124acc669fa5746ffaf06add6084dac83d4f98a4
[deliverable/binutils-gdb.git] / gdb / solib.c
1 /* Handle SunOS and SVR4 shared libraries for GDB, the GNU Debugger.
2 Copyright 1990, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 #include "defs.h"
22
23 #include <sys/types.h>
24 #include <signal.h>
25 #include <string.h>
26 #include <link.h>
27 #include <sys/param.h>
28 #include <fcntl.h>
29
30 #ifndef SVR4_SHARED_LIBS
31 /* SunOS shared libs need the nlist structure. */
32 #include <a.out.h>
33 #endif
34
35 #include "symtab.h"
36 #include "bfd.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "gdbcore.h"
40 #include "command.h"
41 #include "target.h"
42 #include "frame.h"
43 #include "regex.h"
44 #include "inferior.h"
45
46 #define MAX_PATH_SIZE 256 /* FIXME: Should be dynamic */
47
48 /* On SVR4 systems, for the initial implementation, use some runtime startup
49 symbol as the "startup mapping complete" breakpoint address. The models
50 for SunOS and SVR4 dynamic linking debugger support are different in that
51 SunOS hits one breakpoint when all mapping is complete while using the SVR4
52 debugger support takes two breakpoint hits for each file mapped, and
53 there is no way to know when the "last" one is hit. Both these
54 mechanisms should be tied to a "breakpoint service routine" that
55 gets automatically executed whenever one of the breakpoints indicating
56 a change in mapping is hit. This is a future enhancement. (FIXME) */
57
58 #define BKPT_AT_SYMBOL 1
59
60 static char *bkpt_names[] = {
61 #ifdef SOLIB_BKPT_NAME
62 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
63 #endif
64 "_start",
65 "main",
66 NULL
67 };
68
69 /* local data declarations */
70
71 #ifndef SVR4_SHARED_LIBS
72
73 #define DEBUG_BASE "_DYNAMIC"
74 #define LM_ADDR(so) ((so) -> lm.lm_addr)
75 #define LM_NEXT(so) ((so) -> lm.lm_next)
76 #define LM_NAME(so) ((so) -> lm.lm_name)
77 static struct link_dynamic dynamic_copy;
78 static struct link_dynamic_2 ld_2_copy;
79 static struct ld_debug debug_copy;
80 static CORE_ADDR debug_addr;
81 static CORE_ADDR flag_addr;
82
83 #else /* SVR4_SHARED_LIBS */
84
85 #define DEBUG_BASE "_r_debug"
86 #define LM_ADDR(so) ((so) -> lm.l_addr)
87 #define LM_NEXT(so) ((so) -> lm.l_next)
88 #define LM_NAME(so) ((so) -> lm.l_name)
89 static struct r_debug debug_copy;
90 char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
91
92 #endif /* !SVR4_SHARED_LIBS */
93
94 struct so_list {
95 struct so_list *next; /* next structure in linked list */
96 struct link_map lm; /* copy of link map from inferior */
97 struct link_map *lmaddr; /* addr in inferior lm was read from */
98 CORE_ADDR lmend; /* upper addr bound of mapped object */
99 char so_name[MAX_PATH_SIZE]; /* shared object lib name (FIXME) */
100 char symbols_loaded; /* flag: symbols read in yet? */
101 char from_tty; /* flag: print msgs? */
102 struct objfile *objfile; /* objfile for loaded lib */
103 struct section_table *sections;
104 struct section_table *sections_end;
105 struct section_table *textsection;
106 bfd *bfd;
107 };
108
109 static struct so_list *so_list_head; /* List of known shared objects */
110 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
111 static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
112
113 extern int
114 fdmatch PARAMS ((int, int)); /* In libiberty */
115
116 /* Local function prototypes */
117
118 static void
119 special_symbol_handling PARAMS ((struct so_list *));
120
121 static void
122 sharedlibrary_command PARAMS ((char *, int));
123
124 static int
125 enable_break PARAMS ((void));
126
127 static int
128 disable_break PARAMS ((void));
129
130 static void
131 info_sharedlibrary_command PARAMS ((char *, int));
132
133 static int
134 symbol_add_stub PARAMS ((char *));
135
136 static struct so_list *
137 find_solib PARAMS ((struct so_list *));
138
139 static struct link_map *
140 first_link_map_member PARAMS ((void));
141
142 static CORE_ADDR
143 locate_base PARAMS ((void));
144
145 static void
146 solib_map_sections PARAMS ((struct so_list *));
147
148 #ifdef SVR4_SHARED_LIBS
149
150 static int
151 look_for_base PARAMS ((int, CORE_ADDR));
152
153 static CORE_ADDR
154 bfd_lookup_symbol PARAMS ((bfd *, char *));
155
156 #else
157
158 static void
159 solib_add_common_symbols PARAMS ((struct rtc_symb *, struct objfile *));
160
161 #endif
162
163 /*
164
165 LOCAL FUNCTION
166
167 solib_map_sections -- open bfd and build sections for shared lib
168
169 SYNOPSIS
170
171 static void solib_map_sections (struct so_list *so)
172
173 DESCRIPTION
174
175 Given a pointer to one of the shared objects in our list
176 of mapped objects, use the recorded name to open a bfd
177 descriptor for the object, build a section table, and then
178 relocate all the section addresses by the base address at
179 which the shared object was mapped.
180
181 FIXMES
182
183 In most (all?) cases the shared object file name recorded in the
184 dynamic linkage tables will be a fully qualified pathname. For
185 cases where it isn't, do we really mimic the systems search
186 mechanism correctly in the below code (particularly the tilde
187 expansion stuff?).
188 */
189
190 static void
191 solib_map_sections (so)
192 struct so_list *so;
193 {
194 char *filename;
195 char *scratch_pathname;
196 int scratch_chan;
197 struct section_table *p;
198 struct cleanup *old_chain;
199 bfd *abfd;
200
201 filename = tilde_expand (so -> so_name);
202 old_chain = make_cleanup (free, filename);
203
204 scratch_chan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0,
205 &scratch_pathname);
206 if (scratch_chan < 0)
207 {
208 scratch_chan = openp (getenv ("LD_LIBRARY_PATH"), 1, filename,
209 O_RDONLY, 0, &scratch_pathname);
210 }
211 if (scratch_chan < 0)
212 {
213 perror_with_name (filename);
214 }
215 /* Leave scratch_pathname allocated. bfd->name will point to it. */
216
217 abfd = bfd_fdopenr (scratch_pathname, NULL, scratch_chan);
218 if (!abfd)
219 {
220 close (scratch_chan);
221 error ("Could not open `%s' as an executable file: %s",
222 scratch_pathname, bfd_errmsg (bfd_error));
223 }
224 /* Leave bfd open, core_xfer_memory and "info files" need it. */
225 so -> bfd = abfd;
226 abfd -> cacheable = true;
227
228 if (!bfd_check_format (abfd, bfd_object))
229 {
230 error ("\"%s\": not in executable format: %s.",
231 scratch_pathname, bfd_errmsg (bfd_error));
232 }
233 if (build_section_table (abfd, &so -> sections, &so -> sections_end))
234 {
235 error ("Can't find the file sections in `%s': %s",
236 bfd_get_filename (exec_bfd), bfd_errmsg (bfd_error));
237 }
238
239 for (p = so -> sections; p < so -> sections_end; p++)
240 {
241 /* Relocate the section binding addresses as recorded in the shared
242 object's file by the base address to which the object was actually
243 mapped. */
244 p -> addr += (CORE_ADDR) LM_ADDR (so);
245 p -> endaddr += (CORE_ADDR) LM_ADDR (so);
246 so -> lmend = (CORE_ADDR) max (p -> endaddr, so -> lmend);
247 if (STREQ (p -> sec_ptr -> name, ".text"))
248 {
249 so -> textsection = p;
250 }
251 }
252
253 /* Free the file names, close the file now. */
254 do_cleanups (old_chain);
255 }
256
257 /* Read all dynamically loaded common symbol definitions from the inferior
258 and add them to the minimal symbol table for the shared library objfile. */
259
260 #ifndef SVR4_SHARED_LIBS
261
262 static void
263 solib_add_common_symbols (rtc_symp, objfile)
264 struct rtc_symb *rtc_symp;
265 struct objfile *objfile;
266 {
267 struct rtc_symb inferior_rtc_symb;
268 struct nlist inferior_rtc_nlist;
269 int len;
270 char *name;
271 char *origname;
272
273 init_minimal_symbol_collection ();
274 make_cleanup (discard_minimal_symbols, 0);
275
276 while (rtc_symp)
277 {
278 read_memory ((CORE_ADDR) rtc_symp,
279 (char *) &inferior_rtc_symb,
280 sizeof (inferior_rtc_symb));
281 read_memory ((CORE_ADDR) inferior_rtc_symb.rtc_sp,
282 (char *) &inferior_rtc_nlist,
283 sizeof(inferior_rtc_nlist));
284 if (inferior_rtc_nlist.n_type == N_COMM)
285 {
286 /* FIXME: The length of the symbol name is not available, but in the
287 current implementation the common symbol is allocated immediately
288 behind the name of the symbol. */
289 len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
290
291 origname = name = xmalloc (len);
292 read_memory ((CORE_ADDR) inferior_rtc_nlist.n_un.n_name, name, len);
293
294 /* Don't enter the symbol twice if the target is re-run. */
295
296 if (name[0] == bfd_get_symbol_leading_char (objfile->obfd))
297 {
298 name++;
299 }
300
301 /* FIXME: Do we really want to exclude symbols which happen
302 to match symbols for other locations in the inferior's
303 address space, even when they are in different linkage units? */
304 if (lookup_minimal_symbol (name, (struct objfile *) NULL) == NULL)
305 {
306 name = obsavestring (name, strlen (name),
307 &objfile -> symbol_obstack);
308 prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value,
309 mst_bss);
310 }
311 free (origname);
312 }
313 rtc_symp = inferior_rtc_symb.rtc_next;
314 }
315
316 /* Install any minimal symbols that have been collected as the current
317 minimal symbols for this objfile. */
318
319 install_minimal_symbols (objfile);
320 }
321
322 #endif /* SVR4_SHARED_LIBS */
323
324 #ifdef SVR4_SHARED_LIBS
325
326 /*
327
328 LOCAL FUNCTION
329
330 bfd_lookup_symbol -- lookup the value for a specific symbol
331
332 SYNOPSIS
333
334 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
335
336 DESCRIPTION
337
338 An expensive way to lookup the value of a single symbol for
339 bfd's that are only temporary anyway. This is used by the
340 shared library support to find the address of the debugger
341 interface structures in the shared library.
342
343 Note that 0 is specifically allowed as an error return (no
344 such symbol).
345
346 FIXME: See if there is a less "expensive" way of doing this.
347 Also see if there is already another bfd or gdb function
348 that specifically does this, and if so, use it.
349 */
350
351 static CORE_ADDR
352 bfd_lookup_symbol (abfd, symname)
353 bfd *abfd;
354 char *symname;
355 {
356 unsigned int storage_needed;
357 asymbol *sym;
358 asymbol **symbol_table;
359 unsigned int number_of_symbols;
360 unsigned int i;
361 struct cleanup *back_to;
362 CORE_ADDR symaddr = 0;
363
364 storage_needed = get_symtab_upper_bound (abfd);
365
366 if (storage_needed > 0)
367 {
368 symbol_table = (asymbol **) xmalloc (storage_needed);
369 back_to = make_cleanup (free, (PTR)symbol_table);
370 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
371
372 for (i = 0; i < number_of_symbols; i++)
373 {
374 sym = *symbol_table++;
375 if (STREQ (sym -> name, symname))
376 {
377 /* Bfd symbols are section relative. */
378 symaddr = sym -> value + sym -> section -> vma;
379 break;
380 }
381 }
382 do_cleanups (back_to);
383 }
384 return (symaddr);
385 }
386
387 /*
388
389 LOCAL FUNCTION
390
391 look_for_base -- examine file for each mapped address segment
392
393 SYNOPSYS
394
395 static int look_for_base (int fd, CORE_ADDR baseaddr)
396
397 DESCRIPTION
398
399 This function is passed to proc_iterate_over_mappings, which
400 causes it to get called once for each mapped address space, with
401 an open file descriptor for the file mapped to that space, and the
402 base address of that mapped space.
403
404 Our job is to find the symbol DEBUG_BASE in the file that this
405 fd is open on, if it exists, and if so, initialize the dynamic
406 linker structure base address debug_base.
407
408 Note that this is a computationally expensive proposition, since
409 we basically have to open a bfd on every call, so we specifically
410 avoid opening the exec file.
411 */
412
413 static int
414 look_for_base (fd, baseaddr)
415 int fd;
416 CORE_ADDR baseaddr;
417 {
418 bfd *interp_bfd;
419 CORE_ADDR address;
420
421 /* If the fd is -1, then there is no file that corresponds to this
422 mapped memory segment, so skip it. Also, if the fd corresponds
423 to the exec file, skip it as well. */
424
425 if ((fd == -1) || fdmatch (fileno ((FILE *)(exec_bfd -> iostream)), fd))
426 {
427 return (0);
428 }
429
430 /* Try to open whatever random file this fd corresponds to. Note that
431 we have no way currently to find the filename. Don't gripe about
432 any problems we might have, just fail. */
433
434 if ((interp_bfd = bfd_fdopenr ("unnamed", NULL, fd)) == NULL)
435 {
436 return (0);
437 }
438 if (!bfd_check_format (interp_bfd, bfd_object))
439 {
440 bfd_close (interp_bfd);
441 return (0);
442 }
443
444 /* Now try to find our DEBUG_BASE symbol in this file, which we at
445 least know to be a valid ELF executable or shared library. */
446
447 if ((address = bfd_lookup_symbol (interp_bfd, DEBUG_BASE)) == 0)
448 {
449 bfd_close (interp_bfd);
450 return (0);
451 }
452
453 /* Eureka! We found the symbol. But now we may need to relocate it
454 by the base address. If the symbol's value is less than the base
455 address of the shared library, then it hasn't yet been relocated
456 by the dynamic linker, and we have to do it ourself. FIXME: Note
457 that we make the assumption that the first segment that corresponds
458 to the shared library has the base address to which the library
459 was relocated. */
460
461 if (address < baseaddr)
462 {
463 address += baseaddr;
464 }
465 debug_base = address;
466 bfd_close (interp_bfd);
467 return (1);
468 }
469
470 #endif
471
472 /*
473
474 LOCAL FUNCTION
475
476 locate_base -- locate the base address of dynamic linker structs
477
478 SYNOPSIS
479
480 CORE_ADDR locate_base (void)
481
482 DESCRIPTION
483
484 For both the SunOS and SVR4 shared library implementations, if the
485 inferior executable has been linked dynamically, there is a single
486 address somewhere in the inferior's data space which is the key to
487 locating all of the dynamic linker's runtime structures. This
488 address is the value of the symbol defined by the macro DEBUG_BASE.
489 The job of this function is to find and return that address, or to
490 return 0 if there is no such address (the executable is statically
491 linked for example).
492
493 For SunOS, the job is almost trivial, since the dynamic linker and
494 all of it's structures are statically linked to the executable at
495 link time. Thus the symbol for the address we are looking for has
496 already been added to the minimal symbol table for the executable's
497 objfile at the time the symbol file's symbols were read, and all we
498 have to do is look it up there. Note that we explicitly do NOT want
499 to find the copies in the shared library.
500
501 The SVR4 version is much more complicated because the dynamic linker
502 and it's structures are located in the shared C library, which gets
503 run as the executable's "interpreter" by the kernel. We have to go
504 to a lot more work to discover the address of DEBUG_BASE. Because
505 of this complexity, we cache the value we find and return that value
506 on subsequent invocations. Note there is no copy in the executable
507 symbol tables.
508
509 Note that we can assume nothing about the process state at the time
510 we need to find this address. We may be stopped on the first instruc-
511 tion of the interpreter (C shared library), the first instruction of
512 the executable itself, or somewhere else entirely (if we attached
513 to the process for example).
514
515 */
516
517 static CORE_ADDR
518 locate_base ()
519 {
520
521 #ifndef SVR4_SHARED_LIBS
522
523 struct minimal_symbol *msymbol;
524 CORE_ADDR address = 0;
525
526 /* For SunOS, we want to limit the search for DEBUG_BASE to the executable
527 being debugged, since there is a duplicate named symbol in the shared
528 library. We don't want the shared library versions. */
529
530 msymbol = lookup_minimal_symbol (DEBUG_BASE, symfile_objfile);
531 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
532 {
533 address = SYMBOL_VALUE_ADDRESS (msymbol);
534 }
535 return (address);
536
537 #else /* SVR4_SHARED_LIBS */
538
539 /* Check to see if we have a currently valid address, and if so, avoid
540 doing all this work again and just return the cached address. If
541 we have no cached address, ask the /proc support interface to iterate
542 over the list of mapped address segments, calling look_for_base() for
543 each segment. When we are done, we will have either found the base
544 address or not. */
545
546 if (debug_base == 0)
547 {
548 proc_iterate_over_mappings (look_for_base);
549 }
550 return (debug_base);
551
552 #endif /* !SVR4_SHARED_LIBS */
553
554 }
555
556 /*
557
558 LOCAL FUNCTION
559
560 first_link_map_member -- locate first member in dynamic linker's map
561
562 SYNOPSIS
563
564 static struct link_map *first_link_map_member (void)
565
566 DESCRIPTION
567
568 Read in a copy of the first member in the inferior's dynamic
569 link map from the inferior's dynamic linker structures, and return
570 a pointer to the copy in our address space.
571 */
572
573 static struct link_map *
574 first_link_map_member ()
575 {
576 struct link_map *lm = NULL;
577
578 #ifndef SVR4_SHARED_LIBS
579
580 read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy));
581 if (dynamic_copy.ld_version >= 2)
582 {
583 /* It is a version that we can deal with, so read in the secondary
584 structure and find the address of the link map list from it. */
585 read_memory ((CORE_ADDR) dynamic_copy.ld_un.ld_2, (char *) &ld_2_copy,
586 sizeof (struct link_dynamic_2));
587 lm = ld_2_copy.ld_loaded;
588 }
589
590 #else /* SVR4_SHARED_LIBS */
591
592 read_memory (debug_base, (char *) &debug_copy, sizeof (struct r_debug));
593 /* FIXME: Perhaps we should validate the info somehow, perhaps by
594 checking r_version for a known version number, or r_state for
595 RT_CONSISTENT. */
596 lm = debug_copy.r_map;
597
598 #endif /* !SVR4_SHARED_LIBS */
599
600 return (lm);
601 }
602
603 /*
604
605 LOCAL FUNCTION
606
607 find_solib -- step through list of shared objects
608
609 SYNOPSIS
610
611 struct so_list *find_solib (struct so_list *so_list_ptr)
612
613 DESCRIPTION
614
615 This module contains the routine which finds the names of any
616 loaded "images" in the current process. The argument in must be
617 NULL on the first call, and then the returned value must be passed
618 in on subsequent calls. This provides the capability to "step" down
619 the list of loaded objects. On the last object, a NULL value is
620 returned.
621
622 The arg and return value are "struct link_map" pointers, as defined
623 in <link.h>.
624 */
625
626 static struct so_list *
627 find_solib (so_list_ptr)
628 struct so_list *so_list_ptr; /* Last lm or NULL for first one */
629 {
630 struct so_list *so_list_next = NULL;
631 struct link_map *lm = NULL;
632 struct so_list *new;
633
634 if (so_list_ptr == NULL)
635 {
636 /* We are setting up for a new scan through the loaded images. */
637 if ((so_list_next = so_list_head) == NULL)
638 {
639 /* We have not already read in the dynamic linking structures
640 from the inferior, lookup the address of the base structure. */
641 debug_base = locate_base ();
642 if (debug_base != 0)
643 {
644 /* Read the base structure in and find the address of the first
645 link map list member. */
646 lm = first_link_map_member ();
647 }
648 }
649 }
650 else
651 {
652 /* We have been called before, and are in the process of walking
653 the shared library list. Advance to the next shared object. */
654 if ((lm = LM_NEXT (so_list_ptr)) == NULL)
655 {
656 /* We have hit the end of the list, so check to see if any were
657 added, but be quiet if we can't read from the target any more. */
658 int status = target_read_memory ((CORE_ADDR) so_list_ptr -> lmaddr,
659 (char *) &(so_list_ptr -> lm),
660 sizeof (struct link_map));
661 if (status == 0)
662 {
663 lm = LM_NEXT (so_list_ptr);
664 }
665 else
666 {
667 lm = NULL;
668 }
669 }
670 so_list_next = so_list_ptr -> next;
671 }
672 if ((so_list_next == NULL) && (lm != NULL))
673 {
674 /* Get next link map structure from inferior image and build a local
675 abbreviated load_map structure */
676 new = (struct so_list *) xmalloc (sizeof (struct so_list));
677 memset ((char *) new, 0, sizeof (struct so_list));
678 new -> lmaddr = lm;
679 /* Add the new node as the next node in the list, or as the root
680 node if this is the first one. */
681 if (so_list_ptr != NULL)
682 {
683 so_list_ptr -> next = new;
684 }
685 else
686 {
687 so_list_head = new;
688 }
689 so_list_next = new;
690 read_memory ((CORE_ADDR) lm, (char *) &(new -> lm),
691 sizeof (struct link_map));
692 /* For the SVR4 version, there is one entry that has no name
693 (for the inferior executable) since it is not a shared object. */
694 if (LM_NAME (new) != 0)
695 {
696 if (!target_read_string((CORE_ADDR) LM_NAME (new), new -> so_name,
697 MAX_PATH_SIZE - 1))
698 error ("find_solib: Can't read pathname for load map\n");
699 new -> so_name[MAX_PATH_SIZE - 1] = 0;
700 solib_map_sections (new);
701 }
702 }
703 return (so_list_next);
704 }
705
706 /* A small stub to get us past the arg-passing pinhole of catch_errors. */
707
708 static int
709 symbol_add_stub (arg)
710 char *arg;
711 {
712 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
713
714 so -> objfile = symbol_file_add (so -> so_name, so -> from_tty,
715 (unsigned int) so -> textsection -> addr,
716 0, 0, 0);
717 return (1);
718 }
719
720 /*
721
722 GLOBAL FUNCTION
723
724 solib_add -- add a shared library file to the symtab and section list
725
726 SYNOPSIS
727
728 void solib_add (char *arg_string, int from_tty,
729 struct target_ops *target)
730
731 DESCRIPTION
732
733 */
734
735 void
736 solib_add (arg_string, from_tty, target)
737 char *arg_string;
738 int from_tty;
739 struct target_ops *target;
740 {
741 register struct so_list *so = NULL; /* link map state variable */
742 char *re_err;
743 int count;
744 int old;
745
746 if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL)
747 {
748 error ("Invalid regexp: %s", re_err);
749 }
750
751 /* Getting new symbols may change our opinion about what is
752 frameless. */
753 reinit_frame_cache ();
754
755 while ((so = find_solib (so)) != NULL)
756 {
757 if (so -> so_name[0] && re_exec (so -> so_name))
758 {
759 so -> from_tty = from_tty;
760 if (so -> symbols_loaded)
761 {
762 if (from_tty)
763 {
764 printf ("Symbols already loaded for %s\n", so -> so_name);
765 }
766 }
767 else if (catch_errors
768 (symbol_add_stub, (char *) so,
769 "Error while reading shared library symbols:\n",
770 RETURN_MASK_ALL))
771 {
772 special_symbol_handling (so);
773 so -> symbols_loaded = 1;
774 }
775 }
776 }
777
778 /* Now add the shared library sections to the section table of the
779 specified target, if any. */
780 if (target)
781 {
782 /* Count how many new section_table entries there are. */
783 so = NULL;
784 count = 0;
785 while ((so = find_solib (so)) != NULL)
786 {
787 if (so -> so_name[0])
788 {
789 count += so -> sections_end - so -> sections;
790 }
791 }
792
793 if (count)
794 {
795 /* Reallocate the target's section table including the new size. */
796 if (target -> to_sections)
797 {
798 old = target -> to_sections_end - target -> to_sections;
799 target -> to_sections = (struct section_table *)
800 realloc ((char *)target -> to_sections,
801 (sizeof (struct section_table)) * (count + old));
802 }
803 else
804 {
805 old = 0;
806 target -> to_sections = (struct section_table *)
807 malloc ((sizeof (struct section_table)) * count);
808 }
809 target -> to_sections_end = target -> to_sections + (count + old);
810
811 /* Add these section table entries to the target's table. */
812 while ((so = find_solib (so)) != NULL)
813 {
814 if (so -> so_name[0])
815 {
816 count = so -> sections_end - so -> sections;
817 memcpy ((char *) (target -> to_sections + old),
818 so -> sections,
819 (sizeof (struct section_table)) * count);
820 old += count;
821 }
822 }
823 }
824 }
825 }
826
827 /*
828
829 LOCAL FUNCTION
830
831 info_sharedlibrary_command -- code for "info sharedlibrary"
832
833 SYNOPSIS
834
835 static void info_sharedlibrary_command ()
836
837 DESCRIPTION
838
839 Walk through the shared library list and print information
840 about each attached library.
841 */
842
843 static void
844 info_sharedlibrary_command (ignore, from_tty)
845 char *ignore;
846 int from_tty;
847 {
848 register struct so_list *so = NULL; /* link map state variable */
849 int header_done = 0;
850
851 if (exec_bfd == NULL)
852 {
853 printf ("No exec file.\n");
854 return;
855 }
856 while ((so = find_solib (so)) != NULL)
857 {
858 if (so -> so_name[0])
859 {
860 if (!header_done)
861 {
862 printf("%-12s%-12s%-12s%s\n", "From", "To", "Syms Read",
863 "Shared Object Library");
864 header_done++;
865 }
866 printf ("%-12s", local_hex_string_custom ((int) LM_ADDR (so), "08"));
867 printf ("%-12s", local_hex_string_custom (so -> lmend, "08"));
868 printf ("%-12s", so -> symbols_loaded ? "Yes" : "No");
869 printf ("%s\n", so -> so_name);
870 }
871 }
872 if (so_list_head == NULL)
873 {
874 printf ("No shared libraries loaded at this time.\n");
875 }
876 }
877
878 /*
879
880 GLOBAL FUNCTION
881
882 solib_address -- check to see if an address is in a shared lib
883
884 SYNOPSIS
885
886 int solib_address (CORE_ADDR address)
887
888 DESCRIPTION
889
890 Provides a hook for other gdb routines to discover whether or
891 not a particular address is within the mapped address space of
892 a shared library. Any address between the base mapping address
893 and the first address beyond the end of the last mapping, is
894 considered to be within the shared library address space, for
895 our purposes.
896
897 For example, this routine is called at one point to disable
898 breakpoints which are in shared libraries that are not currently
899 mapped in.
900 */
901
902 int
903 solib_address (address)
904 CORE_ADDR address;
905 {
906 register struct so_list *so = 0; /* link map state variable */
907
908 while ((so = find_solib (so)) != NULL)
909 {
910 if (so -> so_name[0])
911 {
912 if ((address >= (CORE_ADDR) LM_ADDR (so)) &&
913 (address < (CORE_ADDR) so -> lmend))
914 {
915 return (1);
916 }
917 }
918 }
919 return (0);
920 }
921
922 /* Called by free_all_symtabs */
923
924 void
925 clear_solib()
926 {
927 struct so_list *next;
928 char *bfd_filename;
929
930 while (so_list_head)
931 {
932 if (so_list_head -> sections)
933 {
934 free ((PTR)so_list_head -> sections);
935 }
936 if (so_list_head -> bfd)
937 {
938 bfd_filename = bfd_get_filename (so_list_head -> bfd);
939 bfd_close (so_list_head -> bfd);
940 }
941 else
942 /* This happens for the executable on SVR4. */
943 bfd_filename = NULL;
944
945 next = so_list_head -> next;
946 if (bfd_filename)
947 free ((PTR)bfd_filename);
948 free ((PTR)so_list_head);
949 so_list_head = next;
950 }
951 debug_base = 0;
952 }
953
954 /*
955
956 LOCAL FUNCTION
957
958 disable_break -- remove the "mapping changed" breakpoint
959
960 SYNOPSIS
961
962 static int disable_break ()
963
964 DESCRIPTION
965
966 Removes the breakpoint that gets hit when the dynamic linker
967 completes a mapping change.
968
969 */
970
971 static int
972 disable_break ()
973 {
974 int status = 1;
975
976 #ifndef SVR4_SHARED_LIBS
977
978 int in_debugger = 0;
979
980 /* Read the debugger structure from the inferior to retrieve the
981 address of the breakpoint and the original contents of the
982 breakpoint address. Remove the breakpoint by writing the original
983 contents back. */
984
985 read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy));
986
987 /* Set `in_debugger' to zero now. */
988
989 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
990
991 breakpoint_addr = (CORE_ADDR) debug_copy.ldd_bp_addr;
992 write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst,
993 sizeof (debug_copy.ldd_bp_inst));
994
995 #else /* SVR4_SHARED_LIBS */
996
997 /* Note that breakpoint address and original contents are in our address
998 space, so we just need to write the original contents back. */
999
1000 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
1001 {
1002 status = 0;
1003 }
1004
1005 #endif /* !SVR4_SHARED_LIBS */
1006
1007 /* For the SVR4 version, we always know the breakpoint address. For the
1008 SunOS version we don't know it until the above code is executed.
1009 Grumble if we are stopped anywhere besides the breakpoint address. */
1010
1011 if (stop_pc != breakpoint_addr)
1012 {
1013 warning ("stopped at unknown breakpoint while handling shared libraries");
1014 }
1015
1016 return (status);
1017 }
1018
1019 /*
1020
1021 LOCAL FUNCTION
1022
1023 enable_break -- arrange for dynamic linker to hit breakpoint
1024
1025 SYNOPSIS
1026
1027 int enable_break (void)
1028
1029 DESCRIPTION
1030
1031 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1032 debugger interface, support for arranging for the inferior to hit
1033 a breakpoint after mapping in the shared libraries. This function
1034 enables that breakpoint.
1035
1036 For SunOS, there is a special flag location (in_debugger) which we
1037 set to 1. When the dynamic linker sees this flag set, it will set
1038 a breakpoint at a location known only to itself, after saving the
1039 original contents of that place and the breakpoint address itself,
1040 in it's own internal structures. When we resume the inferior, it
1041 will eventually take a SIGTRAP when it runs into the breakpoint.
1042 We handle this (in a different place) by restoring the contents of
1043 the breakpointed location (which is only known after it stops),
1044 chasing around to locate the shared libraries that have been
1045 loaded, then resuming.
1046
1047 For SVR4, the debugger interface structure contains a member (r_brk)
1048 which is statically initialized at the time the shared library is
1049 built, to the offset of a function (_r_debug_state) which is guaran-
1050 teed to be called once before mapping in a library, and again when
1051 the mapping is complete. At the time we are examining this member,
1052 it contains only the unrelocated offset of the function, so we have
1053 to do our own relocation. Later, when the dynamic linker actually
1054 runs, it relocates r_brk to be the actual address of _r_debug_state().
1055
1056 The debugger interface structure also contains an enumeration which
1057 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1058 depending upon whether or not the library is being mapped or unmapped,
1059 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1060 */
1061
1062 static int
1063 enable_break ()
1064 {
1065 int success = 0;
1066
1067 #ifndef SVR4_SHARED_LIBS
1068
1069 int j;
1070 int in_debugger;
1071
1072 /* Get link_dynamic structure */
1073
1074 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1075 sizeof (dynamic_copy));
1076 if (j)
1077 {
1078 /* unreadable */
1079 return (0);
1080 }
1081
1082 /* Calc address of debugger interface structure */
1083
1084 debug_addr = (CORE_ADDR) dynamic_copy.ldd;
1085
1086 /* Calc address of `in_debugger' member of debugger interface structure */
1087
1088 flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
1089 (char *) &debug_copy);
1090
1091 /* Write a value of 1 to this member. */
1092
1093 in_debugger = 1;
1094 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1095 success = 1;
1096
1097 #else /* SVR4_SHARED_LIBS */
1098
1099 #ifdef BKPT_AT_SYMBOL
1100
1101 struct minimal_symbol *msymbol;
1102 char **bkpt_namep;
1103 CORE_ADDR bkpt_addr;
1104
1105 /* Scan through the list of symbols, trying to look up the symbol and
1106 set a breakpoint there. Terminate loop when we/if we succeed. */
1107
1108 breakpoint_addr = 0;
1109 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1110 {
1111 msymbol = lookup_minimal_symbol (*bkpt_namep, symfile_objfile);
1112 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1113 {
1114 bkpt_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1115 if (target_insert_breakpoint (bkpt_addr, shadow_contents) == 0)
1116 {
1117 breakpoint_addr = bkpt_addr;
1118 success = 1;
1119 break;
1120 }
1121 }
1122 }
1123
1124 #else /* !BKPT_AT_SYMBOL */
1125
1126 struct symtab_and_line sal;
1127
1128 /* Read the debugger interface structure directly. */
1129
1130 read_memory (debug_base, (char *) &debug_copy, sizeof (debug_copy));
1131
1132 /* Set breakpoint at the debugger interface stub routine that will
1133 be called just prior to each mapping change and again after the
1134 mapping change is complete. Set up the (nonexistent) handler to
1135 deal with hitting these breakpoints. (FIXME). */
1136
1137 warning ("'%s': line %d: missing SVR4 support code", __FILE__, __LINE__);
1138 success = 1;
1139
1140 #endif /* BKPT_AT_SYMBOL */
1141
1142 #endif /* !SVR4_SHARED_LIBS */
1143
1144 return (success);
1145 }
1146
1147 /*
1148
1149 GLOBAL FUNCTION
1150
1151 solib_create_inferior_hook -- shared library startup support
1152
1153 SYNOPSIS
1154
1155 void solib_create_inferior_hook()
1156
1157 DESCRIPTION
1158
1159 When gdb starts up the inferior, it nurses it along (through the
1160 shell) until it is ready to execute it's first instruction. At this
1161 point, this function gets called via expansion of the macro
1162 SOLIB_CREATE_INFERIOR_HOOK.
1163
1164 For SunOS executables, this first instruction is typically the
1165 one at "_start", or a similar text label, regardless of whether
1166 the executable is statically or dynamically linked. The runtime
1167 startup code takes care of dynamically linking in any shared
1168 libraries, once gdb allows the inferior to continue.
1169
1170 For SVR4 executables, this first instruction is either the first
1171 instruction in the dynamic linker (for dynamically linked
1172 executables) or the instruction at "start" for statically linked
1173 executables. For dynamically linked executables, the system
1174 first exec's /lib/libc.so.N, which contains the dynamic linker,
1175 and starts it running. The dynamic linker maps in any needed
1176 shared libraries, maps in the actual user executable, and then
1177 jumps to "start" in the user executable.
1178
1179 For both SunOS shared libraries, and SVR4 shared libraries, we
1180 can arrange to cooperate with the dynamic linker to discover the
1181 names of shared libraries that are dynamically linked, and the
1182 base addresses to which they are linked.
1183
1184 This function is responsible for discovering those names and
1185 addresses, and saving sufficient information about them to allow
1186 their symbols to be read at a later time.
1187
1188 FIXME
1189
1190 Between enable_break() and disable_break(), this code does not
1191 properly handle hitting breakpoints which the user might have
1192 set in the startup code or in the dynamic linker itself. Proper
1193 handling will probably have to wait until the implementation is
1194 changed to use the "breakpoint handler function" method.
1195
1196 Also, what if child has exit()ed? Must exit loop somehow.
1197 */
1198
1199 void
1200 solib_create_inferior_hook()
1201 {
1202 /* If we are using the BKPT_AT_SYMBOL code, then we don't need the base
1203 yet. In fact, in the case of a SunOS4 executable being run on
1204 Solaris, we can't get it yet. find_solib will get it when it needs
1205 it. */
1206 #if !(defined (SVR4_SHARED_LIBS) && defined (BKPT_AT_SYMBOL))
1207 if ((debug_base = locate_base ()) == 0)
1208 {
1209 /* Can't find the symbol or the executable is statically linked. */
1210 return;
1211 }
1212 #endif
1213
1214 if (!enable_break ())
1215 {
1216 warning ("shared library handler failed to enable breakpoint");
1217 return;
1218 }
1219
1220 /* Now run the target. It will eventually hit the breakpoint, at
1221 which point all of the libraries will have been mapped in and we
1222 can go groveling around in the dynamic linker structures to find
1223 out what we need to know about them. */
1224
1225 clear_proceed_status ();
1226 stop_soon_quietly = 1;
1227 stop_signal = 0;
1228 do
1229 {
1230 target_resume (0, stop_signal);
1231 wait_for_inferior ();
1232 }
1233 while (stop_signal != SIGTRAP);
1234 stop_soon_quietly = 0;
1235
1236 /* We are now either at the "mapping complete" breakpoint (or somewhere
1237 else, a condition we aren't prepared to deal with anyway), so adjust
1238 the PC as necessary after a breakpoint, disable the breakpoint, and
1239 add any shared libraries that were mapped in. */
1240
1241 if (DECR_PC_AFTER_BREAK)
1242 {
1243 stop_pc -= DECR_PC_AFTER_BREAK;
1244 write_register (PC_REGNUM, stop_pc);
1245 }
1246
1247 if (!disable_break ())
1248 {
1249 warning ("shared library handler failed to disable breakpoint");
1250 }
1251
1252 solib_add ((char *) 0, 0, (struct target_ops *) 0);
1253 }
1254
1255 /*
1256
1257 LOCAL FUNCTION
1258
1259 special_symbol_handling -- additional shared library symbol handling
1260
1261 SYNOPSIS
1262
1263 void special_symbol_handling (struct so_list *so)
1264
1265 DESCRIPTION
1266
1267 Once the symbols from a shared object have been loaded in the usual
1268 way, we are called to do any system specific symbol handling that
1269 is needed.
1270
1271 For Suns, this consists of grunging around in the dynamic linkers
1272 structures to find symbol definitions for "common" symbols and
1273 adding them to the minimal symbol table for the corresponding
1274 objfile.
1275
1276 */
1277
1278 static void
1279 special_symbol_handling (so)
1280 struct so_list *so;
1281 {
1282 #ifndef SVR4_SHARED_LIBS
1283 int j;
1284
1285 if (debug_addr == 0)
1286 {
1287 /* Get link_dynamic structure */
1288
1289 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1290 sizeof (dynamic_copy));
1291 if (j)
1292 {
1293 /* unreadable */
1294 return;
1295 }
1296
1297 /* Calc address of debugger interface structure */
1298 /* FIXME, this needs work for cross-debugging of core files
1299 (byteorder, size, alignment, etc). */
1300
1301 debug_addr = (CORE_ADDR) dynamic_copy.ldd;
1302 }
1303
1304 /* Read the debugger structure from the inferior, just to make sure
1305 we have a current copy. */
1306
1307 j = target_read_memory (debug_addr, (char *) &debug_copy,
1308 sizeof (debug_copy));
1309 if (j)
1310 return; /* unreadable */
1311
1312 /* Get common symbol definitions for the loaded object. */
1313
1314 if (debug_copy.ldd_cp)
1315 {
1316 solib_add_common_symbols (debug_copy.ldd_cp, so -> objfile);
1317 }
1318
1319 #endif /* !SVR4_SHARED_LIBS */
1320 }
1321
1322
1323 /*
1324
1325 LOCAL FUNCTION
1326
1327 sharedlibrary_command -- handle command to explicitly add library
1328
1329 SYNOPSIS
1330
1331 static void sharedlibrary_command (char *args, int from_tty)
1332
1333 DESCRIPTION
1334
1335 */
1336
1337 static void
1338 sharedlibrary_command (args, from_tty)
1339 char *args;
1340 int from_tty;
1341 {
1342 dont_repeat ();
1343 solib_add (args, from_tty, (struct target_ops *) 0);
1344 }
1345
1346 void
1347 _initialize_solib()
1348 {
1349
1350 add_com ("sharedlibrary", class_files, sharedlibrary_command,
1351 "Load shared object library symbols for files matching REGEXP.");
1352 add_info ("sharedlibrary", info_sharedlibrary_command,
1353 "Status of loaded shared object libraries.");
1354 }
This page took 0.055996 seconds and 3 git commands to generate.