import gdb-1999-10-04 snapshot
[deliverable/binutils-gdb.git] / gdb / solib.c
1 /* Handle SunOS and SVR4 shared libraries for GDB, the GNU Debugger.
2 Copyright 1990, 91, 92, 93, 94, 95, 96, 98, 1999
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 #include "defs.h"
24
25 /* This file is only compilable if link.h is available. */
26
27 #ifdef HAVE_LINK_H
28
29 #include <sys/types.h>
30 #include <signal.h>
31 #include "gdb_string.h"
32 #include <sys/param.h>
33 #include <fcntl.h>
34
35 #ifndef SVR4_SHARED_LIBS
36 /* SunOS shared libs need the nlist structure. */
37 #include <a.out.h>
38 #else
39 #include "elf/external.h"
40 #endif
41
42 #include <link.h>
43
44 #include "symtab.h"
45 #include "bfd.h"
46 #include "symfile.h"
47 #include "objfiles.h"
48 #include "gdbcore.h"
49 #include "command.h"
50 #include "target.h"
51 #include "frame.h"
52 #include "gnu-regex.h"
53 #include "inferior.h"
54 #include "environ.h"
55 #include "language.h"
56 #include "gdbcmd.h"
57
58 #define MAX_PATH_SIZE 512 /* FIXME: Should be dynamic */
59
60 /* On SVR4 systems, a list of symbols in the dynamic linker where
61 GDB can try to place a breakpoint to monitor shared library
62 events.
63
64 If none of these symbols are found, or other errors occur, then
65 SVR4 systems will fall back to using a symbol as the "startup
66 mapping complete" breakpoint address. */
67
68 #ifdef SVR4_SHARED_LIBS
69 static char *solib_break_names[] =
70 {
71 "r_debug_state",
72 "_r_debug_state",
73 "_dl_debug_state",
74 "rtld_db_dlactivity",
75 NULL
76 };
77 #endif
78
79 #define BKPT_AT_SYMBOL 1
80
81 #if defined (BKPT_AT_SYMBOL) && defined (SVR4_SHARED_LIBS)
82 static char *bkpt_names[] =
83 {
84 #ifdef SOLIB_BKPT_NAME
85 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
86 #endif
87 "_start",
88 "main",
89 NULL
90 };
91 #endif
92
93 /* Symbols which are used to locate the base of the link map structures. */
94
95 #ifndef SVR4_SHARED_LIBS
96 static char *debug_base_symbols[] =
97 {
98 "_DYNAMIC",
99 "_DYNAMIC__MGC",
100 NULL
101 };
102 #endif
103
104 static char *main_name_list[] =
105 {
106 "main_$main",
107 NULL
108 };
109
110 /* local data declarations */
111
112 #ifndef SVR4_SHARED_LIBS
113
114 #define LM_ADDR(so) ((so) -> lm.lm_addr)
115 #define LM_NEXT(so) ((so) -> lm.lm_next)
116 #define LM_NAME(so) ((so) -> lm.lm_name)
117 /* Test for first link map entry; first entry is a shared library. */
118 #define IGNORE_FIRST_LINK_MAP_ENTRY(x) (0)
119 static struct link_dynamic dynamic_copy;
120 static struct link_dynamic_2 ld_2_copy;
121 static struct ld_debug debug_copy;
122 static CORE_ADDR debug_addr;
123 static CORE_ADDR flag_addr;
124
125 #else /* SVR4_SHARED_LIBS */
126
127 #define LM_ADDR(so) ((so) -> lm.l_addr)
128 #define LM_NEXT(so) ((so) -> lm.l_next)
129 #define LM_NAME(so) ((so) -> lm.l_name)
130 /* Test for first link map entry; first entry is the exec-file. */
131 #define IGNORE_FIRST_LINK_MAP_ENTRY(x) ((x).l_prev == NULL)
132 static struct r_debug debug_copy;
133 char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
134
135 #endif /* !SVR4_SHARED_LIBS */
136
137 struct so_list
138 {
139 struct so_list *next; /* next structure in linked list */
140 struct link_map lm; /* copy of link map from inferior */
141 struct link_map *lmaddr; /* addr in inferior lm was read from */
142 CORE_ADDR lmend; /* upper addr bound of mapped object */
143 char so_name[MAX_PATH_SIZE]; /* shared object lib name (FIXME) */
144 char symbols_loaded; /* flag: symbols read in yet? */
145 char from_tty; /* flag: print msgs? */
146 struct objfile *objfile; /* objfile for loaded lib */
147 struct section_table *sections;
148 struct section_table *sections_end;
149 struct section_table *textsection;
150 bfd *abfd;
151 };
152
153 static struct so_list *so_list_head; /* List of known shared objects */
154 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
155 static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
156
157 static int solib_cleanup_queued = 0; /* make_run_cleanup called */
158
159 extern int
160 fdmatch PARAMS ((int, int)); /* In libiberty */
161
162 /* Local function prototypes */
163
164 static void
165 do_clear_solib PARAMS ((PTR));
166
167 static int
168 match_main PARAMS ((char *));
169
170 static void
171 special_symbol_handling PARAMS ((struct so_list *));
172
173 static void
174 sharedlibrary_command PARAMS ((char *, int));
175
176 static int
177 enable_break PARAMS ((void));
178
179 static void
180 info_sharedlibrary_command PARAMS ((char *, int));
181
182 static int symbol_add_stub PARAMS ((PTR));
183
184 static struct so_list *
185 find_solib PARAMS ((struct so_list *));
186
187 static struct link_map *
188 first_link_map_member PARAMS ((void));
189
190 static CORE_ADDR
191 locate_base PARAMS ((void));
192
193 static int solib_map_sections PARAMS ((PTR));
194
195 #ifdef SVR4_SHARED_LIBS
196
197 static CORE_ADDR
198 elf_locate_base PARAMS ((void));
199
200 #else
201
202 static int
203 disable_break PARAMS ((void));
204
205 static void
206 allocate_rt_common_objfile PARAMS ((void));
207
208 static void
209 solib_add_common_symbols PARAMS ((struct rtc_symb *));
210
211 #endif
212
213 void _initialize_solib PARAMS ((void));
214
215 /* If non-zero, this is a prefix that will be added to the front of the name
216 shared libraries with an absolute filename for loading. */
217 static char *solib_absolute_prefix = NULL;
218
219 /* If non-empty, this is a search path for loading non-absolute shared library
220 symbol files. This takes precedence over the environment variables PATH
221 and LD_LIBRARY_PATH. */
222 static char *solib_search_path = NULL;
223
224 /*
225
226 LOCAL FUNCTION
227
228 solib_map_sections -- open bfd and build sections for shared lib
229
230 SYNOPSIS
231
232 static int solib_map_sections (struct so_list *so)
233
234 DESCRIPTION
235
236 Given a pointer to one of the shared objects in our list
237 of mapped objects, use the recorded name to open a bfd
238 descriptor for the object, build a section table, and then
239 relocate all the section addresses by the base address at
240 which the shared object was mapped.
241
242 FIXMES
243
244 In most (all?) cases the shared object file name recorded in the
245 dynamic linkage tables will be a fully qualified pathname. For
246 cases where it isn't, do we really mimic the systems search
247 mechanism correctly in the below code (particularly the tilde
248 expansion stuff?).
249 */
250
251 static int
252 solib_map_sections (arg)
253 PTR arg;
254 {
255 struct so_list *so = (struct so_list *) arg; /* catch_errors bogon */
256 char *filename;
257 char *scratch_pathname;
258 int scratch_chan;
259 struct section_table *p;
260 struct cleanup *old_chain;
261 bfd *abfd;
262
263 filename = tilde_expand (so->so_name);
264
265 if (solib_absolute_prefix && ROOTED_P (filename))
266 /* Prefix shared libraries with absolute filenames with
267 SOLIB_ABSOLUTE_PREFIX. */
268 {
269 char *pfxed_fn;
270 int pfx_len;
271
272 pfx_len = strlen (solib_absolute_prefix);
273
274 /* Remove trailing slashes. */
275 while (pfx_len > 0 && SLASH_P (solib_absolute_prefix[pfx_len - 1]))
276 pfx_len--;
277
278 pfxed_fn = xmalloc (pfx_len + strlen (filename) + 1);
279 strcpy (pfxed_fn, solib_absolute_prefix);
280 strcat (pfxed_fn, filename);
281 free (filename);
282
283 filename = pfxed_fn;
284 }
285
286 old_chain = make_cleanup (free, filename);
287
288 scratch_chan = -1;
289
290 if (solib_search_path)
291 scratch_chan = openp (solib_search_path,
292 1, filename, O_RDONLY, 0, &scratch_pathname);
293 if (scratch_chan < 0)
294 scratch_chan = openp (get_in_environ (inferior_environ, "PATH"),
295 1, filename, O_RDONLY, 0, &scratch_pathname);
296 if (scratch_chan < 0)
297 {
298 scratch_chan = openp (get_in_environ
299 (inferior_environ, "LD_LIBRARY_PATH"),
300 1, filename, O_RDONLY, 0, &scratch_pathname);
301 }
302 if (scratch_chan < 0)
303 {
304 perror_with_name (filename);
305 }
306 /* Leave scratch_pathname allocated. abfd->name will point to it. */
307
308 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
309 if (!abfd)
310 {
311 close (scratch_chan);
312 error ("Could not open `%s' as an executable file: %s",
313 scratch_pathname, bfd_errmsg (bfd_get_error ()));
314 }
315 /* Leave bfd open, core_xfer_memory and "info files" need it. */
316 so->abfd = abfd;
317 abfd->cacheable = true;
318
319 /* copy full path name into so_name, so that later symbol_file_add can find
320 it */
321 if (strlen (scratch_pathname) >= MAX_PATH_SIZE)
322 error ("Full path name length of shared library exceeds MAX_PATH_SIZE in so_list structure.");
323 strcpy (so->so_name, scratch_pathname);
324
325 if (!bfd_check_format (abfd, bfd_object))
326 {
327 error ("\"%s\": not in executable format: %s.",
328 scratch_pathname, bfd_errmsg (bfd_get_error ()));
329 }
330 if (build_section_table (abfd, &so->sections, &so->sections_end))
331 {
332 error ("Can't find the file sections in `%s': %s",
333 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
334 }
335
336 for (p = so->sections; p < so->sections_end; p++)
337 {
338 /* Relocate the section binding addresses as recorded in the shared
339 object's file by the base address to which the object was actually
340 mapped. */
341 p->addr += (CORE_ADDR) LM_ADDR (so);
342 p->endaddr += (CORE_ADDR) LM_ADDR (so);
343 so->lmend = (CORE_ADDR) max (p->endaddr, so->lmend);
344 if (STREQ (p->the_bfd_section->name, ".text"))
345 {
346 so->textsection = p;
347 }
348 }
349
350 /* Free the file names, close the file now. */
351 do_cleanups (old_chain);
352
353 return (1);
354 }
355
356 #ifndef SVR4_SHARED_LIBS
357
358 /* Allocate the runtime common object file. */
359
360 static void
361 allocate_rt_common_objfile ()
362 {
363 struct objfile *objfile;
364 struct objfile *last_one;
365
366 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
367 memset (objfile, 0, sizeof (struct objfile));
368 objfile->md = NULL;
369 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
370 xmalloc, free);
371 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
372 free);
373 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
374 free);
375 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
376 free);
377 objfile->name = mstrsave (objfile->md, "rt_common");
378
379 /* Add this file onto the tail of the linked list of other such files. */
380
381 objfile->next = NULL;
382 if (object_files == NULL)
383 object_files = objfile;
384 else
385 {
386 for (last_one = object_files;
387 last_one->next;
388 last_one = last_one->next);
389 last_one->next = objfile;
390 }
391
392 rt_common_objfile = objfile;
393 }
394
395 /* Read all dynamically loaded common symbol definitions from the inferior
396 and put them into the minimal symbol table for the runtime common
397 objfile. */
398
399 static void
400 solib_add_common_symbols (rtc_symp)
401 struct rtc_symb *rtc_symp;
402 {
403 struct rtc_symb inferior_rtc_symb;
404 struct nlist inferior_rtc_nlist;
405 int len;
406 char *name;
407
408 /* Remove any runtime common symbols from previous runs. */
409
410 if (rt_common_objfile != NULL && rt_common_objfile->minimal_symbol_count)
411 {
412 obstack_free (&rt_common_objfile->symbol_obstack, 0);
413 obstack_specify_allocation (&rt_common_objfile->symbol_obstack, 0, 0,
414 xmalloc, free);
415 rt_common_objfile->minimal_symbol_count = 0;
416 rt_common_objfile->msymbols = NULL;
417 }
418
419 init_minimal_symbol_collection ();
420 make_cleanup ((make_cleanup_func) discard_minimal_symbols, 0);
421
422 while (rtc_symp)
423 {
424 read_memory ((CORE_ADDR) rtc_symp,
425 (char *) &inferior_rtc_symb,
426 sizeof (inferior_rtc_symb));
427 read_memory ((CORE_ADDR) inferior_rtc_symb.rtc_sp,
428 (char *) &inferior_rtc_nlist,
429 sizeof (inferior_rtc_nlist));
430 if (inferior_rtc_nlist.n_type == N_COMM)
431 {
432 /* FIXME: The length of the symbol name is not available, but in the
433 current implementation the common symbol is allocated immediately
434 behind the name of the symbol. */
435 len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
436
437 name = xmalloc (len);
438 read_memory ((CORE_ADDR) inferior_rtc_nlist.n_un.n_name, name, len);
439
440 /* Allocate the runtime common objfile if necessary. */
441 if (rt_common_objfile == NULL)
442 allocate_rt_common_objfile ();
443
444 prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value,
445 mst_bss, rt_common_objfile);
446 free (name);
447 }
448 rtc_symp = inferior_rtc_symb.rtc_next;
449 }
450
451 /* Install any minimal symbols that have been collected as the current
452 minimal symbols for the runtime common objfile. */
453
454 install_minimal_symbols (rt_common_objfile);
455 }
456
457 #endif /* SVR4_SHARED_LIBS */
458
459
460 #ifdef SVR4_SHARED_LIBS
461
462 static CORE_ADDR
463 bfd_lookup_symbol PARAMS ((bfd *, char *));
464
465 /*
466
467 LOCAL FUNCTION
468
469 bfd_lookup_symbol -- lookup the value for a specific symbol
470
471 SYNOPSIS
472
473 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
474
475 DESCRIPTION
476
477 An expensive way to lookup the value of a single symbol for
478 bfd's that are only temporary anyway. This is used by the
479 shared library support to find the address of the debugger
480 interface structures in the shared library.
481
482 Note that 0 is specifically allowed as an error return (no
483 such symbol).
484 */
485
486 static CORE_ADDR
487 bfd_lookup_symbol (abfd, symname)
488 bfd *abfd;
489 char *symname;
490 {
491 unsigned int storage_needed;
492 asymbol *sym;
493 asymbol **symbol_table;
494 unsigned int number_of_symbols;
495 unsigned int i;
496 struct cleanup *back_to;
497 CORE_ADDR symaddr = 0;
498
499 storage_needed = bfd_get_symtab_upper_bound (abfd);
500
501 if (storage_needed > 0)
502 {
503 symbol_table = (asymbol **) xmalloc (storage_needed);
504 back_to = make_cleanup (free, (PTR) symbol_table);
505 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
506
507 for (i = 0; i < number_of_symbols; i++)
508 {
509 sym = *symbol_table++;
510 if (STREQ (sym->name, symname))
511 {
512 /* Bfd symbols are section relative. */
513 symaddr = sym->value + sym->section->vma;
514 break;
515 }
516 }
517 do_cleanups (back_to);
518 }
519 return (symaddr);
520 }
521
522 #ifdef HANDLE_SVR4_EXEC_EMULATORS
523
524 /*
525 Solaris BCP (the part of Solaris which allows it to run SunOS4
526 a.out files) throws in another wrinkle. Solaris does not fill
527 in the usual a.out link map structures when running BCP programs,
528 the only way to get at them is via groping around in the dynamic
529 linker.
530 The dynamic linker and it's structures are located in the shared
531 C library, which gets run as the executable's "interpreter" by
532 the kernel.
533
534 Note that we can assume nothing about the process state at the time
535 we need to find these structures. We may be stopped on the first
536 instruction of the interpreter (C shared library), the first
537 instruction of the executable itself, or somewhere else entirely
538 (if we attached to the process for example).
539 */
540
541 static char *debug_base_symbols[] =
542 {
543 "r_debug", /* Solaris 2.3 */
544 "_r_debug", /* Solaris 2.1, 2.2 */
545 NULL
546 };
547
548 static int
549 look_for_base PARAMS ((int, CORE_ADDR));
550
551 /*
552
553 LOCAL FUNCTION
554
555 look_for_base -- examine file for each mapped address segment
556
557 SYNOPSYS
558
559 static int look_for_base (int fd, CORE_ADDR baseaddr)
560
561 DESCRIPTION
562
563 This function is passed to proc_iterate_over_mappings, which
564 causes it to get called once for each mapped address space, with
565 an open file descriptor for the file mapped to that space, and the
566 base address of that mapped space.
567
568 Our job is to find the debug base symbol in the file that this
569 fd is open on, if it exists, and if so, initialize the dynamic
570 linker structure base address debug_base.
571
572 Note that this is a computationally expensive proposition, since
573 we basically have to open a bfd on every call, so we specifically
574 avoid opening the exec file.
575 */
576
577 static int
578 look_for_base (fd, baseaddr)
579 int fd;
580 CORE_ADDR baseaddr;
581 {
582 bfd *interp_bfd;
583 CORE_ADDR address = 0;
584 char **symbolp;
585
586 /* If the fd is -1, then there is no file that corresponds to this
587 mapped memory segment, so skip it. Also, if the fd corresponds
588 to the exec file, skip it as well. */
589
590 if (fd == -1
591 || (exec_bfd != NULL
592 && fdmatch (fileno ((FILE *) (exec_bfd->iostream)), fd)))
593 {
594 return (0);
595 }
596
597 /* Try to open whatever random file this fd corresponds to. Note that
598 we have no way currently to find the filename. Don't gripe about
599 any problems we might have, just fail. */
600
601 if ((interp_bfd = bfd_fdopenr ("unnamed", gnutarget, fd)) == NULL)
602 {
603 return (0);
604 }
605 if (!bfd_check_format (interp_bfd, bfd_object))
606 {
607 /* FIXME-leak: on failure, might not free all memory associated with
608 interp_bfd. */
609 bfd_close (interp_bfd);
610 return (0);
611 }
612
613 /* Now try to find our debug base symbol in this file, which we at
614 least know to be a valid ELF executable or shared library. */
615
616 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
617 {
618 address = bfd_lookup_symbol (interp_bfd, *symbolp);
619 if (address != 0)
620 {
621 break;
622 }
623 }
624 if (address == 0)
625 {
626 /* FIXME-leak: on failure, might not free all memory associated with
627 interp_bfd. */
628 bfd_close (interp_bfd);
629 return (0);
630 }
631
632 /* Eureka! We found the symbol. But now we may need to relocate it
633 by the base address. If the symbol's value is less than the base
634 address of the shared library, then it hasn't yet been relocated
635 by the dynamic linker, and we have to do it ourself. FIXME: Note
636 that we make the assumption that the first segment that corresponds
637 to the shared library has the base address to which the library
638 was relocated. */
639
640 if (address < baseaddr)
641 {
642 address += baseaddr;
643 }
644 debug_base = address;
645 /* FIXME-leak: on failure, might not free all memory associated with
646 interp_bfd. */
647 bfd_close (interp_bfd);
648 return (1);
649 }
650 #endif /* HANDLE_SVR4_EXEC_EMULATORS */
651
652 /*
653
654 LOCAL FUNCTION
655
656 elf_locate_base -- locate the base address of dynamic linker structs
657 for SVR4 elf targets.
658
659 SYNOPSIS
660
661 CORE_ADDR elf_locate_base (void)
662
663 DESCRIPTION
664
665 For SVR4 elf targets the address of the dynamic linker's runtime
666 structure is contained within the dynamic info section in the
667 executable file. The dynamic section is also mapped into the
668 inferior address space. Because the runtime loader fills in the
669 real address before starting the inferior, we have to read in the
670 dynamic info section from the inferior address space.
671 If there are any errors while trying to find the address, we
672 silently return 0, otherwise the found address is returned.
673
674 */
675
676 static CORE_ADDR
677 elf_locate_base ()
678 {
679 sec_ptr dyninfo_sect;
680 int dyninfo_sect_size;
681 CORE_ADDR dyninfo_addr;
682 char *buf;
683 char *bufend;
684
685 /* Find the start address of the .dynamic section. */
686 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
687 if (dyninfo_sect == NULL)
688 return 0;
689 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
690
691 /* Read in .dynamic section, silently ignore errors. */
692 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
693 buf = alloca (dyninfo_sect_size);
694 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
695 return 0;
696
697 /* Find the DT_DEBUG entry in the the .dynamic section.
698 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
699 no DT_DEBUG entries. */
700 #ifndef TARGET_ELF64
701 for (bufend = buf + dyninfo_sect_size;
702 buf < bufend;
703 buf += sizeof (Elf32_External_Dyn))
704 {
705 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
706 long dyn_tag;
707 CORE_ADDR dyn_ptr;
708
709 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
710 if (dyn_tag == DT_NULL)
711 break;
712 else if (dyn_tag == DT_DEBUG)
713 {
714 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
715 return dyn_ptr;
716 }
717 #ifdef DT_MIPS_RLD_MAP
718 else if (dyn_tag == DT_MIPS_RLD_MAP)
719 {
720 char pbuf[TARGET_PTR_BIT / HOST_CHAR_BIT];
721
722 /* DT_MIPS_RLD_MAP contains a pointer to the address
723 of the dynamic link structure. */
724 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
725 if (target_read_memory (dyn_ptr, pbuf, sizeof (pbuf)))
726 return 0;
727 return extract_unsigned_integer (pbuf, sizeof (pbuf));
728 }
729 #endif
730 }
731 #else /* ELF64 */
732 for (bufend = buf + dyninfo_sect_size;
733 buf < bufend;
734 buf += sizeof (Elf64_External_Dyn))
735 {
736 Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
737 long dyn_tag;
738 CORE_ADDR dyn_ptr;
739
740 dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
741 if (dyn_tag == DT_NULL)
742 break;
743 else if (dyn_tag == DT_DEBUG)
744 {
745 dyn_ptr = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
746 return dyn_ptr;
747 }
748 }
749 #endif
750
751 /* DT_DEBUG entry not found. */
752 return 0;
753 }
754
755 #endif /* SVR4_SHARED_LIBS */
756
757 /*
758
759 LOCAL FUNCTION
760
761 locate_base -- locate the base address of dynamic linker structs
762
763 SYNOPSIS
764
765 CORE_ADDR locate_base (void)
766
767 DESCRIPTION
768
769 For both the SunOS and SVR4 shared library implementations, if the
770 inferior executable has been linked dynamically, there is a single
771 address somewhere in the inferior's data space which is the key to
772 locating all of the dynamic linker's runtime structures. This
773 address is the value of the debug base symbol. The job of this
774 function is to find and return that address, or to return 0 if there
775 is no such address (the executable is statically linked for example).
776
777 For SunOS, the job is almost trivial, since the dynamic linker and
778 all of it's structures are statically linked to the executable at
779 link time. Thus the symbol for the address we are looking for has
780 already been added to the minimal symbol table for the executable's
781 objfile at the time the symbol file's symbols were read, and all we
782 have to do is look it up there. Note that we explicitly do NOT want
783 to find the copies in the shared library.
784
785 The SVR4 version is a bit more complicated because the address
786 is contained somewhere in the dynamic info section. We have to go
787 to a lot more work to discover the address of the debug base symbol.
788 Because of this complexity, we cache the value we find and return that
789 value on subsequent invocations. Note there is no copy in the
790 executable symbol tables.
791
792 */
793
794 static CORE_ADDR
795 locate_base ()
796 {
797
798 #ifndef SVR4_SHARED_LIBS
799
800 struct minimal_symbol *msymbol;
801 CORE_ADDR address = 0;
802 char **symbolp;
803
804 /* For SunOS, we want to limit the search for the debug base symbol to the
805 executable being debugged, since there is a duplicate named symbol in the
806 shared library. We don't want the shared library versions. */
807
808 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
809 {
810 msymbol = lookup_minimal_symbol (*symbolp, NULL, symfile_objfile);
811 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
812 {
813 address = SYMBOL_VALUE_ADDRESS (msymbol);
814 return (address);
815 }
816 }
817 return (0);
818
819 #else /* SVR4_SHARED_LIBS */
820
821 /* Check to see if we have a currently valid address, and if so, avoid
822 doing all this work again and just return the cached address. If
823 we have no cached address, try to locate it in the dynamic info
824 section for ELF executables. */
825
826 if (debug_base == 0)
827 {
828 if (exec_bfd != NULL
829 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
830 debug_base = elf_locate_base ();
831 #ifdef HANDLE_SVR4_EXEC_EMULATORS
832 /* Try it the hard way for emulated executables. */
833 else if (inferior_pid != 0 && target_has_execution)
834 proc_iterate_over_mappings (look_for_base);
835 #endif
836 }
837 return (debug_base);
838
839 #endif /* !SVR4_SHARED_LIBS */
840
841 }
842
843 /*
844
845 LOCAL FUNCTION
846
847 first_link_map_member -- locate first member in dynamic linker's map
848
849 SYNOPSIS
850
851 static struct link_map *first_link_map_member (void)
852
853 DESCRIPTION
854
855 Read in a copy of the first member in the inferior's dynamic
856 link map from the inferior's dynamic linker structures, and return
857 a pointer to the copy in our address space.
858 */
859
860 static struct link_map *
861 first_link_map_member ()
862 {
863 struct link_map *lm = NULL;
864
865 #ifndef SVR4_SHARED_LIBS
866
867 read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy));
868 if (dynamic_copy.ld_version >= 2)
869 {
870 /* It is a version that we can deal with, so read in the secondary
871 structure and find the address of the link map list from it. */
872 read_memory ((CORE_ADDR) dynamic_copy.ld_un.ld_2, (char *) &ld_2_copy,
873 sizeof (struct link_dynamic_2));
874 lm = ld_2_copy.ld_loaded;
875 }
876
877 #else /* SVR4_SHARED_LIBS */
878
879 read_memory (debug_base, (char *) &debug_copy, sizeof (struct r_debug));
880 /* FIXME: Perhaps we should validate the info somehow, perhaps by
881 checking r_version for a known version number, or r_state for
882 RT_CONSISTENT. */
883 lm = debug_copy.r_map;
884
885 #endif /* !SVR4_SHARED_LIBS */
886
887 return (lm);
888 }
889
890 #ifdef SVR4_SHARED_LIBS
891 /*
892
893 LOCAL FUNCTION
894
895 open_exec_file_object
896
897 SYNOPSIS
898
899 void open_symbol_file_object (int from_tty)
900
901 DESCRIPTION
902
903 If no open symbol file, attempt to locate and open the main symbol
904 file. On SVR4 systems, this is the first link map entry. If its
905 name is here, we can open it. Useful when attaching to a process
906 without first loading its symbol file.
907
908 */
909
910 int
911 open_symbol_file_object (arg)
912 PTR arg;
913 {
914 int from_tty = (int) arg; /* sneak past catch_errors */
915 struct link_map *lm, lmcopy;
916 char *filename;
917 int errcode;
918
919 if (symfile_objfile)
920 if (!query ("Attempt to reload symbols from process? "))
921 return 0;
922
923 if ((debug_base = locate_base ()) == 0)
924 return 0; /* failed somehow... */
925
926 /* First link map member should be the executable. */
927 if ((lm = first_link_map_member ()) == NULL)
928 return 0; /* failed somehow... */
929
930 /* Read from target memory to GDB. */
931 read_memory ((CORE_ADDR) lm, (void *) &lmcopy, sizeof (lmcopy));
932
933 if (lmcopy.l_name == 0)
934 return 0; /* no filename. */
935
936 /* Now fetch the filename from target memory. */
937 target_read_string ((CORE_ADDR) lmcopy.l_name, &filename,
938 MAX_PATH_SIZE - 1, &errcode);
939 if (errcode)
940 {
941 warning ("failed to read exec filename from attached file: %s",
942 safe_strerror (errcode));
943 return 0;
944 }
945
946 make_cleanup ((make_cleanup_func) free, (void *) filename);
947 /* Have a pathname: read the symbol file. */
948 symbol_file_command (filename, from_tty);
949
950 return 1;
951 }
952 #endif /* SVR4_SHARED_LIBS */
953
954 /*
955
956 LOCAL FUNCTION
957
958 find_solib -- step through list of shared objects
959
960 SYNOPSIS
961
962 struct so_list *find_solib (struct so_list *so_list_ptr)
963
964 DESCRIPTION
965
966 This module contains the routine which finds the names of any
967 loaded "images" in the current process. The argument in must be
968 NULL on the first call, and then the returned value must be passed
969 in on subsequent calls. This provides the capability to "step" down
970 the list of loaded objects. On the last object, a NULL value is
971 returned.
972
973 The arg and return value are "struct link_map" pointers, as defined
974 in <link.h>.
975 */
976
977 static struct so_list *
978 find_solib (so_list_ptr)
979 struct so_list *so_list_ptr; /* Last lm or NULL for first one */
980 {
981 struct so_list *so_list_next = NULL;
982 struct link_map *lm = NULL;
983 struct so_list *new;
984
985 if (so_list_ptr == NULL)
986 {
987 /* We are setting up for a new scan through the loaded images. */
988 if ((so_list_next = so_list_head) == NULL)
989 {
990 /* We have not already read in the dynamic linking structures
991 from the inferior, lookup the address of the base structure. */
992 debug_base = locate_base ();
993 if (debug_base != 0)
994 {
995 /* Read the base structure in and find the address of the first
996 link map list member. */
997 lm = first_link_map_member ();
998 }
999 }
1000 }
1001 else
1002 {
1003 /* We have been called before, and are in the process of walking
1004 the shared library list. Advance to the next shared object. */
1005 if ((lm = LM_NEXT (so_list_ptr)) == NULL)
1006 {
1007 /* We have hit the end of the list, so check to see if any were
1008 added, but be quiet if we can't read from the target any more. */
1009 int status = target_read_memory ((CORE_ADDR) so_list_ptr->lmaddr,
1010 (char *) &(so_list_ptr->lm),
1011 sizeof (struct link_map));
1012 if (status == 0)
1013 {
1014 lm = LM_NEXT (so_list_ptr);
1015 }
1016 else
1017 {
1018 lm = NULL;
1019 }
1020 }
1021 so_list_next = so_list_ptr->next;
1022 }
1023 if ((so_list_next == NULL) && (lm != NULL))
1024 {
1025 /* Get next link map structure from inferior image and build a local
1026 abbreviated load_map structure */
1027 new = (struct so_list *) xmalloc (sizeof (struct so_list));
1028 memset ((char *) new, 0, sizeof (struct so_list));
1029 new->lmaddr = lm;
1030 /* Add the new node as the next node in the list, or as the root
1031 node if this is the first one. */
1032 if (so_list_ptr != NULL)
1033 {
1034 so_list_ptr->next = new;
1035 }
1036 else
1037 {
1038 so_list_head = new;
1039
1040 if (!solib_cleanup_queued)
1041 {
1042 make_run_cleanup (do_clear_solib, NULL);
1043 solib_cleanup_queued = 1;
1044 }
1045
1046 }
1047 so_list_next = new;
1048 read_memory ((CORE_ADDR) lm, (char *) &(new->lm),
1049 sizeof (struct link_map));
1050 /* For SVR4 versions, the first entry in the link map is for the
1051 inferior executable, so we must ignore it. For some versions of
1052 SVR4, it has no name. For others (Solaris 2.3 for example), it
1053 does have a name, so we can no longer use a missing name to
1054 decide when to ignore it. */
1055 if (!IGNORE_FIRST_LINK_MAP_ENTRY (new->lm))
1056 {
1057 int errcode;
1058 char *buffer;
1059 target_read_string ((CORE_ADDR) LM_NAME (new), &buffer,
1060 MAX_PATH_SIZE - 1, &errcode);
1061 if (errcode != 0)
1062 {
1063 warning ("find_solib: Can't read pathname for load map: %s\n",
1064 safe_strerror (errcode));
1065 return (so_list_next);
1066 }
1067 strncpy (new->so_name, buffer, MAX_PATH_SIZE - 1);
1068 new->so_name[MAX_PATH_SIZE - 1] = '\0';
1069 free (buffer);
1070 catch_errors (solib_map_sections, new,
1071 "Error while mapping shared library sections:\n",
1072 RETURN_MASK_ALL);
1073 }
1074 }
1075 return (so_list_next);
1076 }
1077
1078 /* A small stub to get us past the arg-passing pinhole of catch_errors. */
1079
1080 static int
1081 symbol_add_stub (arg)
1082 PTR arg;
1083 {
1084 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
1085 CORE_ADDR text_addr = 0;
1086 struct section_addr_info section_addrs;
1087
1088 memset (&section_addrs, 0, sizeof (section_addrs));
1089 if (so->textsection)
1090 text_addr = so->textsection->addr;
1091 else if (so->abfd != NULL)
1092 {
1093 asection *lowest_sect;
1094
1095 /* If we didn't find a mapped non zero sized .text section, set up
1096 text_addr so that the relocation in symbol_file_add does no harm. */
1097
1098 lowest_sect = bfd_get_section_by_name (so->abfd, ".text");
1099 if (lowest_sect == NULL)
1100 bfd_map_over_sections (so->abfd, find_lowest_section,
1101 (PTR) &lowest_sect);
1102 if (lowest_sect)
1103 text_addr = bfd_section_vma (so->abfd, lowest_sect)
1104 + (CORE_ADDR) LM_ADDR (so);
1105 }
1106
1107 ALL_OBJFILES (so->objfile)
1108 {
1109 if (strcmp (so->objfile->name, so->so_name) == 0)
1110 return 1;
1111 }
1112 section_addrs.text_addr = text_addr;
1113 so->objfile =
1114 symbol_file_add (so->so_name, so->from_tty,
1115 &section_addrs,
1116 0, 0, 0, 1);
1117 return (1);
1118 }
1119
1120 /* This function will check the so name to see if matches the main list.
1121 In some system the main object is in the list, which we want to exclude */
1122
1123 static int
1124 match_main (soname)
1125 char *soname;
1126 {
1127 char **mainp;
1128
1129 for (mainp = main_name_list; *mainp != NULL; mainp++)
1130 {
1131 if (strcmp (soname, *mainp) == 0)
1132 return (1);
1133 }
1134
1135 return (0);
1136 }
1137
1138 /*
1139
1140 GLOBAL FUNCTION
1141
1142 solib_add -- add a shared library file to the symtab and section list
1143
1144 SYNOPSIS
1145
1146 void solib_add (char *arg_string, int from_tty,
1147 struct target_ops *target)
1148
1149 DESCRIPTION
1150
1151 */
1152
1153 void
1154 solib_add (arg_string, from_tty, target)
1155 char *arg_string;
1156 int from_tty;
1157 struct target_ops *target;
1158 {
1159 register struct so_list *so = NULL; /* link map state variable */
1160
1161 /* Last shared library that we read. */
1162 struct so_list *so_last = NULL;
1163
1164 char *re_err;
1165 int count;
1166 int old;
1167
1168 #ifdef SVR4_SHARED_LIBS
1169 /* If we are attaching to a running process for which we
1170 have not opened a symbol file, we may be able to get its
1171 symbols now! */
1172 if (attach_flag &&
1173 symfile_objfile == NULL)
1174 catch_errors (open_symbol_file_object, (PTR) from_tty,
1175 "Error reading attached process's symbol file.\n",
1176 RETURN_MASK_ALL);
1177
1178 #endif SVR4_SHARED_LIBS
1179
1180 if ((re_err = re_comp (arg_string? arg_string : ".")) != NULL)
1181 {
1182 error ("Invalid regexp: %s", re_err);
1183 }
1184
1185 /* Add the shared library sections to the section table of the
1186 specified target, if any. */
1187 if (target)
1188 {
1189 /* Count how many new section_table entries there are. */
1190 so = NULL;
1191 count = 0;
1192 while ((so = find_solib (so)) != NULL)
1193 {
1194 if (so->so_name[0] && !match_main (so->so_name))
1195 {
1196 count += so->sections_end - so->sections;
1197 }
1198 }
1199
1200 if (count)
1201 {
1202
1203 /* Add these section table entries to the target's table. */
1204 old = target_resize_to_sections (target, count);
1205 while ((so = find_solib (so)) != NULL)
1206 {
1207 if (so->so_name[0])
1208 {
1209 count = so->sections_end - so->sections;
1210 memcpy ((char *) (target->to_sections + old),
1211 so->sections,
1212 (sizeof (struct section_table)) * count);
1213 old += count;
1214 }
1215 }
1216 }
1217 }
1218
1219 /* Now add the symbol files. */
1220 while ((so = find_solib (so)) != NULL)
1221 {
1222 if (so->so_name[0] && re_exec (so->so_name) &&
1223 !match_main (so->so_name))
1224 {
1225 so->from_tty = from_tty;
1226 if (so->symbols_loaded)
1227 {
1228 if (from_tty)
1229 {
1230 printf_unfiltered ("Symbols already loaded for %s\n", so->so_name);
1231 }
1232 }
1233 else if (catch_errors
1234 (symbol_add_stub, so,
1235 "Error while reading shared library symbols:\n",
1236 RETURN_MASK_ALL))
1237 {
1238 so_last = so;
1239 so->symbols_loaded = 1;
1240 }
1241 }
1242 }
1243
1244 /* Getting new symbols may change our opinion about what is
1245 frameless. */
1246 if (so_last)
1247 reinit_frame_cache ();
1248
1249 if (so_last)
1250 special_symbol_handling (so_last);
1251 }
1252
1253 /*
1254
1255 LOCAL FUNCTION
1256
1257 info_sharedlibrary_command -- code for "info sharedlibrary"
1258
1259 SYNOPSIS
1260
1261 static void info_sharedlibrary_command ()
1262
1263 DESCRIPTION
1264
1265 Walk through the shared library list and print information
1266 about each attached library.
1267 */
1268
1269 static void
1270 info_sharedlibrary_command (ignore, from_tty)
1271 char *ignore;
1272 int from_tty;
1273 {
1274 register struct so_list *so = NULL; /* link map state variable */
1275 int header_done = 0;
1276 int addr_width;
1277 char *addr_fmt;
1278
1279 if (exec_bfd == NULL)
1280 {
1281 printf_unfiltered ("No exec file.\n");
1282 return;
1283 }
1284
1285 #ifndef TARGET_ELF64
1286 addr_width = 8 + 4;
1287 addr_fmt = "08l";
1288 #else
1289 addr_width = 16 + 4;
1290 addr_fmt = "016l";
1291 #endif
1292
1293 while ((so = find_solib (so)) != NULL)
1294 {
1295 if (so->so_name[0])
1296 {
1297 if (!header_done)
1298 {
1299 printf_unfiltered ("%-*s%-*s%-12s%s\n", addr_width, "From",
1300 addr_width, "To", "Syms Read",
1301 "Shared Object Library");
1302 header_done++;
1303 }
1304
1305 printf_unfiltered ("%-*s", addr_width,
1306 local_hex_string_custom ((unsigned long) LM_ADDR (so),
1307 addr_fmt));
1308 printf_unfiltered ("%-*s", addr_width,
1309 local_hex_string_custom ((unsigned long) so->lmend,
1310 addr_fmt));
1311 printf_unfiltered ("%-12s", so->symbols_loaded ? "Yes" : "No");
1312 printf_unfiltered ("%s\n", so->so_name);
1313 }
1314 }
1315 if (so_list_head == NULL)
1316 {
1317 printf_unfiltered ("No shared libraries loaded at this time.\n");
1318 }
1319 }
1320
1321 /*
1322
1323 GLOBAL FUNCTION
1324
1325 solib_address -- check to see if an address is in a shared lib
1326
1327 SYNOPSIS
1328
1329 char * solib_address (CORE_ADDR address)
1330
1331 DESCRIPTION
1332
1333 Provides a hook for other gdb routines to discover whether or
1334 not a particular address is within the mapped address space of
1335 a shared library. Any address between the base mapping address
1336 and the first address beyond the end of the last mapping, is
1337 considered to be within the shared library address space, for
1338 our purposes.
1339
1340 For example, this routine is called at one point to disable
1341 breakpoints which are in shared libraries that are not currently
1342 mapped in.
1343 */
1344
1345 char *
1346 solib_address (address)
1347 CORE_ADDR address;
1348 {
1349 register struct so_list *so = 0; /* link map state variable */
1350
1351 while ((so = find_solib (so)) != NULL)
1352 {
1353 if (so->so_name[0])
1354 {
1355 if ((address >= (CORE_ADDR) LM_ADDR (so)) &&
1356 (address < (CORE_ADDR) so->lmend))
1357 return (so->so_name);
1358 }
1359 }
1360 return (0);
1361 }
1362
1363 /* Called by free_all_symtabs */
1364
1365 void
1366 clear_solib ()
1367 {
1368 struct so_list *next;
1369 char *bfd_filename;
1370
1371 /* This function is expected to handle ELF shared libraries. It is
1372 also used on Solaris, which can run either ELF or a.out binaries
1373 (for compatibility with SunOS 4), both of which can use shared
1374 libraries. So we don't know whether we have an ELF executable or
1375 an a.out executable until the user chooses an executable file.
1376
1377 ELF shared libraries don't get mapped into the address space
1378 until after the program starts, so we'd better not try to insert
1379 breakpoints in them immediately. We have to wait until the
1380 dynamic linker has loaded them; we'll hit a bp_shlib_event
1381 breakpoint (look for calls to create_solib_event_breakpoint) when
1382 it's ready.
1383
1384 SunOS shared libraries seem to be different --- they're present
1385 as soon as the process begins execution, so there's no need to
1386 put off inserting breakpoints. There's also nowhere to put a
1387 bp_shlib_event breakpoint, so if we put it off, we'll never get
1388 around to it.
1389
1390 So: disable breakpoints only if we're using ELF shared libs. */
1391 if (exec_bfd != NULL
1392 && bfd_get_flavour (exec_bfd) != bfd_target_aout_flavour)
1393 disable_breakpoints_in_shlibs (1);
1394
1395 while (so_list_head)
1396 {
1397 if (so_list_head->sections)
1398 {
1399 free ((PTR) so_list_head->sections);
1400 }
1401 if (so_list_head->abfd)
1402 {
1403 bfd_filename = bfd_get_filename (so_list_head->abfd);
1404 if (!bfd_close (so_list_head->abfd))
1405 warning ("cannot close \"%s\": %s",
1406 bfd_filename, bfd_errmsg (bfd_get_error ()));
1407 }
1408 else
1409 /* This happens for the executable on SVR4. */
1410 bfd_filename = NULL;
1411
1412 next = so_list_head->next;
1413 if (bfd_filename)
1414 free ((PTR) bfd_filename);
1415 free ((PTR) so_list_head);
1416 so_list_head = next;
1417 }
1418 debug_base = 0;
1419 }
1420
1421 static void
1422 do_clear_solib (dummy)
1423 PTR dummy;
1424 {
1425 solib_cleanup_queued = 0;
1426 clear_solib ();
1427 }
1428
1429 #ifdef SVR4_SHARED_LIBS
1430
1431 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1432 SVR4 run time loader. */
1433
1434 static CORE_ADDR interp_text_sect_low;
1435 static CORE_ADDR interp_text_sect_high;
1436 static CORE_ADDR interp_plt_sect_low;
1437 static CORE_ADDR interp_plt_sect_high;
1438
1439 int
1440 in_svr4_dynsym_resolve_code (pc)
1441 CORE_ADDR pc;
1442 {
1443 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
1444 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
1445 || in_plt_section (pc, NULL));
1446 }
1447 #endif
1448
1449 /*
1450
1451 LOCAL FUNCTION
1452
1453 disable_break -- remove the "mapping changed" breakpoint
1454
1455 SYNOPSIS
1456
1457 static int disable_break ()
1458
1459 DESCRIPTION
1460
1461 Removes the breakpoint that gets hit when the dynamic linker
1462 completes a mapping change.
1463
1464 */
1465
1466 #ifndef SVR4_SHARED_LIBS
1467
1468 static int
1469 disable_break ()
1470 {
1471 int status = 1;
1472
1473 #ifndef SVR4_SHARED_LIBS
1474
1475 int in_debugger = 0;
1476
1477 /* Read the debugger structure from the inferior to retrieve the
1478 address of the breakpoint and the original contents of the
1479 breakpoint address. Remove the breakpoint by writing the original
1480 contents back. */
1481
1482 read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy));
1483
1484 /* Set `in_debugger' to zero now. */
1485
1486 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1487
1488 breakpoint_addr = (CORE_ADDR) debug_copy.ldd_bp_addr;
1489 write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst,
1490 sizeof (debug_copy.ldd_bp_inst));
1491
1492 #else /* SVR4_SHARED_LIBS */
1493
1494 /* Note that breakpoint address and original contents are in our address
1495 space, so we just need to write the original contents back. */
1496
1497 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
1498 {
1499 status = 0;
1500 }
1501
1502 #endif /* !SVR4_SHARED_LIBS */
1503
1504 /* For the SVR4 version, we always know the breakpoint address. For the
1505 SunOS version we don't know it until the above code is executed.
1506 Grumble if we are stopped anywhere besides the breakpoint address. */
1507
1508 if (stop_pc != breakpoint_addr)
1509 {
1510 warning ("stopped at unknown breakpoint while handling shared libraries");
1511 }
1512
1513 return (status);
1514 }
1515
1516 #endif /* #ifdef SVR4_SHARED_LIBS */
1517
1518 /*
1519
1520 LOCAL FUNCTION
1521
1522 enable_break -- arrange for dynamic linker to hit breakpoint
1523
1524 SYNOPSIS
1525
1526 int enable_break (void)
1527
1528 DESCRIPTION
1529
1530 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1531 debugger interface, support for arranging for the inferior to hit
1532 a breakpoint after mapping in the shared libraries. This function
1533 enables that breakpoint.
1534
1535 For SunOS, there is a special flag location (in_debugger) which we
1536 set to 1. When the dynamic linker sees this flag set, it will set
1537 a breakpoint at a location known only to itself, after saving the
1538 original contents of that place and the breakpoint address itself,
1539 in it's own internal structures. When we resume the inferior, it
1540 will eventually take a SIGTRAP when it runs into the breakpoint.
1541 We handle this (in a different place) by restoring the contents of
1542 the breakpointed location (which is only known after it stops),
1543 chasing around to locate the shared libraries that have been
1544 loaded, then resuming.
1545
1546 For SVR4, the debugger interface structure contains a member (r_brk)
1547 which is statically initialized at the time the shared library is
1548 built, to the offset of a function (_r_debug_state) which is guaran-
1549 teed to be called once before mapping in a library, and again when
1550 the mapping is complete. At the time we are examining this member,
1551 it contains only the unrelocated offset of the function, so we have
1552 to do our own relocation. Later, when the dynamic linker actually
1553 runs, it relocates r_brk to be the actual address of _r_debug_state().
1554
1555 The debugger interface structure also contains an enumeration which
1556 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1557 depending upon whether or not the library is being mapped or unmapped,
1558 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1559 */
1560
1561 static int
1562 enable_break ()
1563 {
1564 int success = 0;
1565
1566 #ifndef SVR4_SHARED_LIBS
1567
1568 int j;
1569 int in_debugger;
1570
1571 /* Get link_dynamic structure */
1572
1573 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1574 sizeof (dynamic_copy));
1575 if (j)
1576 {
1577 /* unreadable */
1578 return (0);
1579 }
1580
1581 /* Calc address of debugger interface structure */
1582
1583 debug_addr = (CORE_ADDR) dynamic_copy.ldd;
1584
1585 /* Calc address of `in_debugger' member of debugger interface structure */
1586
1587 flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
1588 (char *) &debug_copy);
1589
1590 /* Write a value of 1 to this member. */
1591
1592 in_debugger = 1;
1593 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1594 success = 1;
1595
1596 #else /* SVR4_SHARED_LIBS */
1597
1598 #ifdef BKPT_AT_SYMBOL
1599
1600 struct minimal_symbol *msymbol;
1601 char **bkpt_namep;
1602 asection *interp_sect;
1603
1604 /* First, remove all the solib event breakpoints. Their addresses
1605 may have changed since the last time we ran the program. */
1606 remove_solib_event_breakpoints ();
1607
1608 #ifdef SVR4_SHARED_LIBS
1609 interp_text_sect_low = interp_text_sect_high = 0;
1610 interp_plt_sect_low = interp_plt_sect_high = 0;
1611
1612 /* Find the .interp section; if not found, warn the user and drop
1613 into the old breakpoint at symbol code. */
1614 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1615 if (interp_sect)
1616 {
1617 unsigned int interp_sect_size;
1618 char *buf;
1619 CORE_ADDR load_addr;
1620 bfd *tmp_bfd;
1621 CORE_ADDR sym_addr = 0;
1622
1623 /* Read the contents of the .interp section into a local buffer;
1624 the contents specify the dynamic linker this program uses. */
1625 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
1626 buf = alloca (interp_sect_size);
1627 bfd_get_section_contents (exec_bfd, interp_sect,
1628 buf, 0, interp_sect_size);
1629
1630 /* Now we need to figure out where the dynamic linker was
1631 loaded so that we can load its symbols and place a breakpoint
1632 in the dynamic linker itself.
1633
1634 This address is stored on the stack. However, I've been unable
1635 to find any magic formula to find it for Solaris (appears to
1636 be trivial on GNU/Linux). Therefore, we have to try an alternate
1637 mechanism to find the dynamic linker's base address. */
1638 tmp_bfd = bfd_openr (buf, gnutarget);
1639 if (tmp_bfd == NULL)
1640 goto bkpt_at_symbol;
1641
1642 /* Make sure the dynamic linker's really a useful object. */
1643 if (!bfd_check_format (tmp_bfd, bfd_object))
1644 {
1645 warning ("Unable to grok dynamic linker %s as an object file", buf);
1646 bfd_close (tmp_bfd);
1647 goto bkpt_at_symbol;
1648 }
1649
1650 /* We find the dynamic linker's base address by examining the
1651 current pc (which point at the entry point for the dynamic
1652 linker) and subtracting the offset of the entry point. */
1653 load_addr = read_pc () - tmp_bfd->start_address;
1654
1655 /* Record the relocated start and end address of the dynamic linker
1656 text and plt section for in_svr4_dynsym_resolve_code. */
1657 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1658 if (interp_sect)
1659 {
1660 interp_text_sect_low =
1661 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1662 interp_text_sect_high =
1663 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1664 }
1665 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1666 if (interp_sect)
1667 {
1668 interp_plt_sect_low =
1669 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1670 interp_plt_sect_high =
1671 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1672 }
1673
1674 /* Now try to set a breakpoint in the dynamic linker. */
1675 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1676 {
1677 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1678 if (sym_addr != 0)
1679 break;
1680 }
1681
1682 /* We're done with the temporary bfd. */
1683 bfd_close (tmp_bfd);
1684
1685 if (sym_addr != 0)
1686 {
1687 create_solib_event_breakpoint (load_addr + sym_addr);
1688 return 1;
1689 }
1690
1691 /* For whatever reason we couldn't set a breakpoint in the dynamic
1692 linker. Warn and drop into the old code. */
1693 bkpt_at_symbol:
1694 warning ("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code.");
1695 }
1696 #endif
1697
1698 /* Scan through the list of symbols, trying to look up the symbol and
1699 set a breakpoint there. Terminate loop when we/if we succeed. */
1700
1701 breakpoint_addr = 0;
1702 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1703 {
1704 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1705 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1706 {
1707 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1708 return 1;
1709 }
1710 }
1711
1712 /* Nothing good happened. */
1713 success = 0;
1714
1715 #endif /* BKPT_AT_SYMBOL */
1716
1717 #endif /* !SVR4_SHARED_LIBS */
1718
1719 return (success);
1720 }
1721
1722 /*
1723
1724 GLOBAL FUNCTION
1725
1726 solib_create_inferior_hook -- shared library startup support
1727
1728 SYNOPSIS
1729
1730 void solib_create_inferior_hook()
1731
1732 DESCRIPTION
1733
1734 When gdb starts up the inferior, it nurses it along (through the
1735 shell) until it is ready to execute it's first instruction. At this
1736 point, this function gets called via expansion of the macro
1737 SOLIB_CREATE_INFERIOR_HOOK.
1738
1739 For SunOS executables, this first instruction is typically the
1740 one at "_start", or a similar text label, regardless of whether
1741 the executable is statically or dynamically linked. The runtime
1742 startup code takes care of dynamically linking in any shared
1743 libraries, once gdb allows the inferior to continue.
1744
1745 For SVR4 executables, this first instruction is either the first
1746 instruction in the dynamic linker (for dynamically linked
1747 executables) or the instruction at "start" for statically linked
1748 executables. For dynamically linked executables, the system
1749 first exec's /lib/libc.so.N, which contains the dynamic linker,
1750 and starts it running. The dynamic linker maps in any needed
1751 shared libraries, maps in the actual user executable, and then
1752 jumps to "start" in the user executable.
1753
1754 For both SunOS shared libraries, and SVR4 shared libraries, we
1755 can arrange to cooperate with the dynamic linker to discover the
1756 names of shared libraries that are dynamically linked, and the
1757 base addresses to which they are linked.
1758
1759 This function is responsible for discovering those names and
1760 addresses, and saving sufficient information about them to allow
1761 their symbols to be read at a later time.
1762
1763 FIXME
1764
1765 Between enable_break() and disable_break(), this code does not
1766 properly handle hitting breakpoints which the user might have
1767 set in the startup code or in the dynamic linker itself. Proper
1768 handling will probably have to wait until the implementation is
1769 changed to use the "breakpoint handler function" method.
1770
1771 Also, what if child has exit()ed? Must exit loop somehow.
1772 */
1773
1774 void
1775 solib_create_inferior_hook ()
1776 {
1777 /* If we are using the BKPT_AT_SYMBOL code, then we don't need the base
1778 yet. In fact, in the case of a SunOS4 executable being run on
1779 Solaris, we can't get it yet. find_solib will get it when it needs
1780 it. */
1781 #if !(defined (SVR4_SHARED_LIBS) && defined (BKPT_AT_SYMBOL))
1782 if ((debug_base = locate_base ()) == 0)
1783 {
1784 /* Can't find the symbol or the executable is statically linked. */
1785 return;
1786 }
1787 #endif
1788
1789 if (!enable_break ())
1790 {
1791 warning ("shared library handler failed to enable breakpoint");
1792 return;
1793 }
1794
1795 #if !defined(SVR4_SHARED_LIBS) || defined(_SCO_DS)
1796 /* SCO and SunOS need the loop below, other systems should be using the
1797 special shared library breakpoints and the shared library breakpoint
1798 service routine.
1799
1800 Now run the target. It will eventually hit the breakpoint, at
1801 which point all of the libraries will have been mapped in and we
1802 can go groveling around in the dynamic linker structures to find
1803 out what we need to know about them. */
1804
1805 clear_proceed_status ();
1806 stop_soon_quietly = 1;
1807 stop_signal = TARGET_SIGNAL_0;
1808 do
1809 {
1810 target_resume (-1, 0, stop_signal);
1811 wait_for_inferior ();
1812 }
1813 while (stop_signal != TARGET_SIGNAL_TRAP);
1814 stop_soon_quietly = 0;
1815
1816 #if !defined(_SCO_DS)
1817 /* We are now either at the "mapping complete" breakpoint (or somewhere
1818 else, a condition we aren't prepared to deal with anyway), so adjust
1819 the PC as necessary after a breakpoint, disable the breakpoint, and
1820 add any shared libraries that were mapped in. */
1821
1822 if (DECR_PC_AFTER_BREAK)
1823 {
1824 stop_pc -= DECR_PC_AFTER_BREAK;
1825 write_register (PC_REGNUM, stop_pc);
1826 }
1827
1828 if (!disable_break ())
1829 {
1830 warning ("shared library handler failed to disable breakpoint");
1831 }
1832
1833 if (auto_solib_add)
1834 solib_add ((char *) 0, 0, (struct target_ops *) 0);
1835 #endif /* ! _SCO_DS */
1836 #endif
1837 }
1838
1839 /*
1840
1841 LOCAL FUNCTION
1842
1843 special_symbol_handling -- additional shared library symbol handling
1844
1845 SYNOPSIS
1846
1847 void special_symbol_handling (struct so_list *so)
1848
1849 DESCRIPTION
1850
1851 Once the symbols from a shared object have been loaded in the usual
1852 way, we are called to do any system specific symbol handling that
1853 is needed.
1854
1855 For SunOS4, this consists of grunging around in the dynamic
1856 linkers structures to find symbol definitions for "common" symbols
1857 and adding them to the minimal symbol table for the runtime common
1858 objfile.
1859
1860 */
1861
1862 static void
1863 special_symbol_handling (so)
1864 struct so_list *so;
1865 {
1866 #ifndef SVR4_SHARED_LIBS
1867 int j;
1868
1869 if (debug_addr == 0)
1870 {
1871 /* Get link_dynamic structure */
1872
1873 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1874 sizeof (dynamic_copy));
1875 if (j)
1876 {
1877 /* unreadable */
1878 return;
1879 }
1880
1881 /* Calc address of debugger interface structure */
1882 /* FIXME, this needs work for cross-debugging of core files
1883 (byteorder, size, alignment, etc). */
1884
1885 debug_addr = (CORE_ADDR) dynamic_copy.ldd;
1886 }
1887
1888 /* Read the debugger structure from the inferior, just to make sure
1889 we have a current copy. */
1890
1891 j = target_read_memory (debug_addr, (char *) &debug_copy,
1892 sizeof (debug_copy));
1893 if (j)
1894 return; /* unreadable */
1895
1896 /* Get common symbol definitions for the loaded object. */
1897
1898 if (debug_copy.ldd_cp)
1899 {
1900 solib_add_common_symbols (debug_copy.ldd_cp);
1901 }
1902
1903 #endif /* !SVR4_SHARED_LIBS */
1904 }
1905
1906
1907 /*
1908
1909 LOCAL FUNCTION
1910
1911 sharedlibrary_command -- handle command to explicitly add library
1912
1913 SYNOPSIS
1914
1915 static void sharedlibrary_command (char *args, int from_tty)
1916
1917 DESCRIPTION
1918
1919 */
1920
1921 static void
1922 sharedlibrary_command (args, from_tty)
1923 char *args;
1924 int from_tty;
1925 {
1926 dont_repeat ();
1927 solib_add (args, from_tty, (struct target_ops *) 0);
1928 }
1929
1930 #endif /* HAVE_LINK_H */
1931
1932 void
1933 _initialize_solib ()
1934 {
1935 #ifdef HAVE_LINK_H
1936
1937 add_com ("sharedlibrary", class_files, sharedlibrary_command,
1938 "Load shared object library symbols for files matching REGEXP.");
1939 add_info ("sharedlibrary", info_sharedlibrary_command,
1940 "Status of loaded shared object libraries.");
1941
1942 add_show_from_set
1943 (add_set_cmd ("auto-solib-add", class_support, var_zinteger,
1944 (char *) &auto_solib_add,
1945 "Set autoloading of shared library symbols.\n\
1946 If nonzero, symbols from all shared object libraries will be loaded\n\
1947 automatically when the inferior begins execution or when the dynamic linker\n\
1948 informs gdb that a new library has been loaded. Otherwise, symbols\n\
1949 must be loaded manually, using `sharedlibrary'.",
1950 &setlist),
1951 &showlist);
1952
1953 add_show_from_set
1954 (add_set_cmd ("solib-absolute-prefix", class_support, var_filename,
1955 (char *) &solib_absolute_prefix,
1956 "Set prefix for loading absolute shared library symbol files.\n\
1957 For other (relative) files, you can add values using `set solib-search-path'.",
1958 &setlist),
1959 &showlist);
1960 add_show_from_set
1961 (add_set_cmd ("solib-search-path", class_support, var_string,
1962 (char *) &solib_search_path,
1963 "Set the search path for loading non-absolute shared library symbol files.\n\
1964 This takes precedence over the environment variables PATH and LD_LIBRARY_PATH.",
1965 &setlist),
1966 &showlist);
1967
1968 #endif /* HAVE_LINK_H */
1969 }
This page took 0.089532 seconds and 4 git commands to generate.