* solib-svr4.h: Update copyright year.
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999,
4 2000, 2001, 2003, 2004
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25
26 #include "elf/external.h"
27 #include "elf/common.h"
28 #include "elf/mips.h"
29
30 #include "symtab.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdbcore.h"
35 #include "target.h"
36 #include "inferior.h"
37
38 #include "solist.h"
39 #include "solib-svr4.h"
40
41 #include "bfd-target.h"
42 #include "exec.h"
43
44 #ifndef SVR4_FETCH_LINK_MAP_OFFSETS
45 #define SVR4_FETCH_LINK_MAP_OFFSETS() svr4_fetch_link_map_offsets ()
46 #endif
47
48 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
49 static struct link_map_offsets *legacy_fetch_link_map_offsets (void);
50 static int svr4_have_link_map_offsets (void);
51
52 /* fetch_link_map_offsets_gdbarch_data is a handle used to obtain the
53 architecture specific link map offsets fetching function. */
54
55 static struct gdbarch_data *fetch_link_map_offsets_gdbarch_data;
56
57 /* legacy_svr4_fetch_link_map_offsets_hook is a pointer to a function
58 which is used to fetch link map offsets. It will only be set
59 by solib-legacy.c, if at all. */
60
61 struct link_map_offsets *(*legacy_svr4_fetch_link_map_offsets_hook)(void) = 0;
62
63 /* Link map info to include in an allocated so_list entry */
64
65 struct lm_info
66 {
67 /* Pointer to copy of link map from inferior. The type is char *
68 rather than void *, so that we may use byte offsets to find the
69 various fields without the need for a cast. */
70 char *lm;
71 };
72
73 /* On SVR4 systems, a list of symbols in the dynamic linker where
74 GDB can try to place a breakpoint to monitor shared library
75 events.
76
77 If none of these symbols are found, or other errors occur, then
78 SVR4 systems will fall back to using a symbol as the "startup
79 mapping complete" breakpoint address. */
80
81 static char *solib_break_names[] =
82 {
83 "r_debug_state",
84 "_r_debug_state",
85 "_dl_debug_state",
86 "rtld_db_dlactivity",
87 "_rtld_debug_state",
88
89 /* On the 64-bit PowerPC, the linker symbol with the same name as
90 the C function points to a function descriptor, not to the entry
91 point. The linker symbol whose name is the C function name
92 prefixed with a '.' points to the function's entry point. So
93 when we look through this table, we ignore symbols that point
94 into the data section (thus skipping the descriptor's symbol),
95 and eventually try this one, giving us the real entry point
96 address. */
97 "._dl_debug_state",
98
99 NULL
100 };
101
102 #define BKPT_AT_SYMBOL 1
103
104 #if defined (BKPT_AT_SYMBOL)
105 static char *bkpt_names[] =
106 {
107 #ifdef SOLIB_BKPT_NAME
108 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
109 #endif
110 "_start",
111 "__start",
112 "main",
113 NULL
114 };
115 #endif
116
117 static char *main_name_list[] =
118 {
119 "main_$main",
120 NULL
121 };
122
123 /* Macro to extract an address from a solib structure. When GDB is
124 configured for some 32-bit targets (e.g. Solaris 2.7 sparc), BFD is
125 configured to handle 64-bit targets, so CORE_ADDR is 64 bits. We
126 have to extract only the significant bits of addresses to get the
127 right address when accessing the core file BFD.
128
129 Assume that the address is unsigned. */
130
131 #define SOLIB_EXTRACT_ADDRESS(MEMBER) \
132 extract_unsigned_integer (&(MEMBER), sizeof (MEMBER))
133
134 /* local data declarations */
135
136 /* link map access functions */
137
138 static CORE_ADDR
139 LM_ADDR (struct so_list *so)
140 {
141 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
142
143 return (CORE_ADDR) extract_signed_integer (so->lm_info->lm + lmo->l_addr_offset,
144 lmo->l_addr_size);
145 }
146
147 static CORE_ADDR
148 LM_NEXT (struct so_list *so)
149 {
150 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
151
152 /* Assume that the address is unsigned. */
153 return extract_unsigned_integer (so->lm_info->lm + lmo->l_next_offset,
154 lmo->l_next_size);
155 }
156
157 static CORE_ADDR
158 LM_NAME (struct so_list *so)
159 {
160 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
161
162 /* Assume that the address is unsigned. */
163 return extract_unsigned_integer (so->lm_info->lm + lmo->l_name_offset,
164 lmo->l_name_size);
165 }
166
167 static int
168 IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
169 {
170 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
171
172 /* Assume that the address is unsigned. */
173 return extract_unsigned_integer (so->lm_info->lm + lmo->l_prev_offset,
174 lmo->l_prev_size) == 0;
175 }
176
177 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
178 static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
179
180 /* Local function prototypes */
181
182 static int match_main (char *);
183
184 static CORE_ADDR bfd_lookup_symbol (bfd *, char *, flagword);
185
186 /*
187
188 LOCAL FUNCTION
189
190 bfd_lookup_symbol -- lookup the value for a specific symbol
191
192 SYNOPSIS
193
194 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags)
195
196 DESCRIPTION
197
198 An expensive way to lookup the value of a single symbol for
199 bfd's that are only temporary anyway. This is used by the
200 shared library support to find the address of the debugger
201 interface structures in the shared library.
202
203 If SECT_FLAGS is non-zero, only match symbols in sections whose
204 flags include all those in SECT_FLAGS.
205
206 Note that 0 is specifically allowed as an error return (no
207 such symbol).
208 */
209
210 static CORE_ADDR
211 bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags)
212 {
213 long storage_needed;
214 asymbol *sym;
215 asymbol **symbol_table;
216 unsigned int number_of_symbols;
217 unsigned int i;
218 struct cleanup *back_to;
219 CORE_ADDR symaddr = 0;
220
221 storage_needed = bfd_get_symtab_upper_bound (abfd);
222
223 if (storage_needed > 0)
224 {
225 symbol_table = (asymbol **) xmalloc (storage_needed);
226 back_to = make_cleanup (xfree, symbol_table);
227 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
228
229 for (i = 0; i < number_of_symbols; i++)
230 {
231 sym = *symbol_table++;
232 if (strcmp (sym->name, symname) == 0
233 && (sym->section->flags & sect_flags) == sect_flags)
234 {
235 /* Bfd symbols are section relative. */
236 symaddr = sym->value + sym->section->vma;
237 break;
238 }
239 }
240 do_cleanups (back_to);
241 }
242
243 if (symaddr)
244 return symaddr;
245
246 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
247 have to check the dynamic string table too. */
248
249 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
250
251 if (storage_needed > 0)
252 {
253 symbol_table = (asymbol **) xmalloc (storage_needed);
254 back_to = make_cleanup (xfree, symbol_table);
255 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
256
257 for (i = 0; i < number_of_symbols; i++)
258 {
259 sym = *symbol_table++;
260
261 if (strcmp (sym->name, symname) == 0
262 && (sym->section->flags & sect_flags) == sect_flags)
263 {
264 /* Bfd symbols are section relative. */
265 symaddr = sym->value + sym->section->vma;
266 break;
267 }
268 }
269 do_cleanups (back_to);
270 }
271
272 return symaddr;
273 }
274
275 #ifdef HANDLE_SVR4_EXEC_EMULATORS
276
277 /*
278 Solaris BCP (the part of Solaris which allows it to run SunOS4
279 a.out files) throws in another wrinkle. Solaris does not fill
280 in the usual a.out link map structures when running BCP programs,
281 the only way to get at them is via groping around in the dynamic
282 linker.
283 The dynamic linker and it's structures are located in the shared
284 C library, which gets run as the executable's "interpreter" by
285 the kernel.
286
287 Note that we can assume nothing about the process state at the time
288 we need to find these structures. We may be stopped on the first
289 instruction of the interpreter (C shared library), the first
290 instruction of the executable itself, or somewhere else entirely
291 (if we attached to the process for example).
292 */
293
294 static char *debug_base_symbols[] =
295 {
296 "r_debug", /* Solaris 2.3 */
297 "_r_debug", /* Solaris 2.1, 2.2 */
298 NULL
299 };
300
301 static int look_for_base (int, CORE_ADDR);
302
303 /*
304
305 LOCAL FUNCTION
306
307 look_for_base -- examine file for each mapped address segment
308
309 SYNOPSYS
310
311 static int look_for_base (int fd, CORE_ADDR baseaddr)
312
313 DESCRIPTION
314
315 This function is passed to proc_iterate_over_mappings, which
316 causes it to get called once for each mapped address space, with
317 an open file descriptor for the file mapped to that space, and the
318 base address of that mapped space.
319
320 Our job is to find the debug base symbol in the file that this
321 fd is open on, if it exists, and if so, initialize the dynamic
322 linker structure base address debug_base.
323
324 Note that this is a computationally expensive proposition, since
325 we basically have to open a bfd on every call, so we specifically
326 avoid opening the exec file.
327 */
328
329 static int
330 look_for_base (int fd, CORE_ADDR baseaddr)
331 {
332 bfd *interp_bfd;
333 CORE_ADDR address = 0;
334 char **symbolp;
335
336 /* If the fd is -1, then there is no file that corresponds to this
337 mapped memory segment, so skip it. Also, if the fd corresponds
338 to the exec file, skip it as well. */
339
340 if (fd == -1
341 || (exec_bfd != NULL
342 && fdmatch (fileno ((FILE *) (exec_bfd->iostream)), fd)))
343 {
344 return (0);
345 }
346
347 /* Try to open whatever random file this fd corresponds to. Note that
348 we have no way currently to find the filename. Don't gripe about
349 any problems we might have, just fail. */
350
351 if ((interp_bfd = bfd_fdopenr ("unnamed", gnutarget, fd)) == NULL)
352 {
353 return (0);
354 }
355 if (!bfd_check_format (interp_bfd, bfd_object))
356 {
357 /* FIXME-leak: on failure, might not free all memory associated with
358 interp_bfd. */
359 bfd_close (interp_bfd);
360 return (0);
361 }
362
363 /* Now try to find our debug base symbol in this file, which we at
364 least know to be a valid ELF executable or shared library. */
365
366 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
367 {
368 address = bfd_lookup_symbol (interp_bfd, *symbolp, 0);
369 if (address != 0)
370 {
371 break;
372 }
373 }
374 if (address == 0)
375 {
376 /* FIXME-leak: on failure, might not free all memory associated with
377 interp_bfd. */
378 bfd_close (interp_bfd);
379 return (0);
380 }
381
382 /* Eureka! We found the symbol. But now we may need to relocate it
383 by the base address. If the symbol's value is less than the base
384 address of the shared library, then it hasn't yet been relocated
385 by the dynamic linker, and we have to do it ourself. FIXME: Note
386 that we make the assumption that the first segment that corresponds
387 to the shared library has the base address to which the library
388 was relocated. */
389
390 if (address < baseaddr)
391 {
392 address += baseaddr;
393 }
394 debug_base = address;
395 /* FIXME-leak: on failure, might not free all memory associated with
396 interp_bfd. */
397 bfd_close (interp_bfd);
398 return (1);
399 }
400 #endif /* HANDLE_SVR4_EXEC_EMULATORS */
401
402 /*
403
404 LOCAL FUNCTION
405
406 elf_locate_base -- locate the base address of dynamic linker structs
407 for SVR4 elf targets.
408
409 SYNOPSIS
410
411 CORE_ADDR elf_locate_base (void)
412
413 DESCRIPTION
414
415 For SVR4 elf targets the address of the dynamic linker's runtime
416 structure is contained within the dynamic info section in the
417 executable file. The dynamic section is also mapped into the
418 inferior address space. Because the runtime loader fills in the
419 real address before starting the inferior, we have to read in the
420 dynamic info section from the inferior address space.
421 If there are any errors while trying to find the address, we
422 silently return 0, otherwise the found address is returned.
423
424 */
425
426 static CORE_ADDR
427 elf_locate_base (void)
428 {
429 struct bfd_section *dyninfo_sect;
430 int dyninfo_sect_size;
431 CORE_ADDR dyninfo_addr;
432 char *buf;
433 char *bufend;
434 int arch_size;
435
436 /* Find the start address of the .dynamic section. */
437 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
438 if (dyninfo_sect == NULL)
439 return 0;
440 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
441
442 /* Read in .dynamic section, silently ignore errors. */
443 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
444 buf = alloca (dyninfo_sect_size);
445 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
446 return 0;
447
448 /* Find the DT_DEBUG entry in the the .dynamic section.
449 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
450 no DT_DEBUG entries. */
451
452 arch_size = bfd_get_arch_size (exec_bfd);
453 if (arch_size == -1) /* failure */
454 return 0;
455
456 if (arch_size == 32)
457 { /* 32-bit elf */
458 for (bufend = buf + dyninfo_sect_size;
459 buf < bufend;
460 buf += sizeof (Elf32_External_Dyn))
461 {
462 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
463 long dyn_tag;
464 CORE_ADDR dyn_ptr;
465
466 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
467 if (dyn_tag == DT_NULL)
468 break;
469 else if (dyn_tag == DT_DEBUG)
470 {
471 dyn_ptr = bfd_h_get_32 (exec_bfd,
472 (bfd_byte *) x_dynp->d_un.d_ptr);
473 return dyn_ptr;
474 }
475 else if (dyn_tag == DT_MIPS_RLD_MAP)
476 {
477 char *pbuf;
478 int pbuf_size = TARGET_PTR_BIT / HOST_CHAR_BIT;
479
480 pbuf = alloca (pbuf_size);
481 /* DT_MIPS_RLD_MAP contains a pointer to the address
482 of the dynamic link structure. */
483 dyn_ptr = bfd_h_get_32 (exec_bfd,
484 (bfd_byte *) x_dynp->d_un.d_ptr);
485 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
486 return 0;
487 return extract_unsigned_integer (pbuf, pbuf_size);
488 }
489 }
490 }
491 else /* 64-bit elf */
492 {
493 for (bufend = buf + dyninfo_sect_size;
494 buf < bufend;
495 buf += sizeof (Elf64_External_Dyn))
496 {
497 Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
498 long dyn_tag;
499 CORE_ADDR dyn_ptr;
500
501 dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
502 if (dyn_tag == DT_NULL)
503 break;
504 else if (dyn_tag == DT_DEBUG)
505 {
506 dyn_ptr = bfd_h_get_64 (exec_bfd,
507 (bfd_byte *) x_dynp->d_un.d_ptr);
508 return dyn_ptr;
509 }
510 else if (dyn_tag == DT_MIPS_RLD_MAP)
511 {
512 char *pbuf;
513 int pbuf_size = TARGET_PTR_BIT / HOST_CHAR_BIT;
514
515 pbuf = alloca (pbuf_size);
516 /* DT_MIPS_RLD_MAP contains a pointer to the address
517 of the dynamic link structure. */
518 dyn_ptr = bfd_h_get_64 (exec_bfd,
519 (bfd_byte *) x_dynp->d_un.d_ptr);
520 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
521 return 0;
522 return extract_unsigned_integer (pbuf, pbuf_size);
523 }
524 }
525 }
526
527 /* DT_DEBUG entry not found. */
528 return 0;
529 }
530
531 /*
532
533 LOCAL FUNCTION
534
535 locate_base -- locate the base address of dynamic linker structs
536
537 SYNOPSIS
538
539 CORE_ADDR locate_base (void)
540
541 DESCRIPTION
542
543 For both the SunOS and SVR4 shared library implementations, if the
544 inferior executable has been linked dynamically, there is a single
545 address somewhere in the inferior's data space which is the key to
546 locating all of the dynamic linker's runtime structures. This
547 address is the value of the debug base symbol. The job of this
548 function is to find and return that address, or to return 0 if there
549 is no such address (the executable is statically linked for example).
550
551 For SunOS, the job is almost trivial, since the dynamic linker and
552 all of it's structures are statically linked to the executable at
553 link time. Thus the symbol for the address we are looking for has
554 already been added to the minimal symbol table for the executable's
555 objfile at the time the symbol file's symbols were read, and all we
556 have to do is look it up there. Note that we explicitly do NOT want
557 to find the copies in the shared library.
558
559 The SVR4 version is a bit more complicated because the address
560 is contained somewhere in the dynamic info section. We have to go
561 to a lot more work to discover the address of the debug base symbol.
562 Because of this complexity, we cache the value we find and return that
563 value on subsequent invocations. Note there is no copy in the
564 executable symbol tables.
565
566 */
567
568 static CORE_ADDR
569 locate_base (void)
570 {
571 /* Check to see if we have a currently valid address, and if so, avoid
572 doing all this work again and just return the cached address. If
573 we have no cached address, try to locate it in the dynamic info
574 section for ELF executables. There's no point in doing any of this
575 though if we don't have some link map offsets to work with. */
576
577 if (debug_base == 0 && svr4_have_link_map_offsets ())
578 {
579 if (exec_bfd != NULL
580 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
581 debug_base = elf_locate_base ();
582 #ifdef HANDLE_SVR4_EXEC_EMULATORS
583 /* Try it the hard way for emulated executables. */
584 else if (!ptid_equal (inferior_ptid, null_ptid) && target_has_execution)
585 proc_iterate_over_mappings (look_for_base);
586 #endif
587 }
588 return (debug_base);
589 }
590
591 /*
592
593 LOCAL FUNCTION
594
595 first_link_map_member -- locate first member in dynamic linker's map
596
597 SYNOPSIS
598
599 static CORE_ADDR first_link_map_member (void)
600
601 DESCRIPTION
602
603 Find the first element in the inferior's dynamic link map, and
604 return its address in the inferior. This function doesn't copy the
605 link map entry itself into our address space; current_sos actually
606 does the reading. */
607
608 static CORE_ADDR
609 first_link_map_member (void)
610 {
611 CORE_ADDR lm = 0;
612 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
613 char *r_map_buf = xmalloc (lmo->r_map_size);
614 struct cleanup *cleanups = make_cleanup (xfree, r_map_buf);
615
616 read_memory (debug_base + lmo->r_map_offset, r_map_buf, lmo->r_map_size);
617
618 /* Assume that the address is unsigned. */
619 lm = extract_unsigned_integer (r_map_buf, lmo->r_map_size);
620
621 /* FIXME: Perhaps we should validate the info somehow, perhaps by
622 checking r_version for a known version number, or r_state for
623 RT_CONSISTENT. */
624
625 do_cleanups (cleanups);
626
627 return (lm);
628 }
629
630 /*
631
632 LOCAL FUNCTION
633
634 open_symbol_file_object
635
636 SYNOPSIS
637
638 void open_symbol_file_object (void *from_tty)
639
640 DESCRIPTION
641
642 If no open symbol file, attempt to locate and open the main symbol
643 file. On SVR4 systems, this is the first link map entry. If its
644 name is here, we can open it. Useful when attaching to a process
645 without first loading its symbol file.
646
647 If FROM_TTYP dereferences to a non-zero integer, allow messages to
648 be printed. This parameter is a pointer rather than an int because
649 open_symbol_file_object() is called via catch_errors() and
650 catch_errors() requires a pointer argument. */
651
652 static int
653 open_symbol_file_object (void *from_ttyp)
654 {
655 CORE_ADDR lm, l_name;
656 char *filename;
657 int errcode;
658 int from_tty = *(int *)from_ttyp;
659 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
660 char *l_name_buf = xmalloc (lmo->l_name_size);
661 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
662
663 if (symfile_objfile)
664 if (!query ("Attempt to reload symbols from process? "))
665 return 0;
666
667 if ((debug_base = locate_base ()) == 0)
668 return 0; /* failed somehow... */
669
670 /* First link map member should be the executable. */
671 if ((lm = first_link_map_member ()) == 0)
672 return 0; /* failed somehow... */
673
674 /* Read address of name from target memory to GDB. */
675 read_memory (lm + lmo->l_name_offset, l_name_buf, lmo->l_name_size);
676
677 /* Convert the address to host format. Assume that the address is
678 unsigned. */
679 l_name = extract_unsigned_integer (l_name_buf, lmo->l_name_size);
680
681 /* Free l_name_buf. */
682 do_cleanups (cleanups);
683
684 if (l_name == 0)
685 return 0; /* No filename. */
686
687 /* Now fetch the filename from target memory. */
688 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
689
690 if (errcode)
691 {
692 warning ("failed to read exec filename from attached file: %s",
693 safe_strerror (errcode));
694 return 0;
695 }
696
697 make_cleanup (xfree, filename);
698 /* Have a pathname: read the symbol file. */
699 symbol_file_add_main (filename, from_tty);
700
701 return 1;
702 }
703
704 /* LOCAL FUNCTION
705
706 current_sos -- build a list of currently loaded shared objects
707
708 SYNOPSIS
709
710 struct so_list *current_sos ()
711
712 DESCRIPTION
713
714 Build a list of `struct so_list' objects describing the shared
715 objects currently loaded in the inferior. This list does not
716 include an entry for the main executable file.
717
718 Note that we only gather information directly available from the
719 inferior --- we don't examine any of the shared library files
720 themselves. The declaration of `struct so_list' says which fields
721 we provide values for. */
722
723 static struct so_list *
724 svr4_current_sos (void)
725 {
726 CORE_ADDR lm;
727 struct so_list *head = 0;
728 struct so_list **link_ptr = &head;
729
730 /* Make sure we've looked up the inferior's dynamic linker's base
731 structure. */
732 if (! debug_base)
733 {
734 debug_base = locate_base ();
735
736 /* If we can't find the dynamic linker's base structure, this
737 must not be a dynamically linked executable. Hmm. */
738 if (! debug_base)
739 return 0;
740 }
741
742 /* Walk the inferior's link map list, and build our list of
743 `struct so_list' nodes. */
744 lm = first_link_map_member ();
745 while (lm)
746 {
747 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
748 struct so_list *new
749 = (struct so_list *) xmalloc (sizeof (struct so_list));
750 struct cleanup *old_chain = make_cleanup (xfree, new);
751
752 memset (new, 0, sizeof (*new));
753
754 new->lm_info = xmalloc (sizeof (struct lm_info));
755 make_cleanup (xfree, new->lm_info);
756
757 new->lm_info->lm = xmalloc (lmo->link_map_size);
758 make_cleanup (xfree, new->lm_info->lm);
759 memset (new->lm_info->lm, 0, lmo->link_map_size);
760
761 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
762
763 lm = LM_NEXT (new);
764
765 /* For SVR4 versions, the first entry in the link map is for the
766 inferior executable, so we must ignore it. For some versions of
767 SVR4, it has no name. For others (Solaris 2.3 for example), it
768 does have a name, so we can no longer use a missing name to
769 decide when to ignore it. */
770 if (IGNORE_FIRST_LINK_MAP_ENTRY (new))
771 free_so (new);
772 else
773 {
774 int errcode;
775 char *buffer;
776
777 /* Extract this shared object's name. */
778 target_read_string (LM_NAME (new), &buffer,
779 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
780 if (errcode != 0)
781 {
782 warning ("current_sos: Can't read pathname for load map: %s\n",
783 safe_strerror (errcode));
784 }
785 else
786 {
787 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
788 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
789 xfree (buffer);
790 strcpy (new->so_original_name, new->so_name);
791 }
792
793 /* If this entry has no name, or its name matches the name
794 for the main executable, don't include it in the list. */
795 if (! new->so_name[0]
796 || match_main (new->so_name))
797 free_so (new);
798 else
799 {
800 new->next = 0;
801 *link_ptr = new;
802 link_ptr = &new->next;
803 }
804 }
805
806 discard_cleanups (old_chain);
807 }
808
809 return head;
810 }
811
812 /* Get the address of the link_map for a given OBJFILE. Loop through
813 the link maps, and return the address of the one corresponding to
814 the given objfile. Note that this function takes into account that
815 objfile can be the main executable, not just a shared library. The
816 main executable has always an empty name field in the linkmap. */
817
818 CORE_ADDR
819 svr4_fetch_objfile_link_map (struct objfile *objfile)
820 {
821 CORE_ADDR lm;
822
823 if ((debug_base = locate_base ()) == 0)
824 return 0; /* failed somehow... */
825
826 /* Position ourselves on the first link map. */
827 lm = first_link_map_member ();
828 while (lm)
829 {
830 /* Get info on the layout of the r_debug and link_map structures. */
831 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
832 int errcode;
833 char *buffer;
834 struct lm_info objfile_lm_info;
835 struct cleanup *old_chain;
836 CORE_ADDR name_address;
837 char *l_name_buf = xmalloc (lmo->l_name_size);
838 old_chain = make_cleanup (xfree, l_name_buf);
839
840 /* Set up the buffer to contain the portion of the link_map
841 structure that gdb cares about. Note that this is not the
842 whole link_map structure. */
843 objfile_lm_info.lm = xmalloc (lmo->link_map_size);
844 make_cleanup (xfree, objfile_lm_info.lm);
845 memset (objfile_lm_info.lm, 0, lmo->link_map_size);
846
847 /* Read the link map into our internal structure. */
848 read_memory (lm, objfile_lm_info.lm, lmo->link_map_size);
849
850 /* Read address of name from target memory to GDB. */
851 read_memory (lm + lmo->l_name_offset, l_name_buf, lmo->l_name_size);
852
853 /* Extract this object's name. Assume that the address is
854 unsigned. */
855 name_address = extract_unsigned_integer (l_name_buf, lmo->l_name_size);
856 target_read_string (name_address, &buffer,
857 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
858 make_cleanup (xfree, buffer);
859 if (errcode != 0)
860 {
861 warning ("svr4_fetch_objfile_link_map: Can't read pathname for load map: %s\n",
862 safe_strerror (errcode));
863 }
864 else
865 {
866 /* Is this the linkmap for the file we want? */
867 /* If the file is not a shared library and has no name,
868 we are sure it is the main executable, so we return that. */
869 if ((buffer && strcmp (buffer, objfile->name) == 0)
870 || (!(objfile->flags & OBJF_SHARED) && (strcmp (buffer, "") == 0)))
871 {
872 do_cleanups (old_chain);
873 return lm;
874 }
875 }
876 /* Not the file we wanted, continue checking. Assume that the
877 address is unsigned. */
878 lm = extract_unsigned_integer (objfile_lm_info.lm + lmo->l_next_offset,
879 lmo->l_next_size);
880 do_cleanups (old_chain);
881 }
882 return 0;
883 }
884
885 /* On some systems, the only way to recognize the link map entry for
886 the main executable file is by looking at its name. Return
887 non-zero iff SONAME matches one of the known main executable names. */
888
889 static int
890 match_main (char *soname)
891 {
892 char **mainp;
893
894 for (mainp = main_name_list; *mainp != NULL; mainp++)
895 {
896 if (strcmp (soname, *mainp) == 0)
897 return (1);
898 }
899
900 return (0);
901 }
902
903 /* Return 1 if PC lies in the dynamic symbol resolution code of the
904 SVR4 run time loader. */
905 static CORE_ADDR interp_text_sect_low;
906 static CORE_ADDR interp_text_sect_high;
907 static CORE_ADDR interp_plt_sect_low;
908 static CORE_ADDR interp_plt_sect_high;
909
910 static int
911 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
912 {
913 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
914 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
915 || in_plt_section (pc, NULL));
916 }
917
918 /* Given an executable's ABFD and target, compute the entry-point
919 address. */
920
921 static CORE_ADDR
922 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
923 {
924 /* KevinB wrote ... for most targets, the address returned by
925 bfd_get_start_address() is the entry point for the start
926 function. But, for some targets, bfd_get_start_address() returns
927 the address of a function descriptor from which the entry point
928 address may be extracted. This address is extracted by
929 gdbarch_convert_from_func_ptr_addr(). The method
930 gdbarch_convert_from_func_ptr_addr() is the merely the identify
931 function for targets which don't use function descriptors. */
932 return gdbarch_convert_from_func_ptr_addr (current_gdbarch,
933 bfd_get_start_address (abfd),
934 targ);
935 }
936
937 /*
938
939 LOCAL FUNCTION
940
941 enable_break -- arrange for dynamic linker to hit breakpoint
942
943 SYNOPSIS
944
945 int enable_break (void)
946
947 DESCRIPTION
948
949 Both the SunOS and the SVR4 dynamic linkers have, as part of their
950 debugger interface, support for arranging for the inferior to hit
951 a breakpoint after mapping in the shared libraries. This function
952 enables that breakpoint.
953
954 For SunOS, there is a special flag location (in_debugger) which we
955 set to 1. When the dynamic linker sees this flag set, it will set
956 a breakpoint at a location known only to itself, after saving the
957 original contents of that place and the breakpoint address itself,
958 in it's own internal structures. When we resume the inferior, it
959 will eventually take a SIGTRAP when it runs into the breakpoint.
960 We handle this (in a different place) by restoring the contents of
961 the breakpointed location (which is only known after it stops),
962 chasing around to locate the shared libraries that have been
963 loaded, then resuming.
964
965 For SVR4, the debugger interface structure contains a member (r_brk)
966 which is statically initialized at the time the shared library is
967 built, to the offset of a function (_r_debug_state) which is guaran-
968 teed to be called once before mapping in a library, and again when
969 the mapping is complete. At the time we are examining this member,
970 it contains only the unrelocated offset of the function, so we have
971 to do our own relocation. Later, when the dynamic linker actually
972 runs, it relocates r_brk to be the actual address of _r_debug_state().
973
974 The debugger interface structure also contains an enumeration which
975 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
976 depending upon whether or not the library is being mapped or unmapped,
977 and then set to RT_CONSISTENT after the library is mapped/unmapped.
978 */
979
980 static int
981 enable_break (void)
982 {
983 int success = 0;
984
985 #ifdef BKPT_AT_SYMBOL
986
987 struct minimal_symbol *msymbol;
988 char **bkpt_namep;
989 asection *interp_sect;
990
991 /* First, remove all the solib event breakpoints. Their addresses
992 may have changed since the last time we ran the program. */
993 remove_solib_event_breakpoints ();
994
995 interp_text_sect_low = interp_text_sect_high = 0;
996 interp_plt_sect_low = interp_plt_sect_high = 0;
997
998 /* Find the .interp section; if not found, warn the user and drop
999 into the old breakpoint at symbol code. */
1000 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1001 if (interp_sect)
1002 {
1003 unsigned int interp_sect_size;
1004 char *buf;
1005 CORE_ADDR load_addr = 0;
1006 int load_addr_found = 0;
1007 struct so_list *inferior_sos;
1008 bfd *tmp_bfd = NULL;
1009 struct target_ops *tmp_bfd_target;
1010 int tmp_fd = -1;
1011 char *tmp_pathname = NULL;
1012 CORE_ADDR sym_addr = 0;
1013
1014 /* Read the contents of the .interp section into a local buffer;
1015 the contents specify the dynamic linker this program uses. */
1016 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
1017 buf = alloca (interp_sect_size);
1018 bfd_get_section_contents (exec_bfd, interp_sect,
1019 buf, 0, interp_sect_size);
1020
1021 /* Now we need to figure out where the dynamic linker was
1022 loaded so that we can load its symbols and place a breakpoint
1023 in the dynamic linker itself.
1024
1025 This address is stored on the stack. However, I've been unable
1026 to find any magic formula to find it for Solaris (appears to
1027 be trivial on GNU/Linux). Therefore, we have to try an alternate
1028 mechanism to find the dynamic linker's base address. */
1029
1030 tmp_fd = solib_open (buf, &tmp_pathname);
1031 if (tmp_fd >= 0)
1032 tmp_bfd = bfd_fdopenr (tmp_pathname, gnutarget, tmp_fd);
1033
1034 if (tmp_bfd == NULL)
1035 goto bkpt_at_symbol;
1036
1037 /* Make sure the dynamic linker's really a useful object. */
1038 if (!bfd_check_format (tmp_bfd, bfd_object))
1039 {
1040 warning ("Unable to grok dynamic linker %s as an object file", buf);
1041 bfd_close (tmp_bfd);
1042 goto bkpt_at_symbol;
1043 }
1044
1045 /* Now convert the TMP_BFD into a target. That way target, as
1046 well as BFD operations can be used. Note that closing the
1047 target will also close the underlying bfd. */
1048 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1049
1050 /* If the entry in _DYNAMIC for the dynamic linker has already
1051 been filled in, we can read its base address from there. */
1052 inferior_sos = svr4_current_sos ();
1053 if (inferior_sos)
1054 {
1055 /* Connected to a running target. Update our shared library table. */
1056 solib_add (NULL, 0, NULL, auto_solib_add);
1057 }
1058 while (inferior_sos)
1059 {
1060 if (strcmp (buf, inferior_sos->so_original_name) == 0)
1061 {
1062 load_addr_found = 1;
1063 load_addr = LM_ADDR (inferior_sos);
1064 break;
1065 }
1066 inferior_sos = inferior_sos->next;
1067 }
1068
1069 /* Otherwise we find the dynamic linker's base address by examining
1070 the current pc (which should point at the entry point for the
1071 dynamic linker) and subtracting the offset of the entry point. */
1072 if (!load_addr_found)
1073 load_addr = (read_pc ()
1074 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1075
1076 /* Record the relocated start and end address of the dynamic linker
1077 text and plt section for svr4_in_dynsym_resolve_code. */
1078 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1079 if (interp_sect)
1080 {
1081 interp_text_sect_low =
1082 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1083 interp_text_sect_high =
1084 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1085 }
1086 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1087 if (interp_sect)
1088 {
1089 interp_plt_sect_low =
1090 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1091 interp_plt_sect_high =
1092 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1093 }
1094
1095 /* Now try to set a breakpoint in the dynamic linker. */
1096 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1097 {
1098 /* On ABI's that use function descriptors, there are usually
1099 two linker symbols associated with each C function: one
1100 pointing at the actual entry point of the machine code,
1101 and one pointing at the function's descriptor. The
1102 latter symbol has the same name as the C function.
1103
1104 What we're looking for here is the machine code entry
1105 point, so we are only interested in symbols in code
1106 sections. */
1107 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep, SEC_CODE);
1108 if (sym_addr != 0)
1109 break;
1110 }
1111
1112 /* We're done with both the temporary bfd and target. Remember,
1113 closing the target closes the underlying bfd. */
1114 target_close (tmp_bfd_target, 0);
1115
1116 if (sym_addr != 0)
1117 {
1118 create_solib_event_breakpoint (load_addr + sym_addr);
1119 return 1;
1120 }
1121
1122 /* For whatever reason we couldn't set a breakpoint in the dynamic
1123 linker. Warn and drop into the old code. */
1124 bkpt_at_symbol:
1125 warning ("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code.");
1126 }
1127
1128 /* Scan through the list of symbols, trying to look up the symbol and
1129 set a breakpoint there. Terminate loop when we/if we succeed. */
1130
1131 breakpoint_addr = 0;
1132 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1133 {
1134 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1135 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1136 {
1137 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1138 return 1;
1139 }
1140 }
1141
1142 /* Nothing good happened. */
1143 success = 0;
1144
1145 #endif /* BKPT_AT_SYMBOL */
1146
1147 return (success);
1148 }
1149
1150 /*
1151
1152 LOCAL FUNCTION
1153
1154 special_symbol_handling -- additional shared library symbol handling
1155
1156 SYNOPSIS
1157
1158 void special_symbol_handling ()
1159
1160 DESCRIPTION
1161
1162 Once the symbols from a shared object have been loaded in the usual
1163 way, we are called to do any system specific symbol handling that
1164 is needed.
1165
1166 For SunOS4, this consisted of grunging around in the dynamic
1167 linkers structures to find symbol definitions for "common" symbols
1168 and adding them to the minimal symbol table for the runtime common
1169 objfile.
1170
1171 However, for SVR4, there's nothing to do.
1172
1173 */
1174
1175 static void
1176 svr4_special_symbol_handling (void)
1177 {
1178 }
1179
1180 /* Relocate the main executable. This function should be called upon
1181 stopping the inferior process at the entry point to the program.
1182 The entry point from BFD is compared to the PC and if they are
1183 different, the main executable is relocated by the proper amount.
1184
1185 As written it will only attempt to relocate executables which
1186 lack interpreter sections. It seems likely that only dynamic
1187 linker executables will get relocated, though it should work
1188 properly for a position-independent static executable as well. */
1189
1190 static void
1191 svr4_relocate_main_executable (void)
1192 {
1193 asection *interp_sect;
1194 CORE_ADDR pc = read_pc ();
1195
1196 /* Decide if the objfile needs to be relocated. As indicated above,
1197 we will only be here when execution is stopped at the beginning
1198 of the program. Relocation is necessary if the address at which
1199 we are presently stopped differs from the start address stored in
1200 the executable AND there's no interpreter section. The condition
1201 regarding the interpreter section is very important because if
1202 there *is* an interpreter section, execution will begin there
1203 instead. When there is an interpreter section, the start address
1204 is (presumably) used by the interpreter at some point to start
1205 execution of the program.
1206
1207 If there is an interpreter, it is normal for it to be set to an
1208 arbitrary address at the outset. The job of finding it is
1209 handled in enable_break().
1210
1211 So, to summarize, relocations are necessary when there is no
1212 interpreter section and the start address obtained from the
1213 executable is different from the address at which GDB is
1214 currently stopped.
1215
1216 [ The astute reader will note that we also test to make sure that
1217 the executable in question has the DYNAMIC flag set. It is my
1218 opinion that this test is unnecessary (undesirable even). It
1219 was added to avoid inadvertent relocation of an executable
1220 whose e_type member in the ELF header is not ET_DYN. There may
1221 be a time in the future when it is desirable to do relocations
1222 on other types of files as well in which case this condition
1223 should either be removed or modified to accomodate the new file
1224 type. (E.g, an ET_EXEC executable which has been built to be
1225 position-independent could safely be relocated by the OS if
1226 desired. It is true that this violates the ABI, but the ABI
1227 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1228 */
1229
1230 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1231 if (interp_sect == NULL
1232 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
1233 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
1234 {
1235 struct cleanup *old_chain;
1236 struct section_offsets *new_offsets;
1237 int i, changed;
1238 CORE_ADDR displacement;
1239
1240 /* It is necessary to relocate the objfile. The amount to
1241 relocate by is simply the address at which we are stopped
1242 minus the starting address from the executable.
1243
1244 We relocate all of the sections by the same amount. This
1245 behavior is mandated by recent editions of the System V ABI.
1246 According to the System V Application Binary Interface,
1247 Edition 4.1, page 5-5:
1248
1249 ... Though the system chooses virtual addresses for
1250 individual processes, it maintains the segments' relative
1251 positions. Because position-independent code uses relative
1252 addressesing between segments, the difference between
1253 virtual addresses in memory must match the difference
1254 between virtual addresses in the file. The difference
1255 between the virtual address of any segment in memory and
1256 the corresponding virtual address in the file is thus a
1257 single constant value for any one executable or shared
1258 object in a given process. This difference is the base
1259 address. One use of the base address is to relocate the
1260 memory image of the program during dynamic linking.
1261
1262 The same language also appears in Edition 4.0 of the System V
1263 ABI and is left unspecified in some of the earlier editions. */
1264
1265 displacement = pc - exec_entry_point (exec_bfd, &exec_ops);
1266 changed = 0;
1267
1268 new_offsets = xcalloc (symfile_objfile->num_sections,
1269 sizeof (struct section_offsets));
1270 old_chain = make_cleanup (xfree, new_offsets);
1271
1272 for (i = 0; i < symfile_objfile->num_sections; i++)
1273 {
1274 if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
1275 changed = 1;
1276 new_offsets->offsets[i] = displacement;
1277 }
1278
1279 if (changed)
1280 objfile_relocate (symfile_objfile, new_offsets);
1281
1282 do_cleanups (old_chain);
1283 }
1284 }
1285
1286 /*
1287
1288 GLOBAL FUNCTION
1289
1290 svr4_solib_create_inferior_hook -- shared library startup support
1291
1292 SYNOPSIS
1293
1294 void svr4_solib_create_inferior_hook()
1295
1296 DESCRIPTION
1297
1298 When gdb starts up the inferior, it nurses it along (through the
1299 shell) until it is ready to execute it's first instruction. At this
1300 point, this function gets called via expansion of the macro
1301 SOLIB_CREATE_INFERIOR_HOOK.
1302
1303 For SunOS executables, this first instruction is typically the
1304 one at "_start", or a similar text label, regardless of whether
1305 the executable is statically or dynamically linked. The runtime
1306 startup code takes care of dynamically linking in any shared
1307 libraries, once gdb allows the inferior to continue.
1308
1309 For SVR4 executables, this first instruction is either the first
1310 instruction in the dynamic linker (for dynamically linked
1311 executables) or the instruction at "start" for statically linked
1312 executables. For dynamically linked executables, the system
1313 first exec's /lib/libc.so.N, which contains the dynamic linker,
1314 and starts it running. The dynamic linker maps in any needed
1315 shared libraries, maps in the actual user executable, and then
1316 jumps to "start" in the user executable.
1317
1318 For both SunOS shared libraries, and SVR4 shared libraries, we
1319 can arrange to cooperate with the dynamic linker to discover the
1320 names of shared libraries that are dynamically linked, and the
1321 base addresses to which they are linked.
1322
1323 This function is responsible for discovering those names and
1324 addresses, and saving sufficient information about them to allow
1325 their symbols to be read at a later time.
1326
1327 FIXME
1328
1329 Between enable_break() and disable_break(), this code does not
1330 properly handle hitting breakpoints which the user might have
1331 set in the startup code or in the dynamic linker itself. Proper
1332 handling will probably have to wait until the implementation is
1333 changed to use the "breakpoint handler function" method.
1334
1335 Also, what if child has exit()ed? Must exit loop somehow.
1336 */
1337
1338 static void
1339 svr4_solib_create_inferior_hook (void)
1340 {
1341 /* Relocate the main executable if necessary. */
1342 svr4_relocate_main_executable ();
1343
1344 if (!svr4_have_link_map_offsets ())
1345 {
1346 warning ("no shared library support for this OS / ABI");
1347 return;
1348
1349 }
1350
1351 if (!enable_break ())
1352 {
1353 warning ("shared library handler failed to enable breakpoint");
1354 return;
1355 }
1356
1357 #if defined(_SCO_DS)
1358 /* SCO needs the loop below, other systems should be using the
1359 special shared library breakpoints and the shared library breakpoint
1360 service routine.
1361
1362 Now run the target. It will eventually hit the breakpoint, at
1363 which point all of the libraries will have been mapped in and we
1364 can go groveling around in the dynamic linker structures to find
1365 out what we need to know about them. */
1366
1367 clear_proceed_status ();
1368 stop_soon = STOP_QUIETLY;
1369 stop_signal = TARGET_SIGNAL_0;
1370 do
1371 {
1372 target_resume (pid_to_ptid (-1), 0, stop_signal);
1373 wait_for_inferior ();
1374 }
1375 while (stop_signal != TARGET_SIGNAL_TRAP);
1376 stop_soon = NO_STOP_QUIETLY;
1377 #endif /* defined(_SCO_DS) */
1378 }
1379
1380 static void
1381 svr4_clear_solib (void)
1382 {
1383 debug_base = 0;
1384 }
1385
1386 static void
1387 svr4_free_so (struct so_list *so)
1388 {
1389 xfree (so->lm_info->lm);
1390 xfree (so->lm_info);
1391 }
1392
1393
1394 /* Clear any bits of ADDR that wouldn't fit in a target-format
1395 data pointer. "Data pointer" here refers to whatever sort of
1396 address the dynamic linker uses to manage its sections. At the
1397 moment, we don't support shared libraries on any processors where
1398 code and data pointers are different sizes.
1399
1400 This isn't really the right solution. What we really need here is
1401 a way to do arithmetic on CORE_ADDR values that respects the
1402 natural pointer/address correspondence. (For example, on the MIPS,
1403 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1404 sign-extend the value. There, simply truncating the bits above
1405 TARGET_PTR_BIT, as we do below, is no good.) This should probably
1406 be a new gdbarch method or something. */
1407 static CORE_ADDR
1408 svr4_truncate_ptr (CORE_ADDR addr)
1409 {
1410 if (TARGET_PTR_BIT == sizeof (CORE_ADDR) * 8)
1411 /* We don't need to truncate anything, and the bit twiddling below
1412 will fail due to overflow problems. */
1413 return addr;
1414 else
1415 return addr & (((CORE_ADDR) 1 << TARGET_PTR_BIT) - 1);
1416 }
1417
1418
1419 static void
1420 svr4_relocate_section_addresses (struct so_list *so,
1421 struct section_table *sec)
1422 {
1423 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR (so));
1424 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR (so));
1425 }
1426
1427
1428 /* Fetch a link_map_offsets structure for native targets using struct
1429 definitions from link.h. See solib-legacy.c for the function
1430 which does the actual work.
1431
1432 Note: For non-native targets (i.e. cross-debugging situations),
1433 a target specific fetch_link_map_offsets() function should be
1434 defined and registered via set_solib_svr4_fetch_link_map_offsets(). */
1435
1436 static struct link_map_offsets *
1437 legacy_fetch_link_map_offsets (void)
1438 {
1439 if (legacy_svr4_fetch_link_map_offsets_hook)
1440 return legacy_svr4_fetch_link_map_offsets_hook ();
1441 else
1442 {
1443 internal_error (__FILE__, __LINE__,
1444 "legacy_fetch_link_map_offsets called without legacy "
1445 "link_map support enabled.");
1446 return 0;
1447 }
1448 }
1449
1450 /* Fetch a link_map_offsets structure using the method registered in the
1451 architecture vector. */
1452
1453 static struct link_map_offsets *
1454 svr4_fetch_link_map_offsets (void)
1455 {
1456 struct link_map_offsets *(*flmo)(void) =
1457 gdbarch_data (current_gdbarch, fetch_link_map_offsets_gdbarch_data);
1458
1459 if (flmo == NULL)
1460 {
1461 internal_error (__FILE__, __LINE__,
1462 "svr4_fetch_link_map_offsets: fetch_link_map_offsets "
1463 "method not defined for this architecture.");
1464 return 0;
1465 }
1466 else
1467 return (flmo ());
1468 }
1469
1470 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1471 static int
1472 svr4_have_link_map_offsets (void)
1473 {
1474 struct link_map_offsets *(*flmo)(void) =
1475 gdbarch_data (current_gdbarch, fetch_link_map_offsets_gdbarch_data);
1476 if (flmo == NULL
1477 || (flmo == legacy_fetch_link_map_offsets
1478 && legacy_svr4_fetch_link_map_offsets_hook == NULL))
1479 return 0;
1480 else
1481 return 1;
1482 }
1483
1484 /* set_solib_svr4_fetch_link_map_offsets() is intended to be called by
1485 a <arch>_gdbarch_init() function. It is used to establish an
1486 architecture specific link_map_offsets fetcher for the architecture
1487 being defined. */
1488
1489 void
1490 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1491 struct link_map_offsets *(*flmo) (void))
1492 {
1493 set_gdbarch_data (gdbarch, fetch_link_map_offsets_gdbarch_data, flmo);
1494 }
1495
1496 /* Initialize the architecture-specific link_map_offsets fetcher.
1497 This is called after <arch>_gdbarch_init() has set up its `struct
1498 gdbarch' for the new architecture, and is only called if the
1499 link_map_offsets fetcher isn't already initialized (which is
1500 usually done by calling set_solib_svr4_fetch_link_map_offsets()
1501 above in <arch>_gdbarch_init()). Therefore we attempt to provide a
1502 reasonable alternative (for native targets anyway) if the
1503 <arch>_gdbarch_init() fails to call
1504 set_solib_svr4_fetch_link_map_offsets(). */
1505
1506 static void *
1507 init_fetch_link_map_offsets (struct gdbarch *gdbarch)
1508 {
1509 return legacy_fetch_link_map_offsets;
1510 }
1511
1512 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
1513 `struct r_debug' and a `struct link_map' that are binary compatible
1514 with the origional SVR4 implementation. */
1515
1516 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1517 for an ILP32 SVR4 system. */
1518
1519 struct link_map_offsets *
1520 svr4_ilp32_fetch_link_map_offsets (void)
1521 {
1522 static struct link_map_offsets lmo;
1523 static struct link_map_offsets *lmp = NULL;
1524
1525 if (lmp == NULL)
1526 {
1527 lmp = &lmo;
1528
1529 /* Everything we need is in the first 8 bytes. */
1530 lmo.r_debug_size = 8;
1531 lmo.r_map_offset = 4;
1532 lmo.r_map_size = 4;
1533
1534 /* Everything we need is in the first 20 bytes. */
1535 lmo.link_map_size = 20;
1536 lmo.l_addr_offset = 0;
1537 lmo.l_addr_size = 4;
1538 lmo.l_name_offset = 4;
1539 lmo.l_name_size = 4;
1540 lmo.l_next_offset = 12;
1541 lmo.l_next_size = 4;
1542 lmo.l_prev_offset = 16;
1543 lmo.l_prev_size = 4;
1544 }
1545
1546 return lmp;
1547 }
1548
1549 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1550 for an LP64 SVR4 system. */
1551
1552 struct link_map_offsets *
1553 svr4_lp64_fetch_link_map_offsets (void)
1554 {
1555 static struct link_map_offsets lmo;
1556 static struct link_map_offsets *lmp = NULL;
1557
1558 if (lmp == NULL)
1559 {
1560 lmp = &lmo;
1561
1562 /* Everything we need is in the first 16 bytes. */
1563 lmo.r_debug_size = 16;
1564 lmo.r_map_offset = 8;
1565 lmo.r_map_size = 8;
1566
1567 /* Everything we need is in the first 40 bytes. */
1568 lmo.link_map_size = 40;
1569 lmo.l_addr_offset = 0;
1570 lmo.l_addr_size = 8;
1571 lmo.l_name_offset = 8;
1572 lmo.l_name_size = 8;
1573 lmo.l_next_offset = 24;
1574 lmo.l_next_size = 8;
1575 lmo.l_prev_offset = 32;
1576 lmo.l_prev_size = 8;
1577 }
1578
1579 return lmp;
1580 }
1581 \f
1582
1583 static struct target_so_ops svr4_so_ops;
1584
1585 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
1586
1587 void
1588 _initialize_svr4_solib (void)
1589 {
1590 fetch_link_map_offsets_gdbarch_data =
1591 register_gdbarch_data (init_fetch_link_map_offsets);
1592
1593 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
1594 svr4_so_ops.free_so = svr4_free_so;
1595 svr4_so_ops.clear_solib = svr4_clear_solib;
1596 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1597 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1598 svr4_so_ops.current_sos = svr4_current_sos;
1599 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
1600 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
1601
1602 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
1603 current_target_so_ops = &svr4_so_ops;
1604 }
This page took 0.085735 seconds and 5 git commands to generate.