gdb
[deliverable/binutils-gdb.git] / gdb / sparc-linux-tdep.c
1 /* Target-dependent code for GNU/Linux SPARC.
2
3 Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "dwarf2-frame.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "gdbtypes.h"
26 #include "regset.h"
27 #include "gdbarch.h"
28 #include "gdbcore.h"
29 #include "osabi.h"
30 #include "regcache.h"
31 #include "solib-svr4.h"
32 #include "symtab.h"
33 #include "trad-frame.h"
34 #include "tramp-frame.h"
35
36 #include "sparc-tdep.h"
37
38 /* Signal trampoline support. */
39
40 static void sparc32_linux_sigframe_init (const struct tramp_frame *self,
41 struct frame_info *this_frame,
42 struct trad_frame_cache *this_cache,
43 CORE_ADDR func);
44
45 /* GNU/Linux has two flavors of signals. Normal signal handlers, and
46 "realtime" (RT) signals. The RT signals can provide additional
47 information to the signal handler if the SA_SIGINFO flag is set
48 when establishing a signal handler using `sigaction'. It is not
49 unlikely that future versions of GNU/Linux will support SA_SIGINFO
50 for normal signals too. */
51
52 /* When the sparc Linux kernel calls a signal handler and the
53 SA_RESTORER flag isn't set, the return address points to a bit of
54 code on the stack. This code checks whether the PC appears to be
55 within this bit of code.
56
57 The instruction sequence for normal signals is encoded below.
58 Checking for the code sequence should be somewhat reliable, because
59 the effect is to call the system call sigreturn. This is unlikely
60 to occur anywhere other than a signal trampoline. */
61
62 static const struct tramp_frame sparc32_linux_sigframe =
63 {
64 SIGTRAMP_FRAME,
65 4,
66 {
67 { 0x821020d8, -1 }, /* mov __NR_sugreturn, %g1 */
68 { 0x91d02010, -1 }, /* ta 0x10 */
69 { TRAMP_SENTINEL_INSN, -1 }
70 },
71 sparc32_linux_sigframe_init
72 };
73
74 /* The instruction sequence for RT signals is slightly different. The
75 effect is to call the system call rt_sigreturn. */
76
77 static const struct tramp_frame sparc32_linux_rt_sigframe =
78 {
79 SIGTRAMP_FRAME,
80 4,
81 {
82 { 0x82102065, -1 }, /* mov __NR_rt_sigreturn, %g1 */
83 { 0x91d02010, -1 }, /* ta 0x10 */
84 { TRAMP_SENTINEL_INSN, -1 }
85 },
86 sparc32_linux_sigframe_init
87 };
88
89 static void
90 sparc32_linux_sigframe_init (const struct tramp_frame *self,
91 struct frame_info *this_frame,
92 struct trad_frame_cache *this_cache,
93 CORE_ADDR func)
94 {
95 CORE_ADDR base, addr, sp_addr;
96 int regnum;
97
98 base = get_frame_register_unsigned (this_frame, SPARC_O1_REGNUM);
99 if (self == &sparc32_linux_rt_sigframe)
100 base += 128;
101
102 /* Offsets from <bits/sigcontext.h>. */
103
104 trad_frame_set_reg_addr (this_cache, SPARC32_PSR_REGNUM, base + 0);
105 trad_frame_set_reg_addr (this_cache, SPARC32_PC_REGNUM, base + 4);
106 trad_frame_set_reg_addr (this_cache, SPARC32_NPC_REGNUM, base + 8);
107 trad_frame_set_reg_addr (this_cache, SPARC32_Y_REGNUM, base + 12);
108
109 /* Since %g0 is always zero, keep the identity encoding. */
110 addr = base + 20;
111 sp_addr = base + 16 + ((SPARC_SP_REGNUM - SPARC_G0_REGNUM) * 4);
112 for (regnum = SPARC_G1_REGNUM; regnum <= SPARC_O7_REGNUM; regnum++)
113 {
114 trad_frame_set_reg_addr (this_cache, regnum, addr);
115 addr += 4;
116 }
117
118 base = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
119 addr = get_frame_memory_unsigned (this_frame, sp_addr, 4);
120
121 for (regnum = SPARC_L0_REGNUM; regnum <= SPARC_I7_REGNUM; regnum++)
122 {
123 trad_frame_set_reg_addr (this_cache, regnum, addr);
124 addr += 4;
125 }
126 trad_frame_set_id (this_cache, frame_id_build (base, func));
127 }
128 \f
129 /* Return the address of a system call's alternative return
130 address. */
131
132 static CORE_ADDR
133 sparc32_linux_step_trap (struct frame_info *frame, unsigned long insn)
134 {
135 if (insn == 0x91d02010)
136 {
137 ULONGEST sc_num = get_frame_register_unsigned (frame, SPARC_G1_REGNUM);
138
139 /* __NR_rt_sigreturn is 101 and __NR_sigreturn is 216 */
140 if (sc_num == 101 || sc_num == 216)
141 {
142 ULONGEST sp, pc_offset;
143
144 sp = get_frame_register_unsigned (frame, SPARC_SP_REGNUM);
145
146 /* The kernel puts the sigreturn registers on the stack,
147 and this is where the signal unwinding state is take from
148 when returning from a signal.
149
150 For __NR_sigreturn, this register area sits 96 bytes from
151 the base of the stack. The saved PC sits 4 bytes into the
152 sigreturn register save area.
153
154 For __NR_rt_sigreturn a siginfo_t, which is 128 bytes, sits
155 right before the sigreturn register save area. */
156
157 pc_offset = 96 + 4;
158 if (sc_num == 101)
159 pc_offset += 128;
160
161 return read_memory_unsigned_integer (sp + pc_offset, 4);
162 }
163 }
164
165 return 0;
166 }
167 \f
168
169 const struct sparc_gregset sparc32_linux_core_gregset =
170 {
171 32 * 4, /* %psr */
172 33 * 4, /* %pc */
173 34 * 4, /* %npc */
174 35 * 4, /* %y */
175 -1, /* %wim */
176 -1, /* %tbr */
177 1 * 4, /* %g1 */
178 16 * 4, /* %l0 */
179 4, /* y size */
180 };
181 \f
182
183 static void
184 sparc32_linux_supply_core_gregset (const struct regset *regset,
185 struct regcache *regcache,
186 int regnum, const void *gregs, size_t len)
187 {
188 sparc32_supply_gregset (&sparc32_linux_core_gregset, regcache, regnum, gregs);
189 }
190
191 static void
192 sparc32_linux_collect_core_gregset (const struct regset *regset,
193 const struct regcache *regcache,
194 int regnum, void *gregs, size_t len)
195 {
196 sparc32_collect_gregset (&sparc32_linux_core_gregset, regcache, regnum, gregs);
197 }
198
199 static void
200 sparc32_linux_supply_core_fpregset (const struct regset *regset,
201 struct regcache *regcache,
202 int regnum, const void *fpregs, size_t len)
203 {
204 sparc32_supply_fpregset (regcache, regnum, fpregs);
205 }
206
207 static void
208 sparc32_linux_collect_core_fpregset (const struct regset *regset,
209 const struct regcache *regcache,
210 int regnum, void *fpregs, size_t len)
211 {
212 sparc32_collect_fpregset (regcache, regnum, fpregs);
213 }
214
215 /* Set the program counter for process PTID to PC. */
216
217 #define PSR_SYSCALL 0x00004000
218
219 static void
220 sparc_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
221 {
222 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
223 ULONGEST psr;
224
225 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
226 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
227
228 /* Clear the "in syscall" bit to prevent the kernel from
229 messing with the PCs we just installed, if we happen to be
230 within an interrupted system call that the kernel wants to
231 restart.
232
233 Note that after we return from the dummy call, the PSR et al.
234 registers will be automatically restored, and the kernel
235 continues to restart the system call at this point. */
236 regcache_cooked_read_unsigned (regcache, SPARC32_PSR_REGNUM, &psr);
237 psr &= ~PSR_SYSCALL;
238 regcache_cooked_write_unsigned (regcache, SPARC32_PSR_REGNUM, psr);
239 }
240
241 \f
242
243 static void
244 sparc32_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
245 {
246 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
247
248 tdep->gregset = regset_alloc (gdbarch, sparc32_linux_supply_core_gregset,
249 sparc32_linux_collect_core_gregset);
250 tdep->sizeof_gregset = 152;
251
252 tdep->fpregset = regset_alloc (gdbarch, sparc32_linux_supply_core_fpregset,
253 sparc32_linux_collect_core_fpregset);
254 tdep->sizeof_fpregset = 396;
255
256 tramp_frame_prepend_unwinder (gdbarch, &sparc32_linux_sigframe);
257 tramp_frame_prepend_unwinder (gdbarch, &sparc32_linux_rt_sigframe);
258
259 /* GNU/Linux has SVR4-style shared libraries... */
260 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
261 set_solib_svr4_fetch_link_map_offsets
262 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
263
264 /* ...which means that we need some special handling when doing
265 prologue analysis. */
266 tdep->plt_entry_size = 12;
267
268 /* Enable TLS support. */
269 set_gdbarch_fetch_tls_load_module_address (gdbarch,
270 svr4_fetch_objfile_link_map);
271
272 /* Make sure we can single-step over signal return system calls. */
273 tdep->step_trap = sparc32_linux_step_trap;
274
275 /* Hook in the DWARF CFI frame unwinder. */
276 dwarf2_append_unwinders (gdbarch);
277
278 set_gdbarch_write_pc (gdbarch, sparc_linux_write_pc);
279 }
280
281 /* Provide a prototype to silence -Wmissing-prototypes. */
282 extern void _initialize_sparc_linux_tdep (void);
283
284 void
285 _initialize_sparc_linux_tdep (void)
286 {
287 gdbarch_register_osabi (bfd_arch_sparc, 0, GDB_OSABI_LINUX,
288 sparc32_linux_init_abi);
289 }
This page took 0.034685 seconds and 4 git commands to generate.