Protoization.
[deliverable/binutils-gdb.git] / gdb / sparc-nat.c
1 /* Functions specific to running gdb native on a SPARC running SunOS4.
2 Copyright 1989, 1992, 1993, 1994, 1996 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdbcore.h"
25
26 #include <signal.h>
27 #include <sys/ptrace.h>
28 #include <sys/wait.h>
29 #ifdef __linux__
30 #include <asm/reg.h>
31 #else
32 #include <machine/reg.h>
33 #endif
34 #include <sys/user.h>
35
36 /* We don't store all registers immediately when requested, since they
37 get sent over in large chunks anyway. Instead, we accumulate most
38 of the changes and send them over once. "deferred_stores" keeps
39 track of which sets of registers we have locally-changed copies of,
40 so we only need send the groups that have changed. */
41
42 #define INT_REGS 1
43 #define STACK_REGS 2
44 #define FP_REGS 4
45
46 static void fetch_core_registers (char *, unsigned int, int, CORE_ADDR);
47
48 /* Fetch one or more registers from the inferior. REGNO == -1 to get
49 them all. We actually fetch more than requested, when convenient,
50 marking them as valid so we won't fetch them again. */
51
52 void
53 fetch_inferior_registers (int regno)
54 {
55 struct regs inferior_registers;
56 struct fp_status inferior_fp_registers;
57 int i;
58
59 /* We should never be called with deferred stores, because a prerequisite
60 for writing regs is to have fetched them all (PREPARE_TO_STORE), sigh. */
61 if (deferred_stores)
62 abort ();
63
64 DO_DEFERRED_STORES;
65
66 /* Global and Out regs are fetched directly, as well as the control
67 registers. If we're getting one of the in or local regs,
68 and the stack pointer has not yet been fetched,
69 we have to do that first, since they're found in memory relative
70 to the stack pointer. */
71 if (regno < O7_REGNUM /* including -1 */
72 || regno >= Y_REGNUM
73 || (!register_valid[SP_REGNUM] && regno < I7_REGNUM))
74 {
75 if (0 != ptrace (PTRACE_GETREGS, inferior_pid,
76 (PTRACE_ARG3_TYPE) & inferior_registers, 0))
77 perror ("ptrace_getregs");
78
79 registers[REGISTER_BYTE (0)] = 0;
80 memcpy (&registers[REGISTER_BYTE (1)], &inferior_registers.r_g1,
81 15 * REGISTER_RAW_SIZE (G0_REGNUM));
82 *(int *) &registers[REGISTER_BYTE (PS_REGNUM)] = inferior_registers.r_ps;
83 *(int *) &registers[REGISTER_BYTE (PC_REGNUM)] = inferior_registers.r_pc;
84 *(int *) &registers[REGISTER_BYTE (NPC_REGNUM)] = inferior_registers.r_npc;
85 *(int *) &registers[REGISTER_BYTE (Y_REGNUM)] = inferior_registers.r_y;
86
87 for (i = G0_REGNUM; i <= O7_REGNUM; i++)
88 register_valid[i] = 1;
89 register_valid[Y_REGNUM] = 1;
90 register_valid[PS_REGNUM] = 1;
91 register_valid[PC_REGNUM] = 1;
92 register_valid[NPC_REGNUM] = 1;
93 /* If we don't set these valid, read_register_bytes() rereads
94 all the regs every time it is called! FIXME. */
95 register_valid[WIM_REGNUM] = 1; /* Not true yet, FIXME */
96 register_valid[TBR_REGNUM] = 1; /* Not true yet, FIXME */
97 register_valid[CPS_REGNUM] = 1; /* Not true yet, FIXME */
98 }
99
100 /* Floating point registers */
101 if (regno == -1 ||
102 regno == FPS_REGNUM ||
103 (regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31))
104 {
105 if (0 != ptrace (PTRACE_GETFPREGS, inferior_pid,
106 (PTRACE_ARG3_TYPE) & inferior_fp_registers,
107 0))
108 perror ("ptrace_getfpregs");
109 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], &inferior_fp_registers,
110 sizeof inferior_fp_registers.fpu_fr);
111 memcpy (&registers[REGISTER_BYTE (FPS_REGNUM)],
112 &inferior_fp_registers.Fpu_fsr,
113 sizeof (FPU_FSR_TYPE));
114 for (i = FP0_REGNUM; i <= FP0_REGNUM + 31; i++)
115 register_valid[i] = 1;
116 register_valid[FPS_REGNUM] = 1;
117 }
118
119 /* These regs are saved on the stack by the kernel. Only read them
120 all (16 ptrace calls!) if we really need them. */
121 if (regno == -1)
122 {
123 target_read_memory (*(CORE_ADDR *) & registers[REGISTER_BYTE (SP_REGNUM)],
124 &registers[REGISTER_BYTE (L0_REGNUM)],
125 16 * REGISTER_RAW_SIZE (L0_REGNUM));
126 for (i = L0_REGNUM; i <= I7_REGNUM; i++)
127 register_valid[i] = 1;
128 }
129 else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
130 {
131 CORE_ADDR sp = *(CORE_ADDR *) & registers[REGISTER_BYTE (SP_REGNUM)];
132 i = REGISTER_BYTE (regno);
133 if (register_valid[regno])
134 printf_unfiltered ("register %d valid and read\n", regno);
135 target_read_memory (sp + i - REGISTER_BYTE (L0_REGNUM),
136 &registers[i], REGISTER_RAW_SIZE (regno));
137 register_valid[regno] = 1;
138 }
139 }
140
141 /* Store our register values back into the inferior.
142 If REGNO is -1, do this for all registers.
143 Otherwise, REGNO specifies which register (so we can save time). */
144
145 void
146 store_inferior_registers (int regno)
147 {
148 struct regs inferior_registers;
149 struct fp_status inferior_fp_registers;
150 int wanna_store = INT_REGS + STACK_REGS + FP_REGS;
151
152 /* First decide which pieces of machine-state we need to modify.
153 Default for regno == -1 case is all pieces. */
154 if (regno >= 0)
155 if (FP0_REGNUM <= regno && regno < FP0_REGNUM + 32)
156 {
157 wanna_store = FP_REGS;
158 }
159 else
160 {
161 if (regno == SP_REGNUM)
162 wanna_store = INT_REGS + STACK_REGS;
163 else if (regno < L0_REGNUM || regno > I7_REGNUM)
164 wanna_store = INT_REGS;
165 else if (regno == FPS_REGNUM)
166 wanna_store = FP_REGS;
167 else
168 wanna_store = STACK_REGS;
169 }
170
171 /* See if we're forcing the stores to happen now, or deferring. */
172 if (regno == -2)
173 {
174 wanna_store = deferred_stores;
175 deferred_stores = 0;
176 }
177 else
178 {
179 if (wanna_store == STACK_REGS)
180 {
181 /* Fall through and just store one stack reg. If we deferred
182 it, we'd have to store them all, or remember more info. */
183 }
184 else
185 {
186 deferred_stores |= wanna_store;
187 return;
188 }
189 }
190
191 if (wanna_store & STACK_REGS)
192 {
193 CORE_ADDR sp = *(CORE_ADDR *) & registers[REGISTER_BYTE (SP_REGNUM)];
194
195 if (regno < 0 || regno == SP_REGNUM)
196 {
197 if (!register_valid[L0_REGNUM + 5])
198 abort ();
199 target_write_memory (sp,
200 &registers[REGISTER_BYTE (L0_REGNUM)],
201 16 * REGISTER_RAW_SIZE (L0_REGNUM));
202 }
203 else
204 {
205 if (!register_valid[regno])
206 abort ();
207 target_write_memory (sp + REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM),
208 &registers[REGISTER_BYTE (regno)],
209 REGISTER_RAW_SIZE (regno));
210 }
211
212 }
213
214 if (wanna_store & INT_REGS)
215 {
216 if (!register_valid[G1_REGNUM])
217 abort ();
218
219 memcpy (&inferior_registers.r_g1, &registers[REGISTER_BYTE (G1_REGNUM)],
220 15 * REGISTER_RAW_SIZE (G1_REGNUM));
221
222 inferior_registers.r_ps =
223 *(int *) &registers[REGISTER_BYTE (PS_REGNUM)];
224 inferior_registers.r_pc =
225 *(int *) &registers[REGISTER_BYTE (PC_REGNUM)];
226 inferior_registers.r_npc =
227 *(int *) &registers[REGISTER_BYTE (NPC_REGNUM)];
228 inferior_registers.r_y =
229 *(int *) &registers[REGISTER_BYTE (Y_REGNUM)];
230
231 if (0 != ptrace (PTRACE_SETREGS, inferior_pid,
232 (PTRACE_ARG3_TYPE) & inferior_registers, 0))
233 perror ("ptrace_setregs");
234 }
235
236 if (wanna_store & FP_REGS)
237 {
238 if (!register_valid[FP0_REGNUM + 9])
239 abort ();
240 memcpy (&inferior_fp_registers, &registers[REGISTER_BYTE (FP0_REGNUM)],
241 sizeof inferior_fp_registers.fpu_fr);
242 memcpy (&inferior_fp_registers.Fpu_fsr,
243 &registers[REGISTER_BYTE (FPS_REGNUM)], sizeof (FPU_FSR_TYPE));
244 if (0 !=
245 ptrace (PTRACE_SETFPREGS, inferior_pid,
246 (PTRACE_ARG3_TYPE) & inferior_fp_registers, 0))
247 perror ("ptrace_setfpregs");
248 }
249 }
250
251 /* Provide registers to GDB from a core file.
252
253 CORE_REG_SECT points to an array of bytes, which are the contents
254 of a `note' from a core file which BFD thinks might contain
255 register contents. CORE_REG_SIZE is its size.
256
257 WHICH says which register set corelow suspects this is:
258 0 --- the general-purpose register set
259 2 --- the floating-point register set
260
261 IGNORE is unused. */
262
263 static void
264 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
265 int which, CORE_ADDR ignore)
266 {
267
268 if (which == 0)
269 {
270
271 /* Integer registers */
272
273 #define gregs ((struct regs *)core_reg_sect)
274 /* G0 *always* holds 0. */
275 *(int *) &registers[REGISTER_BYTE (0)] = 0;
276
277 /* The globals and output registers. */
278 memcpy (&registers[REGISTER_BYTE (G1_REGNUM)], &gregs->r_g1,
279 15 * REGISTER_RAW_SIZE (G1_REGNUM));
280 *(int *) &registers[REGISTER_BYTE (PS_REGNUM)] = gregs->r_ps;
281 *(int *) &registers[REGISTER_BYTE (PC_REGNUM)] = gregs->r_pc;
282 *(int *) &registers[REGISTER_BYTE (NPC_REGNUM)] = gregs->r_npc;
283 *(int *) &registers[REGISTER_BYTE (Y_REGNUM)] = gregs->r_y;
284
285 /* My best guess at where to get the locals and input
286 registers is exactly where they usually are, right above
287 the stack pointer. If the core dump was caused by a bus error
288 from blowing away the stack pointer (as is possible) then this
289 won't work, but it's worth the try. */
290 {
291 int sp;
292
293 sp = *(int *) &registers[REGISTER_BYTE (SP_REGNUM)];
294 if (0 != target_read_memory (sp, &registers[REGISTER_BYTE (L0_REGNUM)],
295 16 * REGISTER_RAW_SIZE (L0_REGNUM)))
296 {
297 /* fprintf_unfiltered so user can still use gdb */
298 fprintf_unfiltered (gdb_stderr,
299 "Couldn't read input and local registers from core file\n");
300 }
301 }
302 }
303 else if (which == 2)
304 {
305
306 /* Floating point registers */
307
308 #define fpuregs ((struct fpu *) core_reg_sect)
309 if (core_reg_size >= sizeof (struct fpu))
310 {
311 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], fpuregs->fpu_regs,
312 sizeof (fpuregs->fpu_regs));
313 memcpy (&registers[REGISTER_BYTE (FPS_REGNUM)], &fpuregs->fpu_fsr,
314 sizeof (FPU_FSR_TYPE));
315 }
316 else
317 fprintf_unfiltered (gdb_stderr, "Couldn't read float regs from core file\n");
318 }
319 }
320
321 int
322 kernel_u_size (void)
323 {
324 return (sizeof (struct user));
325 }
326 \f
327
328 /* Register that we are able to handle sparc core file formats.
329 FIXME: is this really bfd_target_unknown_flavour? */
330
331 static struct core_fns sparc_core_fns =
332 {
333 bfd_target_unknown_flavour, /* core_flavour */
334 default_check_format, /* check_format */
335 default_core_sniffer, /* core_sniffer */
336 fetch_core_registers, /* core_read_registers */
337 NULL /* next */
338 };
339
340 void
341 _initialize_core_sparc (void)
342 {
343 add_core_fns (&sparc_core_fns);
344 }
This page took 0.037791 seconds and 5 git commands to generate.