* parse.c (write_dollar_variable): New function.
[deliverable/binutils-gdb.git] / gdb / sparc-nat.c
1 /* Functions specific to running gdb native on a SPARC running SunOS4.
2 Copyright 1989, 1992, 1993, 1994 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23
24 #include <signal.h>
25 #include <sys/ptrace.h>
26 #include <sys/wait.h>
27 #include <machine/reg.h>
28
29 /* We don't store all registers immediately when requested, since they
30 get sent over in large chunks anyway. Instead, we accumulate most
31 of the changes and send them over once. "deferred_stores" keeps
32 track of which sets of registers we have locally-changed copies of,
33 so we only need send the groups that have changed. */
34
35 #define INT_REGS 1
36 #define STACK_REGS 2
37 #define FP_REGS 4
38
39 /* Fetch one or more registers from the inferior. REGNO == -1 to get
40 them all. We actually fetch more than requested, when convenient,
41 marking them as valid so we won't fetch them again. */
42
43 void
44 fetch_inferior_registers (regno)
45 int regno;
46 {
47 struct regs inferior_registers;
48 struct fp_status inferior_fp_registers;
49 int i;
50
51 /* We should never be called with deferred stores, because a prerequisite
52 for writing regs is to have fetched them all (PREPARE_TO_STORE), sigh. */
53 if (deferred_stores) abort();
54
55 DO_DEFERRED_STORES;
56
57 /* Global and Out regs are fetched directly, as well as the control
58 registers. If we're getting one of the in or local regs,
59 and the stack pointer has not yet been fetched,
60 we have to do that first, since they're found in memory relative
61 to the stack pointer. */
62 if (regno < O7_REGNUM /* including -1 */
63 || regno >= Y_REGNUM
64 || (!register_valid[SP_REGNUM] && regno < I7_REGNUM))
65 {
66 if (0 != ptrace (PTRACE_GETREGS, inferior_pid,
67 (PTRACE_ARG3_TYPE) &inferior_registers, 0))
68 perror("ptrace_getregs");
69
70 registers[REGISTER_BYTE (0)] = 0;
71 memcpy (&registers[REGISTER_BYTE (1)], &inferior_registers.r_g1,
72 15 * REGISTER_RAW_SIZE (G0_REGNUM));
73 *(int *)&registers[REGISTER_BYTE (PS_REGNUM)] = inferior_registers.r_ps;
74 *(int *)&registers[REGISTER_BYTE (PC_REGNUM)] = inferior_registers.r_pc;
75 *(int *)&registers[REGISTER_BYTE (NPC_REGNUM)] = inferior_registers.r_npc;
76 *(int *)&registers[REGISTER_BYTE (Y_REGNUM)] = inferior_registers.r_y;
77
78 for (i = G0_REGNUM; i <= O7_REGNUM; i++)
79 register_valid[i] = 1;
80 register_valid[Y_REGNUM] = 1;
81 register_valid[PS_REGNUM] = 1;
82 register_valid[PC_REGNUM] = 1;
83 register_valid[NPC_REGNUM] = 1;
84 /* If we don't set these valid, read_register_bytes() rereads
85 all the regs every time it is called! FIXME. */
86 register_valid[WIM_REGNUM] = 1; /* Not true yet, FIXME */
87 register_valid[TBR_REGNUM] = 1; /* Not true yet, FIXME */
88 register_valid[CPS_REGNUM] = 1; /* Not true yet, FIXME */
89 }
90
91 /* Floating point registers */
92 if (regno == -1 ||
93 regno == FPS_REGNUM ||
94 (regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31))
95 {
96 if (0 != ptrace (PTRACE_GETFPREGS, inferior_pid,
97 (PTRACE_ARG3_TYPE) &inferior_fp_registers,
98 0))
99 perror("ptrace_getfpregs");
100 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], &inferior_fp_registers,
101 sizeof inferior_fp_registers.fpu_fr);
102 memcpy (&registers[REGISTER_BYTE (FPS_REGNUM)],
103 &inferior_fp_registers.Fpu_fsr,
104 sizeof (FPU_FSR_TYPE));
105 for (i = FP0_REGNUM; i <= FP0_REGNUM+31; i++)
106 register_valid[i] = 1;
107 register_valid[FPS_REGNUM] = 1;
108 }
109
110 /* These regs are saved on the stack by the kernel. Only read them
111 all (16 ptrace calls!) if we really need them. */
112 if (regno == -1)
113 {
114 target_xfer_memory (*(CORE_ADDR*)&registers[REGISTER_BYTE (SP_REGNUM)],
115 &registers[REGISTER_BYTE (L0_REGNUM)],
116 16*REGISTER_RAW_SIZE (L0_REGNUM), 0);
117 for (i = L0_REGNUM; i <= I7_REGNUM; i++)
118 register_valid[i] = 1;
119 }
120 else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
121 {
122 CORE_ADDR sp = *(CORE_ADDR*)&registers[REGISTER_BYTE (SP_REGNUM)];
123 i = REGISTER_BYTE (regno);
124 if (register_valid[regno])
125 printf_unfiltered("register %d valid and read\n", regno);
126 target_xfer_memory (sp + i - REGISTER_BYTE (L0_REGNUM),
127 &registers[i], REGISTER_RAW_SIZE (regno), 0);
128 register_valid[regno] = 1;
129 }
130 }
131
132 /* Store our register values back into the inferior.
133 If REGNO is -1, do this for all registers.
134 Otherwise, REGNO specifies which register (so we can save time). */
135
136 void
137 store_inferior_registers (regno)
138 int regno;
139 {
140 struct regs inferior_registers;
141 struct fp_status inferior_fp_registers;
142 int wanna_store = INT_REGS + STACK_REGS + FP_REGS;
143
144 /* First decide which pieces of machine-state we need to modify.
145 Default for regno == -1 case is all pieces. */
146 if (regno >= 0)
147 if (FP0_REGNUM <= regno && regno < FP0_REGNUM + 32)
148 {
149 wanna_store = FP_REGS;
150 }
151 else
152 {
153 if (regno == SP_REGNUM)
154 wanna_store = INT_REGS + STACK_REGS;
155 else if (regno < L0_REGNUM || regno > I7_REGNUM)
156 wanna_store = INT_REGS;
157 else if (regno == FPS_REGNUM)
158 wanna_store = FP_REGS;
159 else
160 wanna_store = STACK_REGS;
161 }
162
163 /* See if we're forcing the stores to happen now, or deferring. */
164 if (regno == -2)
165 {
166 wanna_store = deferred_stores;
167 deferred_stores = 0;
168 }
169 else
170 {
171 if (wanna_store == STACK_REGS)
172 {
173 /* Fall through and just store one stack reg. If we deferred
174 it, we'd have to store them all, or remember more info. */
175 }
176 else
177 {
178 deferred_stores |= wanna_store;
179 return;
180 }
181 }
182
183 if (wanna_store & STACK_REGS)
184 {
185 CORE_ADDR sp = *(CORE_ADDR *)&registers[REGISTER_BYTE (SP_REGNUM)];
186
187 if (regno < 0 || regno == SP_REGNUM)
188 {
189 if (!register_valid[L0_REGNUM+5]) abort();
190 target_xfer_memory (sp,
191 &registers[REGISTER_BYTE (L0_REGNUM)],
192 16*REGISTER_RAW_SIZE (L0_REGNUM), 1);
193 }
194 else
195 {
196 if (!register_valid[regno]) abort();
197 target_xfer_memory (sp + REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM),
198 &registers[REGISTER_BYTE (regno)],
199 REGISTER_RAW_SIZE (regno), 1);
200 }
201
202 }
203
204 if (wanna_store & INT_REGS)
205 {
206 if (!register_valid[G1_REGNUM]) abort();
207
208 memcpy (&inferior_registers.r_g1, &registers[REGISTER_BYTE (G1_REGNUM)],
209 15 * REGISTER_RAW_SIZE (G1_REGNUM));
210
211 inferior_registers.r_ps =
212 *(int *)&registers[REGISTER_BYTE (PS_REGNUM)];
213 inferior_registers.r_pc =
214 *(int *)&registers[REGISTER_BYTE (PC_REGNUM)];
215 inferior_registers.r_npc =
216 *(int *)&registers[REGISTER_BYTE (NPC_REGNUM)];
217 inferior_registers.r_y =
218 *(int *)&registers[REGISTER_BYTE (Y_REGNUM)];
219
220 if (0 != ptrace (PTRACE_SETREGS, inferior_pid,
221 (PTRACE_ARG3_TYPE) &inferior_registers, 0))
222 perror("ptrace_setregs");
223 }
224
225 if (wanna_store & FP_REGS)
226 {
227 if (!register_valid[FP0_REGNUM+9]) abort();
228 memcpy (&inferior_fp_registers, &registers[REGISTER_BYTE (FP0_REGNUM)],
229 sizeof inferior_fp_registers.fpu_fr);
230 memcpy (&inferior_fp_registers.Fpu_fsr,
231 &registers[REGISTER_BYTE (FPS_REGNUM)], sizeof (FPU_FSR_TYPE));
232 if (0 !=
233 ptrace (PTRACE_SETFPREGS, inferior_pid,
234 (PTRACE_ARG3_TYPE) &inferior_fp_registers, 0))
235 perror("ptrace_setfpregs");
236 }
237 }
238
239
240 void
241 fetch_core_registers (core_reg_sect, core_reg_size, which, ignore)
242 char *core_reg_sect;
243 unsigned core_reg_size;
244 int which;
245 unsigned int ignore; /* reg addr, unused in this version */
246 {
247
248 if (which == 0) {
249
250 /* Integer registers */
251
252 #define gregs ((struct regs *)core_reg_sect)
253 /* G0 *always* holds 0. */
254 *(int *)&registers[REGISTER_BYTE (0)] = 0;
255
256 /* The globals and output registers. */
257 memcpy (&registers[REGISTER_BYTE (G1_REGNUM)], &gregs->r_g1,
258 15 * REGISTER_RAW_SIZE (G1_REGNUM));
259 *(int *)&registers[REGISTER_BYTE (PS_REGNUM)] = gregs->r_ps;
260 *(int *)&registers[REGISTER_BYTE (PC_REGNUM)] = gregs->r_pc;
261 *(int *)&registers[REGISTER_BYTE (NPC_REGNUM)] = gregs->r_npc;
262 *(int *)&registers[REGISTER_BYTE (Y_REGNUM)] = gregs->r_y;
263
264 /* My best guess at where to get the locals and input
265 registers is exactly where they usually are, right above
266 the stack pointer. If the core dump was caused by a bus error
267 from blowing away the stack pointer (as is possible) then this
268 won't work, but it's worth the try. */
269 {
270 int sp;
271
272 sp = *(int *)&registers[REGISTER_BYTE (SP_REGNUM)];
273 if (0 != target_read_memory (sp, &registers[REGISTER_BYTE (L0_REGNUM)],
274 16 * REGISTER_RAW_SIZE (L0_REGNUM)))
275 {
276 /* fprintf_unfiltered so user can still use gdb */
277 fprintf_unfiltered (gdb_stderr,
278 "Couldn't read input and local registers from core file\n");
279 }
280 }
281 } else if (which == 2) {
282
283 /* Floating point registers */
284
285 #define fpuregs ((struct fpu *) core_reg_sect)
286 if (core_reg_size >= sizeof (struct fpu))
287 {
288 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], fpuregs->fpu_regs,
289 sizeof (fpuregs->fpu_regs));
290 memcpy (&registers[REGISTER_BYTE (FPS_REGNUM)], &fpuregs->fpu_fsr,
291 sizeof (FPU_FSR_TYPE));
292 }
293 else
294 fprintf_unfiltered (gdb_stderr, "Couldn't read float regs from core file\n");
295 }
296 }
297
This page took 0.044912 seconds and 4 git commands to generate.