
599 struct target_section *target_section;
600
601 if (abfd == NULL)
602 return 0;
603
604 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
605 return 0;
606
607 arch_size = bfd_get_arch_size (abfd);
608 if (arch_size == -1)
609 return 0;
610
611 /* Find the start address of the .dynamic section. */
612 sect = bfd_get_section_by_name (abfd, ".dynamic");
613 if (sect == NULL)
614 return 0;
615
616 for (target_section = current_target_sections->sections;
617 target_section < current_target_sections->sections_end;
618 target_section++)
619 if (sect == target_section->the_bfd_section)
620 break;
621 if (target_section < current_target_sections->sections_end)
622 dyn_addr = target_section->addr;
623 else
624 {
625 /* ABFD may come from OBJFILE acting only as a symbol file without being
626 loaded into the target (see add_symbol_file_command). This case is
627 such fallback to the file VMA address without the possibility of
628 having the section relocated to its actual in-memory address. */
629
630 dyn_addr = bfd_section_vma (abfd, sect);
631 }
632
633 /* Read in .dynamic from the BFD. We will get the actual value
634 from memory later. */
635 sect_size = bfd_section_size (abfd, sect);
636 buf = bufstart = (gdb_byte *) alloca (sect_size);
637 if (!bfd_get_section_contents (abfd, sect,
638 buf, 0, sect_size))
639 return 0;
640
641 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
642 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
643 : sizeof (Elf64_External_Dyn);
644 for (bufend = buf + sect_size;
645 buf < bufend;
646 buf += step)
647 {
648 if (arch_size == 32)
649 {
650 x_dynp_32 = (Elf32_External_Dyn *) buf;
651 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
652 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
653 }
654 else
655 {
656 x_dynp_64 = (Elf64_External_Dyn *) buf;
657 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
658 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
659 }
660 if (current_dyntag == DT_NULL)
661 return 0;
662 if (current_dyntag == desired_dyntag)
663 {
664 /* If requested, try to read the runtime value of this .dynamic
665 entry. */
666 if (ptr)
667 {
668 struct type *ptr_type;
669 gdb_byte ptr_buf[8];
670 CORE_ADDR ptr_addr_1;
671
672 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
673 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
674 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
675 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
676 *ptr = dyn_ptr;
677 if (ptr_addr)
678 *ptr_addr = dyn_addr + (buf - bufstart);
679 }
680 return 1;
681 }
682 }
683
684 return 0;
685 }
686
687 /* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
688 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
689 is returned and the corresponding PTR is set. */
690
691 static int
692 scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
693 CORE_ADDR *ptr_addr)
694 {
695 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
696 int arch_size, step;
697 long current_dyntag;
698 CORE_ADDR dyn_ptr;
699 CORE_ADDR base_addr;
700
701 /* Read in .dynamic section. */
702 gdb::optional<gdb::byte_vector> ph_data
703 = read_program_header (PT_DYNAMIC, &arch_size, &base_addr);
704 if (!ph_data)
705 return 0;
706
707 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
708 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
709 : sizeof (Elf64_External_Dyn);
710 for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size ();
711 buf < bufend; buf += step)
712 {
713 if (arch_size == 32)
714 {
715 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
716
717 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
718 4, byte_order);
719 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
720 4, byte_order);
721 }
722 else
723 {
724 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
725
726 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
727 8, byte_order);
728 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
729 8, byte_order);
730 }
731 if (current_dyntag == DT_NULL)
732 break;
733
734 if (current_dyntag == desired_dyntag)
735 {
736 if (ptr)
737 *ptr = dyn_ptr;
738
739 if (ptr_addr)
740 *ptr_addr = base_addr + buf - ph_data->data ();
741
742 return 1;
743 }
744 }
745
746 return 0;
747 }
748
749 /* Locate the base address of dynamic linker structs for SVR4 elf
750 targets.
751
752 For SVR4 elf targets the address of the dynamic linker's runtime
753 structure is contained within the dynamic info section in the
754 executable file. The dynamic section is also mapped into the
755 inferior address space. Because the runtime loader fills in the
756 real address before starting the inferior, we have to read in the
757 dynamic info section from the inferior address space.
758 If there are any errors while trying to find the address, we
759 silently return 0, otherwise the found address is returned. */
760
761 static CORE_ADDR
762 elf_locate_base (void)
763 {
764 struct bound_minimal_symbol msymbol;
765 CORE_ADDR dyn_ptr, dyn_ptr_addr;
766
767 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
768 instead of DT_DEBUG, although they sometimes contain an unused
769 DT_DEBUG. */
770 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
771 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
772 {
773 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
774 gdb_byte *pbuf;
775 int pbuf_size = TYPE_LENGTH (ptr_type);
776
777 pbuf = (gdb_byte *) alloca (pbuf_size);
778 /* DT_MIPS_RLD_MAP contains a pointer to the address
779 of the dynamic link structure. */
780 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
781 return 0;
782 return extract_typed_address (pbuf, ptr_type);
783 }
784
785 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
786 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
787 in non-PIE. */
788 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
789 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
790 {
791 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
792 gdb_byte *pbuf;
793 int pbuf_size = TYPE_LENGTH (ptr_type);
794
795 pbuf = (gdb_byte *) alloca (pbuf_size);
796 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
797 DT slot to the address of the dynamic link structure. */
798 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
799 return 0;
800 return extract_typed_address (pbuf, ptr_type);
801 }
802
803 /* Find DT_DEBUG. */
804 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
805 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
806 return dyn_ptr;
807
808 /* This may be a static executable. Look for the symbol
809 conventionally named _r_debug, as a last resort. */
810 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
811 if (msymbol.minsym != NULL)
812 return BMSYMBOL_VALUE_ADDRESS (msymbol);
813
814 /* DT_DEBUG entry not found. */
815 return 0;
816 }
817
818 /* Locate the base address of dynamic linker structs.
819
820 For both the SunOS and SVR4 shared library implementations, if the
821 inferior executable has been linked dynamically, there is a single
822 address somewhere in the inferior's data space which is the key to
823 locating all of the dynamic linker's runtime structures. This
824 address is the value of the debug base symbol. The job of this
825 function is to find and return that address, or to return 0 if there
826 is no such address (the executable is statically linked for example).
827
828 For SunOS, the job is almost trivial, since the dynamic linker and
829 all of it's structures are statically linked to the executable at
830 link time. Thus the symbol for the address we are looking for has
831 already been added to the minimal symbol table for the executable's
832 objfile at the time the symbol file's symbols were read, and all we
833 have to do is look it up there. Note that we explicitly do NOT want
834 to find the copies in the shared library.
835
836 The SVR4 version is a bit more complicated because the address
837 is contained somewhere in the dynamic info section. We have to go
838 to a lot more work to discover the address of the debug base symbol.
839 Because of this complexity, we cache the value we find and return that
840 value on subsequent invocations. Note there is no copy in the
841 executable symbol tables. */
842
843 static CORE_ADDR
844 locate_base (struct svr4_info *info)
845 {
846 /* Check to see if we have a currently valid address, and if so, avoid
847 doing all this work again and just return the cached address. If
848 we have no cached address, try to locate it in the dynamic info
849 section for ELF executables. There's no point in doing any of this
850 though if we don't have some link map offsets to work with. */
851
852 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
853 info->debug_base = elf_locate_base ();
854 return info->debug_base;
855 }
856
857 /* Find the first element in the inferior's dynamic link map, and
858 return its address in the inferior. Return zero if the address
859 could not be determined.
860
861 FIXME: Perhaps we should validate the info somehow, perhaps by
862 checking r_version for a known version number, or r_state for
863 RT_CONSISTENT. */
864
865 static CORE_ADDR
866 solib_svr4_r_map (struct svr4_info *info)
867 {
868 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
869 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
870 CORE_ADDR addr = 0;
871
872 TRY
873 {
874 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
875 ptr_type);
876 }
877 CATCH (ex, RETURN_MASK_ERROR)
878 {
879 exception_print (gdb_stderr, ex);
880 }
881 END_CATCH
882
883 return addr;
884 }
885
886 /* Find r_brk from the inferior's debug base. */
887
888 static CORE_ADDR
889 solib_svr4_r_brk (struct svr4_info *info)
890 {
891 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
892 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
893
894 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
895 ptr_type);
896 }
897
898 /* Find the link map for the dynamic linker (if it is not in the
899 normal list of loaded shared objects). */
900
901 static CORE_ADDR
902 solib_svr4_r_ldsomap (struct svr4_info *info)
903 {
904 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
905 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
906 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
907 ULONGEST version = 0;
908
909 TRY
910 {
911 /* Check version, and return zero if `struct r_debug' doesn't have
912 the r_ldsomap member. */
913 version
914 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
915 lmo->r_version_size, byte_order);
916 }
917 CATCH (ex, RETURN_MASK_ERROR)
918 {
919 exception_print (gdb_stderr, ex);
920 }
921 END_CATCH
922
923 if (version < 2 || lmo->r_ldsomap_offset == -1)
924 return 0;
925
926 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
927 ptr_type);
928 }
929
930 /* On Solaris systems with some versions of the dynamic linker,
931 ld.so's l_name pointer points to the SONAME in the string table
932 rather than into writable memory. So that GDB can find shared
933 libraries when loading a core file generated by gcore, ensure that
934 memory areas containing the l_name string are saved in the core
935 file. */
936
937 static int
938 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
939 {
940 struct svr4_info *info;
941 CORE_ADDR ldsomap;
942 CORE_ADDR name_lm;
943
944 info = get_svr4_info ();
945
946 info->debug_base = 0;
947 locate_base (info);
948 if (!info->debug_base)
949 return 0;
950
951 ldsomap = solib_svr4_r_ldsomap (info);
952 if (!ldsomap)
953 return 0;
954
955 std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap);
956 name_lm = li != NULL ? li->l_name : 0;
957
958 return (name_lm >= vaddr && name_lm < vaddr + size);
959 }
960
961 /* See solist.h. */
962
963 static int
964 open_symbol_file_object (int from_tty)
965 {
966 CORE_ADDR lm, l_name;
967 gdb::unique_xmalloc_ptr<char> filename;
968 int errcode;
969 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
970 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
971 int l_name_size = TYPE_LENGTH (ptr_type);
972 gdb::byte_vector l_name_buf (l_name_size);
973 struct svr4_info *info = get_svr4_info ();
974 symfile_add_flags add_flags = 0;
975
976 if (from_tty)
977 add_flags |= SYMFILE_VERBOSE;
978
979 if (symfile_objfile)
980 if (!query (_("Attempt to reload symbols from process? ")))
981 return 0;
982
983 /* Always locate the debug struct, in case it has moved. */
984 info->debug_base = 0;
985 if (locate_base (info) == 0)
986 return 0; /* failed somehow... */
987
988 /* First link map member should be the executable. */
989 lm = solib_svr4_r_map (info);
990 if (lm == 0)
991 return 0; /* failed somehow... */
992
993 /* Read address of name from target memory to GDB. */
994 read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);
995
996 /* Convert the address to host format. */
997 l_name = extract_typed_address (l_name_buf.data (), ptr_type);
998
999 if (l_name == 0)
1000 return 0; /* No filename. */
1001
1002 /* Now fetch the filename from target memory. */
1003 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1004
1005 if (errcode)
1006 {
1007 warning (_("failed to read exec filename from attached file: %s"),
1008 safe_strerror (errcode));
1009 return 0;
1010 }
1011
1012 /* Have a pathname: read the symbol file. */
1013 symbol_file_add_main (filename.get (), add_flags);
1014
1015 return 1;
1016 }
1017
1018 /* Data exchange structure for the XML parser as returned by
1019 svr4_current_sos_via_xfer_libraries. */
1020
1021 struct svr4_library_list
1022 {
1023 struct so_list *head, **tailp;
1024
1025 /* Inferior address of struct link_map used for the main executable. It is
1026 NULL if not known. */
1027 CORE_ADDR main_lm;
1028 };
1029
1030 /* Implementation for target_so_ops.free_so. */
1031
1032 static void
1033 svr4_free_so (struct so_list *so)
1034 {
1035 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1036
1037 delete li;
1038 }
1039
1040 /* Implement target_so_ops.clear_so. */
1041
1042 static void
1043 svr4_clear_so (struct so_list *so)
1044 {
1045 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1046
1047 if (li != NULL)
1048 li->l_addr_p = 0;
1049 }
1050
1051 /* Free so_list built so far (called via cleanup). */
1052
1053 static void
1054 svr4_free_library_list (void *p_list)
1055 {
1056 struct so_list *list = *(struct so_list **) p_list;
1057
1058 while (list != NULL)
1059 {
1060 struct so_list *next = list->next;
1061
1062 free_so (list);
1063 list = next;
1064 }
1065 }
1066
1067 /* Copy library list. */
1068
1069 static struct so_list *
1070 svr4_copy_library_list (struct so_list *src)
1071 {
1072 struct so_list *dst = NULL;
1073 struct so_list **link = &dst;
1074
1075 while (src != NULL)
1076 {
1077 struct so_list *newobj;
1078
1079 newobj = XNEW (struct so_list);
1080 memcpy (newobj, src, sizeof (struct so_list));
1081
1082 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1083 newobj->lm_info = new lm_info_svr4 (*src_li);
1084
1085 newobj->next = NULL;
1086 *link = newobj;
1087 link = &newobj->next;
1088
1089 src = src->next;
1090 }
1091
1092 return dst;
1093 }
1094
1095 #ifdef HAVE_LIBEXPAT
1096
1097 #include "xml-support.h"
1098
1099 /* Handle the start of a <library> element. Note: new elements are added
1100 at the tail of the list, keeping the list in order. */
1101
1102 static void
1103 library_list_start_library (struct gdb_xml_parser *parser,
1104 const struct gdb_xml_element *element,
1105 void *user_data,
1106 std::vector<gdb_xml_value> &attributes)
1107 {
1108 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1109 const char *name
1110 = (const char *) xml_find_attribute (attributes, "name")->value.get ();
1111 ULONGEST *lmp
1112 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
1113 ULONGEST *l_addrp
1114 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
1115 ULONGEST *l_ldp
1116 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
1117 struct so_list *new_elem;
1118
1119 new_elem = XCNEW (struct so_list);
1120 lm_info_svr4 *li = new lm_info_svr4;
1121 new_elem->lm_info = li;
1122 li->lm_addr = *lmp;
1123 li->l_addr_inferior = *l_addrp;
1124 li->l_ld = *l_ldp;
1125
1126 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1127 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1128 strcpy (new_elem->so_original_name, new_elem->so_name);
1129
1130 *list->tailp = new_elem;
1131 list->tailp = &new_elem->next;
1132 }
1133
1134 /* Handle the start of a <library-list-svr4> element. */
1135
1136 static void
1137 svr4_library_list_start_list (struct gdb_xml_parser *parser,
1138 const struct gdb_xml_element *element,
1139 void *user_data,
1140 std::vector<gdb_xml_value> &attributes)
1141 {
1142 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1143 const char *version
1144 = (const char *) xml_find_attribute (attributes, "version")->value.get ();
1145 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1146
1147 if (strcmp (version, "1.0") != 0)
1148 gdb_xml_error (parser,
1149 _("SVR4 Library list has unsupported version \"%s\""),
1150 version);
1151
1152 if (main_lm)
1153 list->main_lm = *(ULONGEST *) main_lm->value.get ();
1154 }
1155
1156 /* The allowed elements and attributes for an XML library list.
1157 The root element is a <library-list>. */
1158
1159 static const struct gdb_xml_attribute svr4_library_attributes[] =
1160 {
1161 { "name", GDB_XML_AF_NONE, NULL, NULL },
1162 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1163 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1164 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1165 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1166 };
1167
1168 static const struct gdb_xml_element svr4_library_list_children[] =
1169 {
1170 {
1171 "library", svr4_library_attributes, NULL,
1172 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1173 library_list_start_library, NULL
1174 },
1175 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1176 };
1177
1178 static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1179 {
1180 { "version", GDB_XML_AF_NONE, NULL, NULL },
1181 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1182 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1183 };
1184
1185 static const struct gdb_xml_element svr4_library_list_elements[] =
1186 {
1187 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1188 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1189 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1190 };
1191
1192 /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1193
1194 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1195 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1196 empty, caller is responsible for freeing all its entries. */
1197
1198 static int
1199 svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1200 {
1201 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1202 &list->head);
1203
1204 memset (list, 0, sizeof (*list));
1205 list->tailp = &list->head;
1206 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
1207 svr4_library_list_elements, document, list) == 0)
1208 {
1209 /* Parsed successfully, keep the result. */
1210 discard_cleanups (back_to);
1211 return 1;
1212 }
1213
1214 do_cleanups (back_to);
1215 return 0;
1216 }
1217
1218 /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
1219
1220 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1221 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1222 empty, caller is responsible for freeing all its entries.
1223
1224 Note that ANNEX must be NULL if the remote does not explicitly allow
1225 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1226 this can be checked using target_augmented_libraries_svr4_read (). */
1227
1228 static int
1229 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1230 const char *annex)
1231 {
1232 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1233
1234 /* Fetch the list of shared libraries. */
1235 gdb::optional<gdb::char_vector> svr4_library_document
1236 = target_read_stralloc (current_top_target (), TARGET_OBJECT_LIBRARIES_SVR4,
1237 annex);
1238 if (!svr4_library_document)
1239 return 0;
1240
1241 return svr4_parse_libraries (svr4_library_document->data (), list);
1242 }
1243
1244 #else
1245
1246 static int
1247 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1248 const char *annex)
1249 {
1250 return 0;
1251 }
1252
1253 #endif
1254
1255 /* If no shared library information is available from the dynamic
1256 linker, build a fallback list from other sources. */
1257
1258 static struct so_list *
1259 svr4_default_sos (void)
1260 {
1261 struct svr4_info *info = get_svr4_info ();
1262 struct so_list *newobj;
1263
1264 if (!info->debug_loader_offset_p)
1265 return NULL;
1266
1267 newobj = XCNEW (struct so_list);
1268 lm_info_svr4 *li = new lm_info_svr4;
1269 newobj->lm_info = li;
1270
1271 /* Nothing will ever check the other fields if we set l_addr_p. */
1272 li->l_addr = info->debug_loader_offset;
1273 li->l_addr_p = 1;
1274
1275 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1276 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1277 strcpy (newobj->so_original_name, newobj->so_name);
1278
1279 return newobj;
1280 }
1281
1282 /* Read the whole inferior libraries chain starting at address LM.
1283 Expect the first entry in the chain's previous entry to be PREV_LM.
1284 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1285 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1286 to it. Returns nonzero upon success. If zero is returned the
1287 entries stored to LINK_PTR_PTR are still valid although they may
1288 represent only part of the inferior library list. */
1289
1290 static int
1291 svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1292 struct so_list ***link_ptr_ptr, int ignore_first)
1293 {
1294 CORE_ADDR first_l_name = 0;
1295 CORE_ADDR next_lm;
1296
1297 for (; lm != 0; prev_lm = lm, lm = next_lm)
1298 {
1299 int errcode;
1300 gdb::unique_xmalloc_ptr<char> buffer;
1301
1302 so_list_up newobj (XCNEW (struct so_list));
1303
1304 lm_info_svr4 *li = lm_info_read (lm).release ();
1305 newobj->lm_info = li;
1306 if (li == NULL)
1307 return 0;
1308
1309 next_lm = li->l_next;
1310
1311 if (li->l_prev != prev_lm)
1312 {
1313 warning (_("Corrupted shared library list: %s != %s"),
1314 paddress (target_gdbarch (), prev_lm),
1315 paddress (target_gdbarch (), li->l_prev));
1316 return 0;
1317 }
1318
1319 /* For SVR4 versions, the first entry in the link map is for the
1320 inferior executable, so we must ignore it. For some versions of
1321 SVR4, it has no name. For others (Solaris 2.3 for example), it
1322 does have a name, so we can no longer use a missing name to
1323 decide when to ignore it. */
1324 if (ignore_first && li->l_prev == 0)
1325 {
1326 struct svr4_info *info = get_svr4_info ();
1327
1328 first_l_name = li->l_name;
1329 info->main_lm_addr = li->lm_addr;
1330 continue;
1331 }
1332
1333 /* Extract this shared object's name. */
1334 target_read_string (li->l_name, &buffer, SO_NAME_MAX_PATH_SIZE - 1,
1335 &errcode);
1336 if (errcode != 0)
1337 {
1338 /* If this entry's l_name address matches that of the
1339 inferior executable, then this is not a normal shared
1340 object, but (most likely) a vDSO. In this case, silently
1341 skip it; otherwise emit a warning. */
1342 if (first_l_name == 0 || li->l_name != first_l_name)
1343 warning (_("Can't read pathname for load map: %s."),
1344 safe_strerror (errcode));
1345 continue;
1346 }
1347
1348 strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1);
1349 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1350 strcpy (newobj->so_original_name, newobj->so_name);
1351
1352 /* If this entry has no name, or its name matches the name
1353 for the main executable, don't include it in the list. */
1354 if (! newobj->so_name[0] || match_main (newobj->so_name))
1355 continue;
1356
1357 newobj->next = 0;
1358 /* Don't free it now. */
1359 **link_ptr_ptr = newobj.release ();
1360 *link_ptr_ptr = &(**link_ptr_ptr)->next;
1361 }
1362
1363 return 1;
1364 }
1365
1366 /* Read the full list of currently loaded shared objects directly
1367 from the inferior, without referring to any libraries read and
1368 stored by the probes interface. Handle special cases relating
1369 to the first elements of the list. */
1370
1371 static struct so_list *
1372 svr4_current_sos_direct (struct svr4_info *info)
1373 {
1374 CORE_ADDR lm;
1375 struct so_list *head = NULL;
1376 struct so_list **link_ptr = &head;
1377 struct cleanup *back_to;
1378 int ignore_first;
1379 struct svr4_library_list library_list;
1380
1381 /* Fall back to manual examination of the target if the packet is not
1382 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1383 tests a case where gdbserver cannot find the shared libraries list while
1384 GDB itself is able to find it via SYMFILE_OBJFILE.
1385
1386 Unfortunately statically linked inferiors will also fall back through this
1387 suboptimal code path. */
1388
1389 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1390 NULL);
1391 if (info->using_xfer)
1392 {
1393 if (library_list.main_lm)
1394 info->main_lm_addr = library_list.main_lm;
1395
1396 return library_list.head ? library_list.head : svr4_default_sos ();
1397 }
1398
1399 /* Always locate the debug struct, in case it has moved. */
1400 info->debug_base = 0;
1401 locate_base (info);
1402
1403 /* If we can't find the dynamic linker's base structure, this
1404 must not be a dynamically linked executable. Hmm. */
1405 if (! info->debug_base)
1406 return svr4_default_sos ();
1407
1408 /* Assume that everything is a library if the dynamic loader was loaded
1409 late by a static executable. */
1410 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1411 ignore_first = 0;
1412 else
1413 ignore_first = 1;
1414
1415 back_to = make_cleanup (svr4_free_library_list, &head);
1416
1417 /* Walk the inferior's link map list, and build our list of
1418 `struct so_list' nodes. */
1419 lm = solib_svr4_r_map (info);
1420 if (lm)
1421 svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
1422
1423 /* On Solaris, the dynamic linker is not in the normal list of
1424 shared objects, so make sure we pick it up too. Having
1425 symbol information for the dynamic linker is quite crucial
1426 for skipping dynamic linker resolver code. */
1427 lm = solib_svr4_r_ldsomap (info);
1428 if (lm)
1429 svr4_read_so_list (lm, 0, &link_ptr, 0);
1430
1431 discard_cleanups (back_to);
1432
1433 if (head == NULL)
1434 return svr4_default_sos ();
1435
1436 return head;
1437 }
1438
1439 /* Implement the main part of the "current_sos" target_so_ops
1440 method. */
1441
1442 static struct so_list *
1443 svr4_current_sos_1 (void)
1444 {
1445 struct svr4_info *info = get_svr4_info ();
1446
1447 /* If the solib list has been read and stored by the probes
1448 interface then we return a copy of the stored list. */
1449 if (info->solib_list != NULL)
1450 return svr4_copy_library_list (info->solib_list);
1451
1452 /* Otherwise obtain the solib list directly from the inferior. */
1453 return svr4_current_sos_direct (info);
1454 }
1455
1456 /* Implement the "current_sos" target_so_ops method. */
1457
1458 static struct so_list *
1459 svr4_current_sos (void)
1460 {
1461 struct so_list *so_head = svr4_current_sos_1 ();
1462 struct mem_range vsyscall_range;
1463
1464 /* Filter out the vDSO module, if present. Its symbol file would
1465 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1466 managed by symfile-mem.c:add_vsyscall_page. */
1467 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1468 && vsyscall_range.length != 0)
1469 {
1470 struct so_list **sop;
1471
1472 sop = &so_head;
1473 while (*sop != NULL)
1474 {
1475 struct so_list *so = *sop;
1476
1477 /* We can't simply match the vDSO by starting address alone,
1478 because lm_info->l_addr_inferior (and also l_addr) do not
1479 necessarily represent the real starting address of the
1480 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1481 field (the ".dynamic" section of the shared object)
1482 always points at the absolute/resolved address though.
1483 So check whether that address is inside the vDSO's
1484 mapping instead.
1485
1486 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1487 0-based ELF, and we see:
1488
1489 (gdb) info auxv
1490 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1491 (gdb) p/x *_r_debug.r_map.l_next
1492 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1493
1494 And on Linux 2.6.32 (x86_64) we see:
1495
1496 (gdb) info auxv
1497 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1498 (gdb) p/x *_r_debug.r_map.l_next
1499 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1500
1501 Dumping that vDSO shows:
1502
1503 (gdb) info proc mappings
1504 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1505 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1506 # readelf -Wa vdso.bin
1507 [...]
1508 Entry point address: 0xffffffffff700700
1509 [...]
1510 Section Headers:
1511 [Nr] Name Type Address Off Size
1512 [ 0] NULL 0000000000000000 000000 000000
1513 [ 1] .hash HASH ffffffffff700120 000120 000038
1514 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1515 [...]
1516 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1517 */
1518
1519 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1520
1521 if (address_in_mem_range (li->l_ld, &vsyscall_range))
1522 {
1523 *sop = so->next;
1524 free_so (so);
1525 break;
1526 }
1527
1528 sop = &so->next;
1529 }
1530 }
1531
1532 return so_head;
1533 }
1534
1535 /* Get the address of the link_map for a given OBJFILE. */
1536
1537 CORE_ADDR
1538 svr4_fetch_objfile_link_map (struct objfile *objfile)
1539 {
1540 struct so_list *so;
1541 struct svr4_info *info = get_svr4_info ();
1542
1543 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1544 if (info->main_lm_addr == 0)
1545 solib_add (NULL, 0, auto_solib_add);
1546
1547 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1548 if (objfile == symfile_objfile)
1549 return info->main_lm_addr;
1550
1551 /* The other link map addresses may be found by examining the list
1552 of shared libraries. */
1553 for (so = master_so_list (); so; so = so->next)
1554 if (so->objfile == objfile)
1555 {
1556 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1557
1558 return li->lm_addr;
1559 }
1560
1561 /* Not found! */
1562 return 0;
1563 }
1564
1565 /* On some systems, the only way to recognize the link map entry for
1566 the main executable file is by looking at its name. Return
1567 non-zero iff SONAME matches one of the known main executable names. */
1568
1569 static int
1570 match_main (const char *soname)
1571 {
1572 const char * const *mainp;
1573
1574 for (mainp = main_name_list; *mainp != NULL; mainp++)
1575 {
1576 if (strcmp (soname, *mainp) == 0)
1577 return (1);
1578 }
1579
1580 return (0);
1581 }
1582
1583 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1584 SVR4 run time loader. */
1585
1586 int
1587 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1588 {
1589 struct svr4_info *info = get_svr4_info ();
1590
1591 return ((pc >= info->interp_text_sect_low
1592 && pc < info->interp_text_sect_high)
1593 || (pc >= info->interp_plt_sect_low
1594 && pc < info->interp_plt_sect_high)
1595 || in_plt_section (pc)
1596 || in_gnu_ifunc_stub (pc));
1597 }
1598
1599 /* Given an executable's ABFD and target, compute the entry-point
1600 address. */
1601
1602 static CORE_ADDR
1603 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1604 {
1605 CORE_ADDR addr;
1606
1607 /* KevinB wrote ... for most targets, the address returned by
1608 bfd_get_start_address() is the entry point for the start
1609 function. But, for some targets, bfd_get_start_address() returns
1610 the address of a function descriptor from which the entry point
1611 address may be extracted. This address is extracted by
1612 gdbarch_convert_from_func_ptr_addr(). The method
1613 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1614 function for targets which don't use function descriptors. */
1615 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1616 bfd_get_start_address (abfd),
1617 targ);
1618 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
1619 }
1620
1621 /* A probe and its associated action. */
1622
1623 struct probe_and_action
1624 {
1625 /* The probe. */
1626 probe *prob;
1627
1628 /* The relocated address of the probe. */
1629 CORE_ADDR address;
1630
1631 /* The action. */
1632 enum probe_action action;
1633 };
1634
1635 /* Returns a hash code for the probe_and_action referenced by p. */
1636
1637 static hashval_t
1638 hash_probe_and_action (const void *p)
1639 {
1640 const struct probe_and_action *pa = (const struct probe_and_action *) p;
1641
1642 return (hashval_t) pa->address;
1643 }
1644
1645 /* Returns non-zero if the probe_and_actions referenced by p1 and p2
1646 are equal. */
1647
1648 static int
1649 equal_probe_and_action (const void *p1, const void *p2)
1650 {
1651 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1652 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
1653
1654 return pa1->address == pa2->address;
1655 }
1656
1657 /* Register a solib event probe and its associated action in the
1658 probes table. */
1659
1660 static void
1661 register_solib_event_probe (probe *prob, CORE_ADDR address,
1662 enum probe_action action)
1663 {
1664 struct svr4_info *info = get_svr4_info ();
1665 struct probe_and_action lookup, *pa;
1666 void **slot;
1667
1668 /* Create the probes table, if necessary. */
1669 if (info->probes_table == NULL)
1670 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1671 equal_probe_and_action,
1672 xfree, xcalloc, xfree);
1673
1674 lookup.prob = prob;
1675 lookup.address = address;
1676 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1677 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1678
1679 pa = XCNEW (struct probe_and_action);
1680 pa->prob = prob;
1681 pa->address = address;
1682 pa->action = action;
1683
1684 *slot = pa;
1685 }
1686
1687 /* Get the solib event probe at the specified location, and the
1688 action associated with it. Returns NULL if no solib event probe
1689 was found. */
1690
1691 static struct probe_and_action *
1692 solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1693 {
1694 struct probe_and_action lookup;
1695 void **slot;
1696
1697 lookup.address = address;
1698 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1699
1700 if (slot == NULL)
1701 return NULL;
1702
1703 return (struct probe_and_action *) *slot;
1704 }
1705
1706 /* Decide what action to take when the specified solib event probe is
1707 hit. */
1708
1709 static enum probe_action
1710 solib_event_probe_action (struct probe_and_action *pa)
1711 {
1712 enum probe_action action;
1713 unsigned probe_argc = 0;
1714 struct frame_info *frame = get_current_frame ();
1715
1716 action = pa->action;
1717 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1718 return action;
1719
1720 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1721
1722 /* Check that an appropriate number of arguments has been supplied.
1723 We expect:
1724 arg0: Lmid_t lmid (mandatory)
1725 arg1: struct r_debug *debug_base (mandatory)
1726 arg2: struct link_map *new (optional, for incremental updates) */
1727 TRY
1728 {
1729 probe_argc = pa->prob->get_argument_count (frame);
1730 }
1731 CATCH (ex, RETURN_MASK_ERROR)
1732 {
1733 exception_print (gdb_stderr, ex);
1734 probe_argc = 0;
1735 }
1736 END_CATCH
1737
1738 /* If get_argument_count throws an exception, probe_argc will be set
1739 to zero. However, if pa->prob does not have arguments, then
1740 get_argument_count will succeed but probe_argc will also be zero.
1741 Both cases happen because of different things, but they are
1742 treated equally here: action will be set to
1743 PROBES_INTERFACE_FAILED. */
1744 if (probe_argc == 2)
1745 action = FULL_RELOAD;
1746 else if (probe_argc < 2)
1747 action = PROBES_INTERFACE_FAILED;
1748
1749 return action;
1750 }
1751
1752 /* Populate the shared object list by reading the entire list of
1753 shared objects from the inferior. Handle special cases relating
1754 to the first elements of the list. Returns nonzero on success. */
1755
1756 static int
1757 solist_update_full (struct svr4_info *info)
1758 {
1759 free_solib_list (info);
1760 info->solib_list = svr4_current_sos_direct (info);
1761
1762 return 1;
1763 }
1764
1765 /* Update the shared object list starting from the link-map entry
1766 passed by the linker in the probe's third argument. Returns
1767 nonzero if the list was successfully updated, or zero to indicate
1768 failure. */
1769
1770 static int
1771 solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1772 {
1773 struct so_list *tail;
1774 CORE_ADDR prev_lm;
1775
1776 /* svr4_current_sos_direct contains logic to handle a number of
1777 special cases relating to the first elements of the list. To
1778 avoid duplicating this logic we defer to solist_update_full
1779 if the list is empty. */
1780 if (info->solib_list == NULL)
1781 return 0;
1782
1783 /* Fall back to a full update if we are using a remote target
1784 that does not support incremental transfers. */
1785 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1786 return 0;
1787
1788 /* Walk to the end of the list. */
1789 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1790 /* Nothing. */;
1791
1792 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1793 prev_lm = li->lm_addr;
1794
1795 /* Read the new objects. */
1796 if (info->using_xfer)
1797 {
1798 struct svr4_library_list library_list;
1799 char annex[64];
1800
1801 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1802 phex_nz (lm, sizeof (lm)),
1803 phex_nz (prev_lm, sizeof (prev_lm)));
1804 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1805 return 0;
1806
1807 tail->next = library_list.head;
1808 }
1809 else
1810 {
1811 struct so_list **link = &tail->next;
1812
1813 /* IGNORE_FIRST may safely be set to zero here because the
1814 above check and deferral to solist_update_full ensures
1815 that this call to svr4_read_so_list will never see the
1816 first element. */
1817 if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1818 return 0;
1819 }
1820
1821 return 1;
1822 }
1823
1824 /* Disable the probes-based linker interface and revert to the
1825 original interface. We don't reset the breakpoints as the
1826 ones set up for the probes-based interface are adequate. */
1827
1828 static void
1829 disable_probes_interface_cleanup (void *arg)
1830 {
1831 struct svr4_info *info = get_svr4_info ();
1832
1833 warning (_("Probes-based dynamic linker interface failed.\n"
1834 "Reverting to original interface.\n"));
1835
1836 free_probes_table (info);
1837 free_solib_list (info);
1838 }
1839
1840 /* Update the solib list as appropriate when using the
1841 probes-based linker interface. Do nothing if using the
1842 standard interface. */
1843
1844 static void
1845 svr4_handle_solib_event (void)
1846 {
1847 struct svr4_info *info = get_svr4_info ();
1848 struct probe_and_action *pa;
1849 enum probe_action action;
1850 struct cleanup *old_chain;
1851 struct value *val = NULL;
1852 CORE_ADDR pc, debug_base, lm = 0;
1853 struct frame_info *frame = get_current_frame ();
1854
1855 /* Do nothing if not using the probes interface. */
1856 if (info->probes_table == NULL)
1857 return;
1858
1859 /* If anything goes wrong we revert to the original linker
1860 interface. */
1861 old_chain = make_cleanup (disable_probes_interface_cleanup, NULL);
1862
1863 pc = regcache_read_pc (get_current_regcache ());
1864 pa = solib_event_probe_at (info, pc);
1865 if (pa == NULL)
1866 {
1867 do_cleanups (old_chain);
1868 return;
1869 }
1870
1871 action = solib_event_probe_action (pa);
1872 if (action == PROBES_INTERFACE_FAILED)
1873 {
1874 do_cleanups (old_chain);
1875 return;
1876 }
1877
1878 if (action == DO_NOTHING)
1879 {
1880 discard_cleanups (old_chain);
1881 return;
1882 }
1883
1884 /* evaluate_argument looks up symbols in the dynamic linker
1885 using find_pc_section. find_pc_section is accelerated by a cache
1886 called the section map. The section map is invalidated every
1887 time a shared library is loaded or unloaded, and if the inferior
1888 is generating a lot of shared library events then the section map
1889 will be updated every time svr4_handle_solib_event is called.
1890 We called find_pc_section in svr4_create_solib_event_breakpoints,
1891 so we can guarantee that the dynamic linker's sections are in the
1892 section map. We can therefore inhibit section map updates across
1893 these calls to evaluate_argument and save a lot of time. */
1894 {
1895 scoped_restore inhibit_updates
1896 = inhibit_section_map_updates (current_program_space);
1897
1898 TRY
1899 {
1900 val = pa->prob->evaluate_argument (1, frame);
1901 }
1902 CATCH (ex, RETURN_MASK_ERROR)
1903 {
1904 exception_print (gdb_stderr, ex);
1905 val = NULL;
1906 }
1907 END_CATCH
1908
1909 if (val == NULL)
1910 {
1911 do_cleanups (old_chain);
1912 return;
1913 }
1914
1915 debug_base = value_as_address (val);
1916 if (debug_base == 0)
1917 {
1918 do_cleanups (old_chain);
1919 return;
1920 }
1921
1922 /* Always locate the debug struct, in case it moved. */
1923 info->debug_base = 0;
1924 if (locate_base (info) == 0)
1925 {
1926 do_cleanups (old_chain);
1927 return;
1928 }
1929
1930 /* GDB does not currently support libraries loaded via dlmopen
1931 into namespaces other than the initial one. We must ignore
1932 any namespace other than the initial namespace here until
1933 support for this is added to GDB. */
1934 if (debug_base != info->debug_base)
1935 action = DO_NOTHING;
1936
1937 if (action == UPDATE_OR_RELOAD)
1938 {
1939 TRY
1940 {
1941 val = pa->prob->evaluate_argument (2, frame);
1942 }
1943 CATCH (ex, RETURN_MASK_ERROR)
1944 {
1945 exception_print (gdb_stderr, ex);
1946 do_cleanups (old_chain);
1947 return;
1948 }
1949 END_CATCH
1950
1951 if (val != NULL)
1952 lm = value_as_address (val);
1953
1954 if (lm == 0)
1955 action = FULL_RELOAD;
1956 }
1957
1958 /* Resume section map updates. Closing the scope is
1959 sufficient. */
1960 }
1961
1962 if (action == UPDATE_OR_RELOAD)
1963 {
1964 if (!solist_update_incremental (info, lm))
1965 action = FULL_RELOAD;
1966 }
1967
1968 if (action == FULL_RELOAD)
1969 {
1970 if (!solist_update_full (info))
1971 {
1972 do_cleanups (old_chain);
1973 return;
1974 }
1975 }
1976
1977 discard_cleanups (old_chain);
1978 }
1979
1980 /* Helper function for svr4_update_solib_event_breakpoints. */
1981
1982 static int
1983 svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
1984 {
1985 struct bp_location *loc;
1986
1987 if (b->type != bp_shlib_event)
1988 {
1989 /* Continue iterating. */
1990 return 0;
1991 }
1992
1993 for (loc = b->loc; loc != NULL; loc = loc->next)
1994 {
1995 struct svr4_info *info;
1996 struct probe_and_action *pa;
1997
1998 info = ((struct svr4_info *)
1999 program_space_data (loc->pspace, solib_svr4_pspace_data));
2000 if (info == NULL || info->probes_table == NULL)
2001 continue;
2002
2003 pa = solib_event_probe_at (info, loc->address);
2004 if (pa == NULL)
2005 continue;
2006
2007 if (pa->action == DO_NOTHING)
2008 {
2009 if (b->enable_state == bp_disabled && stop_on_solib_events)
2010 enable_breakpoint (b);
2011 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2012 disable_breakpoint (b);
2013 }
2014
2015 break;
2016 }
2017
2018 /* Continue iterating. */
2019 return 0;
2020 }
2021
2022 /* Enable or disable optional solib event breakpoints as appropriate.
2023 Called whenever stop_on_solib_events is changed. */
2024
2025 static void
2026 svr4_update_solib_event_breakpoints (void)
2027 {
2028 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
2029 }
2030
2031 /* Create and register solib event breakpoints. PROBES is an array
2032 of NUM_PROBES elements, each of which is vector of probes. A
2033 solib event breakpoint will be created and registered for each
2034 probe. */
2035
2036 static void
2037 svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
2038 const std::vector<probe *> *probes,
2039 struct objfile *objfile)
2040 {
2041 for (int i = 0; i < NUM_PROBES; i++)
2042 {
2043 enum probe_action action = probe_info[i].action;
2044
2045 for (probe *p : probes[i])
2046 {
2047 CORE_ADDR address = p->get_relocated_address (objfile);
2048
2049 create_solib_event_breakpoint (gdbarch, address);
2050 register_solib_event_probe (p, address, action);
2051 }
2052 }
2053
2054 svr4_update_solib_event_breakpoints ();
2055 }
2056
2057 /* Both the SunOS and the SVR4 dynamic linkers call a marker function
2058 before and after mapping and unmapping shared libraries. The sole
2059 purpose of this method is to allow debuggers to set a breakpoint so
2060 they can track these changes.
2061
2062 Some versions of the glibc dynamic linker contain named probes
2063 to allow more fine grained stopping. Given the address of the
2064 original marker function, this function attempts to find these
2065 probes, and if found, sets breakpoints on those instead. If the
2066 probes aren't found, a single breakpoint is set on the original
2067 marker function. */
2068
2069 static void
2070 svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
2071 CORE_ADDR address)
2072 {
2073 struct obj_section *os;
2074
2075 os = find_pc_section (address);
2076 if (os != NULL)
2077 {
2078 int with_prefix;
2079
2080 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
2081 {
2082 std::vector<probe *> probes[NUM_PROBES];
2083 int all_probes_found = 1;
2084 int checked_can_use_probe_arguments = 0;
2085
2086 for (int i = 0; i < NUM_PROBES; i++)
2087 {
2088 const char *name = probe_info[i].name;
2089 probe *p;
2090 char buf[32];
2091
2092 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
2093 shipped with an early version of the probes code in
2094 which the probes' names were prefixed with "rtld_"
2095 and the "map_failed" probe did not exist. The
2096 locations of the probes are otherwise the same, so
2097 we check for probes with prefixed names if probes
2098 with unprefixed names are not present. */
2099 if (with_prefix)
2100 {
2101 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2102 name = buf;
2103 }
2104
2105 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2106
2107 /* The "map_failed" probe did not exist in early
2108 versions of the probes code in which the probes'
2109 names were prefixed with "rtld_". */
2110 if (strcmp (name, "rtld_map_failed") == 0)
2111 continue;
2112
2113 if (probes[i].empty ())
2114 {
2115 all_probes_found = 0;
2116 break;
2117 }
2118
2119 /* Ensure probe arguments can be evaluated. */
2120 if (!checked_can_use_probe_arguments)
2121 {
2122 p = probes[i][0];
2123 if (!p->can_evaluate_arguments ())
2124 {
2125 all_probes_found = 0;
2126 break;
2127 }
2128 checked_can_use_probe_arguments = 1;
2129 }
2130 }
2131
2132 if (all_probes_found)
2133 svr4_create_probe_breakpoints (gdbarch, probes, os->objfile);
2134
2135 if (all_probes_found)
2136 return;
2137 }
2138 }
2139
2140 create_solib_event_breakpoint (gdbarch, address);
2141 }
2142
2143 /* Helper function for gdb_bfd_lookup_symbol. */
2144
2145 static int
2146 cmp_name_and_sec_flags (const asymbol *sym, const void *data)
2147 {
2148 return (strcmp (sym->name, (const char *) data) == 0
2149 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2150 }
2151 /* Arrange for dynamic linker to hit breakpoint.
2152
2153 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2154 debugger interface, support for arranging for the inferior to hit
2155 a breakpoint after mapping in the shared libraries. This function
2156 enables that breakpoint.
2157
2158 For SunOS, there is a special flag location (in_debugger) which we
2159 set to 1. When the dynamic linker sees this flag set, it will set
2160 a breakpoint at a location known only to itself, after saving the
2161 original contents of that place and the breakpoint address itself,
2162 in it's own internal structures. When we resume the inferior, it
2163 will eventually take a SIGTRAP when it runs into the breakpoint.
2164 We handle this (in a different place) by restoring the contents of
2165 the breakpointed location (which is only known after it stops),
2166 chasing around to locate the shared libraries that have been
2167 loaded, then resuming.
2168
2169 For SVR4, the debugger interface structure contains a member (r_brk)
2170 which is statically initialized at the time the shared library is
2171 built, to the offset of a function (_r_debug_state) which is guaran-
2172 teed to be called once before mapping in a library, and again when
2173 the mapping is complete. At the time we are examining this member,
2174 it contains only the unrelocated offset of the function, so we have
2175 to do our own relocation. Later, when the dynamic linker actually
2176 runs, it relocates r_brk to be the actual address of _r_debug_state().
2177
2178 The debugger interface structure also contains an enumeration which
2179 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2180 depending upon whether or not the library is being mapped or unmapped,
2181 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
2182
2183 static int
2184 enable_break (struct svr4_info *info, int from_tty)
2185 {
2186 struct bound_minimal_symbol msymbol;
2187 const char * const *bkpt_namep;
2188 asection *interp_sect;
2189 CORE_ADDR sym_addr;
2190
2191 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2192 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
2193
2194 /* If we already have a shared library list in the target, and
2195 r_debug contains r_brk, set the breakpoint there - this should
2196 mean r_brk has already been relocated. Assume the dynamic linker
2197 is the object containing r_brk. */
2198
2199 solib_add (NULL, from_tty, auto_solib_add);
2200 sym_addr = 0;
2201 if (info->debug_base && solib_svr4_r_map (info) != 0)
2202 sym_addr = solib_svr4_r_brk (info);
2203
2204 if (sym_addr != 0)
2205 {
2206 struct obj_section *os;
2207
2208 sym_addr = gdbarch_addr_bits_remove
2209 (target_gdbarch (),
2210 gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2211 sym_addr,
2212 current_top_target ()));
2213
2214 /* On at least some versions of Solaris there's a dynamic relocation
2215 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2216 we get control before the dynamic linker has self-relocated.
2217 Check if SYM_ADDR is in a known section, if it is assume we can
2218 trust its value. This is just a heuristic though, it could go away
2219 or be replaced if it's getting in the way.
2220
2221 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2222 however it's spelled in your particular system) is ARM or Thumb.
2223 That knowledge is encoded in the address, if it's Thumb the low bit
2224 is 1. However, we've stripped that info above and it's not clear
2225 what all the consequences are of passing a non-addr_bits_remove'd
2226 address to svr4_create_solib_event_breakpoints. The call to
2227 find_pc_section verifies we know about the address and have some
2228 hope of computing the right kind of breakpoint to use (via
2229 symbol info). It does mean that GDB needs to be pointed at a
2230 non-stripped version of the dynamic linker in order to obtain
2231 information it already knows about. Sigh. */
2232
2233 os = find_pc_section (sym_addr);
2234 if (os != NULL)
2235 {
2236 /* Record the relocated start and end address of the dynamic linker
2237 text and plt section for svr4_in_dynsym_resolve_code. */
2238 bfd *tmp_bfd;
2239 CORE_ADDR load_addr;
2240
2241 tmp_bfd = os->objfile->obfd;
2242 load_addr = ANOFFSET (os->objfile->section_offsets,
2243 SECT_OFF_TEXT (os->objfile));
2244
2245 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2246 if (interp_sect)
2247 {
2248 info->interp_text_sect_low =
2249 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2250 info->interp_text_sect_high =
2251 info->interp_text_sect_low
2252 + bfd_section_size (tmp_bfd, interp_sect);
2253 }
2254 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2255 if (interp_sect)
2256 {
2257 info->interp_plt_sect_low =
2258 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2259 info->interp_plt_sect_high =
2260 info->interp_plt_sect_low
2261 + bfd_section_size (tmp_bfd, interp_sect);
2262 }
2263
2264 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2265 return 1;
2266 }
2267 }
2268
2269 /* Find the program interpreter; if not found, warn the user and drop
2270 into the old breakpoint at symbol code. */
2271 gdb::optional<gdb::byte_vector> interp_name_holder
2272 = find_program_interpreter ();
2273 if (interp_name_holder)
2274 {
2275 const char *interp_name = (const char *) interp_name_holder->data ();
2276 CORE_ADDR load_addr = 0;
2277 int load_addr_found = 0;
2278 int loader_found_in_list = 0;
2279 struct so_list *so;
2280 struct target_ops *tmp_bfd_target;
2281
2282 sym_addr = 0;
2283
2284 /* Now we need to figure out where the dynamic linker was
2285 loaded so that we can load its symbols and place a breakpoint
2286 in the dynamic linker itself.
2287
2288 This address is stored on the stack. However, I've been unable
2289 to find any magic formula to find it for Solaris (appears to
2290 be trivial on GNU/Linux). Therefore, we have to try an alternate
2291 mechanism to find the dynamic linker's base address. */
2292
2293 gdb_bfd_ref_ptr tmp_bfd;
2294 TRY
2295 {
2296 tmp_bfd = solib_bfd_open (interp_name);
2297 }
2298 CATCH (ex, RETURN_MASK_ALL)
2299 {
2300 }
2301 END_CATCH
2302
2303 if (tmp_bfd == NULL)
2304 goto bkpt_at_symbol;
2305
2306 /* Now convert the TMP_BFD into a target. That way target, as
2307 well as BFD operations can be used. target_bfd_reopen
2308 acquires its own reference. */
2309 tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ());
2310
2311 /* On a running target, we can get the dynamic linker's base
2312 address from the shared library table. */
2313 so = master_so_list ();
2314 while (so)
2315 {
2316 if (svr4_same_1 (interp_name, so->so_original_name))
2317 {
2318 load_addr_found = 1;
2319 loader_found_in_list = 1;
2320 load_addr = lm_addr_check (so, tmp_bfd.get ());
2321 break;
2322 }
2323 so = so->next;
2324 }
2325
2326 /* If we were not able to find the base address of the loader
2327 from our so_list, then try using the AT_BASE auxilliary entry. */
2328 if (!load_addr_found)
2329 if (target_auxv_search (current_top_target (), AT_BASE, &load_addr) > 0)
2330 {
2331 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
2332
2333 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2334 that `+ load_addr' will overflow CORE_ADDR width not creating
2335 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2336 GDB. */
2337
2338 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
2339 {
2340 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
2341 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
2342 tmp_bfd_target);
2343
2344 gdb_assert (load_addr < space_size);
2345
2346 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2347 64bit ld.so with 32bit executable, it should not happen. */
2348
2349 if (tmp_entry_point < space_size
2350 && tmp_entry_point + load_addr >= space_size)
2351 load_addr -= space_size;
2352 }
2353
2354 load_addr_found = 1;
2355 }
2356
2357 /* Otherwise we find the dynamic linker's base address by examining
2358 the current pc (which should point at the entry point for the
2359 dynamic linker) and subtracting the offset of the entry point.
2360
2361 This is more fragile than the previous approaches, but is a good
2362 fallback method because it has actually been working well in
2363 most cases. */
2364 if (!load_addr_found)
2365 {
2366 struct regcache *regcache
2367 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
2368
2369 load_addr = (regcache_read_pc (regcache)
2370 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
2371 }
2372
2373 if (!loader_found_in_list)
2374 {
2375 info->debug_loader_name = xstrdup (interp_name);
2376 info->debug_loader_offset_p = 1;
2377 info->debug_loader_offset = load_addr;
2378 solib_add (NULL, from_tty, auto_solib_add);
2379 }
2380
2381 /* Record the relocated start and end address of the dynamic linker
2382 text and plt section for svr4_in_dynsym_resolve_code. */
2383 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
2384 if (interp_sect)
2385 {
2386 info->interp_text_sect_low =
2387 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
2388 info->interp_text_sect_high =
2389 info->interp_text_sect_low
2390 + bfd_section_size (tmp_bfd.get (), interp_sect);
2391 }
2392 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
2393 if (interp_sect)
2394 {
2395 info->interp_plt_sect_low =
2396 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
2397 info->interp_plt_sect_high =
2398 info->interp_plt_sect_low
2399 + bfd_section_size (tmp_bfd.get (), interp_sect);
2400 }
2401
2402 /* Now try to set a breakpoint in the dynamic linker. */
2403 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2404 {
2405 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2406 cmp_name_and_sec_flags,
2407 *bkpt_namep);
2408 if (sym_addr != 0)
2409 break;
2410 }
2411
2412 if (sym_addr != 0)
2413 /* Convert 'sym_addr' from a function pointer to an address.
2414 Because we pass tmp_bfd_target instead of the current
2415 target, this will always produce an unrelocated value. */
2416 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2417 sym_addr,
2418 tmp_bfd_target);
2419
2420 /* We're done with both the temporary bfd and target. Closing
2421 the target closes the underlying bfd, because it holds the
2422 only remaining reference. */
2423 target_close (tmp_bfd_target);
2424
2425 if (sym_addr != 0)
2426 {
2427 svr4_create_solib_event_breakpoints (target_gdbarch (),
2428 load_addr + sym_addr);
2429 return 1;
2430 }
2431
2432 /* For whatever reason we couldn't set a breakpoint in the dynamic
2433 linker. Warn and drop into the old code. */
2434 bkpt_at_symbol:
2435 warning (_("Unable to find dynamic linker breakpoint function.\n"
2436 "GDB will be unable to debug shared library initializers\n"
2437 "and track explicitly loaded dynamic code."));
2438 }
2439
2440 /* Scan through the lists of symbols, trying to look up the symbol and
2441 set a breakpoint there. Terminate loop when we/if we succeed. */
2442
2443 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2444 {
2445 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2446 if ((msymbol.minsym != NULL)
2447 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2448 {
2449 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2450 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2451 sym_addr,
2452 current_top_target ());
2453 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2454 return 1;
2455 }
2456 }
2457
2458 if (interp_name_holder && !current_inferior ()->attach_flag)
2459 {
2460 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
2461 {
2462 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2463 if ((msymbol.minsym != NULL)
2464 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2465 {
2466 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2467 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2468 sym_addr,
2469 current_top_target ());
2470 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2471 return 1;
2472 }
2473 }
2474 }
2475 return 0;
2476 }
2477
2478 /* Read the ELF program headers from ABFD. */
2479
2480 static gdb::optional<gdb::byte_vector>
2481 read_program_headers_from_bfd (bfd *abfd)
2482 {
2483 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
2484 int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2485 if (phdrs_size == 0)
2486 return {};
2487
2488 gdb::byte_vector buf (phdrs_size);
2489 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2490 || bfd_bread (buf.data (), phdrs_size, abfd) != phdrs_size)
2491 return {};
2492
2493 return buf;
2494 }
2495
2496 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2497 exec_bfd. Otherwise return 0.
2498
2499 We relocate all of the sections by the same amount. This
2500 behavior is mandated by recent editions of the System V ABI.
2501 According to the System V Application Binary Interface,
2502 Edition 4.1, page 5-5:
2503
2504 ... Though the system chooses virtual addresses for
2505 individual processes, it maintains the segments' relative
2506 positions. Because position-independent code uses relative
2507 addressesing between segments, the difference between
2508 virtual addresses in memory must match the difference
2509 between virtual addresses in the file. The difference
2510 between the virtual address of any segment in memory and
2511 the corresponding virtual address in the file is thus a
2512 single constant value for any one executable or shared
2513 object in a given process. This difference is the base
2514 address. One use of the base address is to relocate the
2515 memory image of the program during dynamic linking.
2516
2517 The same language also appears in Edition 4.0 of the System V
2518 ABI and is left unspecified in some of the earlier editions.
2519
2520 Decide if the objfile needs to be relocated. As indicated above, we will
2521 only be here when execution is stopped. But during attachment PC can be at
2522 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2523 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2524 regcache_read_pc would point to the interpreter and not the main executable.
2525
2526 So, to summarize, relocations are necessary when the start address obtained
2527 from the executable is different from the address in auxv AT_ENTRY entry.
2528
2529 [ The astute reader will note that we also test to make sure that
2530 the executable in question has the DYNAMIC flag set. It is my
2531 opinion that this test is unnecessary (undesirable even). It
2532 was added to avoid inadvertent relocation of an executable
2533 whose e_type member in the ELF header is not ET_DYN. There may
2534 be a time in the future when it is desirable to do relocations
2535 on other types of files as well in which case this condition
2536 should either be removed or modified to accomodate the new file
2537 type. - Kevin, Nov 2000. ] */
2538
2539 static int
2540 svr4_exec_displacement (CORE_ADDR *displacementp)
2541 {
2542 /* ENTRY_POINT is a possible function descriptor - before
2543 a call to gdbarch_convert_from_func_ptr_addr. */
2544 CORE_ADDR entry_point, exec_displacement;
2545
2546 if (exec_bfd == NULL)
2547 return 0;
2548
2549 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2550 being executed themselves and PIE (Position Independent Executable)
2551 executables are ET_DYN. */
2552
2553 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2554 return 0;
2555
2556 if (target_auxv_search (current_top_target (), AT_ENTRY, &entry_point) <= 0)
2557 return 0;
2558
2559 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
2560
2561 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
2562 alignment. It is cheaper than the program headers comparison below. */
2563
2564 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2565 {
2566 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2567
2568 /* p_align of PT_LOAD segments does not specify any alignment but
2569 only congruency of addresses:
2570 p_offset % p_align == p_vaddr % p_align
2571 Kernel is free to load the executable with lower alignment. */
2572
2573 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
2574 return 0;
2575 }
2576
2577 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2578 comparing their program headers. If the program headers in the auxilliary
2579 vector do not match the program headers in the executable, then we are
2580 looking at a different file than the one used by the kernel - for
2581 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2582
2583 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2584 {
2585 /* Be optimistic and return 0 only if GDB was able to verify the headers
2586 really do not match. */
2587 int arch_size;
2588
2589 gdb::optional<gdb::byte_vector> phdrs_target
2590 = read_program_header (-1, &arch_size, NULL);
2591 gdb::optional<gdb::byte_vector> phdrs_binary
2592 = read_program_headers_from_bfd (exec_bfd);
2593 if (phdrs_target && phdrs_binary)
2594 {
2595 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2596
2597 /* We are dealing with three different addresses. EXEC_BFD
2598 represents current address in on-disk file. target memory content
2599 may be different from EXEC_BFD as the file may have been prelinked
2600 to a different address after the executable has been loaded.
2601 Moreover the address of placement in target memory can be
2602 different from what the program headers in target memory say -
2603 this is the goal of PIE.
2604
2605 Detected DISPLACEMENT covers both the offsets of PIE placement and
2606 possible new prelink performed after start of the program. Here
2607 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2608 content offset for the verification purpose. */
2609
2610 if (phdrs_target->size () != phdrs_binary->size ()
2611 || bfd_get_arch_size (exec_bfd) != arch_size)
2612 return 0;
2613 else if (arch_size == 32
2614 && phdrs_target->size () >= sizeof (Elf32_External_Phdr)
2615 && phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0)
2616 {
2617 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2618 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2619 CORE_ADDR displacement = 0;
2620 int i;
2621
2622 /* DISPLACEMENT could be found more easily by the difference of
2623 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2624 already have enough information to compute that displacement
2625 with what we've read. */
2626
2627 for (i = 0; i < ehdr2->e_phnum; i++)
2628 if (phdr2[i].p_type == PT_LOAD)
2629 {
2630 Elf32_External_Phdr *phdrp;
2631 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2632 CORE_ADDR vaddr, paddr;
2633 CORE_ADDR displacement_vaddr = 0;
2634 CORE_ADDR displacement_paddr = 0;
2635
2636 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
2637 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2638 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2639
2640 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2641 byte_order);
2642 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2643
2644 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2645 byte_order);
2646 displacement_paddr = paddr - phdr2[i].p_paddr;
2647
2648 if (displacement_vaddr == displacement_paddr)
2649 displacement = displacement_vaddr;
2650
2651 break;
2652 }
2653
2654 /* Now compare program headers from the target and the binary
2655 with optional DISPLACEMENT. */
2656
2657 for (i = 0;
2658 i < phdrs_target->size () / sizeof (Elf32_External_Phdr);
2659 i++)
2660 {
2661 Elf32_External_Phdr *phdrp;
2662 Elf32_External_Phdr *phdr2p;
2663 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2664 CORE_ADDR vaddr, paddr;
2665 asection *plt2_asect;
2666
2667 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
2668 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2669 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2670 phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i];
2671
2672 /* PT_GNU_STACK is an exception by being never relocated by
2673 prelink as its addresses are always zero. */
2674
2675 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2676 continue;
2677
2678 /* Check also other adjustment combinations - PR 11786. */
2679
2680 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2681 byte_order);
2682 vaddr -= displacement;
2683 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2684
2685 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2686 byte_order);
2687 paddr -= displacement;
2688 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2689
2690 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2691 continue;
2692
2693 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2694 CentOS-5 has problems with filesz, memsz as well.
2695 Strip also modifies memsz of PT_TLS.
2696 See PR 11786. */
2697 if (phdr2[i].p_type == PT_GNU_RELRO
2698 || phdr2[i].p_type == PT_TLS)
2699 {
2700 Elf32_External_Phdr tmp_phdr = *phdrp;
2701 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2702
2703 memset (tmp_phdr.p_filesz, 0, 4);
2704 memset (tmp_phdr.p_memsz, 0, 4);
2705 memset (tmp_phdr.p_flags, 0, 4);
2706 memset (tmp_phdr.p_align, 0, 4);
2707 memset (tmp_phdr2.p_filesz, 0, 4);
2708 memset (tmp_phdr2.p_memsz, 0, 4);
2709 memset (tmp_phdr2.p_flags, 0, 4);
2710 memset (tmp_phdr2.p_align, 0, 4);
2711
2712 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2713 == 0)
2714 continue;
2715 }
2716
2717 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2718 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2719 if (plt2_asect)
2720 {
2721 int content2;
2722 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2723 CORE_ADDR filesz;
2724
2725 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2726 & SEC_HAS_CONTENTS) != 0;
2727
2728 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2729 byte_order);
2730
2731 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2732 FILESZ is from the in-memory image. */
2733 if (content2)
2734 filesz += bfd_get_section_size (plt2_asect);
2735 else
2736 filesz -= bfd_get_section_size (plt2_asect);
2737
2738 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2739 filesz);
2740
2741 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2742 continue;
2743 }
2744
2745 return 0;
2746 }
2747 }
2748 else if (arch_size == 64
2749 && phdrs_target->size () >= sizeof (Elf64_External_Phdr)
2750 && phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0)
2751 {
2752 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2753 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2754 CORE_ADDR displacement = 0;
2755 int i;
2756
2757 /* DISPLACEMENT could be found more easily by the difference of
2758 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2759 already have enough information to compute that displacement
2760 with what we've read. */
2761
2762 for (i = 0; i < ehdr2->e_phnum; i++)
2763 if (phdr2[i].p_type == PT_LOAD)
2764 {
2765 Elf64_External_Phdr *phdrp;
2766 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2767 CORE_ADDR vaddr, paddr;
2768 CORE_ADDR displacement_vaddr = 0;
2769 CORE_ADDR displacement_paddr = 0;
2770
2771 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
2772 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2773 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2774
2775 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2776 byte_order);
2777 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2778
2779 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2780 byte_order);
2781 displacement_paddr = paddr - phdr2[i].p_paddr;
2782
2783 if (displacement_vaddr == displacement_paddr)
2784 displacement = displacement_vaddr;
2785
2786 break;
2787 }
2788
2789 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2790
2791 for (i = 0;
2792 i < phdrs_target->size () / sizeof (Elf64_External_Phdr);
2793 i++)
2794 {
2795 Elf64_External_Phdr *phdrp;
2796 Elf64_External_Phdr *phdr2p;
2797 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2798 CORE_ADDR vaddr, paddr;
2799 asection *plt2_asect;
2800
2801 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
2802 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2803 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2804 phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i];
2805
2806 /* PT_GNU_STACK is an exception by being never relocated by
2807 prelink as its addresses are always zero. */
2808
2809 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2810 continue;
2811
2812 /* Check also other adjustment combinations - PR 11786. */
2813
2814 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2815 byte_order);
2816 vaddr -= displacement;
2817 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2818
2819 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2820 byte_order);
2821 paddr -= displacement;
2822 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2823
2824 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2825 continue;
2826
2827 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2828 CentOS-5 has problems with filesz, memsz as well.
2829 Strip also modifies memsz of PT_TLS.
2830 See PR 11786. */
2831 if (phdr2[i].p_type == PT_GNU_RELRO
2832 || phdr2[i].p_type == PT_TLS)
2833 {
2834 Elf64_External_Phdr tmp_phdr = *phdrp;
2835 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2836
2837 memset (tmp_phdr.p_filesz, 0, 8);
2838 memset (tmp_phdr.p_memsz, 0, 8);
2839 memset (tmp_phdr.p_flags, 0, 4);
2840 memset (tmp_phdr.p_align, 0, 8);
2841 memset (tmp_phdr2.p_filesz, 0, 8);
2842 memset (tmp_phdr2.p_memsz, 0, 8);
2843 memset (tmp_phdr2.p_flags, 0, 4);
2844 memset (tmp_phdr2.p_align, 0, 8);
2845
2846 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2847 == 0)
2848 continue;
2849 }
2850
2851 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2852 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2853 if (plt2_asect)
2854 {
2855 int content2;
2856 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2857 CORE_ADDR filesz;
2858
2859 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2860 & SEC_HAS_CONTENTS) != 0;
2861
2862 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2863 byte_order);
2864
2865 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2866 FILESZ is from the in-memory image. */
2867 if (content2)
2868 filesz += bfd_get_section_size (plt2_asect);
2869 else
2870 filesz -= bfd_get_section_size (plt2_asect);
2871
2872 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2873 filesz);
2874
2875 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2876 continue;
2877 }
2878
2879 return 0;
2880 }
2881 }
2882 else
2883 return 0;
2884 }
2885 }
2886
2887 if (info_verbose)
2888 {
2889 /* It can be printed repeatedly as there is no easy way to check
2890 the executable symbols/file has been already relocated to
2891 displacement. */
2892
2893 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2894 "displacement %s for \"%s\".\n"),
2895 paddress (target_gdbarch (), exec_displacement),
2896 bfd_get_filename (exec_bfd));
2897 }
2898
2899 *displacementp = exec_displacement;
2900 return 1;
2901 }
2902
2903 /* Relocate the main executable. This function should be called upon
2904 stopping the inferior process at the entry point to the program.
2905 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2906 different, the main executable is relocated by the proper amount. */
2907
2908 static void
2909 svr4_relocate_main_executable (void)
2910 {
2911 CORE_ADDR displacement;
2912
2913 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2914 probably contains the offsets computed using the PIE displacement
2915 from the previous run, which of course are irrelevant for this run.
2916 So we need to determine the new PIE displacement and recompute the
2917 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2918 already contains pre-computed offsets.
2919
2920 If we cannot compute the PIE displacement, either:
2921
2922 - The executable is not PIE.
2923
2924 - SYMFILE_OBJFILE does not match the executable started in the target.
2925 This can happen for main executable symbols loaded at the host while
2926 `ld.so --ld-args main-executable' is loaded in the target.
2927
2928 Then we leave the section offsets untouched and use them as is for
2929 this run. Either:
2930
2931 - These section offsets were properly reset earlier, and thus
2932 already contain the correct values. This can happen for instance
2933 when reconnecting via the remote protocol to a target that supports
2934 the `qOffsets' packet.
2935
2936 - The section offsets were not reset earlier, and the best we can
2937 hope is that the old offsets are still applicable to the new run. */
2938
2939 if (! svr4_exec_displacement (&displacement))
2940 return;
2941
2942 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2943 addresses. */
2944
2945 if (symfile_objfile)
2946 {
2947 struct section_offsets *new_offsets;
2948 int i;
2949
2950 new_offsets = XALLOCAVEC (struct section_offsets,
2951 symfile_objfile->num_sections);
2952
2953 for (i = 0; i < symfile_objfile->num_sections; i++)
2954 new_offsets->offsets[i] = displacement;
2955
2956 objfile_relocate (symfile_objfile, new_offsets);
2957 }
2958 else if (exec_bfd)
2959 {
2960 asection *asect;
2961
2962 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2963 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2964 (bfd_section_vma (exec_bfd, asect)
2965 + displacement));
2966 }
2967 }
2968
2969 /* Implement the "create_inferior_hook" target_solib_ops method.
2970
2971 For SVR4 executables, this first instruction is either the first
2972 instruction in the dynamic linker (for dynamically linked
2973 executables) or the instruction at "start" for statically linked
2974 executables. For dynamically linked executables, the system
2975 first exec's /lib/libc.so.N, which contains the dynamic linker,
2976 and starts it running. The dynamic linker maps in any needed
2977 shared libraries, maps in the actual user executable, and then
2978 jumps to "start" in the user executable.
2979
2980 We can arrange to cooperate with the dynamic linker to discover the
2981 names of shared libraries that are dynamically linked, and the base
2982 addresses to which they are linked.
2983
2984 This function is responsible for discovering those names and
2985 addresses, and saving sufficient information about them to allow
2986 their symbols to be read at a later time. */
2987
2988 static void
2989 svr4_solib_create_inferior_hook (int from_tty)
2990 {
2991 struct svr4_info *info;
2992
2993 info = get_svr4_info ();
2994
2995 /* Clear the probes-based interface's state. */
2996 free_probes_table (info);
2997 free_solib_list (info);
2998
2999 /* Relocate the main executable if necessary. */
3000 svr4_relocate_main_executable ();
3001
3002 /* No point setting a breakpoint in the dynamic linker if we can't
3003 hit it (e.g., a core file, or a trace file). */
3004 if (!target_has_execution)
3005 return;
3006
3007 if (!svr4_have_link_map_offsets ())
3008 return;
3009
3010 if (!enable_break (info, from_tty))
3011 return;
3012 }
3013
3014 static void
3015 svr4_clear_solib (void)
3016 {
3017 struct svr4_info *info;
3018
3019 info = get_svr4_info ();
3020 info->debug_base = 0;
3021 info->debug_loader_offset_p = 0;
3022 info->debug_loader_offset = 0;
3023 xfree (info->debug_loader_name);
3024 info->debug_loader_name = NULL;
3025 }
3026
3027 /* Clear any bits of ADDR that wouldn't fit in a target-format
3028 data pointer. "Data pointer" here refers to whatever sort of
3029 address the dynamic linker uses to manage its sections. At the
3030 moment, we don't support shared libraries on any processors where
3031 code and data pointers are different sizes.
3032
3033 This isn't really the right solution. What we really need here is
3034 a way to do arithmetic on CORE_ADDR values that respects the
3035 natural pointer/address correspondence. (For example, on the MIPS,
3036 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3037 sign-extend the value. There, simply truncating the bits above
3038 gdbarch_ptr_bit, as we do below, is no good.) This should probably
3039 be a new gdbarch method or something. */
3040 static CORE_ADDR
3041 svr4_truncate_ptr (CORE_ADDR addr)
3042 {
3043 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
3044 /* We don't need to truncate anything, and the bit twiddling below
3045 will fail due to overflow problems. */
3046 return addr;
3047 else
3048 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
3049 }
3050
3051
3052 static void
3053 svr4_relocate_section_addresses (struct so_list *so,
3054 struct target_section *sec)
3055 {
3056 bfd *abfd = sec->the_bfd_section->owner;
3057
3058 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3059 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
3060 }
3061 \f
3062
3063 /* Architecture-specific operations. */
3064
3065 /* Per-architecture data key. */
3066 static struct gdbarch_data *solib_svr4_data;
3067
3068 struct solib_svr4_ops
3069 {
3070 /* Return a description of the layout of `struct link_map'. */
3071 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3072 };
3073
3074 /* Return a default for the architecture-specific operations. */
3075
3076 static void *
3077 solib_svr4_init (struct obstack *obstack)
3078 {
3079 struct solib_svr4_ops *ops;
3080
3081 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
3082 ops->fetch_link_map_offsets = NULL;
3083 return ops;
3084 }
3085
3086 /* Set the architecture-specific `struct link_map_offsets' fetcher for
3087 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
3088
3089 void
3090 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3091 struct link_map_offsets *(*flmo) (void))
3092 {
3093 struct solib_svr4_ops *ops
3094 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
3095
3096 ops->fetch_link_map_offsets = flmo;
3097
3098 set_solib_ops (gdbarch, &svr4_so_ops);
3099 }
3100
3101 /* Fetch a link_map_offsets structure using the architecture-specific
3102 `struct link_map_offsets' fetcher. */
3103
3104 static struct link_map_offsets *
3105 svr4_fetch_link_map_offsets (void)
3106 {
3107 struct solib_svr4_ops *ops
3108 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3109 solib_svr4_data);
3110
3111 gdb_assert (ops->fetch_link_map_offsets);
3112 return ops->fetch_link_map_offsets ();
3113 }
3114
3115 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3116
3117 static int
3118 svr4_have_link_map_offsets (void)
3119 {
3120 struct solib_svr4_ops *ops
3121 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3122 solib_svr4_data);
3123
3124 return (ops->fetch_link_map_offsets != NULL);
3125 }
3126 \f
3127
3128 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
3129 `struct r_debug' and a `struct link_map' that are binary compatible
3130 with the origional SVR4 implementation. */
3131
3132 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3133 for an ILP32 SVR4 system. */
3134
3135 struct link_map_offsets *
3136 svr4_ilp32_fetch_link_map_offsets (void)
3137 {
3138 static struct link_map_offsets lmo;
3139 static struct link_map_offsets *lmp = NULL;
3140
3141 if (lmp == NULL)
3142 {
3143 lmp = &lmo;
3144
3145 lmo.r_version_offset = 0;
3146 lmo.r_version_size = 4;
3147 lmo.r_map_offset = 4;
3148 lmo.r_brk_offset = 8;
3149 lmo.r_ldsomap_offset = 20;
3150
3151 /* Everything we need is in the first 20 bytes. */
3152 lmo.link_map_size = 20;
3153 lmo.l_addr_offset = 0;
3154 lmo.l_name_offset = 4;
3155 lmo.l_ld_offset = 8;
3156 lmo.l_next_offset = 12;
3157 lmo.l_prev_offset = 16;
3158 }
3159
3160 return lmp;
3161 }
3162
3163 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3164 for an LP64 SVR4 system. */
3165
3166 struct link_map_offsets *
3167 svr4_lp64_fetch_link_map_offsets (void)
3168 {
3169 static struct link_map_offsets lmo;
3170 static struct link_map_offsets *lmp = NULL;
3171
3172 if (lmp == NULL)
3173 {
3174 lmp = &lmo;
3175
3176 lmo.r_version_offset = 0;
3177 lmo.r_version_size = 4;
3178 lmo.r_map_offset = 8;
3179 lmo.r_brk_offset = 16;
3180 lmo.r_ldsomap_offset = 40;
3181
3182 /* Everything we need is in the first 40 bytes. */
3183 lmo.link_map_size = 40;
3184 lmo.l_addr_offset = 0;
3185 lmo.l_name_offset = 8;
3186 lmo.l_ld_offset = 16;
3187 lmo.l_next_offset = 24;
3188 lmo.l_prev_offset = 32;
3189 }
3190
3191 return lmp;
3192 }
3193 \f
3194
3195 struct target_so_ops svr4_so_ops;
3196
3197 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3198 different rule for symbol lookup. The lookup begins here in the DSO, not in
3199 the main executable. */
3200
3201 static struct block_symbol
3202 elf_lookup_lib_symbol (struct objfile *objfile,
3203 const char *name,
3204 const domain_enum domain)
3205 {
3206 bfd *abfd;
3207
3208 if (objfile == symfile_objfile)
3209 abfd = exec_bfd;
3210 else
3211 {
3212 /* OBJFILE should have been passed as the non-debug one. */
3213 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3214
3215 abfd = objfile->obfd;
3216 }
3217
3218 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL, NULL) != 1)
3219 return (struct block_symbol) {NULL, NULL};
3220
3221 return lookup_global_symbol_from_objfile (objfile, name, domain);
3222 }
3223
3224 void
3225 _initialize_svr4_solib (void)
3226 {
3227 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3228 solib_svr4_pspace_data
3229 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
3230
3231 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
3232 svr4_so_ops.free_so = svr4_free_so;
3233 svr4_so_ops.clear_so = svr4_clear_so;
3234 svr4_so_ops.clear_solib = svr4_clear_solib;
3235 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3236 svr4_so_ops.current_sos = svr4_current_sos;
3237 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
3238 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
3239 svr4_so_ops.bfd_open = solib_bfd_open;
3240 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
3241 svr4_so_ops.same = svr4_same;
3242 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
3243 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3244 svr4_so_ops.handle_event = svr4_handle_solib_event;
3245 }
This page took 0.094805 seconds and 5 git commands to generate.