* alpha-nat.c (fetch_core_registers): Match Sep 4 gdbcore.h prototype
[deliverable/binutils-gdb.git] / gdb / sparc-nat.c
1 /* Functions specific to running gdb native on a SPARC running SunOS4.
2 Copyright 1989, 1992, 1993, 1994, 1996 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbcore.h"
24
25 #include <signal.h>
26 #include <sys/ptrace.h>
27 #include <sys/wait.h>
28 #include <machine/reg.h>
29 #include <sys/user.h>
30
31 /* We don't store all registers immediately when requested, since they
32 get sent over in large chunks anyway. Instead, we accumulate most
33 of the changes and send them over once. "deferred_stores" keeps
34 track of which sets of registers we have locally-changed copies of,
35 so we only need send the groups that have changed. */
36
37 #define INT_REGS 1
38 #define STACK_REGS 2
39 #define FP_REGS 4
40
41 static void
42 fetch_core_registers PARAMS ((char *, unsigned int, int, CORE_ADDR));
43
44 /* Fetch one or more registers from the inferior. REGNO == -1 to get
45 them all. We actually fetch more than requested, when convenient,
46 marking them as valid so we won't fetch them again. */
47
48 void
49 fetch_inferior_registers (regno)
50 int regno;
51 {
52 struct regs inferior_registers;
53 struct fp_status inferior_fp_registers;
54 int i;
55
56 /* We should never be called with deferred stores, because a prerequisite
57 for writing regs is to have fetched them all (PREPARE_TO_STORE), sigh. */
58 if (deferred_stores) abort();
59
60 DO_DEFERRED_STORES;
61
62 /* Global and Out regs are fetched directly, as well as the control
63 registers. If we're getting one of the in or local regs,
64 and the stack pointer has not yet been fetched,
65 we have to do that first, since they're found in memory relative
66 to the stack pointer. */
67 if (regno < O7_REGNUM /* including -1 */
68 || regno >= Y_REGNUM
69 || (!register_valid[SP_REGNUM] && regno < I7_REGNUM))
70 {
71 if (0 != ptrace (PTRACE_GETREGS, inferior_pid,
72 (PTRACE_ARG3_TYPE) &inferior_registers, 0))
73 perror("ptrace_getregs");
74
75 registers[REGISTER_BYTE (0)] = 0;
76 memcpy (&registers[REGISTER_BYTE (1)], &inferior_registers.r_g1,
77 15 * REGISTER_RAW_SIZE (G0_REGNUM));
78 *(int *)&registers[REGISTER_BYTE (PS_REGNUM)] = inferior_registers.r_ps;
79 *(int *)&registers[REGISTER_BYTE (PC_REGNUM)] = inferior_registers.r_pc;
80 *(int *)&registers[REGISTER_BYTE (NPC_REGNUM)] = inferior_registers.r_npc;
81 *(int *)&registers[REGISTER_BYTE (Y_REGNUM)] = inferior_registers.r_y;
82
83 for (i = G0_REGNUM; i <= O7_REGNUM; i++)
84 register_valid[i] = 1;
85 register_valid[Y_REGNUM] = 1;
86 register_valid[PS_REGNUM] = 1;
87 register_valid[PC_REGNUM] = 1;
88 register_valid[NPC_REGNUM] = 1;
89 /* If we don't set these valid, read_register_bytes() rereads
90 all the regs every time it is called! FIXME. */
91 register_valid[WIM_REGNUM] = 1; /* Not true yet, FIXME */
92 register_valid[TBR_REGNUM] = 1; /* Not true yet, FIXME */
93 register_valid[CPS_REGNUM] = 1; /* Not true yet, FIXME */
94 }
95
96 /* Floating point registers */
97 if (regno == -1 ||
98 regno == FPS_REGNUM ||
99 (regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31))
100 {
101 if (0 != ptrace (PTRACE_GETFPREGS, inferior_pid,
102 (PTRACE_ARG3_TYPE) &inferior_fp_registers,
103 0))
104 perror("ptrace_getfpregs");
105 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], &inferior_fp_registers,
106 sizeof inferior_fp_registers.fpu_fr);
107 memcpy (&registers[REGISTER_BYTE (FPS_REGNUM)],
108 &inferior_fp_registers.Fpu_fsr,
109 sizeof (FPU_FSR_TYPE));
110 for (i = FP0_REGNUM; i <= FP0_REGNUM+31; i++)
111 register_valid[i] = 1;
112 register_valid[FPS_REGNUM] = 1;
113 }
114
115 /* These regs are saved on the stack by the kernel. Only read them
116 all (16 ptrace calls!) if we really need them. */
117 if (regno == -1)
118 {
119 target_xfer_memory (*(CORE_ADDR*)&registers[REGISTER_BYTE (SP_REGNUM)],
120 &registers[REGISTER_BYTE (L0_REGNUM)],
121 16*REGISTER_RAW_SIZE (L0_REGNUM), 0);
122 for (i = L0_REGNUM; i <= I7_REGNUM; i++)
123 register_valid[i] = 1;
124 }
125 else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
126 {
127 CORE_ADDR sp = *(CORE_ADDR*)&registers[REGISTER_BYTE (SP_REGNUM)];
128 i = REGISTER_BYTE (regno);
129 if (register_valid[regno])
130 printf_unfiltered("register %d valid and read\n", regno);
131 target_xfer_memory (sp + i - REGISTER_BYTE (L0_REGNUM),
132 &registers[i], REGISTER_RAW_SIZE (regno), 0);
133 register_valid[regno] = 1;
134 }
135 }
136
137 /* Store our register values back into the inferior.
138 If REGNO is -1, do this for all registers.
139 Otherwise, REGNO specifies which register (so we can save time). */
140
141 void
142 store_inferior_registers (regno)
143 int regno;
144 {
145 struct regs inferior_registers;
146 struct fp_status inferior_fp_registers;
147 int wanna_store = INT_REGS + STACK_REGS + FP_REGS;
148
149 /* First decide which pieces of machine-state we need to modify.
150 Default for regno == -1 case is all pieces. */
151 if (regno >= 0)
152 if (FP0_REGNUM <= regno && regno < FP0_REGNUM + 32)
153 {
154 wanna_store = FP_REGS;
155 }
156 else
157 {
158 if (regno == SP_REGNUM)
159 wanna_store = INT_REGS + STACK_REGS;
160 else if (regno < L0_REGNUM || regno > I7_REGNUM)
161 wanna_store = INT_REGS;
162 else if (regno == FPS_REGNUM)
163 wanna_store = FP_REGS;
164 else
165 wanna_store = STACK_REGS;
166 }
167
168 /* See if we're forcing the stores to happen now, or deferring. */
169 if (regno == -2)
170 {
171 wanna_store = deferred_stores;
172 deferred_stores = 0;
173 }
174 else
175 {
176 if (wanna_store == STACK_REGS)
177 {
178 /* Fall through and just store one stack reg. If we deferred
179 it, we'd have to store them all, or remember more info. */
180 }
181 else
182 {
183 deferred_stores |= wanna_store;
184 return;
185 }
186 }
187
188 if (wanna_store & STACK_REGS)
189 {
190 CORE_ADDR sp = *(CORE_ADDR *)&registers[REGISTER_BYTE (SP_REGNUM)];
191
192 if (regno < 0 || regno == SP_REGNUM)
193 {
194 if (!register_valid[L0_REGNUM+5]) abort();
195 target_xfer_memory (sp,
196 &registers[REGISTER_BYTE (L0_REGNUM)],
197 16*REGISTER_RAW_SIZE (L0_REGNUM), 1);
198 }
199 else
200 {
201 if (!register_valid[regno]) abort();
202 target_xfer_memory (sp + REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM),
203 &registers[REGISTER_BYTE (regno)],
204 REGISTER_RAW_SIZE (regno), 1);
205 }
206
207 }
208
209 if (wanna_store & INT_REGS)
210 {
211 if (!register_valid[G1_REGNUM]) abort();
212
213 memcpy (&inferior_registers.r_g1, &registers[REGISTER_BYTE (G1_REGNUM)],
214 15 * REGISTER_RAW_SIZE (G1_REGNUM));
215
216 inferior_registers.r_ps =
217 *(int *)&registers[REGISTER_BYTE (PS_REGNUM)];
218 inferior_registers.r_pc =
219 *(int *)&registers[REGISTER_BYTE (PC_REGNUM)];
220 inferior_registers.r_npc =
221 *(int *)&registers[REGISTER_BYTE (NPC_REGNUM)];
222 inferior_registers.r_y =
223 *(int *)&registers[REGISTER_BYTE (Y_REGNUM)];
224
225 if (0 != ptrace (PTRACE_SETREGS, inferior_pid,
226 (PTRACE_ARG3_TYPE) &inferior_registers, 0))
227 perror("ptrace_setregs");
228 }
229
230 if (wanna_store & FP_REGS)
231 {
232 if (!register_valid[FP0_REGNUM+9]) abort();
233 memcpy (&inferior_fp_registers, &registers[REGISTER_BYTE (FP0_REGNUM)],
234 sizeof inferior_fp_registers.fpu_fr);
235 memcpy (&inferior_fp_registers.Fpu_fsr,
236 &registers[REGISTER_BYTE (FPS_REGNUM)], sizeof (FPU_FSR_TYPE));
237 if (0 !=
238 ptrace (PTRACE_SETFPREGS, inferior_pid,
239 (PTRACE_ARG3_TYPE) &inferior_fp_registers, 0))
240 perror("ptrace_setfpregs");
241 }
242 }
243
244
245 static void
246 fetch_core_registers (core_reg_sect, core_reg_size, which, ignore)
247 char *core_reg_sect;
248 unsigned core_reg_size;
249 int which;
250 CORE_ADDR ignore; /* reg addr, unused in this version */
251 {
252
253 if (which == 0) {
254
255 /* Integer registers */
256
257 #define gregs ((struct regs *)core_reg_sect)
258 /* G0 *always* holds 0. */
259 *(int *)&registers[REGISTER_BYTE (0)] = 0;
260
261 /* The globals and output registers. */
262 memcpy (&registers[REGISTER_BYTE (G1_REGNUM)], &gregs->r_g1,
263 15 * REGISTER_RAW_SIZE (G1_REGNUM));
264 *(int *)&registers[REGISTER_BYTE (PS_REGNUM)] = gregs->r_ps;
265 *(int *)&registers[REGISTER_BYTE (PC_REGNUM)] = gregs->r_pc;
266 *(int *)&registers[REGISTER_BYTE (NPC_REGNUM)] = gregs->r_npc;
267 *(int *)&registers[REGISTER_BYTE (Y_REGNUM)] = gregs->r_y;
268
269 /* My best guess at where to get the locals and input
270 registers is exactly where they usually are, right above
271 the stack pointer. If the core dump was caused by a bus error
272 from blowing away the stack pointer (as is possible) then this
273 won't work, but it's worth the try. */
274 {
275 int sp;
276
277 sp = *(int *)&registers[REGISTER_BYTE (SP_REGNUM)];
278 if (0 != target_read_memory (sp, &registers[REGISTER_BYTE (L0_REGNUM)],
279 16 * REGISTER_RAW_SIZE (L0_REGNUM)))
280 {
281 /* fprintf_unfiltered so user can still use gdb */
282 fprintf_unfiltered (gdb_stderr,
283 "Couldn't read input and local registers from core file\n");
284 }
285 }
286 } else if (which == 2) {
287
288 /* Floating point registers */
289
290 #define fpuregs ((struct fpu *) core_reg_sect)
291 if (core_reg_size >= sizeof (struct fpu))
292 {
293 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], fpuregs->fpu_regs,
294 sizeof (fpuregs->fpu_regs));
295 memcpy (&registers[REGISTER_BYTE (FPS_REGNUM)], &fpuregs->fpu_fsr,
296 sizeof (FPU_FSR_TYPE));
297 }
298 else
299 fprintf_unfiltered (gdb_stderr, "Couldn't read float regs from core file\n");
300 }
301 }
302
303 int
304 kernel_u_size ()
305 {
306 return (sizeof (struct user));
307 }
308
309 \f
310 /* Register that we are able to handle sparc core file formats.
311 FIXME: is this really bfd_target_unknown_flavour? */
312
313 static struct core_fns sparc_core_fns =
314 {
315 bfd_target_unknown_flavour,
316 fetch_core_registers,
317 NULL
318 };
319
320 void
321 _initialize_core_sparc ()
322 {
323 add_core_fns (&sparc_core_fns);
324 }
This page took 0.062924 seconds and 5 git commands to generate.