*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / sparc-stub.c
1 /****************************************************************************
2
3 THIS SOFTWARE IS NOT COPYRIGHTED
4
5 HP offers the following for use in the public domain. HP makes no
6 warranty with regard to the software or it's performance and the
7 user accepts the software "AS IS" with all faults.
8
9 HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD
10 TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES
11 OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
12
13 ****************************************************************************/
14
15 /****************************************************************************
16 * Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $
17 *
18 * Module name: remcom.c $
19 * Revision: 1.34 $
20 * Date: 91/03/09 12:29:49 $
21 * Contributor: Lake Stevens Instrument Division$
22 *
23 * Description: low level support for gdb debugger. $
24 *
25 * Considerations: only works on target hardware $
26 *
27 * Written by: Glenn Engel $
28 * ModuleState: Experimental $
29 *
30 * NOTES: See Below $
31 *
32 * Modified for SPARC by Stu Grossman, Cygnus Support.
33 *
34 * This code has been extensively tested on the Fujitsu SPARClite demo board.
35 *
36 * To enable debugger support, two things need to happen. One, a
37 * call to set_debug_traps() is necessary in order to allow any breakpoints
38 * or error conditions to be properly intercepted and reported to gdb.
39 * Two, a breakpoint needs to be generated to begin communication. This
40 * is most easily accomplished by a call to breakpoint(). Breakpoint()
41 * simulates a breakpoint by executing a trap #1.
42 *
43 *************
44 *
45 * The following gdb commands are supported:
46 *
47 * command function Return value
48 *
49 * g return the value of the CPU registers hex data or ENN
50 * G set the value of the CPU registers OK or ENN
51 *
52 * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
53 * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
54 *
55 * c Resume at current address SNN ( signal NN)
56 * cAA..AA Continue at address AA..AA SNN
57 *
58 * s Step one instruction SNN
59 * sAA..AA Step one instruction from AA..AA SNN
60 *
61 * k kill
62 *
63 * ? What was the last sigval ? SNN (signal NN)
64 *
65 * All commands and responses are sent with a packet which includes a
66 * checksum. A packet consists of
67 *
68 * $<packet info>#<checksum>.
69 *
70 * where
71 * <packet info> :: <characters representing the command or response>
72 * <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>>
73 *
74 * When a packet is received, it is first acknowledged with either '+' or '-'.
75 * '+' indicates a successful transfer. '-' indicates a failed transfer.
76 *
77 * Example:
78 *
79 * Host: Reply:
80 * $m0,10#2a +$00010203040506070809101112131415#42
81 *
82 ****************************************************************************/
83
84 #include <string.h>
85 #include <signal.h>
86
87 /************************************************************************
88 *
89 * external low-level support routines
90 */
91
92 extern void putDebugChar(); /* write a single character */
93 extern int getDebugChar(); /* read and return a single char */
94
95 /************************************************************************/
96 /* BUFMAX defines the maximum number of characters in inbound/outbound buffers*/
97 /* at least NUMREGBYTES*2 are needed for register packets */
98 #define BUFMAX 2048
99
100 static int initialized = 0; /* !0 means we've been initialized */
101
102 static void set_mem_fault_trap();
103
104 static const char hexchars[]="0123456789abcdef";
105
106 #define NUMREGS 72
107
108 /* Number of bytes of registers. */
109 #define NUMREGBYTES (NUMREGS * 4)
110 enum regnames {G0, G1, G2, G3, G4, G5, G6, G7,
111 O0, O1, O2, O3, O4, O5, SP, O7,
112 L0, L1, L2, L3, L4, L5, L6, L7,
113 I0, I1, I2, I3, I4, I5, FP, I7,
114
115 F0, F1, F2, F3, F4, F5, F6, F7,
116 F8, F9, F10, F11, F12, F13, F14, F15,
117 F16, F17, F18, F19, F20, F21, F22, F23,
118 F24, F25, F26, F27, F28, F29, F30, F31,
119 Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR };
120
121 /*************************** ASSEMBLY CODE MACROS *************************/
122 /* */
123
124 extern void trap_low();
125
126 asm("
127 .reserve trapstack, 1000 * 4, \"bss\", 8
128
129 .data
130 .align 4
131
132 in_trap_handler:
133 .word 0
134
135 .text
136 .align 4
137
138 ! This function is called when any SPARC trap (except window overflow or
139 ! underflow) occurs. It makes sure that the invalid register window is still
140 ! available before jumping into C code. It will also restore the world if you
141 ! return from handle_exception.
142
143 .globl _trap_low
144 _trap_low:
145 mov %psr, %l0
146 mov %wim, %l3
147
148 srl %l3, %l0, %l4 ! wim >> cwp
149 cmp %l4, 1
150 bne window_fine ! Branch if not in the invalid window
151 nop
152
153 ! Handle window overflow
154
155 mov %g1, %l4 ! Save g1, we use it to hold the wim
156 srl %l3, 1, %g1 ! Rotate wim right
157 tst %g1
158 bg good_wim ! Branch if new wim is non-zero
159 nop
160
161 ! At this point, we need to bring a 1 into the high order bit of the wim.
162 ! Since we don't want to make any assumptions about the number of register
163 ! windows, we figure it out dynamically so as to setup the wim correctly.
164
165 not %g1 ! Fill g1 with ones
166 mov %g1, %wim ! Fill the wim with ones
167 nop
168 nop
169 nop
170 mov %wim, %g1 ! Read back the wim
171 inc %g1 ! Now g1 has 1 just to left of wim
172 srl %g1, 1, %g1 ! Now put 1 at top of wim
173 mov %g0, %wim ! Clear wim so that subsequent save
174 nop ! won't trap
175 nop
176 nop
177
178 good_wim:
179 save %g0, %g0, %g0 ! Slip into next window
180 mov %g1, %wim ! Install the new wim
181
182 std %l0, [%sp + 0 * 4] ! save L & I registers
183 std %l2, [%sp + 2 * 4]
184 std %l4, [%sp + 4 * 4]
185 std %l6, [%sp + 6 * 4]
186
187 std %i0, [%sp + 8 * 4]
188 std %i2, [%sp + 10 * 4]
189 std %i4, [%sp + 12 * 4]
190 std %i6, [%sp + 14 * 4]
191
192 restore ! Go back to trap window.
193 mov %l4, %g1 ! Restore %g1
194
195 window_fine:
196 sethi %hi(in_trap_handler), %l4
197 ld [%lo(in_trap_handler) + %l4], %l5
198 tst %l5
199 bg recursive_trap
200 inc %l5
201
202 set trapstack+1000*4, %sp ! Switch to trap stack
203
204 recursive_trap:
205 st %l5, [%lo(in_trap_handler) + %l4]
206 sub %sp,(16+1+6+1+72)*4,%sp ! Make room for input & locals
207 ! + hidden arg + arg spill
208 ! + doubleword alignment
209 ! + registers[72] local var
210
211 std %g0, [%sp + (24 + 0) * 4] ! registers[Gx]
212 std %g2, [%sp + (24 + 2) * 4]
213 std %g4, [%sp + (24 + 4) * 4]
214 std %g6, [%sp + (24 + 6) * 4]
215
216 std %i0, [%sp + (24 + 8) * 4] ! registers[Ox]
217 std %i2, [%sp + (24 + 10) * 4]
218 std %i4, [%sp + (24 + 12) * 4]
219 std %i6, [%sp + (24 + 14) * 4]
220 ! F0->F31 not implemented
221 mov %y, %l4
222 mov %tbr, %l5
223 st %l4, [%sp + (24 + 64) * 4] ! Y
224 st %l0, [%sp + (24 + 65) * 4] ! PSR
225 st %l3, [%sp + (24 + 66) * 4] ! WIM
226 st %l5, [%sp + (24 + 67) * 4] ! TBR
227 st %l1, [%sp + (24 + 68) * 4] ! PC
228 st %l2, [%sp + (24 + 69) * 4] ! NPC
229
230 ! CPSR and FPSR not impl
231
232 or %l0, 0xf20, %l4
233 mov %l4, %psr ! Turn on traps, disable interrupts
234
235 call _handle_exception
236 add %sp, 24 * 4, %o0 ! Pass address of registers
237
238 ! Reload all of the registers that aren't on the stack
239
240 ld [%sp + (24 + 1) * 4], %g1 ! registers[Gx]
241 ldd [%sp + (24 + 2) * 4], %g2
242 ldd [%sp + (24 + 4) * 4], %g4
243 ldd [%sp + (24 + 6) * 4], %g6
244
245 ldd [%sp + (24 + 8) * 4], %i0 ! registers[Ox]
246 ldd [%sp + (24 + 10) * 4], %i2
247 ldd [%sp + (24 + 12) * 4], %i4
248 ldd [%sp + (24 + 14) * 4], %i6
249
250 ldd [%sp + (24 + 64) * 4], %l0 ! Y & PSR
251 ldd [%sp + (24 + 68) * 4], %l2 ! PC & NPC
252
253 restore ! Ensure that previous window is valid
254 save %g0, %g0, %g0 ! by causing a window_underflow trap
255
256 mov %l0, %y
257 mov %l1, %psr ! Make sure that traps are disabled
258 ! for rett
259
260 sethi %hi(in_trap_handler), %l4
261 ld [%lo(in_trap_handler) + %l4], %l5
262 dec %l5
263 st %l5, [%lo(in_trap_handler) + %l4]
264
265 jmpl %l2, %g0 ! Restore old PC
266 rett %l3 ! Restore old nPC
267 ");
268
269 /* Convert ch from a hex digit to an int */
270
271 static int
272 hex (unsigned char ch)
273 {
274 if (ch >= 'a' && ch <= 'f')
275 return ch-'a'+10;
276 if (ch >= '0' && ch <= '9')
277 return ch-'0';
278 if (ch >= 'A' && ch <= 'F')
279 return ch-'A'+10;
280 return -1;
281 }
282
283 static char remcomInBuffer[BUFMAX];
284 static char remcomOutBuffer[BUFMAX];
285
286 /* scan for the sequence $<data>#<checksum> */
287
288 unsigned char *
289 getpacket (void)
290 {
291 unsigned char *buffer = &remcomInBuffer[0];
292 unsigned char checksum;
293 unsigned char xmitcsum;
294 int count;
295 char ch;
296
297 while (1)
298 {
299 /* wait around for the start character, ignore all other characters */
300 while ((ch = getDebugChar ()) != '$')
301 ;
302
303 retry:
304 checksum = 0;
305 xmitcsum = -1;
306 count = 0;
307
308 /* now, read until a # or end of buffer is found */
309 while (count < BUFMAX - 1)
310 {
311 ch = getDebugChar ();
312 if (ch == '$')
313 goto retry;
314 if (ch == '#')
315 break;
316 checksum = checksum + ch;
317 buffer[count] = ch;
318 count = count + 1;
319 }
320 buffer[count] = 0;
321
322 if (ch == '#')
323 {
324 ch = getDebugChar ();
325 xmitcsum = hex (ch) << 4;
326 ch = getDebugChar ();
327 xmitcsum += hex (ch);
328
329 if (checksum != xmitcsum)
330 {
331 putDebugChar ('-'); /* failed checksum */
332 }
333 else
334 {
335 putDebugChar ('+'); /* successful transfer */
336
337 /* if a sequence char is present, reply the sequence ID */
338 if (buffer[2] == ':')
339 {
340 putDebugChar (buffer[0]);
341 putDebugChar (buffer[1]);
342
343 return &buffer[3];
344 }
345
346 return &buffer[0];
347 }
348 }
349 }
350 }
351
352 /* send the packet in buffer. */
353
354 static void
355 putpacket (unsigned char *buffer)
356 {
357 unsigned char checksum;
358 int count;
359 unsigned char ch;
360
361 /* $<packet info>#<checksum>. */
362 do
363 {
364 putDebugChar('$');
365 checksum = 0;
366 count = 0;
367
368 while (ch = buffer[count])
369 {
370 putDebugChar(ch);
371 checksum += ch;
372 count += 1;
373 }
374
375 putDebugChar('#');
376 putDebugChar(hexchars[checksum >> 4]);
377 putDebugChar(hexchars[checksum & 0xf]);
378
379 }
380 while (getDebugChar() != '+');
381 }
382
383 /* Indicate to caller of mem2hex or hex2mem that there has been an
384 error. */
385 static volatile int mem_err = 0;
386
387 /* Convert the memory pointed to by mem into hex, placing result in buf.
388 * Return a pointer to the last char put in buf (null), in case of mem fault,
389 * return 0.
390 * If MAY_FAULT is non-zero, then we will handle memory faults by returning
391 * a 0, else treat a fault like any other fault in the stub.
392 */
393
394 static unsigned char *
395 mem2hex (unsigned char *mem, unsigned char *buf, int count, int may_fault)
396 {
397 unsigned char ch;
398
399 set_mem_fault_trap(may_fault);
400
401 while (count-- > 0)
402 {
403 ch = *mem++;
404 if (mem_err)
405 return 0;
406 *buf++ = hexchars[ch >> 4];
407 *buf++ = hexchars[ch & 0xf];
408 }
409
410 *buf = 0;
411
412 set_mem_fault_trap(0);
413
414 return buf;
415 }
416
417 /* convert the hex array pointed to by buf into binary to be placed in mem
418 * return a pointer to the character AFTER the last byte written */
419
420 static char *
421 hex2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault)
422 {
423 int i;
424 unsigned char ch;
425
426 set_mem_fault_trap(may_fault);
427
428 for (i=0; i<count; i++)
429 {
430 ch = hex(*buf++) << 4;
431 ch |= hex(*buf++);
432 *mem++ = ch;
433 if (mem_err)
434 return 0;
435 }
436
437 set_mem_fault_trap(0);
438
439 return mem;
440 }
441
442 /* This table contains the mapping between SPARC hardware trap types, and
443 signals, which are primarily what GDB understands. It also indicates
444 which hardware traps we need to commandeer when initializing the stub. */
445
446 static struct hard_trap_info
447 {
448 unsigned char tt; /* Trap type code for SPARClite */
449 unsigned char signo; /* Signal that we map this trap into */
450 } hard_trap_info[] = {
451 {1, SIGSEGV}, /* instruction access error */
452 {2, SIGILL}, /* privileged instruction */
453 {3, SIGILL}, /* illegal instruction */
454 {4, SIGEMT}, /* fp disabled */
455 {36, SIGEMT}, /* cp disabled */
456 {7, SIGBUS}, /* mem address not aligned */
457 {9, SIGSEGV}, /* data access exception */
458 {10, SIGEMT}, /* tag overflow */
459 {128+1, SIGTRAP}, /* ta 1 - normal breakpoint instruction */
460 {0, 0} /* Must be last */
461 };
462
463 /* Set up exception handlers for tracing and breakpoints */
464
465 void
466 set_debug_traps (void)
467 {
468 struct hard_trap_info *ht;
469
470 for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
471 exceptionHandler(ht->tt, trap_low);
472
473 initialized = 1;
474 }
475
476 asm ("
477 ! Trap handler for memory errors. This just sets mem_err to be non-zero. It
478 ! assumes that %l1 is non-zero. This should be safe, as it is doubtful that
479 ! 0 would ever contain code that could mem fault. This routine will skip
480 ! past the faulting instruction after setting mem_err.
481
482 .text
483 .align 4
484
485 _fltr_set_mem_err:
486 sethi %hi(_mem_err), %l0
487 st %l1, [%l0 + %lo(_mem_err)]
488 jmpl %l2, %g0
489 rett %l2+4
490 ");
491
492 static void
493 set_mem_fault_trap (int enable)
494 {
495 extern void fltr_set_mem_err();
496 mem_err = 0;
497
498 if (enable)
499 exceptionHandler(9, fltr_set_mem_err);
500 else
501 exceptionHandler(9, trap_low);
502 }
503
504 /* Convert the SPARC hardware trap type code to a unix signal number. */
505
506 static int
507 computeSignal (int tt)
508 {
509 struct hard_trap_info *ht;
510
511 for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
512 if (ht->tt == tt)
513 return ht->signo;
514
515 return SIGHUP; /* default for things we don't know about */
516 }
517
518 /*
519 * While we find nice hex chars, build an int.
520 * Return number of chars processed.
521 */
522
523 static int
524 hexToInt(char **ptr, int *intValue)
525 {
526 int numChars = 0;
527 int hexValue;
528
529 *intValue = 0;
530
531 while (**ptr)
532 {
533 hexValue = hex(**ptr);
534 if (hexValue < 0)
535 break;
536
537 *intValue = (*intValue << 4) | hexValue;
538 numChars ++;
539
540 (*ptr)++;
541 }
542
543 return (numChars);
544 }
545
546 /*
547 * This function does all command procesing for interfacing to gdb. It
548 * returns 1 if you should skip the instruction at the trap address, 0
549 * otherwise.
550 */
551
552 extern void breakinst();
553
554 static void
555 handle_exception (unsigned long *registers)
556 {
557 int tt; /* Trap type */
558 int sigval;
559 int addr;
560 int length;
561 char *ptr;
562 unsigned long *sp;
563
564 /* First, we must force all of the windows to be spilled out */
565
566 asm(" save %sp, -64, %sp
567 save %sp, -64, %sp
568 save %sp, -64, %sp
569 save %sp, -64, %sp
570 save %sp, -64, %sp
571 save %sp, -64, %sp
572 save %sp, -64, %sp
573 save %sp, -64, %sp
574 restore
575 restore
576 restore
577 restore
578 restore
579 restore
580 restore
581 restore
582 ");
583
584 if (registers[PC] == (unsigned long)breakinst)
585 {
586 registers[PC] = registers[NPC];
587 registers[NPC] += 4;
588 }
589
590 sp = (unsigned long *)registers[SP];
591
592 tt = (registers[TBR] >> 4) & 0xff;
593
594 /* reply to host that an exception has occurred */
595 sigval = computeSignal(tt);
596 ptr = remcomOutBuffer;
597
598 *ptr++ = 'T';
599 *ptr++ = hexchars[sigval >> 4];
600 *ptr++ = hexchars[sigval & 0xf];
601
602 *ptr++ = hexchars[PC >> 4];
603 *ptr++ = hexchars[PC & 0xf];
604 *ptr++ = ':';
605 ptr = mem2hex((char *)&registers[PC], ptr, 4, 0);
606 *ptr++ = ';';
607
608 *ptr++ = hexchars[FP >> 4];
609 *ptr++ = hexchars[FP & 0xf];
610 *ptr++ = ':';
611 ptr = mem2hex(sp + 8 + 6, ptr, 4, 0); /* FP */
612 *ptr++ = ';';
613
614 *ptr++ = hexchars[SP >> 4];
615 *ptr++ = hexchars[SP & 0xf];
616 *ptr++ = ':';
617 ptr = mem2hex((char *)&sp, ptr, 4, 0);
618 *ptr++ = ';';
619
620 *ptr++ = hexchars[NPC >> 4];
621 *ptr++ = hexchars[NPC & 0xf];
622 *ptr++ = ':';
623 ptr = mem2hex((char *)&registers[NPC], ptr, 4, 0);
624 *ptr++ = ';';
625
626 *ptr++ = hexchars[O7 >> 4];
627 *ptr++ = hexchars[O7 & 0xf];
628 *ptr++ = ':';
629 ptr = mem2hex((char *)&registers[O7], ptr, 4, 0);
630 *ptr++ = ';';
631
632 *ptr++ = 0;
633
634 putpacket(remcomOutBuffer);
635
636 while (1)
637 {
638 remcomOutBuffer[0] = 0;
639
640 ptr = getpacket();
641 switch (*ptr++)
642 {
643 case '?':
644 remcomOutBuffer[0] = 'S';
645 remcomOutBuffer[1] = hexchars[sigval >> 4];
646 remcomOutBuffer[2] = hexchars[sigval & 0xf];
647 remcomOutBuffer[3] = 0;
648 break;
649
650 case 'd': /* toggle debug flag */
651 break;
652
653 case 'g': /* return the value of the CPU registers */
654 {
655 ptr = remcomOutBuffer;
656 ptr = mem2hex((char *)registers, ptr, 16 * 4, 0); /* G & O regs */
657 ptr = mem2hex(sp + 0, ptr, 16 * 4, 0); /* L & I regs */
658 memset(ptr, '0', 32 * 8); /* Floating point */
659 mem2hex((char *)&registers[Y],
660 ptr + 32 * 4 * 2,
661 8 * 4,
662 0); /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
663 }
664 break;
665
666 case 'G': /* set the value of the CPU registers - return OK */
667 {
668 unsigned long *newsp, psr;
669
670 psr = registers[PSR];
671
672 hex2mem(ptr, (char *)registers, 16 * 4, 0); /* G & O regs */
673 hex2mem(ptr + 16 * 4 * 2, sp + 0, 16 * 4, 0); /* L & I regs */
674 hex2mem(ptr + 64 * 4 * 2, (char *)&registers[Y],
675 8 * 4, 0); /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
676
677 /* See if the stack pointer has moved. If so, then copy the saved
678 locals and ins to the new location. This keeps the window
679 overflow and underflow routines happy. */
680
681 newsp = (unsigned long *)registers[SP];
682 if (sp != newsp)
683 sp = memcpy(newsp, sp, 16 * 4);
684
685 /* Don't allow CWP to be modified. */
686
687 if (psr != registers[PSR])
688 registers[PSR] = (psr & 0x1f) | (registers[PSR] & ~0x1f);
689
690 strcpy(remcomOutBuffer,"OK");
691 }
692 break;
693
694 case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */
695 /* Try to read %x,%x. */
696
697 if (hexToInt(&ptr, &addr)
698 && *ptr++ == ','
699 && hexToInt(&ptr, &length))
700 {
701 if (mem2hex((char *)addr, remcomOutBuffer, length, 1))
702 break;
703
704 strcpy (remcomOutBuffer, "E03");
705 }
706 else
707 strcpy(remcomOutBuffer,"E01");
708 break;
709
710 case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */
711 /* Try to read '%x,%x:'. */
712
713 if (hexToInt(&ptr, &addr)
714 && *ptr++ == ','
715 && hexToInt(&ptr, &length)
716 && *ptr++ == ':')
717 {
718 if (hex2mem(ptr, (char *)addr, length, 1))
719 strcpy(remcomOutBuffer, "OK");
720 else
721 strcpy(remcomOutBuffer, "E03");
722 }
723 else
724 strcpy(remcomOutBuffer, "E02");
725 break;
726
727 case 'c': /* cAA..AA Continue at address AA..AA(optional) */
728 /* try to read optional parameter, pc unchanged if no parm */
729
730 if (hexToInt(&ptr, &addr))
731 {
732 registers[PC] = addr;
733 registers[NPC] = addr + 4;
734 }
735
736 /* Need to flush the instruction cache here, as we may have deposited a
737 breakpoint, and the icache probably has no way of knowing that a data ref to
738 some location may have changed something that is in the instruction cache.
739 */
740
741 flush_i_cache();
742 return;
743
744 /* kill the program */
745 case 'k' : /* do nothing */
746 break;
747 #if 0
748 case 't': /* Test feature */
749 asm (" std %f30,[%sp]");
750 break;
751 #endif
752 case 'r': /* Reset */
753 asm ("call 0
754 nop ");
755 break;
756 } /* switch */
757
758 /* reply to the request */
759 putpacket(remcomOutBuffer);
760 }
761 }
762
763 /* This function will generate a breakpoint exception. It is used at the
764 beginning of a program to sync up with a debugger and can be used
765 otherwise as a quick means to stop program execution and "break" into
766 the debugger. */
767
768 void
769 breakpoint (void)
770 {
771 if (!initialized)
772 return;
773
774 asm(" .globl _breakinst
775
776 _breakinst: ta 1
777 ");
778 }
This page took 0.045529 seconds and 4 git commands to generate.