* am29k-tdep.c (initialize_29k): Fix call_scratch_address doc.
[deliverable/binutils-gdb.git] / gdb / sparc-nat.c
1 /* Functions specific to running gdb native on a Sun 4 running sunos4.
2 Copyright (C) 1989, 1992, Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23
24 #include <signal.h>
25 #include <sys/ptrace.h>
26 #include <sys/wait.h>
27 #include <machine/reg.h>
28
29 /* We don't store all registers immediately when requested, since they
30 get sent over in large chunks anyway. Instead, we accumulate most
31 of the changes and send them over once. "deferred_stores" keeps
32 track of which sets of registers we have locally-changed copies of,
33 so we only need send the groups that have changed. */
34
35 #define INT_REGS 1
36 #define STACK_REGS 2
37 #define FP_REGS 4
38
39 /* Fetch one or more registers from the inferior. REGNO == -1 to get
40 them all. We actually fetch more than requested, when convenient,
41 marking them as valid so we won't fetch them again. */
42
43 void
44 fetch_inferior_registers (regno)
45 int regno;
46 {
47 struct regs inferior_registers;
48 struct fp_status inferior_fp_registers;
49 int i;
50
51 /* We should never be called with deferred stores, because a prerequisite
52 for writing regs is to have fetched them all (PREPARE_TO_STORE), sigh. */
53 if (deferred_stores) abort();
54
55 DO_DEFERRED_STORES;
56
57 /* Global and Out regs are fetched directly, as well as the control
58 registers. If we're getting one of the in or local regs,
59 and the stack pointer has not yet been fetched,
60 we have to do that first, since they're found in memory relative
61 to the stack pointer. */
62 if (regno < O7_REGNUM /* including -1 */
63 || regno >= Y_REGNUM
64 || (!register_valid[SP_REGNUM] && regno < I7_REGNUM))
65 {
66 if (0 != ptrace (PTRACE_GETREGS, inferior_pid,
67 (PTRACE_ARG3_TYPE) &inferior_registers, 0))
68 perror("ptrace_getregs");
69
70 registers[REGISTER_BYTE (0)] = 0;
71 memcpy (&registers[REGISTER_BYTE (1)], &inferior_registers.r_g1,
72 15 * REGISTER_RAW_SIZE (G0_REGNUM));
73 *(int *)&registers[REGISTER_BYTE (PS_REGNUM)] = inferior_registers.r_ps;
74 *(int *)&registers[REGISTER_BYTE (PC_REGNUM)] = inferior_registers.r_pc;
75 *(int *)&registers[REGISTER_BYTE (NPC_REGNUM)] = inferior_registers.r_npc;
76 *(int *)&registers[REGISTER_BYTE (Y_REGNUM)] = inferior_registers.r_y;
77
78 for (i = G0_REGNUM; i <= O7_REGNUM; i++)
79 register_valid[i] = 1;
80 register_valid[Y_REGNUM] = 1;
81 register_valid[PS_REGNUM] = 1;
82 register_valid[PC_REGNUM] = 1;
83 register_valid[NPC_REGNUM] = 1;
84 /* If we don't set these valid, read_register_bytes() rereads
85 all the regs every time it is called! FIXME. */
86 register_valid[WIM_REGNUM] = 1; /* Not true yet, FIXME */
87 register_valid[TBR_REGNUM] = 1; /* Not true yet, FIXME */
88 register_valid[FPS_REGNUM] = 1; /* Not true yet, FIXME */
89 register_valid[CPS_REGNUM] = 1; /* Not true yet, FIXME */
90 }
91
92 /* Floating point registers */
93 if (regno == -1 || (regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31))
94 {
95 if (0 != ptrace (PTRACE_GETFPREGS, inferior_pid,
96 (PTRACE_ARG3_TYPE) &inferior_fp_registers,
97 0))
98 perror("ptrace_getfpregs");
99 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], &inferior_fp_registers,
100 sizeof inferior_fp_registers.fpu_fr);
101 /* bcopy (&inferior_fp_registers.Fpu_fsr,
102 &registers[REGISTER_BYTE (FPS_REGNUM)],
103 sizeof (FPU_FSR_TYPE)); FIXME??? -- gnu@cyg */
104 for (i = FP0_REGNUM; i <= FP0_REGNUM+31; i++)
105 register_valid[i] = 1;
106 register_valid[FPS_REGNUM] = 1;
107 }
108
109 /* These regs are saved on the stack by the kernel. Only read them
110 all (16 ptrace calls!) if we really need them. */
111 if (regno == -1)
112 {
113 target_xfer_memory (*(CORE_ADDR*)&registers[REGISTER_BYTE (SP_REGNUM)],
114 &registers[REGISTER_BYTE (L0_REGNUM)],
115 16*REGISTER_RAW_SIZE (L0_REGNUM), 0);
116 for (i = L0_REGNUM; i <= I7_REGNUM; i++)
117 register_valid[i] = 1;
118 }
119 else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
120 {
121 CORE_ADDR sp = *(CORE_ADDR*)&registers[REGISTER_BYTE (SP_REGNUM)];
122 i = REGISTER_BYTE (regno);
123 if (register_valid[regno])
124 printf("register %d valid and read\n", regno);
125 target_xfer_memory (sp + i - REGISTER_BYTE (L0_REGNUM),
126 &registers[i], REGISTER_RAW_SIZE (regno), 0);
127 register_valid[regno] = 1;
128 }
129 }
130
131 /* Store our register values back into the inferior.
132 If REGNO is -1, do this for all registers.
133 Otherwise, REGNO specifies which register (so we can save time). */
134
135 void
136 store_inferior_registers (regno)
137 int regno;
138 {
139 struct regs inferior_registers;
140 struct fp_status inferior_fp_registers;
141 int wanna_store = INT_REGS + STACK_REGS + FP_REGS;
142
143 /* First decide which pieces of machine-state we need to modify.
144 Default for regno == -1 case is all pieces. */
145 if (regno >= 0)
146 if (FP0_REGNUM <= regno && regno < FP0_REGNUM + 32)
147 {
148 wanna_store = FP_REGS;
149 }
150 else
151 {
152 if (regno == SP_REGNUM)
153 wanna_store = INT_REGS + STACK_REGS;
154 else if (regno < L0_REGNUM || regno > I7_REGNUM)
155 wanna_store = INT_REGS;
156 else
157 wanna_store = STACK_REGS;
158 }
159
160 /* See if we're forcing the stores to happen now, or deferring. */
161 if (regno == -2)
162 {
163 wanna_store = deferred_stores;
164 deferred_stores = 0;
165 }
166 else
167 {
168 if (wanna_store == STACK_REGS)
169 {
170 /* Fall through and just store one stack reg. If we deferred
171 it, we'd have to store them all, or remember more info. */
172 }
173 else
174 {
175 deferred_stores |= wanna_store;
176 return;
177 }
178 }
179
180 if (wanna_store & STACK_REGS)
181 {
182 CORE_ADDR sp = *(CORE_ADDR *)&registers[REGISTER_BYTE (SP_REGNUM)];
183
184 if (regno < 0 || regno == SP_REGNUM)
185 {
186 if (!register_valid[L0_REGNUM+5]) abort();
187 target_xfer_memory (sp,
188 &registers[REGISTER_BYTE (L0_REGNUM)],
189 16*REGISTER_RAW_SIZE (L0_REGNUM), 1);
190 }
191 else
192 {
193 if (!register_valid[regno]) abort();
194 target_xfer_memory (sp + REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM),
195 &registers[REGISTER_BYTE (regno)],
196 REGISTER_RAW_SIZE (regno), 1);
197 }
198
199 }
200
201 if (wanna_store & INT_REGS)
202 {
203 if (!register_valid[G1_REGNUM]) abort();
204
205 memcpy (&inferior_registers.r_g1, &registers[REGISTER_BYTE (G1_REGNUM)],
206 15 * REGISTER_RAW_SIZE (G1_REGNUM));
207
208 inferior_registers.r_ps =
209 *(int *)&registers[REGISTER_BYTE (PS_REGNUM)];
210 inferior_registers.r_pc =
211 *(int *)&registers[REGISTER_BYTE (PC_REGNUM)];
212 inferior_registers.r_npc =
213 *(int *)&registers[REGISTER_BYTE (NPC_REGNUM)];
214 inferior_registers.r_y =
215 *(int *)&registers[REGISTER_BYTE (Y_REGNUM)];
216
217 if (0 != ptrace (PTRACE_SETREGS, inferior_pid,
218 (PTRACE_ARG3_TYPE) &inferior_registers, 0))
219 perror("ptrace_setregs");
220 }
221
222 if (wanna_store & FP_REGS)
223 {
224 if (!register_valid[FP0_REGNUM+9]) abort();
225 memcpy (&inferior_fp_registers, &registers[REGISTER_BYTE (FP0_REGNUM)],
226 sizeof inferior_fp_registers.fpu_fr);
227
228 /* memcpy (&inferior_fp_registers.Fpu_fsr,
229 &registers[REGISTER_BYTE (FPS_REGNUM)], sizeof (FPU_FSR_TYPE));
230 ****/
231 if (0 !=
232 ptrace (PTRACE_SETFPREGS, inferior_pid,
233 (PTRACE_ARG3_TYPE) &inferior_fp_registers, 0))
234 perror("ptrace_setfpregs");
235 }
236 }
237
238
239 void
240 fetch_core_registers (core_reg_sect, core_reg_size, which, ignore)
241 char *core_reg_sect;
242 unsigned core_reg_size;
243 int which;
244 unsigned int ignore; /* reg addr, unused in this version */
245 {
246
247 if (which == 0) {
248
249 /* Integer registers */
250
251 #define gregs ((struct regs *)core_reg_sect)
252 /* G0 *always* holds 0. */
253 *(int *)&registers[REGISTER_BYTE (0)] = 0;
254
255 /* The globals and output registers. */
256 memcpy (&registers[REGISTER_BYTE (G1_REGNUM)], &gregs->r_g1,
257 15 * REGISTER_RAW_SIZE (G1_REGNUM));
258 *(int *)&registers[REGISTER_BYTE (PS_REGNUM)] = gregs->r_ps;
259 *(int *)&registers[REGISTER_BYTE (PC_REGNUM)] = gregs->r_pc;
260 *(int *)&registers[REGISTER_BYTE (NPC_REGNUM)] = gregs->r_npc;
261 *(int *)&registers[REGISTER_BYTE (Y_REGNUM)] = gregs->r_y;
262
263 /* My best guess at where to get the locals and input
264 registers is exactly where they usually are, right above
265 the stack pointer. If the core dump was caused by a bus error
266 from blowing away the stack pointer (as is possible) then this
267 won't work, but it's worth the try. */
268 {
269 int sp;
270
271 sp = *(int *)&registers[REGISTER_BYTE (SP_REGNUM)];
272 if (0 != target_read_memory (sp, &registers[REGISTER_BYTE (L0_REGNUM)],
273 16 * REGISTER_RAW_SIZE (L0_REGNUM)))
274 {
275 /* fprintf so user can still use gdb */
276 fprintf (stderr,
277 "Couldn't read input and local registers from core file\n");
278 }
279 }
280 } else if (which == 2) {
281
282 /* Floating point registers */
283
284 #define fpuregs ((struct fpu *) core_reg_sect)
285 if (core_reg_size >= sizeof (struct fpu))
286 {
287 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], fpuregs->fpu_regs,
288 sizeof (fpuregs->fpu_regs));
289 memcpy (&registers[REGISTER_BYTE (FPS_REGNUM)], &fpuregs->fpu_fsr,
290 sizeof (FPU_FSR_TYPE));
291 }
292 else
293 fprintf (stderr, "Couldn't read float regs from core file\n");
294 }
295 }
296
This page took 0.035622 seconds and 4 git commands to generate.