2005-02-18 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for SPARC.
2
3 Copyright 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "dis-asm.h"
25 #include "floatformat.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "gdbcore.h"
30 #include "gdbtypes.h"
31 #include "inferior.h"
32 #include "symtab.h"
33 #include "objfiles.h"
34 #include "osabi.h"
35 #include "regcache.h"
36 #include "target.h"
37 #include "value.h"
38
39 #include "gdb_assert.h"
40 #include "gdb_string.h"
41
42 #include "sparc-tdep.h"
43
44 struct regset;
45
46 /* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
49 lists changes with respect to the original 32-bit psABI as defined
50 in the "System V ABI, SPARC Processor Supplement".
51
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
58 2.x is SVR4-based. */
59
60 /* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
64
65 /* The SPARC Floating-Point Quad-Precision format is similar to
66 big-endian IA-64 Quad-recision format. */
67 #define floatformat_sparc_quad floatformat_ia64_quad_big
68
69 /* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
72 #undef BIAS
73 #define BIAS 2047
74
75 /* Macros to extract fields from SPARC instructions. */
76 #define X_OP(i) (((i) >> 30) & 0x3)
77 #define X_RD(i) (((i) >> 25) & 0x1f)
78 #define X_A(i) (((i) >> 29) & 1)
79 #define X_COND(i) (((i) >> 25) & 0xf)
80 #define X_OP2(i) (((i) >> 22) & 0x7)
81 #define X_IMM22(i) ((i) & 0x3fffff)
82 #define X_OP3(i) (((i) >> 19) & 0x3f)
83 #define X_RS1(i) (((i) >> 14) & 0x1f)
84 #define X_I(i) (((i) >> 13) & 1)
85 /* Sign extension macros. */
86 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
87 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
88 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
89
90 /* Fetch the instruction at PC. Instructions are always big-endian
91 even if the processor operates in little-endian mode. */
92
93 unsigned long
94 sparc_fetch_instruction (CORE_ADDR pc)
95 {
96 unsigned char buf[4];
97 unsigned long insn;
98 int i;
99
100 /* If we can't read the instruction at PC, return zero. */
101 if (target_read_memory (pc, buf, sizeof (buf)))
102 return 0;
103
104 insn = 0;
105 for (i = 0; i < sizeof (buf); i++)
106 insn = (insn << 8) | buf[i];
107 return insn;
108 }
109 \f
110
111 /* Return non-zero if the instruction corresponding to PC is an "unimp"
112 instruction. */
113
114 static int
115 sparc_is_unimp_insn (CORE_ADDR pc)
116 {
117 const unsigned long insn = sparc_fetch_instruction (pc);
118
119 return ((insn & 0xc1c00000) == 0);
120 }
121
122 /* OpenBSD/sparc includes StackGhost, which according to the author's
123 website http://stackghost.cerias.purdue.edu "... transparently and
124 automatically protects applications' stack frames; more
125 specifically, it guards the return pointers. The protection
126 mechanisms require no application source or binary modification and
127 imposes only a negligible performance penalty."
128
129 The same website provides the following description of how
130 StackGhost works:
131
132 "StackGhost interfaces with the kernel trap handler that would
133 normally write out registers to the stack and the handler that
134 would read them back in. By XORing a cookie into the
135 return-address saved in the user stack when it is actually written
136 to the stack, and then XOR it out when the return-address is pulled
137 from the stack, StackGhost can cause attacker corrupted return
138 pointers to behave in a manner the attacker cannot predict.
139 StackGhost can also use several unused bits in the return pointer
140 to detect a smashed return pointer and abort the process."
141
142 For GDB this means that whenever we're reading %i7 from a stack
143 frame's window save area, we'll have to XOR the cookie.
144
145 More information on StackGuard can be found on in:
146
147 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
148 Stack Protection." 2001. Published in USENIX Security Symposium
149 '01. */
150
151 /* Fetch StackGhost Per-Process XOR cookie. */
152
153 ULONGEST
154 sparc_fetch_wcookie (void)
155 {
156 struct target_ops *ops = &current_target;
157 char buf[8];
158 int len;
159
160 len = target_read_partial (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
161 if (len == -1)
162 return 0;
163
164 /* We should have either an 32-bit or an 64-bit cookie. */
165 gdb_assert (len == 4 || len == 8);
166
167 return extract_unsigned_integer (buf, len);
168 }
169 \f
170
171 /* Return the contents if register REGNUM as an address. */
172
173 static CORE_ADDR
174 sparc_address_from_register (int regnum)
175 {
176 ULONGEST addr;
177
178 regcache_cooked_read_unsigned (current_regcache, regnum, &addr);
179 return addr;
180 }
181 \f
182
183 /* The functions on this page are intended to be used to classify
184 function arguments. */
185
186 /* Check whether TYPE is "Integral or Pointer". */
187
188 static int
189 sparc_integral_or_pointer_p (const struct type *type)
190 {
191 int len = TYPE_LENGTH (type);
192
193 switch (TYPE_CODE (type))
194 {
195 case TYPE_CODE_INT:
196 case TYPE_CODE_BOOL:
197 case TYPE_CODE_CHAR:
198 case TYPE_CODE_ENUM:
199 case TYPE_CODE_RANGE:
200 /* We have byte, half-word, word and extended-word/doubleword
201 integral types. The doubleword is an extension to the
202 original 32-bit ABI by the SCD 2.4.x. */
203 return (len == 1 || len == 2 || len == 4 || len == 8);
204 case TYPE_CODE_PTR:
205 case TYPE_CODE_REF:
206 /* Allow either 32-bit or 64-bit pointers. */
207 return (len == 4 || len == 8);
208 default:
209 break;
210 }
211
212 return 0;
213 }
214
215 /* Check whether TYPE is "Floating". */
216
217 static int
218 sparc_floating_p (const struct type *type)
219 {
220 switch (TYPE_CODE (type))
221 {
222 case TYPE_CODE_FLT:
223 {
224 int len = TYPE_LENGTH (type);
225 return (len == 4 || len == 8 || len == 16);
226 }
227 default:
228 break;
229 }
230
231 return 0;
232 }
233
234 /* Check whether TYPE is "Structure or Union". */
235
236 static int
237 sparc_structure_or_union_p (const struct type *type)
238 {
239 switch (TYPE_CODE (type))
240 {
241 case TYPE_CODE_STRUCT:
242 case TYPE_CODE_UNION:
243 return 1;
244 default:
245 break;
246 }
247
248 return 0;
249 }
250
251 /* Register information. */
252
253 static const char *sparc32_register_names[] =
254 {
255 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
256 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
257 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
258 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
259
260 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
261 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
262 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
263 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
264
265 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
266 };
267
268 /* Total number of registers. */
269 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
270
271 /* We provide the aliases %d0..%d30 for the floating registers as
272 "psuedo" registers. */
273
274 static const char *sparc32_pseudo_register_names[] =
275 {
276 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
277 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
278 };
279
280 /* Total number of pseudo registers. */
281 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
282
283 /* Return the name of register REGNUM. */
284
285 static const char *
286 sparc32_register_name (int regnum)
287 {
288 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
289 return sparc32_register_names[regnum];
290
291 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
292 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
293
294 return NULL;
295 }
296
297 /* Return the GDB type object for the "standard" data type of data in
298 register REGNUM. */
299
300 static struct type *
301 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
302 {
303 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
304 return builtin_type_float;
305
306 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
307 return builtin_type_double;
308
309 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
310 return builtin_type_void_data_ptr;
311
312 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
313 return builtin_type_void_func_ptr;
314
315 return builtin_type_int32;
316 }
317
318 static void
319 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
320 struct regcache *regcache,
321 int regnum, void *buf)
322 {
323 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
324
325 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
326 regcache_raw_read (regcache, regnum, buf);
327 regcache_raw_read (regcache, regnum + 1, ((char *)buf) + 4);
328 }
329
330 static void
331 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
332 struct regcache *regcache,
333 int regnum, const void *buf)
334 {
335 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
336
337 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
338 regcache_raw_write (regcache, regnum, buf);
339 regcache_raw_write (regcache, regnum + 1, ((const char *)buf) + 4);
340 }
341 \f
342
343 static CORE_ADDR
344 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
345 CORE_ADDR funcaddr, int using_gcc,
346 struct value **args, int nargs,
347 struct type *value_type,
348 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
349 {
350 *bp_addr = sp - 4;
351 *real_pc = funcaddr;
352
353 if (using_struct_return (value_type, using_gcc))
354 {
355 char buf[4];
356
357 /* This is an UNIMP instruction. */
358 store_unsigned_integer (buf, 4, TYPE_LENGTH (value_type) & 0x1fff);
359 write_memory (sp - 8, buf, 4);
360 return sp - 8;
361 }
362
363 return sp - 4;
364 }
365
366 static CORE_ADDR
367 sparc32_store_arguments (struct regcache *regcache, int nargs,
368 struct value **args, CORE_ADDR sp,
369 int struct_return, CORE_ADDR struct_addr)
370 {
371 /* Number of words in the "parameter array". */
372 int num_elements = 0;
373 int element = 0;
374 int i;
375
376 for (i = 0; i < nargs; i++)
377 {
378 struct type *type = value_type (args[i]);
379 int len = TYPE_LENGTH (type);
380
381 if (sparc_structure_or_union_p (type)
382 || (sparc_floating_p (type) && len == 16))
383 {
384 /* Structure, Union and Quad-Precision Arguments. */
385 sp -= len;
386
387 /* Use doubleword alignment for these values. That's always
388 correct, and wasting a few bytes shouldn't be a problem. */
389 sp &= ~0x7;
390
391 write_memory (sp, value_contents (args[i]), len);
392 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
393 num_elements++;
394 }
395 else if (sparc_floating_p (type))
396 {
397 /* Floating arguments. */
398 gdb_assert (len == 4 || len == 8);
399 num_elements += (len / 4);
400 }
401 else
402 {
403 /* Integral and pointer arguments. */
404 gdb_assert (sparc_integral_or_pointer_p (type));
405
406 if (len < 4)
407 args[i] = value_cast (builtin_type_int32, args[i]);
408 num_elements += ((len + 3) / 4);
409 }
410 }
411
412 /* Always allocate at least six words. */
413 sp -= max (6, num_elements) * 4;
414
415 /* The psABI says that "Software convention requires space for the
416 struct/union return value pointer, even if the word is unused." */
417 sp -= 4;
418
419 /* The psABI says that "Although software convention and the
420 operating system require every stack frame to be doubleword
421 aligned." */
422 sp &= ~0x7;
423
424 for (i = 0; i < nargs; i++)
425 {
426 const bfd_byte *valbuf = value_contents (args[i]);
427 struct type *type = value_type (args[i]);
428 int len = TYPE_LENGTH (type);
429
430 gdb_assert (len == 4 || len == 8);
431
432 if (element < 6)
433 {
434 int regnum = SPARC_O0_REGNUM + element;
435
436 regcache_cooked_write (regcache, regnum, valbuf);
437 if (len > 4 && element < 5)
438 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
439 }
440
441 /* Always store the argument in memory. */
442 write_memory (sp + 4 + element * 4, valbuf, len);
443 element += len / 4;
444 }
445
446 gdb_assert (element == num_elements);
447
448 if (struct_return)
449 {
450 char buf[4];
451
452 store_unsigned_integer (buf, 4, struct_addr);
453 write_memory (sp, buf, 4);
454 }
455
456 return sp;
457 }
458
459 static CORE_ADDR
460 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
461 struct regcache *regcache, CORE_ADDR bp_addr,
462 int nargs, struct value **args, CORE_ADDR sp,
463 int struct_return, CORE_ADDR struct_addr)
464 {
465 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
466
467 /* Set return address. */
468 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
469
470 /* Set up function arguments. */
471 sp = sparc32_store_arguments (regcache, nargs, args, sp,
472 struct_return, struct_addr);
473
474 /* Allocate the 16-word window save area. */
475 sp -= 16 * 4;
476
477 /* Stack should be doubleword aligned at this point. */
478 gdb_assert (sp % 8 == 0);
479
480 /* Finally, update the stack pointer. */
481 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
482
483 return sp;
484 }
485 \f
486
487 /* Use the program counter to determine the contents and size of a
488 breakpoint instruction. Return a pointer to a string of bytes that
489 encode a breakpoint instruction, store the length of the string in
490 *LEN and optionally adjust *PC to point to the correct memory
491 location for inserting the breakpoint. */
492
493 static const unsigned char *
494 sparc_breakpoint_from_pc (CORE_ADDR *pc, int *len)
495 {
496 static unsigned char break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
497
498 *len = sizeof (break_insn);
499 return break_insn;
500 }
501 \f
502
503 /* Allocate and initialize a frame cache. */
504
505 static struct sparc_frame_cache *
506 sparc_alloc_frame_cache (void)
507 {
508 struct sparc_frame_cache *cache;
509 int i;
510
511 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
512
513 /* Base address. */
514 cache->base = 0;
515 cache->pc = 0;
516
517 /* Frameless until proven otherwise. */
518 cache->frameless_p = 1;
519
520 cache->struct_return_p = 0;
521
522 return cache;
523 }
524
525 CORE_ADDR
526 sparc_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
527 struct sparc_frame_cache *cache)
528 {
529 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
530 unsigned long insn;
531 int offset = 0;
532 int dest = -1;
533
534 if (current_pc <= pc)
535 return current_pc;
536
537 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
538 SPARC the linker usually defines a symbol (typically
539 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
540 This symbol makes us end up here with PC pointing at the start of
541 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
542 would do our normal prologue analysis, we would probably conclude
543 that we've got a frame when in reality we don't, since the
544 dynamic linker patches up the first PLT with some code that
545 starts with a SAVE instruction. Patch up PC such that it points
546 at the start of our PLT entry. */
547 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
548 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
549
550 insn = sparc_fetch_instruction (pc);
551
552 /* Recognize a SETHI insn and record its destination. */
553 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
554 {
555 dest = X_RD (insn);
556 offset += 4;
557
558 insn = sparc_fetch_instruction (pc + 4);
559 }
560
561 /* Allow for an arithmetic operation on DEST or %g1. */
562 if (X_OP (insn) == 2 && X_I (insn)
563 && (X_RD (insn) == 1 || X_RD (insn) == dest))
564 {
565 offset += 4;
566
567 insn = sparc_fetch_instruction (pc + 8);
568 }
569
570 /* Check for the SAVE instruction that sets up the frame. */
571 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
572 {
573 cache->frameless_p = 0;
574 return pc + offset + 4;
575 }
576
577 return pc;
578 }
579
580 static CORE_ADDR
581 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
582 {
583 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
584 return frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
585 }
586
587 /* Return PC of first real instruction of the function starting at
588 START_PC. */
589
590 static CORE_ADDR
591 sparc32_skip_prologue (CORE_ADDR start_pc)
592 {
593 struct symtab_and_line sal;
594 CORE_ADDR func_start, func_end;
595 struct sparc_frame_cache cache;
596
597 /* This is the preferred method, find the end of the prologue by
598 using the debugging information. */
599 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
600 {
601 sal = find_pc_line (func_start, 0);
602
603 if (sal.end < func_end
604 && start_pc <= sal.end)
605 return sal.end;
606 }
607
608 start_pc = sparc_analyze_prologue (start_pc, 0xffffffffUL, &cache);
609
610 /* The psABI says that "Although the first 6 words of arguments
611 reside in registers, the standard stack frame reserves space for
612 them.". It also suggests that a function may use that space to
613 "write incoming arguments 0 to 5" into that space, and that's
614 indeed what GCC seems to be doing. In that case GCC will
615 generate debug information that points to the stack slots instead
616 of the registers, so we should consider the instructions that
617 write out these incoming arguments onto the stack. Of course we
618 only need to do this if we have a stack frame. */
619
620 while (!cache.frameless_p)
621 {
622 unsigned long insn = sparc_fetch_instruction (start_pc);
623
624 /* Recognize instructions that store incoming arguments in
625 %i0...%i5 into the corresponding stack slot. */
626 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
627 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
628 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
629 {
630 start_pc += 4;
631 continue;
632 }
633
634 break;
635 }
636
637 return start_pc;
638 }
639
640 /* Normal frames. */
641
642 struct sparc_frame_cache *
643 sparc_frame_cache (struct frame_info *next_frame, void **this_cache)
644 {
645 struct sparc_frame_cache *cache;
646
647 if (*this_cache)
648 return *this_cache;
649
650 cache = sparc_alloc_frame_cache ();
651 *this_cache = cache;
652
653 cache->pc = frame_func_unwind (next_frame);
654 if (cache->pc != 0)
655 {
656 CORE_ADDR addr_in_block = frame_unwind_address_in_block (next_frame);
657 sparc_analyze_prologue (cache->pc, addr_in_block, cache);
658 }
659
660 if (cache->frameless_p)
661 {
662 /* This function is frameless, so %fp (%i6) holds the frame
663 pointer for our calling frame. Use %sp (%o6) as this frame's
664 base address. */
665 cache->base =
666 frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
667 }
668 else
669 {
670 /* For normal frames, %fp (%i6) holds the frame pointer, the
671 base address for the current stack frame. */
672 cache->base =
673 frame_unwind_register_unsigned (next_frame, SPARC_FP_REGNUM);
674 }
675
676 return cache;
677 }
678
679 struct sparc_frame_cache *
680 sparc32_frame_cache (struct frame_info *next_frame, void **this_cache)
681 {
682 struct sparc_frame_cache *cache;
683 struct symbol *sym;
684
685 if (*this_cache)
686 return *this_cache;
687
688 cache = sparc_frame_cache (next_frame, this_cache);
689
690 sym = find_pc_function (cache->pc);
691 if (sym)
692 {
693 struct type *type = check_typedef (SYMBOL_TYPE (sym));
694 enum type_code code = TYPE_CODE (type);
695
696 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
697 {
698 type = check_typedef (TYPE_TARGET_TYPE (type));
699 if (sparc_structure_or_union_p (type)
700 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
701 cache->struct_return_p = 1;
702 }
703 }
704 else
705 {
706 /* There is no debugging information for this function to
707 help us determine whether this function returns a struct
708 or not. So we rely on another heuristic which is to check
709 the instruction at the return address and see if this is
710 an "unimp" instruction. If it is, then it is a struct-return
711 function. */
712 CORE_ADDR pc;
713 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
714
715 pc = frame_unwind_register_unsigned (next_frame, regnum) + 8;
716 if (sparc_is_unimp_insn (pc))
717 cache->struct_return_p = 1;
718 }
719
720 return cache;
721 }
722
723 static void
724 sparc32_frame_this_id (struct frame_info *next_frame, void **this_cache,
725 struct frame_id *this_id)
726 {
727 struct sparc_frame_cache *cache =
728 sparc32_frame_cache (next_frame, this_cache);
729
730 /* This marks the outermost frame. */
731 if (cache->base == 0)
732 return;
733
734 (*this_id) = frame_id_build (cache->base, cache->pc);
735 }
736
737 static void
738 sparc32_frame_prev_register (struct frame_info *next_frame, void **this_cache,
739 int regnum, int *optimizedp,
740 enum lval_type *lvalp, CORE_ADDR *addrp,
741 int *realnump, void *valuep)
742 {
743 struct sparc_frame_cache *cache =
744 sparc32_frame_cache (next_frame, this_cache);
745
746 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
747 {
748 *optimizedp = 0;
749 *lvalp = not_lval;
750 *addrp = 0;
751 *realnump = -1;
752 if (valuep)
753 {
754 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
755
756 /* If this functions has a Structure, Union or
757 Quad-Precision return value, we have to skip the UNIMP
758 instruction that encodes the size of the structure. */
759 if (cache->struct_return_p)
760 pc += 4;
761
762 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
763 pc += frame_unwind_register_unsigned (next_frame, regnum) + 8;
764 store_unsigned_integer (valuep, 4, pc);
765 }
766 return;
767 }
768
769 /* Handle StackGhost. */
770 {
771 ULONGEST wcookie = sparc_fetch_wcookie ();
772
773 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
774 {
775 *optimizedp = 0;
776 *lvalp = not_lval;
777 *addrp = 0;
778 *realnump = -1;
779 if (valuep)
780 {
781 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
782 ULONGEST i7;
783
784 /* Read the value in from memory. */
785 i7 = get_frame_memory_unsigned (next_frame, addr, 4);
786 store_unsigned_integer (valuep, 4, i7 ^ wcookie);
787 }
788 return;
789 }
790 }
791
792 /* The previous frame's `local' and `in' registers have been saved
793 in the register save area. */
794 if (!cache->frameless_p
795 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
796 {
797 *optimizedp = 0;
798 *lvalp = lval_memory;
799 *addrp = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
800 *realnump = -1;
801 if (valuep)
802 {
803 struct gdbarch *gdbarch = get_frame_arch (next_frame);
804
805 /* Read the value in from memory. */
806 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
807 }
808 return;
809 }
810
811 /* The previous frame's `out' registers are accessable as the
812 current frame's `in' registers. */
813 if (!cache->frameless_p
814 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
815 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
816
817 *optimizedp = 0;
818 *lvalp = lval_register;
819 *addrp = 0;
820 *realnump = regnum;
821 if (valuep)
822 frame_unwind_register (next_frame, (*realnump), valuep);
823 }
824
825 static const struct frame_unwind sparc32_frame_unwind =
826 {
827 NORMAL_FRAME,
828 sparc32_frame_this_id,
829 sparc32_frame_prev_register
830 };
831
832 static const struct frame_unwind *
833 sparc32_frame_sniffer (struct frame_info *next_frame)
834 {
835 return &sparc32_frame_unwind;
836 }
837 \f
838
839 static CORE_ADDR
840 sparc32_frame_base_address (struct frame_info *next_frame, void **this_cache)
841 {
842 struct sparc_frame_cache *cache =
843 sparc32_frame_cache (next_frame, this_cache);
844
845 return cache->base;
846 }
847
848 static const struct frame_base sparc32_frame_base =
849 {
850 &sparc32_frame_unwind,
851 sparc32_frame_base_address,
852 sparc32_frame_base_address,
853 sparc32_frame_base_address
854 };
855
856 static struct frame_id
857 sparc_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
858 {
859 CORE_ADDR sp;
860
861 sp = frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
862 return frame_id_build (sp, frame_pc_unwind (next_frame));
863 }
864 \f
865
866 /* Extract from an array REGBUF containing the (raw) register state, a
867 function return value of TYPE, and copy that into VALBUF. */
868
869 static void
870 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
871 void *valbuf)
872 {
873 int len = TYPE_LENGTH (type);
874 char buf[8];
875
876 gdb_assert (!sparc_structure_or_union_p (type));
877 gdb_assert (!(sparc_floating_p (type) && len == 16));
878
879 if (sparc_floating_p (type))
880 {
881 /* Floating return values. */
882 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
883 if (len > 4)
884 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
885 memcpy (valbuf, buf, len);
886 }
887 else
888 {
889 /* Integral and pointer return values. */
890 gdb_assert (sparc_integral_or_pointer_p (type));
891
892 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
893 if (len > 4)
894 {
895 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
896 gdb_assert (len == 8);
897 memcpy (valbuf, buf, 8);
898 }
899 else
900 {
901 /* Just stripping off any unused bytes should preserve the
902 signed-ness just fine. */
903 memcpy (valbuf, buf + 4 - len, len);
904 }
905 }
906 }
907
908 /* Write into the appropriate registers a function return value stored
909 in VALBUF of type TYPE. */
910
911 static void
912 sparc32_store_return_value (struct type *type, struct regcache *regcache,
913 const void *valbuf)
914 {
915 int len = TYPE_LENGTH (type);
916 char buf[8];
917
918 gdb_assert (!sparc_structure_or_union_p (type));
919 gdb_assert (!(sparc_floating_p (type) && len == 16));
920
921 if (sparc_floating_p (type))
922 {
923 /* Floating return values. */
924 memcpy (buf, valbuf, len);
925 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
926 if (len > 4)
927 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
928 }
929 else
930 {
931 /* Integral and pointer return values. */
932 gdb_assert (sparc_integral_or_pointer_p (type));
933
934 if (len > 4)
935 {
936 gdb_assert (len == 8);
937 memcpy (buf, valbuf, 8);
938 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
939 }
940 else
941 {
942 /* ??? Do we need to do any sign-extension here? */
943 memcpy (buf + 4 - len, valbuf, len);
944 }
945 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
946 }
947 }
948
949 static enum return_value_convention
950 sparc32_return_value (struct gdbarch *gdbarch, struct type *type,
951 struct regcache *regcache, void *readbuf,
952 const void *writebuf)
953 {
954 if (sparc_structure_or_union_p (type)
955 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
956 return RETURN_VALUE_STRUCT_CONVENTION;
957
958 if (readbuf)
959 sparc32_extract_return_value (type, regcache, readbuf);
960 if (writebuf)
961 sparc32_store_return_value (type, regcache, writebuf);
962
963 return RETURN_VALUE_REGISTER_CONVENTION;
964 }
965
966 #if 0
967 /* NOTE: cagney/2004-01-17: For the moment disable this method. The
968 architecture and CORE-gdb will need new code (and a replacement for
969 DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS) before this can be made to
970 work robustly. Here is a possible function signature: */
971 /* NOTE: cagney/2004-01-17: So far only the 32-bit SPARC ABI has been
972 identifed as having a way to robustly recover the address of a
973 struct-convention return-value (after the function has returned).
974 For all other ABIs so far examined, the calling convention makes no
975 guarenteed that the register containing the return-value will be
976 preserved and hence that the return-value's address can be
977 recovered. */
978 /* Extract from REGCACHE, which contains the (raw) register state, the
979 address in which a function should return its structure value, as a
980 CORE_ADDR. */
981
982 static CORE_ADDR
983 sparc32_extract_struct_value_address (struct regcache *regcache)
984 {
985 ULONGEST sp;
986
987 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
988 return read_memory_unsigned_integer (sp + 64, 4);
989 }
990 #endif
991
992 static int
993 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
994 {
995 return (sparc_structure_or_union_p (type)
996 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
997 }
998
999 \f
1000 /* The SPARC Architecture doesn't have hardware single-step support,
1001 and most operating systems don't implement it either, so we provide
1002 software single-step mechanism. */
1003
1004 static CORE_ADDR
1005 sparc_analyze_control_transfer (CORE_ADDR pc, CORE_ADDR *npc)
1006 {
1007 unsigned long insn = sparc_fetch_instruction (pc);
1008 int conditional_p = X_COND (insn) & 0x7;
1009 int branch_p = 0;
1010 long offset = 0; /* Must be signed for sign-extend. */
1011
1012 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
1013 {
1014 /* Branch on Integer Register with Prediction (BPr). */
1015 branch_p = 1;
1016 conditional_p = 1;
1017 }
1018 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1019 {
1020 /* Branch on Floating-Point Condition Codes (FBfcc). */
1021 branch_p = 1;
1022 offset = 4 * X_DISP22 (insn);
1023 }
1024 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1025 {
1026 /* Branch on Floating-Point Condition Codes with Prediction
1027 (FBPfcc). */
1028 branch_p = 1;
1029 offset = 4 * X_DISP19 (insn);
1030 }
1031 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1032 {
1033 /* Branch on Integer Condition Codes (Bicc). */
1034 branch_p = 1;
1035 offset = 4 * X_DISP22 (insn);
1036 }
1037 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1038 {
1039 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1040 branch_p = 1;
1041 offset = 4 * X_DISP19 (insn);
1042 }
1043
1044 /* FIXME: Handle DONE and RETRY instructions. */
1045
1046 /* FIXME: Handle the Trap instruction. */
1047
1048 if (branch_p)
1049 {
1050 if (conditional_p)
1051 {
1052 /* For conditional branches, return nPC + 4 iff the annul
1053 bit is 1. */
1054 return (X_A (insn) ? *npc + 4 : 0);
1055 }
1056 else
1057 {
1058 /* For unconditional branches, return the target if its
1059 specified condition is "always" and return nPC + 4 if the
1060 condition is "never". If the annul bit is 1, set *NPC to
1061 zero. */
1062 if (X_COND (insn) == 0x0)
1063 pc = *npc, offset = 4;
1064 if (X_A (insn))
1065 *npc = 0;
1066
1067 gdb_assert (offset != 0);
1068 return pc + offset;
1069 }
1070 }
1071
1072 return 0;
1073 }
1074
1075 void
1076 sparc_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1077 {
1078 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1079 static CORE_ADDR npc, nnpc;
1080 static char npc_save[4], nnpc_save[4];
1081
1082 if (insert_breakpoints_p)
1083 {
1084 CORE_ADDR pc, orig_npc;
1085
1086 pc = sparc_address_from_register (tdep->pc_regnum);
1087 orig_npc = npc = sparc_address_from_register (tdep->npc_regnum);
1088
1089 /* Analyze the instruction at PC. */
1090 nnpc = sparc_analyze_control_transfer (pc, &npc);
1091 if (npc != 0)
1092 target_insert_breakpoint (npc, npc_save);
1093 if (nnpc != 0)
1094 target_insert_breakpoint (nnpc, nnpc_save);
1095
1096 /* Assert that we have set at least one breakpoint, and that
1097 they're not set at the same spot - unless we're going
1098 from here straight to NULL, i.e. a call or jump to 0. */
1099 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1100 gdb_assert (nnpc != npc || orig_npc == 0);
1101 }
1102 else
1103 {
1104 if (npc != 0)
1105 target_remove_breakpoint (npc, npc_save);
1106 if (nnpc != 0)
1107 target_remove_breakpoint (nnpc, nnpc_save);
1108 }
1109 }
1110
1111 static void
1112 sparc_write_pc (CORE_ADDR pc, ptid_t ptid)
1113 {
1114 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1115
1116 write_register_pid (tdep->pc_regnum, pc, ptid);
1117 write_register_pid (tdep->npc_regnum, pc + 4, ptid);
1118 }
1119 \f
1120 /* Unglobalize NAME. */
1121
1122 char *
1123 sparc_stabs_unglobalize_name (char *name)
1124 {
1125 /* The Sun compilers (Sun ONE Studio, Forte Developer, Sun WorkShop,
1126 SunPRO) convert file static variables into global values, a
1127 process known as globalization. In order to do this, the
1128 compiler will create a unique prefix and prepend it to each file
1129 static variable. For static variables within a function, this
1130 globalization prefix is followed by the function name (nested
1131 static variables within a function are supposed to generate a
1132 warning message, and are left alone). The procedure is
1133 documented in the Stabs Interface Manual, which is distrubuted
1134 with the compilers, although version 4.0 of the manual seems to
1135 be incorrect in some places, at least for SPARC. The
1136 globalization prefix is encoded into an N_OPT stab, with the form
1137 "G=<prefix>". The globalization prefix always seems to start
1138 with a dollar sign '$'; a dot '.' is used as a seperator. So we
1139 simply strip everything up until the last dot. */
1140
1141 if (name[0] == '$')
1142 {
1143 char *p = strrchr (name, '.');
1144 if (p)
1145 return p + 1;
1146 }
1147
1148 return name;
1149 }
1150 \f
1151
1152 /* Return the appropriate register set for the core section identified
1153 by SECT_NAME and SECT_SIZE. */
1154
1155 const struct regset *
1156 sparc_regset_from_core_section (struct gdbarch *gdbarch,
1157 const char *sect_name, size_t sect_size)
1158 {
1159 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1160
1161 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
1162 return tdep->gregset;
1163
1164 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
1165 return tdep->fpregset;
1166
1167 return NULL;
1168 }
1169 \f
1170
1171 static struct gdbarch *
1172 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1173 {
1174 struct gdbarch_tdep *tdep;
1175 struct gdbarch *gdbarch;
1176
1177 /* If there is already a candidate, use it. */
1178 arches = gdbarch_list_lookup_by_info (arches, &info);
1179 if (arches != NULL)
1180 return arches->gdbarch;
1181
1182 /* Allocate space for the new architecture. */
1183 tdep = XMALLOC (struct gdbarch_tdep);
1184 gdbarch = gdbarch_alloc (&info, tdep);
1185
1186 tdep->pc_regnum = SPARC32_PC_REGNUM;
1187 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1188 tdep->gregset = NULL;
1189 tdep->sizeof_gregset = 0;
1190 tdep->fpregset = NULL;
1191 tdep->sizeof_fpregset = 0;
1192 tdep->plt_entry_size = 0;
1193
1194 set_gdbarch_long_double_bit (gdbarch, 128);
1195 set_gdbarch_long_double_format (gdbarch, &floatformat_sparc_quad);
1196
1197 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1198 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1199 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1200 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1201 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1202 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1203
1204 /* Register numbers of various important registers. */
1205 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1206 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1207 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1208
1209 /* Call dummy code. */
1210 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1211 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1212 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1213
1214 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1215 set_gdbarch_stabs_argument_has_addr
1216 (gdbarch, sparc32_stabs_argument_has_addr);
1217
1218 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1219
1220 /* Stack grows downward. */
1221 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1222
1223 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
1224
1225 set_gdbarch_frame_args_skip (gdbarch, 8);
1226
1227 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
1228
1229 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1230 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1231
1232 set_gdbarch_unwind_dummy_id (gdbarch, sparc_unwind_dummy_id);
1233
1234 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1235
1236 frame_base_set_default (gdbarch, &sparc32_frame_base);
1237
1238 /* Hook in ABI-specific overrides, if they have been registered. */
1239 gdbarch_init_osabi (info, gdbarch);
1240
1241 frame_unwind_append_sniffer (gdbarch, sparc32_frame_sniffer);
1242
1243 /* If we have register sets, enable the generic core file support. */
1244 if (tdep->gregset)
1245 set_gdbarch_regset_from_core_section (gdbarch,
1246 sparc_regset_from_core_section);
1247
1248 return gdbarch;
1249 }
1250 \f
1251 /* Helper functions for dealing with register windows. */
1252
1253 void
1254 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1255 {
1256 int offset = 0;
1257 char buf[8];
1258 int i;
1259
1260 if (sp & 1)
1261 {
1262 /* Registers are 64-bit. */
1263 sp += BIAS;
1264
1265 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1266 {
1267 if (regnum == i || regnum == -1)
1268 {
1269 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1270 regcache_raw_supply (regcache, i, buf);
1271 }
1272 }
1273 }
1274 else
1275 {
1276 /* Registers are 32-bit. Toss any sign-extension of the stack
1277 pointer. */
1278 sp &= 0xffffffffUL;
1279
1280 /* Clear out the top half of the temporary buffer, and put the
1281 register value in the bottom half if we're in 64-bit mode. */
1282 if (gdbarch_ptr_bit (current_gdbarch) == 64)
1283 {
1284 memset (buf, 0, 4);
1285 offset = 4;
1286 }
1287
1288 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1289 {
1290 if (regnum == i || regnum == -1)
1291 {
1292 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1293 buf + offset, 4);
1294
1295 /* Handle StackGhost. */
1296 if (i == SPARC_I7_REGNUM)
1297 {
1298 ULONGEST wcookie = sparc_fetch_wcookie ();
1299 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
1300
1301 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
1302 }
1303
1304 regcache_raw_supply (regcache, i, buf);
1305 }
1306 }
1307 }
1308 }
1309
1310 void
1311 sparc_collect_rwindow (const struct regcache *regcache,
1312 CORE_ADDR sp, int regnum)
1313 {
1314 int offset = 0;
1315 char buf[8];
1316 int i;
1317
1318 if (sp & 1)
1319 {
1320 /* Registers are 64-bit. */
1321 sp += BIAS;
1322
1323 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1324 {
1325 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1326 {
1327 regcache_raw_collect (regcache, i, buf);
1328 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1329 }
1330 }
1331 }
1332 else
1333 {
1334 /* Registers are 32-bit. Toss any sign-extension of the stack
1335 pointer. */
1336 sp &= 0xffffffffUL;
1337
1338 /* Only use the bottom half if we're in 64-bit mode. */
1339 if (gdbarch_ptr_bit (current_gdbarch) == 64)
1340 offset = 4;
1341
1342 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1343 {
1344 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1345 {
1346 regcache_raw_collect (regcache, i, buf);
1347
1348 /* Handle StackGhost. */
1349 if (i == SPARC_I7_REGNUM)
1350 {
1351 ULONGEST wcookie = sparc_fetch_wcookie ();
1352 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
1353
1354 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
1355 }
1356
1357 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1358 buf + offset, 4);
1359 }
1360 }
1361 }
1362 }
1363
1364 /* Helper functions for dealing with register sets. */
1365
1366 void
1367 sparc32_supply_gregset (const struct sparc_gregset *gregset,
1368 struct regcache *regcache,
1369 int regnum, const void *gregs)
1370 {
1371 const char *regs = gregs;
1372 int i;
1373
1374 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1375 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1376 regs + gregset->r_psr_offset);
1377
1378 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1379 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1380 regs + gregset->r_pc_offset);
1381
1382 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1383 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1384 regs + gregset->r_npc_offset);
1385
1386 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1387 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1388 regs + gregset->r_y_offset);
1389
1390 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1391 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
1392
1393 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1394 {
1395 int offset = gregset->r_g1_offset;
1396
1397 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1398 {
1399 if (regnum == i || regnum == -1)
1400 regcache_raw_supply (regcache, i, regs + offset);
1401 offset += 4;
1402 }
1403 }
1404
1405 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1406 {
1407 /* Not all of the register set variants include Locals and
1408 Inputs. For those that don't, we read them off the stack. */
1409 if (gregset->r_l0_offset == -1)
1410 {
1411 ULONGEST sp;
1412
1413 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1414 sparc_supply_rwindow (regcache, sp, regnum);
1415 }
1416 else
1417 {
1418 int offset = gregset->r_l0_offset;
1419
1420 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1421 {
1422 if (regnum == i || regnum == -1)
1423 regcache_raw_supply (regcache, i, regs + offset);
1424 offset += 4;
1425 }
1426 }
1427 }
1428 }
1429
1430 void
1431 sparc32_collect_gregset (const struct sparc_gregset *gregset,
1432 const struct regcache *regcache,
1433 int regnum, void *gregs)
1434 {
1435 char *regs = gregs;
1436 int i;
1437
1438 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1439 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1440 regs + gregset->r_psr_offset);
1441
1442 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1443 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1444 regs + gregset->r_pc_offset);
1445
1446 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1447 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1448 regs + gregset->r_npc_offset);
1449
1450 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1451 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1452 regs + gregset->r_y_offset);
1453
1454 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1455 {
1456 int offset = gregset->r_g1_offset;
1457
1458 /* %g0 is always zero. */
1459 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1460 {
1461 if (regnum == i || regnum == -1)
1462 regcache_raw_collect (regcache, i, regs + offset);
1463 offset += 4;
1464 }
1465 }
1466
1467 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1468 {
1469 /* Not all of the register set variants include Locals and
1470 Inputs. For those that don't, we read them off the stack. */
1471 if (gregset->r_l0_offset != -1)
1472 {
1473 int offset = gregset->r_l0_offset;
1474
1475 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1476 {
1477 if (regnum == i || regnum == -1)
1478 regcache_raw_collect (regcache, i, regs + offset);
1479 offset += 4;
1480 }
1481 }
1482 }
1483 }
1484
1485 void
1486 sparc32_supply_fpregset (struct regcache *regcache,
1487 int regnum, const void *fpregs)
1488 {
1489 const char *regs = fpregs;
1490 int i;
1491
1492 for (i = 0; i < 32; i++)
1493 {
1494 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1495 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1496 }
1497
1498 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1499 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1500 }
1501
1502 void
1503 sparc32_collect_fpregset (const struct regcache *regcache,
1504 int regnum, void *fpregs)
1505 {
1506 char *regs = fpregs;
1507 int i;
1508
1509 for (i = 0; i < 32; i++)
1510 {
1511 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1512 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1513 }
1514
1515 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1516 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1517 }
1518 \f
1519
1520 /* SunOS 4. */
1521
1522 /* From <machine/reg.h>. */
1523 const struct sparc_gregset sparc32_sunos4_gregset =
1524 {
1525 0 * 4, /* %psr */
1526 1 * 4, /* %pc */
1527 2 * 4, /* %npc */
1528 3 * 4, /* %y */
1529 -1, /* %wim */
1530 -1, /* %tbr */
1531 4 * 4, /* %g1 */
1532 -1 /* %l0 */
1533 };
1534 \f
1535
1536 /* Provide a prototype to silence -Wmissing-prototypes. */
1537 void _initialize_sparc_tdep (void);
1538
1539 void
1540 _initialize_sparc_tdep (void)
1541 {
1542 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
1543 }
This page took 0.102765 seconds and 4 git commands to generate.