611f50d578a6d23e85dbce6ae35bd0d8e17c72f1
[deliverable/binutils-gdb.git] / gdb / sparc-nat.c
1 /* Functions specific to running gdb native on a SPARC running SunOS4.
2 Copyright 1989, 1992, 1993, 1994, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "inferior.h"
24 #include "target.h"
25 #include "gdbcore.h"
26 #include "regcache.h"
27
28 #ifdef HAVE_SYS_PARAM_H
29 #include <sys/param.h>
30 #endif
31 #include <signal.h>
32 #include <sys/ptrace.h>
33 #include <sys/wait.h>
34 #ifdef __linux__
35 #include <asm/reg.h>
36 #else
37 #include <machine/reg.h>
38 #endif
39 #include <sys/user.h>
40
41 /* We don't store all registers immediately when requested, since they
42 get sent over in large chunks anyway. Instead, we accumulate most
43 of the changes and send them over once. "deferred_stores" keeps
44 track of which sets of registers we have locally-changed copies of,
45 so we only need send the groups that have changed. */
46
47 #define INT_REGS 1
48 #define STACK_REGS 2
49 #define FP_REGS 4
50
51 /* Fetch one or more registers from the inferior. REGNO == -1 to get
52 them all. We actually fetch more than requested, when convenient,
53 marking them as valid so we won't fetch them again. */
54
55 void
56 fetch_inferior_registers (int regno)
57 {
58 struct regs inferior_registers;
59 struct fp_status inferior_fp_registers;
60 int i;
61
62 /* We should never be called with deferred stores, because a prerequisite
63 for writing regs is to have fetched them all (PREPARE_TO_STORE), sigh. */
64 if (deferred_stores)
65 internal_error (__FILE__, __LINE__, "failed internal consistency check");
66
67 DO_DEFERRED_STORES;
68
69 /* Global and Out regs are fetched directly, as well as the control
70 registers. If we're getting one of the in or local regs,
71 and the stack pointer has not yet been fetched,
72 we have to do that first, since they're found in memory relative
73 to the stack pointer. */
74 if (regno < O7_REGNUM /* including -1 */
75 || regno >= Y_REGNUM
76 || (!deprecated_register_valid[SP_REGNUM] && regno < I7_REGNUM))
77 {
78 if (0 != ptrace (PTRACE_GETREGS, PIDGET (inferior_ptid),
79 (PTRACE_ARG3_TYPE) & inferior_registers, 0))
80 perror ("ptrace_getregs");
81
82 registers[REGISTER_BYTE (0)] = 0;
83 memcpy (&registers[REGISTER_BYTE (1)], &inferior_registers.r_g1,
84 15 * REGISTER_RAW_SIZE (G0_REGNUM));
85 *(int *) &registers[REGISTER_BYTE (PS_REGNUM)] = inferior_registers.r_ps;
86 *(int *) &registers[REGISTER_BYTE (PC_REGNUM)] = inferior_registers.r_pc;
87 *(int *) &registers[REGISTER_BYTE (NPC_REGNUM)] = inferior_registers.r_npc;
88 *(int *) &registers[REGISTER_BYTE (Y_REGNUM)] = inferior_registers.r_y;
89
90 for (i = G0_REGNUM; i <= O7_REGNUM; i++)
91 deprecated_register_valid[i] = 1;
92 deprecated_register_valid[Y_REGNUM] = 1;
93 deprecated_register_valid[PS_REGNUM] = 1;
94 deprecated_register_valid[PC_REGNUM] = 1;
95 deprecated_register_valid[NPC_REGNUM] = 1;
96 /* If we don't set these valid, read_register_bytes() rereads
97 all the regs every time it is called! FIXME. */
98 deprecated_register_valid[WIM_REGNUM] = 1; /* Not true yet, FIXME */
99 deprecated_register_valid[TBR_REGNUM] = 1; /* Not true yet, FIXME */
100 deprecated_register_valid[CPS_REGNUM] = 1; /* Not true yet, FIXME */
101 }
102
103 /* Floating point registers */
104 if (regno == -1 ||
105 regno == FPS_REGNUM ||
106 (regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31))
107 {
108 if (0 != ptrace (PTRACE_GETFPREGS, PIDGET (inferior_ptid),
109 (PTRACE_ARG3_TYPE) & inferior_fp_registers,
110 0))
111 perror ("ptrace_getfpregs");
112 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], &inferior_fp_registers,
113 sizeof inferior_fp_registers.fpu_fr);
114 memcpy (&registers[REGISTER_BYTE (FPS_REGNUM)],
115 &inferior_fp_registers.Fpu_fsr,
116 sizeof (FPU_FSR_TYPE));
117 for (i = FP0_REGNUM; i <= FP0_REGNUM + 31; i++)
118 deprecated_register_valid[i] = 1;
119 deprecated_register_valid[FPS_REGNUM] = 1;
120 }
121
122 /* These regs are saved on the stack by the kernel. Only read them
123 all (16 ptrace calls!) if we really need them. */
124 if (regno == -1)
125 {
126 CORE_ADDR sp = *(unsigned int *) & registers[REGISTER_BYTE (SP_REGNUM)];
127 target_read_memory (sp, &registers[REGISTER_BYTE (L0_REGNUM)],
128 16 * REGISTER_RAW_SIZE (L0_REGNUM));
129 for (i = L0_REGNUM; i <= I7_REGNUM; i++)
130 deprecated_register_valid[i] = 1;
131 }
132 else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
133 {
134 CORE_ADDR sp = *(unsigned int *) & registers[REGISTER_BYTE (SP_REGNUM)];
135 i = REGISTER_BYTE (regno);
136 if (deprecated_register_valid[regno])
137 printf_unfiltered ("register %d valid and read\n", regno);
138 target_read_memory (sp + i - REGISTER_BYTE (L0_REGNUM),
139 &registers[i], REGISTER_RAW_SIZE (regno));
140 deprecated_register_valid[regno] = 1;
141 }
142 }
143
144 /* Store our register values back into the inferior.
145 If REGNO is -1, do this for all registers.
146 Otherwise, REGNO specifies which register (so we can save time). */
147
148 void
149 store_inferior_registers (int regno)
150 {
151 struct regs inferior_registers;
152 struct fp_status inferior_fp_registers;
153 int wanna_store = INT_REGS + STACK_REGS + FP_REGS;
154
155 /* First decide which pieces of machine-state we need to modify.
156 Default for regno == -1 case is all pieces. */
157 if (regno >= 0)
158 {
159 if (FP0_REGNUM <= regno && regno < FP0_REGNUM + 32)
160 {
161 wanna_store = FP_REGS;
162 }
163 else
164 {
165 if (regno == SP_REGNUM)
166 wanna_store = INT_REGS + STACK_REGS;
167 else if (regno < L0_REGNUM || regno > I7_REGNUM)
168 wanna_store = INT_REGS;
169 else if (regno == FPS_REGNUM)
170 wanna_store = FP_REGS;
171 else
172 wanna_store = STACK_REGS;
173 }
174 }
175
176 /* See if we're forcing the stores to happen now, or deferring. */
177 if (regno == -2)
178 {
179 wanna_store = deferred_stores;
180 deferred_stores = 0;
181 }
182 else
183 {
184 if (wanna_store == STACK_REGS)
185 {
186 /* Fall through and just store one stack reg. If we deferred
187 it, we'd have to store them all, or remember more info. */
188 }
189 else
190 {
191 deferred_stores |= wanna_store;
192 return;
193 }
194 }
195
196 if (wanna_store & STACK_REGS)
197 {
198 CORE_ADDR sp = *(unsigned int *) & registers[REGISTER_BYTE (SP_REGNUM)];
199
200 if (regno < 0 || regno == SP_REGNUM)
201 {
202 if (!deprecated_register_valid[L0_REGNUM + 5])
203 internal_error (__FILE__, __LINE__, "failed internal consistency check");
204 target_write_memory (sp,
205 &registers[REGISTER_BYTE (L0_REGNUM)],
206 16 * REGISTER_RAW_SIZE (L0_REGNUM));
207 }
208 else
209 {
210 if (!deprecated_register_valid[regno])
211 internal_error (__FILE__, __LINE__, "failed internal consistency check");
212 target_write_memory (sp + REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM),
213 &registers[REGISTER_BYTE (regno)],
214 REGISTER_RAW_SIZE (regno));
215 }
216
217 }
218
219 if (wanna_store & INT_REGS)
220 {
221 if (!deprecated_register_valid[G1_REGNUM])
222 internal_error (__FILE__, __LINE__, "failed internal consistency check");
223
224 memcpy (&inferior_registers.r_g1, &registers[REGISTER_BYTE (G1_REGNUM)],
225 15 * REGISTER_RAW_SIZE (G1_REGNUM));
226
227 inferior_registers.r_ps =
228 *(int *) &registers[REGISTER_BYTE (PS_REGNUM)];
229 inferior_registers.r_pc =
230 *(int *) &registers[REGISTER_BYTE (PC_REGNUM)];
231 inferior_registers.r_npc =
232 *(int *) &registers[REGISTER_BYTE (NPC_REGNUM)];
233 inferior_registers.r_y =
234 *(int *) &registers[REGISTER_BYTE (Y_REGNUM)];
235
236 if (0 != ptrace (PTRACE_SETREGS, PIDGET (inferior_ptid),
237 (PTRACE_ARG3_TYPE) & inferior_registers, 0))
238 perror ("ptrace_setregs");
239 }
240
241 if (wanna_store & FP_REGS)
242 {
243 if (!deprecated_register_valid[FP0_REGNUM + 9])
244 internal_error (__FILE__, __LINE__, "failed internal consistency check");
245 memcpy (&inferior_fp_registers, &registers[REGISTER_BYTE (FP0_REGNUM)],
246 sizeof inferior_fp_registers.fpu_fr);
247 memcpy (&inferior_fp_registers.Fpu_fsr,
248 &registers[REGISTER_BYTE (FPS_REGNUM)], sizeof (FPU_FSR_TYPE));
249 if (0 !=
250 ptrace (PTRACE_SETFPREGS, PIDGET (inferior_ptid),
251 (PTRACE_ARG3_TYPE) & inferior_fp_registers, 0))
252 perror ("ptrace_setfpregs");
253 }
254 }
255
256 /* Provide registers to GDB from a core file.
257
258 CORE_REG_SECT points to an array of bytes, which are the contents
259 of a `note' from a core file which BFD thinks might contain
260 register contents. CORE_REG_SIZE is its size.
261
262 WHICH says which register set corelow suspects this is:
263 0 --- the general-purpose register set
264 2 --- the floating-point register set
265
266 IGNORE is unused. */
267
268 static void
269 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
270 int which, CORE_ADDR ignore)
271 {
272
273 if (which == 0)
274 {
275
276 /* Integer registers */
277
278 #define gregs ((struct regs *)core_reg_sect)
279 /* G0 *always* holds 0. */
280 *(int *) &registers[REGISTER_BYTE (0)] = 0;
281
282 /* The globals and output registers. */
283 memcpy (&registers[REGISTER_BYTE (G1_REGNUM)], &gregs->r_g1,
284 15 * REGISTER_RAW_SIZE (G1_REGNUM));
285 *(int *) &registers[REGISTER_BYTE (PS_REGNUM)] = gregs->r_ps;
286 *(int *) &registers[REGISTER_BYTE (PC_REGNUM)] = gregs->r_pc;
287 *(int *) &registers[REGISTER_BYTE (NPC_REGNUM)] = gregs->r_npc;
288 *(int *) &registers[REGISTER_BYTE (Y_REGNUM)] = gregs->r_y;
289
290 /* My best guess at where to get the locals and input
291 registers is exactly where they usually are, right above
292 the stack pointer. If the core dump was caused by a bus error
293 from blowing away the stack pointer (as is possible) then this
294 won't work, but it's worth the try. */
295 {
296 int sp;
297
298 sp = *(int *) &registers[REGISTER_BYTE (SP_REGNUM)];
299 if (0 != target_read_memory (sp, &registers[REGISTER_BYTE (L0_REGNUM)],
300 16 * REGISTER_RAW_SIZE (L0_REGNUM)))
301 {
302 /* fprintf_unfiltered so user can still use gdb */
303 fprintf_unfiltered (gdb_stderr,
304 "Couldn't read input and local registers from core file\n");
305 }
306 }
307 }
308 else if (which == 2)
309 {
310
311 /* Floating point registers */
312
313 #define fpuregs ((struct fpu *) core_reg_sect)
314 if (core_reg_size >= sizeof (struct fpu))
315 {
316 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], fpuregs->fpu_regs,
317 sizeof (fpuregs->fpu_regs));
318 memcpy (&registers[REGISTER_BYTE (FPS_REGNUM)], &fpuregs->fpu_fsr,
319 sizeof (FPU_FSR_TYPE));
320 }
321 else
322 fprintf_unfiltered (gdb_stderr, "Couldn't read float regs from core file\n");
323 }
324 }
325
326 int
327 kernel_u_size (void)
328 {
329 return (sizeof (struct user));
330 }
331 \f
332
333 /* Register that we are able to handle sparc core file formats.
334 FIXME: is this really bfd_target_unknown_flavour? */
335
336 static struct core_fns sparc_core_fns =
337 {
338 bfd_target_unknown_flavour, /* core_flavour */
339 default_check_format, /* check_format */
340 default_core_sniffer, /* core_sniffer */
341 fetch_core_registers, /* core_read_registers */
342 NULL /* next */
343 };
344
345 void
346 _initialize_core_sparc (void)
347 {
348 add_core_fns (&sparc_core_fns);
349 }
This page took 0.042552 seconds and 4 git commands to generate.