2009-10-23 Tristan Gingold <gingold@adacore.com>
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for SPARC.
2
3 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "arch-utils.h"
23 #include "dis-asm.h"
24 #include "dwarf2-frame.h"
25 #include "floatformat.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "gdbcore.h"
30 #include "gdbtypes.h"
31 #include "inferior.h"
32 #include "symtab.h"
33 #include "objfiles.h"
34 #include "osabi.h"
35 #include "regcache.h"
36 #include "target.h"
37 #include "value.h"
38
39 #include "gdb_assert.h"
40 #include "gdb_string.h"
41
42 #include "sparc-tdep.h"
43
44 struct regset;
45
46 /* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
49 lists changes with respect to the original 32-bit psABI as defined
50 in the "System V ABI, SPARC Processor Supplement".
51
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
58 2.x is SVR4-based. */
59
60 /* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
64
65 /* The SPARC Floating-Point Quad-Precision format is similar to
66 big-endian IA-64 Quad-recision format. */
67 #define floatformats_sparc_quad floatformats_ia64_quad
68
69 /* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
72 #undef BIAS
73 #define BIAS 2047
74
75 /* Macros to extract fields from SPARC instructions. */
76 #define X_OP(i) (((i) >> 30) & 0x3)
77 #define X_RD(i) (((i) >> 25) & 0x1f)
78 #define X_A(i) (((i) >> 29) & 1)
79 #define X_COND(i) (((i) >> 25) & 0xf)
80 #define X_OP2(i) (((i) >> 22) & 0x7)
81 #define X_IMM22(i) ((i) & 0x3fffff)
82 #define X_OP3(i) (((i) >> 19) & 0x3f)
83 #define X_RS1(i) (((i) >> 14) & 0x1f)
84 #define X_RS2(i) ((i) & 0x1f)
85 #define X_I(i) (((i) >> 13) & 1)
86 /* Sign extension macros. */
87 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
88 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
89 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
90
91 /* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
93
94 unsigned long
95 sparc_fetch_instruction (CORE_ADDR pc)
96 {
97 gdb_byte buf[4];
98 unsigned long insn;
99 int i;
100
101 /* If we can't read the instruction at PC, return zero. */
102 if (target_read_memory (pc, buf, sizeof (buf)))
103 return 0;
104
105 insn = 0;
106 for (i = 0; i < sizeof (buf); i++)
107 insn = (insn << 8) | buf[i];
108 return insn;
109 }
110 \f
111
112 /* Return non-zero if the instruction corresponding to PC is an "unimp"
113 instruction. */
114
115 static int
116 sparc_is_unimp_insn (CORE_ADDR pc)
117 {
118 const unsigned long insn = sparc_fetch_instruction (pc);
119
120 return ((insn & 0xc1c00000) == 0);
121 }
122
123 /* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
129
130 The same website provides the following description of how
131 StackGhost works:
132
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
142
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
145
146 More information on StackGuard can be found on in:
147
148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
149 Stack Protection." 2001. Published in USENIX Security Symposium
150 '01. */
151
152 /* Fetch StackGhost Per-Process XOR cookie. */
153
154 ULONGEST
155 sparc_fetch_wcookie (struct gdbarch *gdbarch)
156 {
157 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
158 struct target_ops *ops = &current_target;
159 gdb_byte buf[8];
160 int len;
161
162 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
163 if (len == -1)
164 return 0;
165
166 /* We should have either an 32-bit or an 64-bit cookie. */
167 gdb_assert (len == 4 || len == 8);
168
169 return extract_unsigned_integer (buf, len, byte_order);
170 }
171 \f
172
173 /* The functions on this page are intended to be used to classify
174 function arguments. */
175
176 /* Check whether TYPE is "Integral or Pointer". */
177
178 static int
179 sparc_integral_or_pointer_p (const struct type *type)
180 {
181 int len = TYPE_LENGTH (type);
182
183 switch (TYPE_CODE (type))
184 {
185 case TYPE_CODE_INT:
186 case TYPE_CODE_BOOL:
187 case TYPE_CODE_CHAR:
188 case TYPE_CODE_ENUM:
189 case TYPE_CODE_RANGE:
190 /* We have byte, half-word, word and extended-word/doubleword
191 integral types. The doubleword is an extension to the
192 original 32-bit ABI by the SCD 2.4.x. */
193 return (len == 1 || len == 2 || len == 4 || len == 8);
194 case TYPE_CODE_PTR:
195 case TYPE_CODE_REF:
196 /* Allow either 32-bit or 64-bit pointers. */
197 return (len == 4 || len == 8);
198 default:
199 break;
200 }
201
202 return 0;
203 }
204
205 /* Check whether TYPE is "Floating". */
206
207 static int
208 sparc_floating_p (const struct type *type)
209 {
210 switch (TYPE_CODE (type))
211 {
212 case TYPE_CODE_FLT:
213 {
214 int len = TYPE_LENGTH (type);
215 return (len == 4 || len == 8 || len == 16);
216 }
217 default:
218 break;
219 }
220
221 return 0;
222 }
223
224 /* Check whether TYPE is "Structure or Union". */
225
226 static int
227 sparc_structure_or_union_p (const struct type *type)
228 {
229 switch (TYPE_CODE (type))
230 {
231 case TYPE_CODE_STRUCT:
232 case TYPE_CODE_UNION:
233 return 1;
234 default:
235 break;
236 }
237
238 return 0;
239 }
240
241 /* Register information. */
242
243 static const char *sparc32_register_names[] =
244 {
245 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
246 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
247 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
248 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
249
250 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
251 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
252 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
253 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
254
255 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
256 };
257
258 /* Total number of registers. */
259 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
260
261 /* We provide the aliases %d0..%d30 for the floating registers as
262 "psuedo" registers. */
263
264 static const char *sparc32_pseudo_register_names[] =
265 {
266 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
267 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
268 };
269
270 /* Total number of pseudo registers. */
271 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
272
273 /* Return the name of register REGNUM. */
274
275 static const char *
276 sparc32_register_name (struct gdbarch *gdbarch, int regnum)
277 {
278 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
279 return sparc32_register_names[regnum];
280
281 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
282 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
283
284 return NULL;
285 }
286 \f
287 /* Construct types for ISA-specific registers. */
288
289 static struct type *
290 sparc_psr_type (struct gdbarch *gdbarch)
291 {
292 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
293
294 if (!tdep->sparc_psr_type)
295 {
296 struct type *type;
297
298 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
299 append_flags_type_flag (type, 5, "ET");
300 append_flags_type_flag (type, 6, "PS");
301 append_flags_type_flag (type, 7, "S");
302 append_flags_type_flag (type, 12, "EF");
303 append_flags_type_flag (type, 13, "EC");
304
305 tdep->sparc_psr_type = type;
306 }
307
308 return tdep->sparc_psr_type;
309 }
310
311 static struct type *
312 sparc_fsr_type (struct gdbarch *gdbarch)
313 {
314 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
315
316 if (!tdep->sparc_fsr_type)
317 {
318 struct type *type;
319
320 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
321 append_flags_type_flag (type, 0, "NXA");
322 append_flags_type_flag (type, 1, "DZA");
323 append_flags_type_flag (type, 2, "UFA");
324 append_flags_type_flag (type, 3, "OFA");
325 append_flags_type_flag (type, 4, "NVA");
326 append_flags_type_flag (type, 5, "NXC");
327 append_flags_type_flag (type, 6, "DZC");
328 append_flags_type_flag (type, 7, "UFC");
329 append_flags_type_flag (type, 8, "OFC");
330 append_flags_type_flag (type, 9, "NVC");
331 append_flags_type_flag (type, 22, "NS");
332 append_flags_type_flag (type, 23, "NXM");
333 append_flags_type_flag (type, 24, "DZM");
334 append_flags_type_flag (type, 25, "UFM");
335 append_flags_type_flag (type, 26, "OFM");
336 append_flags_type_flag (type, 27, "NVM");
337
338 tdep->sparc_fsr_type = type;
339 }
340
341 return tdep->sparc_fsr_type;
342 }
343
344 /* Return the GDB type object for the "standard" data type of data in
345 register REGNUM. */
346
347 static struct type *
348 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
349 {
350 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
351 return builtin_type (gdbarch)->builtin_float;
352
353 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
354 return builtin_type (gdbarch)->builtin_double;
355
356 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
357 return builtin_type (gdbarch)->builtin_data_ptr;
358
359 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
360 return builtin_type (gdbarch)->builtin_func_ptr;
361
362 if (regnum == SPARC32_PSR_REGNUM)
363 return sparc_psr_type (gdbarch);
364
365 if (regnum == SPARC32_FSR_REGNUM)
366 return sparc_fsr_type (gdbarch);
367
368 return builtin_type (gdbarch)->builtin_int32;
369 }
370
371 static void
372 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
373 struct regcache *regcache,
374 int regnum, gdb_byte *buf)
375 {
376 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
377
378 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
379 regcache_raw_read (regcache, regnum, buf);
380 regcache_raw_read (regcache, regnum + 1, buf + 4);
381 }
382
383 static void
384 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
385 struct regcache *regcache,
386 int regnum, const gdb_byte *buf)
387 {
388 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
389
390 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
391 regcache_raw_write (regcache, regnum, buf);
392 regcache_raw_write (regcache, regnum + 1, buf + 4);
393 }
394 \f
395
396 static CORE_ADDR
397 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
398 CORE_ADDR funcaddr,
399 struct value **args, int nargs,
400 struct type *value_type,
401 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
402 struct regcache *regcache)
403 {
404 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
405
406 *bp_addr = sp - 4;
407 *real_pc = funcaddr;
408
409 if (using_struct_return (gdbarch, NULL, value_type))
410 {
411 gdb_byte buf[4];
412
413 /* This is an UNIMP instruction. */
414 store_unsigned_integer (buf, 4, byte_order,
415 TYPE_LENGTH (value_type) & 0x1fff);
416 write_memory (sp - 8, buf, 4);
417 return sp - 8;
418 }
419
420 return sp - 4;
421 }
422
423 static CORE_ADDR
424 sparc32_store_arguments (struct regcache *regcache, int nargs,
425 struct value **args, CORE_ADDR sp,
426 int struct_return, CORE_ADDR struct_addr)
427 {
428 struct gdbarch *gdbarch = get_regcache_arch (regcache);
429 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
430 /* Number of words in the "parameter array". */
431 int num_elements = 0;
432 int element = 0;
433 int i;
434
435 for (i = 0; i < nargs; i++)
436 {
437 struct type *type = value_type (args[i]);
438 int len = TYPE_LENGTH (type);
439
440 if (sparc_structure_or_union_p (type)
441 || (sparc_floating_p (type) && len == 16))
442 {
443 /* Structure, Union and Quad-Precision Arguments. */
444 sp -= len;
445
446 /* Use doubleword alignment for these values. That's always
447 correct, and wasting a few bytes shouldn't be a problem. */
448 sp &= ~0x7;
449
450 write_memory (sp, value_contents (args[i]), len);
451 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
452 num_elements++;
453 }
454 else if (sparc_floating_p (type))
455 {
456 /* Floating arguments. */
457 gdb_assert (len == 4 || len == 8);
458 num_elements += (len / 4);
459 }
460 else
461 {
462 /* Integral and pointer arguments. */
463 gdb_assert (sparc_integral_or_pointer_p (type));
464
465 if (len < 4)
466 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
467 args[i]);
468 num_elements += ((len + 3) / 4);
469 }
470 }
471
472 /* Always allocate at least six words. */
473 sp -= max (6, num_elements) * 4;
474
475 /* The psABI says that "Software convention requires space for the
476 struct/union return value pointer, even if the word is unused." */
477 sp -= 4;
478
479 /* The psABI says that "Although software convention and the
480 operating system require every stack frame to be doubleword
481 aligned." */
482 sp &= ~0x7;
483
484 for (i = 0; i < nargs; i++)
485 {
486 const bfd_byte *valbuf = value_contents (args[i]);
487 struct type *type = value_type (args[i]);
488 int len = TYPE_LENGTH (type);
489
490 gdb_assert (len == 4 || len == 8);
491
492 if (element < 6)
493 {
494 int regnum = SPARC_O0_REGNUM + element;
495
496 regcache_cooked_write (regcache, regnum, valbuf);
497 if (len > 4 && element < 5)
498 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
499 }
500
501 /* Always store the argument in memory. */
502 write_memory (sp + 4 + element * 4, valbuf, len);
503 element += len / 4;
504 }
505
506 gdb_assert (element == num_elements);
507
508 if (struct_return)
509 {
510 gdb_byte buf[4];
511
512 store_unsigned_integer (buf, 4, byte_order, struct_addr);
513 write_memory (sp, buf, 4);
514 }
515
516 return sp;
517 }
518
519 static CORE_ADDR
520 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
521 struct regcache *regcache, CORE_ADDR bp_addr,
522 int nargs, struct value **args, CORE_ADDR sp,
523 int struct_return, CORE_ADDR struct_addr)
524 {
525 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
526
527 /* Set return address. */
528 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
529
530 /* Set up function arguments. */
531 sp = sparc32_store_arguments (regcache, nargs, args, sp,
532 struct_return, struct_addr);
533
534 /* Allocate the 16-word window save area. */
535 sp -= 16 * 4;
536
537 /* Stack should be doubleword aligned at this point. */
538 gdb_assert (sp % 8 == 0);
539
540 /* Finally, update the stack pointer. */
541 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
542
543 return sp;
544 }
545 \f
546
547 /* Use the program counter to determine the contents and size of a
548 breakpoint instruction. Return a pointer to a string of bytes that
549 encode a breakpoint instruction, store the length of the string in
550 *LEN and optionally adjust *PC to point to the correct memory
551 location for inserting the breakpoint. */
552
553 static const gdb_byte *
554 sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
555 {
556 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
557
558 *len = sizeof (break_insn);
559 return break_insn;
560 }
561 \f
562
563 /* Allocate and initialize a frame cache. */
564
565 static struct sparc_frame_cache *
566 sparc_alloc_frame_cache (void)
567 {
568 struct sparc_frame_cache *cache;
569 int i;
570
571 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
572
573 /* Base address. */
574 cache->base = 0;
575 cache->pc = 0;
576
577 /* Frameless until proven otherwise. */
578 cache->frameless_p = 1;
579
580 cache->struct_return_p = 0;
581
582 return cache;
583 }
584
585 /* GCC generates several well-known sequences of instructions at the begining
586 of each function prologue when compiling with -fstack-check. If one of
587 such sequences starts at START_PC, then return the address of the
588 instruction immediately past this sequence. Otherwise, return START_PC. */
589
590 static CORE_ADDR
591 sparc_skip_stack_check (const CORE_ADDR start_pc)
592 {
593 CORE_ADDR pc = start_pc;
594 unsigned long insn;
595 int offset_stack_checking_sequence = 0;
596
597 /* With GCC, all stack checking sequences begin with the same two
598 instructions. */
599
600 /* sethi <some immediate>,%g1 */
601 insn = sparc_fetch_instruction (pc);
602 pc = pc + 4;
603 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
604 return start_pc;
605
606 /* sub %sp, %g1, %g1 */
607 insn = sparc_fetch_instruction (pc);
608 pc = pc + 4;
609 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
610 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
611 return start_pc;
612
613 insn = sparc_fetch_instruction (pc);
614 pc = pc + 4;
615
616 /* First possible sequence:
617 [first two instructions above]
618 clr [%g1 - some immediate] */
619
620 /* clr [%g1 - some immediate] */
621 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
622 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
623 {
624 /* Valid stack-check sequence, return the new PC. */
625 return pc;
626 }
627
628 /* Second possible sequence: A small number of probes.
629 [first two instructions above]
630 clr [%g1]
631 add %g1, -<some immediate>, %g1
632 clr [%g1]
633 [repeat the two instructions above any (small) number of times]
634 clr [%g1 - some immediate] */
635
636 /* clr [%g1] */
637 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
638 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
639 {
640 while (1)
641 {
642 /* add %g1, -<some immediate>, %g1 */
643 insn = sparc_fetch_instruction (pc);
644 pc = pc + 4;
645 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
646 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
647 break;
648
649 /* clr [%g1] */
650 insn = sparc_fetch_instruction (pc);
651 pc = pc + 4;
652 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
653 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
654 return start_pc;
655 }
656
657 /* clr [%g1 - some immediate] */
658 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
659 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
660 return start_pc;
661
662 /* We found a valid stack-check sequence, return the new PC. */
663 return pc;
664 }
665
666 /* Third sequence: A probing loop.
667 [first two instructions above]
668 sethi <some immediate>, %g4
669 sub %g1, %g4, %g4
670 cmp %g1, %g4
671 be <disp>
672 add %g1, -<some immediate>, %g1
673 ba <disp>
674 clr [%g1]
675 clr [%g4 - some immediate] */
676
677 /* sethi <some immediate>, %g4 */
678 else if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
679 {
680 /* sub %g1, %g4, %g4 */
681 insn = sparc_fetch_instruction (pc);
682 pc = pc + 4;
683 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
684 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
685 return start_pc;
686
687 /* cmp %g1, %g4 */
688 insn = sparc_fetch_instruction (pc);
689 pc = pc + 4;
690 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
691 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
692 return start_pc;
693
694 /* be <disp> */
695 insn = sparc_fetch_instruction (pc);
696 pc = pc + 4;
697 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
698 return start_pc;
699
700 /* add %g1, -<some immediate>, %g1 */
701 insn = sparc_fetch_instruction (pc);
702 pc = pc + 4;
703 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
704 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
705 return start_pc;
706
707 /* ba <disp> */
708 insn = sparc_fetch_instruction (pc);
709 pc = pc + 4;
710 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
711 return start_pc;
712
713 /* clr [%g1] */
714 insn = sparc_fetch_instruction (pc);
715 pc = pc + 4;
716 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
717 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
718 return start_pc;
719
720 /* clr [%g4 - some immediate] */
721 insn = sparc_fetch_instruction (pc);
722 pc = pc + 4;
723 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
724 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
725 return start_pc;
726
727 /* We found a valid stack-check sequence, return the new PC. */
728 return pc;
729 }
730
731 /* No stack check code in our prologue, return the start_pc. */
732 return start_pc;
733 }
734
735 CORE_ADDR
736 sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
737 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
738 {
739 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
740 unsigned long insn;
741 int offset = 0;
742 int dest = -1;
743
744 pc = sparc_skip_stack_check (pc);
745
746 if (current_pc <= pc)
747 return current_pc;
748
749 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
750 SPARC the linker usually defines a symbol (typically
751 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
752 This symbol makes us end up here with PC pointing at the start of
753 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
754 would do our normal prologue analysis, we would probably conclude
755 that we've got a frame when in reality we don't, since the
756 dynamic linker patches up the first PLT with some code that
757 starts with a SAVE instruction. Patch up PC such that it points
758 at the start of our PLT entry. */
759 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
760 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
761
762 insn = sparc_fetch_instruction (pc);
763
764 /* Recognize a SETHI insn and record its destination. */
765 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
766 {
767 dest = X_RD (insn);
768 offset += 4;
769
770 insn = sparc_fetch_instruction (pc + 4);
771 }
772
773 /* Allow for an arithmetic operation on DEST or %g1. */
774 if (X_OP (insn) == 2 && X_I (insn)
775 && (X_RD (insn) == 1 || X_RD (insn) == dest))
776 {
777 offset += 4;
778
779 insn = sparc_fetch_instruction (pc + 8);
780 }
781
782 /* Check for the SAVE instruction that sets up the frame. */
783 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
784 {
785 cache->frameless_p = 0;
786 return pc + offset + 4;
787 }
788
789 return pc;
790 }
791
792 static CORE_ADDR
793 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
794 {
795 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
796 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
797 }
798
799 /* Return PC of first real instruction of the function starting at
800 START_PC. */
801
802 static CORE_ADDR
803 sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
804 {
805 struct symtab_and_line sal;
806 CORE_ADDR func_start, func_end;
807 struct sparc_frame_cache cache;
808
809 /* This is the preferred method, find the end of the prologue by
810 using the debugging information. */
811 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
812 {
813 sal = find_pc_line (func_start, 0);
814
815 if (sal.end < func_end
816 && start_pc <= sal.end)
817 return sal.end;
818 }
819
820 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
821
822 /* The psABI says that "Although the first 6 words of arguments
823 reside in registers, the standard stack frame reserves space for
824 them.". It also suggests that a function may use that space to
825 "write incoming arguments 0 to 5" into that space, and that's
826 indeed what GCC seems to be doing. In that case GCC will
827 generate debug information that points to the stack slots instead
828 of the registers, so we should consider the instructions that
829 write out these incoming arguments onto the stack. Of course we
830 only need to do this if we have a stack frame. */
831
832 while (!cache.frameless_p)
833 {
834 unsigned long insn = sparc_fetch_instruction (start_pc);
835
836 /* Recognize instructions that store incoming arguments in
837 %i0...%i5 into the corresponding stack slot. */
838 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
839 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
840 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
841 {
842 start_pc += 4;
843 continue;
844 }
845
846 break;
847 }
848
849 return start_pc;
850 }
851
852 /* Normal frames. */
853
854 struct sparc_frame_cache *
855 sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
856 {
857 struct sparc_frame_cache *cache;
858
859 if (*this_cache)
860 return *this_cache;
861
862 cache = sparc_alloc_frame_cache ();
863 *this_cache = cache;
864
865 cache->pc = get_frame_func (this_frame);
866 if (cache->pc != 0)
867 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
868 get_frame_pc (this_frame), cache);
869
870 if (cache->frameless_p)
871 {
872 /* This function is frameless, so %fp (%i6) holds the frame
873 pointer for our calling frame. Use %sp (%o6) as this frame's
874 base address. */
875 cache->base =
876 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
877 }
878 else
879 {
880 /* For normal frames, %fp (%i6) holds the frame pointer, the
881 base address for the current stack frame. */
882 cache->base =
883 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
884 }
885
886 if (cache->base & 1)
887 cache->base += BIAS;
888
889 return cache;
890 }
891
892 static int
893 sparc32_struct_return_from_sym (struct symbol *sym)
894 {
895 struct type *type = check_typedef (SYMBOL_TYPE (sym));
896 enum type_code code = TYPE_CODE (type);
897
898 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
899 {
900 type = check_typedef (TYPE_TARGET_TYPE (type));
901 if (sparc_structure_or_union_p (type)
902 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
903 return 1;
904 }
905
906 return 0;
907 }
908
909 struct sparc_frame_cache *
910 sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
911 {
912 struct sparc_frame_cache *cache;
913 struct symbol *sym;
914
915 if (*this_cache)
916 return *this_cache;
917
918 cache = sparc_frame_cache (this_frame, this_cache);
919
920 sym = find_pc_function (cache->pc);
921 if (sym)
922 {
923 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
924 }
925 else
926 {
927 /* There is no debugging information for this function to
928 help us determine whether this function returns a struct
929 or not. So we rely on another heuristic which is to check
930 the instruction at the return address and see if this is
931 an "unimp" instruction. If it is, then it is a struct-return
932 function. */
933 CORE_ADDR pc;
934 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
935
936 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
937 if (sparc_is_unimp_insn (pc))
938 cache->struct_return_p = 1;
939 }
940
941 return cache;
942 }
943
944 static void
945 sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
946 struct frame_id *this_id)
947 {
948 struct sparc_frame_cache *cache =
949 sparc32_frame_cache (this_frame, this_cache);
950
951 /* This marks the outermost frame. */
952 if (cache->base == 0)
953 return;
954
955 (*this_id) = frame_id_build (cache->base, cache->pc);
956 }
957
958 static struct value *
959 sparc32_frame_prev_register (struct frame_info *this_frame,
960 void **this_cache, int regnum)
961 {
962 struct gdbarch *gdbarch = get_frame_arch (this_frame);
963 struct sparc_frame_cache *cache =
964 sparc32_frame_cache (this_frame, this_cache);
965
966 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
967 {
968 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
969
970 /* If this functions has a Structure, Union or Quad-Precision
971 return value, we have to skip the UNIMP instruction that encodes
972 the size of the structure. */
973 if (cache->struct_return_p)
974 pc += 4;
975
976 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
977 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
978 return frame_unwind_got_constant (this_frame, regnum, pc);
979 }
980
981 /* Handle StackGhost. */
982 {
983 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
984
985 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
986 {
987 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
988 ULONGEST i7;
989
990 /* Read the value in from memory. */
991 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
992 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
993 }
994 }
995
996 /* The previous frame's `local' and `in' registers have been saved
997 in the register save area. */
998 if (!cache->frameless_p
999 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
1000 {
1001 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1002
1003 return frame_unwind_got_memory (this_frame, regnum, addr);
1004 }
1005
1006 /* The previous frame's `out' registers are accessible as the
1007 current frame's `in' registers. */
1008 if (!cache->frameless_p
1009 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
1010 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1011
1012 return frame_unwind_got_register (this_frame, regnum, regnum);
1013 }
1014
1015 static const struct frame_unwind sparc32_frame_unwind =
1016 {
1017 NORMAL_FRAME,
1018 sparc32_frame_this_id,
1019 sparc32_frame_prev_register,
1020 NULL,
1021 default_frame_sniffer
1022 };
1023 \f
1024
1025 static CORE_ADDR
1026 sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
1027 {
1028 struct sparc_frame_cache *cache =
1029 sparc32_frame_cache (this_frame, this_cache);
1030
1031 return cache->base;
1032 }
1033
1034 static const struct frame_base sparc32_frame_base =
1035 {
1036 &sparc32_frame_unwind,
1037 sparc32_frame_base_address,
1038 sparc32_frame_base_address,
1039 sparc32_frame_base_address
1040 };
1041
1042 static struct frame_id
1043 sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1044 {
1045 CORE_ADDR sp;
1046
1047 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1048 if (sp & 1)
1049 sp += BIAS;
1050 return frame_id_build (sp, get_frame_pc (this_frame));
1051 }
1052 \f
1053
1054 /* Extract a function return value of TYPE from REGCACHE, and copy
1055 that into VALBUF. */
1056
1057 static void
1058 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
1059 gdb_byte *valbuf)
1060 {
1061 int len = TYPE_LENGTH (type);
1062 gdb_byte buf[8];
1063
1064 gdb_assert (!sparc_structure_or_union_p (type));
1065 gdb_assert (!(sparc_floating_p (type) && len == 16));
1066
1067 if (sparc_floating_p (type))
1068 {
1069 /* Floating return values. */
1070 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1071 if (len > 4)
1072 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1073 memcpy (valbuf, buf, len);
1074 }
1075 else
1076 {
1077 /* Integral and pointer return values. */
1078 gdb_assert (sparc_integral_or_pointer_p (type));
1079
1080 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1081 if (len > 4)
1082 {
1083 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1084 gdb_assert (len == 8);
1085 memcpy (valbuf, buf, 8);
1086 }
1087 else
1088 {
1089 /* Just stripping off any unused bytes should preserve the
1090 signed-ness just fine. */
1091 memcpy (valbuf, buf + 4 - len, len);
1092 }
1093 }
1094 }
1095
1096 /* Store the function return value of type TYPE from VALBUF into
1097 REGCACHE. */
1098
1099 static void
1100 sparc32_store_return_value (struct type *type, struct regcache *regcache,
1101 const gdb_byte *valbuf)
1102 {
1103 int len = TYPE_LENGTH (type);
1104 gdb_byte buf[8];
1105
1106 gdb_assert (!sparc_structure_or_union_p (type));
1107 gdb_assert (!(sparc_floating_p (type) && len == 16));
1108
1109 if (sparc_floating_p (type))
1110 {
1111 /* Floating return values. */
1112 memcpy (buf, valbuf, len);
1113 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1114 if (len > 4)
1115 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1116 }
1117 else
1118 {
1119 /* Integral and pointer return values. */
1120 gdb_assert (sparc_integral_or_pointer_p (type));
1121
1122 if (len > 4)
1123 {
1124 gdb_assert (len == 8);
1125 memcpy (buf, valbuf, 8);
1126 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
1127 }
1128 else
1129 {
1130 /* ??? Do we need to do any sign-extension here? */
1131 memcpy (buf + 4 - len, valbuf, len);
1132 }
1133 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
1134 }
1135 }
1136
1137 static enum return_value_convention
1138 sparc32_return_value (struct gdbarch *gdbarch, struct type *func_type,
1139 struct type *type, struct regcache *regcache,
1140 gdb_byte *readbuf, const gdb_byte *writebuf)
1141 {
1142 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1143
1144 /* The psABI says that "...every stack frame reserves the word at
1145 %fp+64. If a function returns a structure, union, or
1146 quad-precision value, this word should hold the address of the
1147 object into which the return value should be copied." This
1148 guarantees that we can always find the return value, not just
1149 before the function returns. */
1150
1151 if (sparc_structure_or_union_p (type)
1152 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1153 {
1154 if (readbuf)
1155 {
1156 ULONGEST sp;
1157 CORE_ADDR addr;
1158
1159 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1160 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1161 read_memory (addr, readbuf, TYPE_LENGTH (type));
1162 }
1163
1164 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1165 }
1166
1167 if (readbuf)
1168 sparc32_extract_return_value (type, regcache, readbuf);
1169 if (writebuf)
1170 sparc32_store_return_value (type, regcache, writebuf);
1171
1172 return RETURN_VALUE_REGISTER_CONVENTION;
1173 }
1174
1175 static int
1176 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1177 {
1178 return (sparc_structure_or_union_p (type)
1179 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1180 }
1181
1182 static int
1183 sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
1184 {
1185 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1186 struct symbol *sym = find_pc_function (pc);
1187
1188 if (sym)
1189 return sparc32_struct_return_from_sym (sym);
1190 return 0;
1191 }
1192
1193 static void
1194 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1195 struct dwarf2_frame_state_reg *reg,
1196 struct frame_info *this_frame)
1197 {
1198 int off;
1199
1200 switch (regnum)
1201 {
1202 case SPARC_G0_REGNUM:
1203 /* Since %g0 is always zero, there is no point in saving it, and
1204 people will be inclined omit it from the CFI. Make sure we
1205 don't warn about that. */
1206 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1207 break;
1208 case SPARC_SP_REGNUM:
1209 reg->how = DWARF2_FRAME_REG_CFA;
1210 break;
1211 case SPARC32_PC_REGNUM:
1212 case SPARC32_NPC_REGNUM:
1213 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1214 off = 8;
1215 if (sparc32_dwarf2_struct_return_p (this_frame))
1216 off += 4;
1217 if (regnum == SPARC32_NPC_REGNUM)
1218 off += 4;
1219 reg->loc.offset = off;
1220 break;
1221 }
1222 }
1223
1224 \f
1225 /* The SPARC Architecture doesn't have hardware single-step support,
1226 and most operating systems don't implement it either, so we provide
1227 software single-step mechanism. */
1228
1229 static CORE_ADDR
1230 sparc_analyze_control_transfer (struct frame_info *frame,
1231 CORE_ADDR pc, CORE_ADDR *npc)
1232 {
1233 unsigned long insn = sparc_fetch_instruction (pc);
1234 int conditional_p = X_COND (insn) & 0x7;
1235 int branch_p = 0;
1236 long offset = 0; /* Must be signed for sign-extend. */
1237
1238 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
1239 {
1240 /* Branch on Integer Register with Prediction (BPr). */
1241 branch_p = 1;
1242 conditional_p = 1;
1243 }
1244 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1245 {
1246 /* Branch on Floating-Point Condition Codes (FBfcc). */
1247 branch_p = 1;
1248 offset = 4 * X_DISP22 (insn);
1249 }
1250 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1251 {
1252 /* Branch on Floating-Point Condition Codes with Prediction
1253 (FBPfcc). */
1254 branch_p = 1;
1255 offset = 4 * X_DISP19 (insn);
1256 }
1257 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1258 {
1259 /* Branch on Integer Condition Codes (Bicc). */
1260 branch_p = 1;
1261 offset = 4 * X_DISP22 (insn);
1262 }
1263 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1264 {
1265 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1266 branch_p = 1;
1267 offset = 4 * X_DISP19 (insn);
1268 }
1269 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1270 {
1271 /* Trap instruction (TRAP). */
1272 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
1273 }
1274
1275 /* FIXME: Handle DONE and RETRY instructions. */
1276
1277 if (branch_p)
1278 {
1279 if (conditional_p)
1280 {
1281 /* For conditional branches, return nPC + 4 iff the annul
1282 bit is 1. */
1283 return (X_A (insn) ? *npc + 4 : 0);
1284 }
1285 else
1286 {
1287 /* For unconditional branches, return the target if its
1288 specified condition is "always" and return nPC + 4 if the
1289 condition is "never". If the annul bit is 1, set *NPC to
1290 zero. */
1291 if (X_COND (insn) == 0x0)
1292 pc = *npc, offset = 4;
1293 if (X_A (insn))
1294 *npc = 0;
1295
1296 gdb_assert (offset != 0);
1297 return pc + offset;
1298 }
1299 }
1300
1301 return 0;
1302 }
1303
1304 static CORE_ADDR
1305 sparc_step_trap (struct frame_info *frame, unsigned long insn)
1306 {
1307 return 0;
1308 }
1309
1310 int
1311 sparc_software_single_step (struct frame_info *frame)
1312 {
1313 struct gdbarch *arch = get_frame_arch (frame);
1314 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1315 struct address_space *aspace = get_frame_address_space (frame);
1316 CORE_ADDR npc, nnpc;
1317
1318 CORE_ADDR pc, orig_npc;
1319
1320 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1321 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
1322
1323 /* Analyze the instruction at PC. */
1324 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
1325 if (npc != 0)
1326 insert_single_step_breakpoint (arch, aspace, npc);
1327
1328 if (nnpc != 0)
1329 insert_single_step_breakpoint (arch, aspace, nnpc);
1330
1331 /* Assert that we have set at least one breakpoint, and that
1332 they're not set at the same spot - unless we're going
1333 from here straight to NULL, i.e. a call or jump to 0. */
1334 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1335 gdb_assert (nnpc != npc || orig_npc == 0);
1336
1337 return 1;
1338 }
1339
1340 static void
1341 sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
1342 {
1343 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1344
1345 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1346 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
1347 }
1348 \f
1349
1350 /* Return the appropriate register set for the core section identified
1351 by SECT_NAME and SECT_SIZE. */
1352
1353 static const struct regset *
1354 sparc_regset_from_core_section (struct gdbarch *gdbarch,
1355 const char *sect_name, size_t sect_size)
1356 {
1357 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1358
1359 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
1360 return tdep->gregset;
1361
1362 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
1363 return tdep->fpregset;
1364
1365 return NULL;
1366 }
1367 \f
1368
1369 static struct gdbarch *
1370 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1371 {
1372 struct gdbarch_tdep *tdep;
1373 struct gdbarch *gdbarch;
1374
1375 /* If there is already a candidate, use it. */
1376 arches = gdbarch_list_lookup_by_info (arches, &info);
1377 if (arches != NULL)
1378 return arches->gdbarch;
1379
1380 /* Allocate space for the new architecture. */
1381 tdep = XZALLOC (struct gdbarch_tdep);
1382 gdbarch = gdbarch_alloc (&info, tdep);
1383
1384 tdep->pc_regnum = SPARC32_PC_REGNUM;
1385 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1386 tdep->step_trap = sparc_step_trap;
1387
1388 set_gdbarch_long_double_bit (gdbarch, 128);
1389 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
1390
1391 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1392 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1393 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1394 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1395 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1396 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1397
1398 /* Register numbers of various important registers. */
1399 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1400 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1401 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1402
1403 /* Call dummy code. */
1404 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1405 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1406 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1407
1408 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1409 set_gdbarch_stabs_argument_has_addr
1410 (gdbarch, sparc32_stabs_argument_has_addr);
1411
1412 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1413
1414 /* Stack grows downward. */
1415 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1416
1417 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
1418
1419 set_gdbarch_frame_args_skip (gdbarch, 8);
1420
1421 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
1422
1423 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1424 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1425
1426 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
1427
1428 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1429
1430 frame_base_set_default (gdbarch, &sparc32_frame_base);
1431
1432 /* Hook in the DWARF CFI frame unwinder. */
1433 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1434 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1435 StackGhost issues have been resolved. */
1436
1437 /* Hook in ABI-specific overrides, if they have been registered. */
1438 gdbarch_init_osabi (info, gdbarch);
1439
1440 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
1441
1442 /* If we have register sets, enable the generic core file support. */
1443 if (tdep->gregset)
1444 set_gdbarch_regset_from_core_section (gdbarch,
1445 sparc_regset_from_core_section);
1446
1447 return gdbarch;
1448 }
1449 \f
1450 /* Helper functions for dealing with register windows. */
1451
1452 void
1453 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1454 {
1455 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1456 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1457 int offset = 0;
1458 gdb_byte buf[8];
1459 int i;
1460
1461 if (sp & 1)
1462 {
1463 /* Registers are 64-bit. */
1464 sp += BIAS;
1465
1466 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1467 {
1468 if (regnum == i || regnum == -1)
1469 {
1470 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1471
1472 /* Handle StackGhost. */
1473 if (i == SPARC_I7_REGNUM)
1474 {
1475 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1476 ULONGEST i7;
1477
1478 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1479 store_unsigned_integer (buf + offset, 8, byte_order,
1480 i7 ^ wcookie);
1481 }
1482
1483 regcache_raw_supply (regcache, i, buf);
1484 }
1485 }
1486 }
1487 else
1488 {
1489 /* Registers are 32-bit. Toss any sign-extension of the stack
1490 pointer. */
1491 sp &= 0xffffffffUL;
1492
1493 /* Clear out the top half of the temporary buffer, and put the
1494 register value in the bottom half if we're in 64-bit mode. */
1495 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1496 {
1497 memset (buf, 0, 4);
1498 offset = 4;
1499 }
1500
1501 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1502 {
1503 if (regnum == i || regnum == -1)
1504 {
1505 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1506 buf + offset, 4);
1507
1508 /* Handle StackGhost. */
1509 if (i == SPARC_I7_REGNUM)
1510 {
1511 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1512 ULONGEST i7;
1513
1514 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1515 store_unsigned_integer (buf + offset, 4, byte_order,
1516 i7 ^ wcookie);
1517 }
1518
1519 regcache_raw_supply (regcache, i, buf);
1520 }
1521 }
1522 }
1523 }
1524
1525 void
1526 sparc_collect_rwindow (const struct regcache *regcache,
1527 CORE_ADDR sp, int regnum)
1528 {
1529 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1530 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1531 int offset = 0;
1532 gdb_byte buf[8];
1533 int i;
1534
1535 if (sp & 1)
1536 {
1537 /* Registers are 64-bit. */
1538 sp += BIAS;
1539
1540 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1541 {
1542 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1543 {
1544 regcache_raw_collect (regcache, i, buf);
1545
1546 /* Handle StackGhost. */
1547 if (i == SPARC_I7_REGNUM)
1548 {
1549 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1550 ULONGEST i7;
1551
1552 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1553 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
1554 }
1555
1556 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1557 }
1558 }
1559 }
1560 else
1561 {
1562 /* Registers are 32-bit. Toss any sign-extension of the stack
1563 pointer. */
1564 sp &= 0xffffffffUL;
1565
1566 /* Only use the bottom half if we're in 64-bit mode. */
1567 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1568 offset = 4;
1569
1570 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1571 {
1572 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1573 {
1574 regcache_raw_collect (regcache, i, buf);
1575
1576 /* Handle StackGhost. */
1577 if (i == SPARC_I7_REGNUM)
1578 {
1579 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1580 ULONGEST i7;
1581
1582 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1583 store_unsigned_integer (buf + offset, 4, byte_order,
1584 i7 ^ wcookie);
1585 }
1586
1587 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1588 buf + offset, 4);
1589 }
1590 }
1591 }
1592 }
1593
1594 /* Helper functions for dealing with register sets. */
1595
1596 void
1597 sparc32_supply_gregset (const struct sparc_gregset *gregset,
1598 struct regcache *regcache,
1599 int regnum, const void *gregs)
1600 {
1601 const gdb_byte *regs = gregs;
1602 int i;
1603
1604 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1605 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1606 regs + gregset->r_psr_offset);
1607
1608 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1609 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1610 regs + gregset->r_pc_offset);
1611
1612 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1613 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1614 regs + gregset->r_npc_offset);
1615
1616 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1617 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1618 regs + gregset->r_y_offset);
1619
1620 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1621 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
1622
1623 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1624 {
1625 int offset = gregset->r_g1_offset;
1626
1627 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1628 {
1629 if (regnum == i || regnum == -1)
1630 regcache_raw_supply (regcache, i, regs + offset);
1631 offset += 4;
1632 }
1633 }
1634
1635 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1636 {
1637 /* Not all of the register set variants include Locals and
1638 Inputs. For those that don't, we read them off the stack. */
1639 if (gregset->r_l0_offset == -1)
1640 {
1641 ULONGEST sp;
1642
1643 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1644 sparc_supply_rwindow (regcache, sp, regnum);
1645 }
1646 else
1647 {
1648 int offset = gregset->r_l0_offset;
1649
1650 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1651 {
1652 if (regnum == i || regnum == -1)
1653 regcache_raw_supply (regcache, i, regs + offset);
1654 offset += 4;
1655 }
1656 }
1657 }
1658 }
1659
1660 void
1661 sparc32_collect_gregset (const struct sparc_gregset *gregset,
1662 const struct regcache *regcache,
1663 int regnum, void *gregs)
1664 {
1665 gdb_byte *regs = gregs;
1666 int i;
1667
1668 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1669 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1670 regs + gregset->r_psr_offset);
1671
1672 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1673 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1674 regs + gregset->r_pc_offset);
1675
1676 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1677 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1678 regs + gregset->r_npc_offset);
1679
1680 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1681 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1682 regs + gregset->r_y_offset);
1683
1684 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1685 {
1686 int offset = gregset->r_g1_offset;
1687
1688 /* %g0 is always zero. */
1689 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1690 {
1691 if (regnum == i || regnum == -1)
1692 regcache_raw_collect (regcache, i, regs + offset);
1693 offset += 4;
1694 }
1695 }
1696
1697 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1698 {
1699 /* Not all of the register set variants include Locals and
1700 Inputs. For those that don't, we read them off the stack. */
1701 if (gregset->r_l0_offset != -1)
1702 {
1703 int offset = gregset->r_l0_offset;
1704
1705 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1706 {
1707 if (regnum == i || regnum == -1)
1708 regcache_raw_collect (regcache, i, regs + offset);
1709 offset += 4;
1710 }
1711 }
1712 }
1713 }
1714
1715 void
1716 sparc32_supply_fpregset (struct regcache *regcache,
1717 int regnum, const void *fpregs)
1718 {
1719 const gdb_byte *regs = fpregs;
1720 int i;
1721
1722 for (i = 0; i < 32; i++)
1723 {
1724 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1725 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1726 }
1727
1728 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1729 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1730 }
1731
1732 void
1733 sparc32_collect_fpregset (const struct regcache *regcache,
1734 int regnum, void *fpregs)
1735 {
1736 gdb_byte *regs = fpregs;
1737 int i;
1738
1739 for (i = 0; i < 32; i++)
1740 {
1741 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1742 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1743 }
1744
1745 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1746 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1747 }
1748 \f
1749
1750 /* SunOS 4. */
1751
1752 /* From <machine/reg.h>. */
1753 const struct sparc_gregset sparc32_sunos4_gregset =
1754 {
1755 0 * 4, /* %psr */
1756 1 * 4, /* %pc */
1757 2 * 4, /* %npc */
1758 3 * 4, /* %y */
1759 -1, /* %wim */
1760 -1, /* %tbr */
1761 4 * 4, /* %g1 */
1762 -1 /* %l0 */
1763 };
1764 \f
1765
1766 /* Provide a prototype to silence -Wmissing-prototypes. */
1767 void _initialize_sparc_tdep (void);
1768
1769 void
1770 _initialize_sparc_tdep (void)
1771 {
1772 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
1773 }
This page took 0.089634 seconds and 4 git commands to generate.