gdb: ignore generated gcore
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for SPARC.
2
3 Copyright (C) 2003-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "dis-asm.h"
23 #include "dwarf2-frame.h"
24 #include "floatformat.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "inferior.h"
31 #include "symtab.h"
32 #include "objfiles.h"
33 #include "osabi.h"
34 #include "regcache.h"
35 #include "target.h"
36 #include "value.h"
37
38 #include "gdb_assert.h"
39 #include "gdb_string.h"
40
41 #include "sparc-tdep.h"
42 #include "sparc-ravenscar-thread.h"
43
44 struct regset;
45
46 /* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
49 lists changes with respect to the original 32-bit psABI as defined
50 in the "System V ABI, SPARC Processor Supplement".
51
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
58 2.x is SVR4-based. */
59
60 /* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
64
65 /* The SPARC Floating-Point Quad-Precision format is similar to
66 big-endian IA-64 Quad-Precision format. */
67 #define floatformats_sparc_quad floatformats_ia64_quad
68
69 /* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
72 #undef BIAS
73 #define BIAS 2047
74
75 /* Macros to extract fields from SPARC instructions. */
76 #define X_OP(i) (((i) >> 30) & 0x3)
77 #define X_RD(i) (((i) >> 25) & 0x1f)
78 #define X_A(i) (((i) >> 29) & 1)
79 #define X_COND(i) (((i) >> 25) & 0xf)
80 #define X_OP2(i) (((i) >> 22) & 0x7)
81 #define X_IMM22(i) ((i) & 0x3fffff)
82 #define X_OP3(i) (((i) >> 19) & 0x3f)
83 #define X_RS1(i) (((i) >> 14) & 0x1f)
84 #define X_RS2(i) ((i) & 0x1f)
85 #define X_I(i) (((i) >> 13) & 1)
86 /* Sign extension macros. */
87 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
88 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
89 #define X_DISP10(i) ((((((i) >> 11) && 0x300) | (((i) >> 5) & 0xff)) ^ 0x200) - 0x200)
90 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
91
92 /* Fetch the instruction at PC. Instructions are always big-endian
93 even if the processor operates in little-endian mode. */
94
95 unsigned long
96 sparc_fetch_instruction (CORE_ADDR pc)
97 {
98 gdb_byte buf[4];
99 unsigned long insn;
100 int i;
101
102 /* If we can't read the instruction at PC, return zero. */
103 if (target_read_memory (pc, buf, sizeof (buf)))
104 return 0;
105
106 insn = 0;
107 for (i = 0; i < sizeof (buf); i++)
108 insn = (insn << 8) | buf[i];
109 return insn;
110 }
111 \f
112
113 /* Return non-zero if the instruction corresponding to PC is an "unimp"
114 instruction. */
115
116 static int
117 sparc_is_unimp_insn (CORE_ADDR pc)
118 {
119 const unsigned long insn = sparc_fetch_instruction (pc);
120
121 return ((insn & 0xc1c00000) == 0);
122 }
123
124 /* OpenBSD/sparc includes StackGhost, which according to the author's
125 website http://stackghost.cerias.purdue.edu "... transparently and
126 automatically protects applications' stack frames; more
127 specifically, it guards the return pointers. The protection
128 mechanisms require no application source or binary modification and
129 imposes only a negligible performance penalty."
130
131 The same website provides the following description of how
132 StackGhost works:
133
134 "StackGhost interfaces with the kernel trap handler that would
135 normally write out registers to the stack and the handler that
136 would read them back in. By XORing a cookie into the
137 return-address saved in the user stack when it is actually written
138 to the stack, and then XOR it out when the return-address is pulled
139 from the stack, StackGhost can cause attacker corrupted return
140 pointers to behave in a manner the attacker cannot predict.
141 StackGhost can also use several unused bits in the return pointer
142 to detect a smashed return pointer and abort the process."
143
144 For GDB this means that whenever we're reading %i7 from a stack
145 frame's window save area, we'll have to XOR the cookie.
146
147 More information on StackGuard can be found on in:
148
149 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
150 Stack Protection." 2001. Published in USENIX Security Symposium
151 '01. */
152
153 /* Fetch StackGhost Per-Process XOR cookie. */
154
155 ULONGEST
156 sparc_fetch_wcookie (struct gdbarch *gdbarch)
157 {
158 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
159 struct target_ops *ops = &current_target;
160 gdb_byte buf[8];
161 int len;
162
163 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
164 if (len == -1)
165 return 0;
166
167 /* We should have either an 32-bit or an 64-bit cookie. */
168 gdb_assert (len == 4 || len == 8);
169
170 return extract_unsigned_integer (buf, len, byte_order);
171 }
172 \f
173
174 /* The functions on this page are intended to be used to classify
175 function arguments. */
176
177 /* Check whether TYPE is "Integral or Pointer". */
178
179 static int
180 sparc_integral_or_pointer_p (const struct type *type)
181 {
182 int len = TYPE_LENGTH (type);
183
184 switch (TYPE_CODE (type))
185 {
186 case TYPE_CODE_INT:
187 case TYPE_CODE_BOOL:
188 case TYPE_CODE_CHAR:
189 case TYPE_CODE_ENUM:
190 case TYPE_CODE_RANGE:
191 /* We have byte, half-word, word and extended-word/doubleword
192 integral types. The doubleword is an extension to the
193 original 32-bit ABI by the SCD 2.4.x. */
194 return (len == 1 || len == 2 || len == 4 || len == 8);
195 case TYPE_CODE_PTR:
196 case TYPE_CODE_REF:
197 /* Allow either 32-bit or 64-bit pointers. */
198 return (len == 4 || len == 8);
199 default:
200 break;
201 }
202
203 return 0;
204 }
205
206 /* Check whether TYPE is "Floating". */
207
208 static int
209 sparc_floating_p (const struct type *type)
210 {
211 switch (TYPE_CODE (type))
212 {
213 case TYPE_CODE_FLT:
214 {
215 int len = TYPE_LENGTH (type);
216 return (len == 4 || len == 8 || len == 16);
217 }
218 default:
219 break;
220 }
221
222 return 0;
223 }
224
225 /* Check whether TYPE is "Complex Floating". */
226
227 static int
228 sparc_complex_floating_p (const struct type *type)
229 {
230 switch (TYPE_CODE (type))
231 {
232 case TYPE_CODE_COMPLEX:
233 {
234 int len = TYPE_LENGTH (type);
235 return (len == 8 || len == 16 || len == 32);
236 }
237 default:
238 break;
239 }
240
241 return 0;
242 }
243
244 /* Check whether TYPE is "Structure or Union".
245
246 In terms of Ada subprogram calls, arrays are treated the same as
247 struct and union types. So this function also returns non-zero
248 for array types. */
249
250 static int
251 sparc_structure_or_union_p (const struct type *type)
252 {
253 switch (TYPE_CODE (type))
254 {
255 case TYPE_CODE_STRUCT:
256 case TYPE_CODE_UNION:
257 case TYPE_CODE_ARRAY:
258 return 1;
259 default:
260 break;
261 }
262
263 return 0;
264 }
265
266 /* Register information. */
267
268 static const char *sparc32_register_names[] =
269 {
270 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
271 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
272 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
273 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
274
275 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
276 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
277 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
278 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
279
280 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
281 };
282
283 /* Total number of registers. */
284 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
285
286 /* We provide the aliases %d0..%d30 for the floating registers as
287 "psuedo" registers. */
288
289 static const char *sparc32_pseudo_register_names[] =
290 {
291 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
292 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
293 };
294
295 /* Total number of pseudo registers. */
296 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
297
298 /* Return the name of register REGNUM. */
299
300 static const char *
301 sparc32_register_name (struct gdbarch *gdbarch, int regnum)
302 {
303 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
304 return sparc32_register_names[regnum];
305
306 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
307 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
308
309 return NULL;
310 }
311 \f
312 /* Construct types for ISA-specific registers. */
313
314 static struct type *
315 sparc_psr_type (struct gdbarch *gdbarch)
316 {
317 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
318
319 if (!tdep->sparc_psr_type)
320 {
321 struct type *type;
322
323 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
324 append_flags_type_flag (type, 5, "ET");
325 append_flags_type_flag (type, 6, "PS");
326 append_flags_type_flag (type, 7, "S");
327 append_flags_type_flag (type, 12, "EF");
328 append_flags_type_flag (type, 13, "EC");
329
330 tdep->sparc_psr_type = type;
331 }
332
333 return tdep->sparc_psr_type;
334 }
335
336 static struct type *
337 sparc_fsr_type (struct gdbarch *gdbarch)
338 {
339 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
340
341 if (!tdep->sparc_fsr_type)
342 {
343 struct type *type;
344
345 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
346 append_flags_type_flag (type, 0, "NXA");
347 append_flags_type_flag (type, 1, "DZA");
348 append_flags_type_flag (type, 2, "UFA");
349 append_flags_type_flag (type, 3, "OFA");
350 append_flags_type_flag (type, 4, "NVA");
351 append_flags_type_flag (type, 5, "NXC");
352 append_flags_type_flag (type, 6, "DZC");
353 append_flags_type_flag (type, 7, "UFC");
354 append_flags_type_flag (type, 8, "OFC");
355 append_flags_type_flag (type, 9, "NVC");
356 append_flags_type_flag (type, 22, "NS");
357 append_flags_type_flag (type, 23, "NXM");
358 append_flags_type_flag (type, 24, "DZM");
359 append_flags_type_flag (type, 25, "UFM");
360 append_flags_type_flag (type, 26, "OFM");
361 append_flags_type_flag (type, 27, "NVM");
362
363 tdep->sparc_fsr_type = type;
364 }
365
366 return tdep->sparc_fsr_type;
367 }
368
369 /* Return the GDB type object for the "standard" data type of data in
370 register REGNUM. */
371
372 static struct type *
373 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
374 {
375 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
376 return builtin_type (gdbarch)->builtin_float;
377
378 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
379 return builtin_type (gdbarch)->builtin_double;
380
381 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
382 return builtin_type (gdbarch)->builtin_data_ptr;
383
384 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
385 return builtin_type (gdbarch)->builtin_func_ptr;
386
387 if (regnum == SPARC32_PSR_REGNUM)
388 return sparc_psr_type (gdbarch);
389
390 if (regnum == SPARC32_FSR_REGNUM)
391 return sparc_fsr_type (gdbarch);
392
393 return builtin_type (gdbarch)->builtin_int32;
394 }
395
396 static enum register_status
397 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
398 struct regcache *regcache,
399 int regnum, gdb_byte *buf)
400 {
401 enum register_status status;
402
403 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
404
405 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
406 status = regcache_raw_read (regcache, regnum, buf);
407 if (status == REG_VALID)
408 status = regcache_raw_read (regcache, regnum + 1, buf + 4);
409 return status;
410 }
411
412 static void
413 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
414 struct regcache *regcache,
415 int regnum, const gdb_byte *buf)
416 {
417 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
418
419 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
420 regcache_raw_write (regcache, regnum, buf);
421 regcache_raw_write (regcache, regnum + 1, buf + 4);
422 }
423 \f
424
425 static CORE_ADDR
426 sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
427 {
428 /* The ABI requires double-word alignment. */
429 return address & ~0x7;
430 }
431
432 static CORE_ADDR
433 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
434 CORE_ADDR funcaddr,
435 struct value **args, int nargs,
436 struct type *value_type,
437 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
438 struct regcache *regcache)
439 {
440 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
441
442 *bp_addr = sp - 4;
443 *real_pc = funcaddr;
444
445 if (using_struct_return (gdbarch, NULL, value_type))
446 {
447 gdb_byte buf[4];
448
449 /* This is an UNIMP instruction. */
450 store_unsigned_integer (buf, 4, byte_order,
451 TYPE_LENGTH (value_type) & 0x1fff);
452 write_memory (sp - 8, buf, 4);
453 return sp - 8;
454 }
455
456 return sp - 4;
457 }
458
459 static CORE_ADDR
460 sparc32_store_arguments (struct regcache *regcache, int nargs,
461 struct value **args, CORE_ADDR sp,
462 int struct_return, CORE_ADDR struct_addr)
463 {
464 struct gdbarch *gdbarch = get_regcache_arch (regcache);
465 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
466 /* Number of words in the "parameter array". */
467 int num_elements = 0;
468 int element = 0;
469 int i;
470
471 for (i = 0; i < nargs; i++)
472 {
473 struct type *type = value_type (args[i]);
474 int len = TYPE_LENGTH (type);
475
476 if (sparc_structure_or_union_p (type)
477 || (sparc_floating_p (type) && len == 16)
478 || sparc_complex_floating_p (type))
479 {
480 /* Structure, Union and Quad-Precision Arguments. */
481 sp -= len;
482
483 /* Use doubleword alignment for these values. That's always
484 correct, and wasting a few bytes shouldn't be a problem. */
485 sp &= ~0x7;
486
487 write_memory (sp, value_contents (args[i]), len);
488 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
489 num_elements++;
490 }
491 else if (sparc_floating_p (type))
492 {
493 /* Floating arguments. */
494 gdb_assert (len == 4 || len == 8);
495 num_elements += (len / 4);
496 }
497 else
498 {
499 /* Integral and pointer arguments. */
500 gdb_assert (sparc_integral_or_pointer_p (type));
501
502 if (len < 4)
503 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
504 args[i]);
505 num_elements += ((len + 3) / 4);
506 }
507 }
508
509 /* Always allocate at least six words. */
510 sp -= max (6, num_elements) * 4;
511
512 /* The psABI says that "Software convention requires space for the
513 struct/union return value pointer, even if the word is unused." */
514 sp -= 4;
515
516 /* The psABI says that "Although software convention and the
517 operating system require every stack frame to be doubleword
518 aligned." */
519 sp &= ~0x7;
520
521 for (i = 0; i < nargs; i++)
522 {
523 const bfd_byte *valbuf = value_contents (args[i]);
524 struct type *type = value_type (args[i]);
525 int len = TYPE_LENGTH (type);
526
527 gdb_assert (len == 4 || len == 8);
528
529 if (element < 6)
530 {
531 int regnum = SPARC_O0_REGNUM + element;
532
533 regcache_cooked_write (regcache, regnum, valbuf);
534 if (len > 4 && element < 5)
535 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
536 }
537
538 /* Always store the argument in memory. */
539 write_memory (sp + 4 + element * 4, valbuf, len);
540 element += len / 4;
541 }
542
543 gdb_assert (element == num_elements);
544
545 if (struct_return)
546 {
547 gdb_byte buf[4];
548
549 store_unsigned_integer (buf, 4, byte_order, struct_addr);
550 write_memory (sp, buf, 4);
551 }
552
553 return sp;
554 }
555
556 static CORE_ADDR
557 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
558 struct regcache *regcache, CORE_ADDR bp_addr,
559 int nargs, struct value **args, CORE_ADDR sp,
560 int struct_return, CORE_ADDR struct_addr)
561 {
562 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
563
564 /* Set return address. */
565 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
566
567 /* Set up function arguments. */
568 sp = sparc32_store_arguments (regcache, nargs, args, sp,
569 struct_return, struct_addr);
570
571 /* Allocate the 16-word window save area. */
572 sp -= 16 * 4;
573
574 /* Stack should be doubleword aligned at this point. */
575 gdb_assert (sp % 8 == 0);
576
577 /* Finally, update the stack pointer. */
578 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
579
580 return sp;
581 }
582 \f
583
584 /* Use the program counter to determine the contents and size of a
585 breakpoint instruction. Return a pointer to a string of bytes that
586 encode a breakpoint instruction, store the length of the string in
587 *LEN and optionally adjust *PC to point to the correct memory
588 location for inserting the breakpoint. */
589
590 static const gdb_byte *
591 sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
592 {
593 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
594
595 *len = sizeof (break_insn);
596 return break_insn;
597 }
598 \f
599
600 /* Allocate and initialize a frame cache. */
601
602 static struct sparc_frame_cache *
603 sparc_alloc_frame_cache (void)
604 {
605 struct sparc_frame_cache *cache;
606
607 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
608
609 /* Base address. */
610 cache->base = 0;
611 cache->pc = 0;
612
613 /* Frameless until proven otherwise. */
614 cache->frameless_p = 1;
615 cache->frame_offset = 0;
616 cache->saved_regs_mask = 0;
617 cache->copied_regs_mask = 0;
618 cache->struct_return_p = 0;
619
620 return cache;
621 }
622
623 /* GCC generates several well-known sequences of instructions at the begining
624 of each function prologue when compiling with -fstack-check. If one of
625 such sequences starts at START_PC, then return the address of the
626 instruction immediately past this sequence. Otherwise, return START_PC. */
627
628 static CORE_ADDR
629 sparc_skip_stack_check (const CORE_ADDR start_pc)
630 {
631 CORE_ADDR pc = start_pc;
632 unsigned long insn;
633 int offset_stack_checking_sequence = 0;
634 int probing_loop = 0;
635
636 /* With GCC, all stack checking sequences begin with the same two
637 instructions, plus an optional one in the case of a probing loop:
638
639 sethi <some immediate>, %g1
640 sub %sp, %g1, %g1
641
642 or:
643
644 sethi <some immediate>, %g1
645 sethi <some immediate>, %g4
646 sub %sp, %g1, %g1
647
648 or:
649
650 sethi <some immediate>, %g1
651 sub %sp, %g1, %g1
652 sethi <some immediate>, %g4
653
654 If the optional instruction is found (setting g4), assume that a
655 probing loop will follow. */
656
657 /* sethi <some immediate>, %g1 */
658 insn = sparc_fetch_instruction (pc);
659 pc = pc + 4;
660 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
661 return start_pc;
662
663 /* optional: sethi <some immediate>, %g4 */
664 insn = sparc_fetch_instruction (pc);
665 pc = pc + 4;
666 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
667 {
668 probing_loop = 1;
669 insn = sparc_fetch_instruction (pc);
670 pc = pc + 4;
671 }
672
673 /* sub %sp, %g1, %g1 */
674 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
675 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
676 return start_pc;
677
678 insn = sparc_fetch_instruction (pc);
679 pc = pc + 4;
680
681 /* optional: sethi <some immediate>, %g4 */
682 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
683 {
684 probing_loop = 1;
685 insn = sparc_fetch_instruction (pc);
686 pc = pc + 4;
687 }
688
689 /* First possible sequence:
690 [first two instructions above]
691 clr [%g1 - some immediate] */
692
693 /* clr [%g1 - some immediate] */
694 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
695 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
696 {
697 /* Valid stack-check sequence, return the new PC. */
698 return pc;
699 }
700
701 /* Second possible sequence: A small number of probes.
702 [first two instructions above]
703 clr [%g1]
704 add %g1, -<some immediate>, %g1
705 clr [%g1]
706 [repeat the two instructions above any (small) number of times]
707 clr [%g1 - some immediate] */
708
709 /* clr [%g1] */
710 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
711 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
712 {
713 while (1)
714 {
715 /* add %g1, -<some immediate>, %g1 */
716 insn = sparc_fetch_instruction (pc);
717 pc = pc + 4;
718 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
719 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
720 break;
721
722 /* clr [%g1] */
723 insn = sparc_fetch_instruction (pc);
724 pc = pc + 4;
725 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
726 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
727 return start_pc;
728 }
729
730 /* clr [%g1 - some immediate] */
731 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
732 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
733 return start_pc;
734
735 /* We found a valid stack-check sequence, return the new PC. */
736 return pc;
737 }
738
739 /* Third sequence: A probing loop.
740 [first three instructions above]
741 sub %g1, %g4, %g4
742 cmp %g1, %g4
743 be <disp>
744 add %g1, -<some immediate>, %g1
745 ba <disp>
746 clr [%g1]
747
748 And an optional last probe for the remainder:
749
750 clr [%g4 - some immediate] */
751
752 if (probing_loop)
753 {
754 /* sub %g1, %g4, %g4 */
755 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
756 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
757 return start_pc;
758
759 /* cmp %g1, %g4 */
760 insn = sparc_fetch_instruction (pc);
761 pc = pc + 4;
762 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
763 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
764 return start_pc;
765
766 /* be <disp> */
767 insn = sparc_fetch_instruction (pc);
768 pc = pc + 4;
769 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
770 return start_pc;
771
772 /* add %g1, -<some immediate>, %g1 */
773 insn = sparc_fetch_instruction (pc);
774 pc = pc + 4;
775 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
776 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
777 return start_pc;
778
779 /* ba <disp> */
780 insn = sparc_fetch_instruction (pc);
781 pc = pc + 4;
782 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
783 return start_pc;
784
785 /* clr [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
786 insn = sparc_fetch_instruction (pc);
787 pc = pc + 4;
788 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
789 && X_RD (insn) == 0 && X_RS1 (insn) == 1
790 && (!X_I(insn) || X_SIMM13 (insn) == 0)))
791 return start_pc;
792
793 /* We found a valid stack-check sequence, return the new PC. */
794
795 /* optional: clr [%g4 - some immediate] */
796 insn = sparc_fetch_instruction (pc);
797 pc = pc + 4;
798 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
799 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
800 return pc - 4;
801 else
802 return pc;
803 }
804
805 /* No stack check code in our prologue, return the start_pc. */
806 return start_pc;
807 }
808
809 /* Record the effect of a SAVE instruction on CACHE. */
810
811 void
812 sparc_record_save_insn (struct sparc_frame_cache *cache)
813 {
814 /* The frame is set up. */
815 cache->frameless_p = 0;
816
817 /* The frame pointer contains the CFA. */
818 cache->frame_offset = 0;
819
820 /* The `local' and `in' registers are all saved. */
821 cache->saved_regs_mask = 0xffff;
822
823 /* The `out' registers are all renamed. */
824 cache->copied_regs_mask = 0xff;
825 }
826
827 /* Do a full analysis of the prologue at PC and update CACHE accordingly.
828 Bail out early if CURRENT_PC is reached. Return the address where
829 the analysis stopped.
830
831 We handle both the traditional register window model and the single
832 register window (aka flat) model. */
833
834 CORE_ADDR
835 sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
836 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
837 {
838 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
839 unsigned long insn;
840 int offset = 0;
841 int dest = -1;
842
843 pc = sparc_skip_stack_check (pc);
844
845 if (current_pc <= pc)
846 return current_pc;
847
848 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
849 SPARC the linker usually defines a symbol (typically
850 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
851 This symbol makes us end up here with PC pointing at the start of
852 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
853 would do our normal prologue analysis, we would probably conclude
854 that we've got a frame when in reality we don't, since the
855 dynamic linker patches up the first PLT with some code that
856 starts with a SAVE instruction. Patch up PC such that it points
857 at the start of our PLT entry. */
858 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
859 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
860
861 insn = sparc_fetch_instruction (pc);
862
863 /* Recognize store insns and record their sources. */
864 while (X_OP (insn) == 3
865 && (X_OP3 (insn) == 0x4 /* stw */
866 || X_OP3 (insn) == 0x7 /* std */
867 || X_OP3 (insn) == 0xe) /* stx */
868 && X_RS1 (insn) == SPARC_SP_REGNUM)
869 {
870 int regnum = X_RD (insn);
871
872 /* Recognize stores into the corresponding stack slots. */
873 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
874 && ((X_I (insn)
875 && X_SIMM13 (insn) == (X_OP3 (insn) == 0xe
876 ? (regnum - SPARC_L0_REGNUM) * 8 + BIAS
877 : (regnum - SPARC_L0_REGNUM) * 4))
878 || (!X_I (insn) && regnum == SPARC_L0_REGNUM)))
879 {
880 cache->saved_regs_mask |= (1 << (regnum - SPARC_L0_REGNUM));
881 if (X_OP3 (insn) == 0x7)
882 cache->saved_regs_mask |= (1 << (regnum + 1 - SPARC_L0_REGNUM));
883 }
884
885 offset += 4;
886
887 insn = sparc_fetch_instruction (pc + offset);
888 }
889
890 /* Recognize a SETHI insn and record its destination. */
891 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
892 {
893 dest = X_RD (insn);
894 offset += 4;
895
896 insn = sparc_fetch_instruction (pc + offset);
897 }
898
899 /* Allow for an arithmetic operation on DEST or %g1. */
900 if (X_OP (insn) == 2 && X_I (insn)
901 && (X_RD (insn) == 1 || X_RD (insn) == dest))
902 {
903 offset += 4;
904
905 insn = sparc_fetch_instruction (pc + offset);
906 }
907
908 /* Check for the SAVE instruction that sets up the frame. */
909 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
910 {
911 sparc_record_save_insn (cache);
912 offset += 4;
913 return pc + offset;
914 }
915
916 /* Check for an arithmetic operation on %sp. */
917 if (X_OP (insn) == 2
918 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
919 && X_RS1 (insn) == SPARC_SP_REGNUM
920 && X_RD (insn) == SPARC_SP_REGNUM)
921 {
922 if (X_I (insn))
923 {
924 cache->frame_offset = X_SIMM13 (insn);
925 if (X_OP3 (insn) == 0)
926 cache->frame_offset = -cache->frame_offset;
927 }
928 offset += 4;
929
930 insn = sparc_fetch_instruction (pc + offset);
931
932 /* Check for an arithmetic operation that sets up the frame. */
933 if (X_OP (insn) == 2
934 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
935 && X_RS1 (insn) == SPARC_SP_REGNUM
936 && X_RD (insn) == SPARC_FP_REGNUM)
937 {
938 cache->frameless_p = 0;
939 cache->frame_offset = 0;
940 /* We could check that the amount subtracted to %sp above is the
941 same as the one added here, but this seems superfluous. */
942 cache->copied_regs_mask |= 0x40;
943 offset += 4;
944
945 insn = sparc_fetch_instruction (pc + offset);
946 }
947
948 /* Check for a move (or) operation that copies the return register. */
949 if (X_OP (insn) == 2
950 && X_OP3 (insn) == 0x2
951 && !X_I (insn)
952 && X_RS1 (insn) == SPARC_G0_REGNUM
953 && X_RS2 (insn) == SPARC_O7_REGNUM
954 && X_RD (insn) == SPARC_I7_REGNUM)
955 {
956 cache->copied_regs_mask |= 0x80;
957 offset += 4;
958 }
959
960 return pc + offset;
961 }
962
963 return pc;
964 }
965
966 static CORE_ADDR
967 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
968 {
969 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
970 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
971 }
972
973 /* Return PC of first real instruction of the function starting at
974 START_PC. */
975
976 static CORE_ADDR
977 sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
978 {
979 struct symtab_and_line sal;
980 CORE_ADDR func_start, func_end;
981 struct sparc_frame_cache cache;
982
983 /* This is the preferred method, find the end of the prologue by
984 using the debugging information. */
985 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
986 {
987 sal = find_pc_line (func_start, 0);
988
989 if (sal.end < func_end
990 && start_pc <= sal.end)
991 return sal.end;
992 }
993
994 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
995
996 /* The psABI says that "Although the first 6 words of arguments
997 reside in registers, the standard stack frame reserves space for
998 them.". It also suggests that a function may use that space to
999 "write incoming arguments 0 to 5" into that space, and that's
1000 indeed what GCC seems to be doing. In that case GCC will
1001 generate debug information that points to the stack slots instead
1002 of the registers, so we should consider the instructions that
1003 write out these incoming arguments onto the stack. */
1004
1005 while (1)
1006 {
1007 unsigned long insn = sparc_fetch_instruction (start_pc);
1008
1009 /* Recognize instructions that store incoming arguments into the
1010 corresponding stack slots. */
1011 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04
1012 && X_I (insn) && X_RS1 (insn) == SPARC_FP_REGNUM)
1013 {
1014 int regnum = X_RD (insn);
1015
1016 /* Case of arguments still in %o[0..5]. */
1017 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O5_REGNUM
1018 && !(cache.copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM)))
1019 && X_SIMM13 (insn) == 68 + (regnum - SPARC_O0_REGNUM) * 4)
1020 {
1021 start_pc += 4;
1022 continue;
1023 }
1024
1025 /* Case of arguments copied into %i[0..5]. */
1026 if (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I5_REGNUM
1027 && (cache.copied_regs_mask & (1 << (regnum - SPARC_I0_REGNUM)))
1028 && X_SIMM13 (insn) == 68 + (regnum - SPARC_I0_REGNUM) * 4)
1029 {
1030 start_pc += 4;
1031 continue;
1032 }
1033 }
1034
1035 break;
1036 }
1037
1038 return start_pc;
1039 }
1040
1041 /* Normal frames. */
1042
1043 struct sparc_frame_cache *
1044 sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
1045 {
1046 struct sparc_frame_cache *cache;
1047
1048 if (*this_cache)
1049 return *this_cache;
1050
1051 cache = sparc_alloc_frame_cache ();
1052 *this_cache = cache;
1053
1054 cache->pc = get_frame_func (this_frame);
1055 if (cache->pc != 0)
1056 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
1057 get_frame_pc (this_frame), cache);
1058
1059 if (cache->frameless_p)
1060 {
1061 /* This function is frameless, so %fp (%i6) holds the frame
1062 pointer for our calling frame. Use %sp (%o6) as this frame's
1063 base address. */
1064 cache->base =
1065 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1066 }
1067 else
1068 {
1069 /* For normal frames, %fp (%i6) holds the frame pointer, the
1070 base address for the current stack frame. */
1071 cache->base =
1072 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
1073 }
1074
1075 cache->base += cache->frame_offset;
1076
1077 if (cache->base & 1)
1078 cache->base += BIAS;
1079
1080 return cache;
1081 }
1082
1083 static int
1084 sparc32_struct_return_from_sym (struct symbol *sym)
1085 {
1086 struct type *type = check_typedef (SYMBOL_TYPE (sym));
1087 enum type_code code = TYPE_CODE (type);
1088
1089 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1090 {
1091 type = check_typedef (TYPE_TARGET_TYPE (type));
1092 if (sparc_structure_or_union_p (type)
1093 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1094 return 1;
1095 }
1096
1097 return 0;
1098 }
1099
1100 struct sparc_frame_cache *
1101 sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
1102 {
1103 struct sparc_frame_cache *cache;
1104 struct symbol *sym;
1105
1106 if (*this_cache)
1107 return *this_cache;
1108
1109 cache = sparc_frame_cache (this_frame, this_cache);
1110
1111 sym = find_pc_function (cache->pc);
1112 if (sym)
1113 {
1114 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
1115 }
1116 else
1117 {
1118 /* There is no debugging information for this function to
1119 help us determine whether this function returns a struct
1120 or not. So we rely on another heuristic which is to check
1121 the instruction at the return address and see if this is
1122 an "unimp" instruction. If it is, then it is a struct-return
1123 function. */
1124 CORE_ADDR pc;
1125 int regnum =
1126 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1127
1128 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
1129 if (sparc_is_unimp_insn (pc))
1130 cache->struct_return_p = 1;
1131 }
1132
1133 return cache;
1134 }
1135
1136 static void
1137 sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
1138 struct frame_id *this_id)
1139 {
1140 struct sparc_frame_cache *cache =
1141 sparc32_frame_cache (this_frame, this_cache);
1142
1143 /* This marks the outermost frame. */
1144 if (cache->base == 0)
1145 return;
1146
1147 (*this_id) = frame_id_build (cache->base, cache->pc);
1148 }
1149
1150 static struct value *
1151 sparc32_frame_prev_register (struct frame_info *this_frame,
1152 void **this_cache, int regnum)
1153 {
1154 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1155 struct sparc_frame_cache *cache =
1156 sparc32_frame_cache (this_frame, this_cache);
1157
1158 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
1159 {
1160 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
1161
1162 /* If this functions has a Structure, Union or Quad-Precision
1163 return value, we have to skip the UNIMP instruction that encodes
1164 the size of the structure. */
1165 if (cache->struct_return_p)
1166 pc += 4;
1167
1168 regnum =
1169 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1170 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1171 return frame_unwind_got_constant (this_frame, regnum, pc);
1172 }
1173
1174 /* Handle StackGhost. */
1175 {
1176 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1177
1178 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1179 {
1180 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1181 ULONGEST i7;
1182
1183 /* Read the value in from memory. */
1184 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1185 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
1186 }
1187 }
1188
1189 /* The previous frame's `local' and `in' registers may have been saved
1190 in the register save area. */
1191 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1192 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
1193 {
1194 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1195
1196 return frame_unwind_got_memory (this_frame, regnum, addr);
1197 }
1198
1199 /* The previous frame's `out' registers may be accessible as the current
1200 frame's `in' registers. */
1201 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1202 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
1203 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1204
1205 return frame_unwind_got_register (this_frame, regnum, regnum);
1206 }
1207
1208 static const struct frame_unwind sparc32_frame_unwind =
1209 {
1210 NORMAL_FRAME,
1211 default_frame_unwind_stop_reason,
1212 sparc32_frame_this_id,
1213 sparc32_frame_prev_register,
1214 NULL,
1215 default_frame_sniffer
1216 };
1217 \f
1218
1219 static CORE_ADDR
1220 sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
1221 {
1222 struct sparc_frame_cache *cache =
1223 sparc32_frame_cache (this_frame, this_cache);
1224
1225 return cache->base;
1226 }
1227
1228 static const struct frame_base sparc32_frame_base =
1229 {
1230 &sparc32_frame_unwind,
1231 sparc32_frame_base_address,
1232 sparc32_frame_base_address,
1233 sparc32_frame_base_address
1234 };
1235
1236 static struct frame_id
1237 sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1238 {
1239 CORE_ADDR sp;
1240
1241 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1242 if (sp & 1)
1243 sp += BIAS;
1244 return frame_id_build (sp, get_frame_pc (this_frame));
1245 }
1246 \f
1247
1248 /* Extract a function return value of TYPE from REGCACHE, and copy
1249 that into VALBUF. */
1250
1251 static void
1252 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
1253 gdb_byte *valbuf)
1254 {
1255 int len = TYPE_LENGTH (type);
1256 gdb_byte buf[32];
1257
1258 gdb_assert (!sparc_structure_or_union_p (type));
1259 gdb_assert (!(sparc_floating_p (type) && len == 16));
1260
1261 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
1262 {
1263 /* Floating return values. */
1264 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1265 if (len > 4)
1266 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1267 if (len > 8)
1268 {
1269 regcache_cooked_read (regcache, SPARC_F2_REGNUM, buf + 8);
1270 regcache_cooked_read (regcache, SPARC_F3_REGNUM, buf + 12);
1271 }
1272 if (len > 16)
1273 {
1274 regcache_cooked_read (regcache, SPARC_F4_REGNUM, buf + 16);
1275 regcache_cooked_read (regcache, SPARC_F5_REGNUM, buf + 20);
1276 regcache_cooked_read (regcache, SPARC_F6_REGNUM, buf + 24);
1277 regcache_cooked_read (regcache, SPARC_F7_REGNUM, buf + 28);
1278 }
1279 memcpy (valbuf, buf, len);
1280 }
1281 else
1282 {
1283 /* Integral and pointer return values. */
1284 gdb_assert (sparc_integral_or_pointer_p (type));
1285
1286 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1287 if (len > 4)
1288 {
1289 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1290 gdb_assert (len == 8);
1291 memcpy (valbuf, buf, 8);
1292 }
1293 else
1294 {
1295 /* Just stripping off any unused bytes should preserve the
1296 signed-ness just fine. */
1297 memcpy (valbuf, buf + 4 - len, len);
1298 }
1299 }
1300 }
1301
1302 /* Store the function return value of type TYPE from VALBUF into
1303 REGCACHE. */
1304
1305 static void
1306 sparc32_store_return_value (struct type *type, struct regcache *regcache,
1307 const gdb_byte *valbuf)
1308 {
1309 int len = TYPE_LENGTH (type);
1310 gdb_byte buf[8];
1311
1312 gdb_assert (!sparc_structure_or_union_p (type));
1313 gdb_assert (!(sparc_floating_p (type) && len == 16));
1314 gdb_assert (len <= 8);
1315
1316 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
1317 {
1318 /* Floating return values. */
1319 memcpy (buf, valbuf, len);
1320 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1321 if (len > 4)
1322 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1323 if (len > 8)
1324 {
1325 regcache_cooked_write (regcache, SPARC_F2_REGNUM, buf + 8);
1326 regcache_cooked_write (regcache, SPARC_F3_REGNUM, buf + 12);
1327 }
1328 if (len > 16)
1329 {
1330 regcache_cooked_write (regcache, SPARC_F4_REGNUM, buf + 16);
1331 regcache_cooked_write (regcache, SPARC_F5_REGNUM, buf + 20);
1332 regcache_cooked_write (regcache, SPARC_F6_REGNUM, buf + 24);
1333 regcache_cooked_write (regcache, SPARC_F7_REGNUM, buf + 28);
1334 }
1335 }
1336 else
1337 {
1338 /* Integral and pointer return values. */
1339 gdb_assert (sparc_integral_or_pointer_p (type));
1340
1341 if (len > 4)
1342 {
1343 gdb_assert (len == 8);
1344 memcpy (buf, valbuf, 8);
1345 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
1346 }
1347 else
1348 {
1349 /* ??? Do we need to do any sign-extension here? */
1350 memcpy (buf + 4 - len, valbuf, len);
1351 }
1352 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
1353 }
1354 }
1355
1356 static enum return_value_convention
1357 sparc32_return_value (struct gdbarch *gdbarch, struct value *function,
1358 struct type *type, struct regcache *regcache,
1359 gdb_byte *readbuf, const gdb_byte *writebuf)
1360 {
1361 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1362
1363 /* The psABI says that "...every stack frame reserves the word at
1364 %fp+64. If a function returns a structure, union, or
1365 quad-precision value, this word should hold the address of the
1366 object into which the return value should be copied." This
1367 guarantees that we can always find the return value, not just
1368 before the function returns. */
1369
1370 if (sparc_structure_or_union_p (type)
1371 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1372 {
1373 ULONGEST sp;
1374 CORE_ADDR addr;
1375
1376 if (readbuf)
1377 {
1378 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1379 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1380 read_memory (addr, readbuf, TYPE_LENGTH (type));
1381 }
1382 if (writebuf)
1383 {
1384 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1385 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1386 write_memory (addr, writebuf, TYPE_LENGTH (type));
1387 }
1388
1389 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1390 }
1391
1392 if (readbuf)
1393 sparc32_extract_return_value (type, regcache, readbuf);
1394 if (writebuf)
1395 sparc32_store_return_value (type, regcache, writebuf);
1396
1397 return RETURN_VALUE_REGISTER_CONVENTION;
1398 }
1399
1400 static int
1401 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1402 {
1403 return (sparc_structure_or_union_p (type)
1404 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)
1405 || sparc_complex_floating_p (type));
1406 }
1407
1408 static int
1409 sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
1410 {
1411 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1412 struct symbol *sym = find_pc_function (pc);
1413
1414 if (sym)
1415 return sparc32_struct_return_from_sym (sym);
1416 return 0;
1417 }
1418
1419 static void
1420 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1421 struct dwarf2_frame_state_reg *reg,
1422 struct frame_info *this_frame)
1423 {
1424 int off;
1425
1426 switch (regnum)
1427 {
1428 case SPARC_G0_REGNUM:
1429 /* Since %g0 is always zero, there is no point in saving it, and
1430 people will be inclined omit it from the CFI. Make sure we
1431 don't warn about that. */
1432 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1433 break;
1434 case SPARC_SP_REGNUM:
1435 reg->how = DWARF2_FRAME_REG_CFA;
1436 break;
1437 case SPARC32_PC_REGNUM:
1438 case SPARC32_NPC_REGNUM:
1439 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1440 off = 8;
1441 if (sparc32_dwarf2_struct_return_p (this_frame))
1442 off += 4;
1443 if (regnum == SPARC32_NPC_REGNUM)
1444 off += 4;
1445 reg->loc.offset = off;
1446 break;
1447 }
1448 }
1449
1450 \f
1451 /* The SPARC Architecture doesn't have hardware single-step support,
1452 and most operating systems don't implement it either, so we provide
1453 software single-step mechanism. */
1454
1455 static CORE_ADDR
1456 sparc_analyze_control_transfer (struct frame_info *frame,
1457 CORE_ADDR pc, CORE_ADDR *npc)
1458 {
1459 unsigned long insn = sparc_fetch_instruction (pc);
1460 int conditional_p = X_COND (insn) & 0x7;
1461 int branch_p = 0, fused_p = 0;
1462 long offset = 0; /* Must be signed for sign-extend. */
1463
1464 if (X_OP (insn) == 0 && X_OP2 (insn) == 3)
1465 {
1466 if ((insn & 0x10000000) == 0)
1467 {
1468 /* Branch on Integer Register with Prediction (BPr). */
1469 branch_p = 1;
1470 conditional_p = 1;
1471 }
1472 else
1473 {
1474 /* Compare and Branch */
1475 branch_p = 1;
1476 fused_p = 1;
1477 offset = 4 * X_DISP10 (insn);
1478 }
1479 }
1480 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1481 {
1482 /* Branch on Floating-Point Condition Codes (FBfcc). */
1483 branch_p = 1;
1484 offset = 4 * X_DISP22 (insn);
1485 }
1486 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1487 {
1488 /* Branch on Floating-Point Condition Codes with Prediction
1489 (FBPfcc). */
1490 branch_p = 1;
1491 offset = 4 * X_DISP19 (insn);
1492 }
1493 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1494 {
1495 /* Branch on Integer Condition Codes (Bicc). */
1496 branch_p = 1;
1497 offset = 4 * X_DISP22 (insn);
1498 }
1499 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1500 {
1501 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1502 branch_p = 1;
1503 offset = 4 * X_DISP19 (insn);
1504 }
1505 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1506 {
1507 /* Trap instruction (TRAP). */
1508 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
1509 }
1510
1511 /* FIXME: Handle DONE and RETRY instructions. */
1512
1513 if (branch_p)
1514 {
1515 if (fused_p)
1516 {
1517 /* Fused compare-and-branch instructions are non-delayed,
1518 and do not have an annuling capability. So we need to
1519 always set a breakpoint on both the NPC and the branch
1520 target address. */
1521 gdb_assert (offset != 0);
1522 return pc + offset;
1523 }
1524 else if (conditional_p)
1525 {
1526 /* For conditional branches, return nPC + 4 iff the annul
1527 bit is 1. */
1528 return (X_A (insn) ? *npc + 4 : 0);
1529 }
1530 else
1531 {
1532 /* For unconditional branches, return the target if its
1533 specified condition is "always" and return nPC + 4 if the
1534 condition is "never". If the annul bit is 1, set *NPC to
1535 zero. */
1536 if (X_COND (insn) == 0x0)
1537 pc = *npc, offset = 4;
1538 if (X_A (insn))
1539 *npc = 0;
1540
1541 gdb_assert (offset != 0);
1542 return pc + offset;
1543 }
1544 }
1545
1546 return 0;
1547 }
1548
1549 static CORE_ADDR
1550 sparc_step_trap (struct frame_info *frame, unsigned long insn)
1551 {
1552 return 0;
1553 }
1554
1555 int
1556 sparc_software_single_step (struct frame_info *frame)
1557 {
1558 struct gdbarch *arch = get_frame_arch (frame);
1559 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1560 struct address_space *aspace = get_frame_address_space (frame);
1561 CORE_ADDR npc, nnpc;
1562
1563 CORE_ADDR pc, orig_npc;
1564
1565 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1566 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
1567
1568 /* Analyze the instruction at PC. */
1569 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
1570 if (npc != 0)
1571 insert_single_step_breakpoint (arch, aspace, npc);
1572
1573 if (nnpc != 0)
1574 insert_single_step_breakpoint (arch, aspace, nnpc);
1575
1576 /* Assert that we have set at least one breakpoint, and that
1577 they're not set at the same spot - unless we're going
1578 from here straight to NULL, i.e. a call or jump to 0. */
1579 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1580 gdb_assert (nnpc != npc || orig_npc == 0);
1581
1582 return 1;
1583 }
1584
1585 static void
1586 sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
1587 {
1588 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1589
1590 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1591 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
1592 }
1593 \f
1594
1595 /* Return the appropriate register set for the core section identified
1596 by SECT_NAME and SECT_SIZE. */
1597
1598 static const struct regset *
1599 sparc_regset_from_core_section (struct gdbarch *gdbarch,
1600 const char *sect_name, size_t sect_size)
1601 {
1602 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1603
1604 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
1605 return tdep->gregset;
1606
1607 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
1608 return tdep->fpregset;
1609
1610 return NULL;
1611 }
1612 \f
1613
1614 static struct gdbarch *
1615 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1616 {
1617 struct gdbarch_tdep *tdep;
1618 struct gdbarch *gdbarch;
1619
1620 /* If there is already a candidate, use it. */
1621 arches = gdbarch_list_lookup_by_info (arches, &info);
1622 if (arches != NULL)
1623 return arches->gdbarch;
1624
1625 /* Allocate space for the new architecture. */
1626 tdep = XZALLOC (struct gdbarch_tdep);
1627 gdbarch = gdbarch_alloc (&info, tdep);
1628
1629 tdep->pc_regnum = SPARC32_PC_REGNUM;
1630 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1631 tdep->step_trap = sparc_step_trap;
1632
1633 set_gdbarch_long_double_bit (gdbarch, 128);
1634 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
1635
1636 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1637 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1638 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1639 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1640 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1641 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1642
1643 /* Register numbers of various important registers. */
1644 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1645 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1646 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1647
1648 /* Call dummy code. */
1649 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
1650 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1651 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1652 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1653
1654 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1655 set_gdbarch_stabs_argument_has_addr
1656 (gdbarch, sparc32_stabs_argument_has_addr);
1657
1658 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1659
1660 /* Stack grows downward. */
1661 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1662
1663 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
1664
1665 set_gdbarch_frame_args_skip (gdbarch, 8);
1666
1667 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
1668
1669 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1670 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1671
1672 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
1673
1674 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1675
1676 frame_base_set_default (gdbarch, &sparc32_frame_base);
1677
1678 /* Hook in the DWARF CFI frame unwinder. */
1679 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1680 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1681 StackGhost issues have been resolved. */
1682
1683 /* Hook in ABI-specific overrides, if they have been registered. */
1684 gdbarch_init_osabi (info, gdbarch);
1685
1686 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
1687
1688 /* If we have register sets, enable the generic core file support. */
1689 if (tdep->gregset)
1690 set_gdbarch_regset_from_core_section (gdbarch,
1691 sparc_regset_from_core_section);
1692
1693 register_sparc_ravenscar_ops (gdbarch);
1694
1695 return gdbarch;
1696 }
1697 \f
1698 /* Helper functions for dealing with register windows. */
1699
1700 void
1701 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1702 {
1703 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1704 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1705 int offset = 0;
1706 gdb_byte buf[8];
1707 int i;
1708
1709 if (sp & 1)
1710 {
1711 /* Registers are 64-bit. */
1712 sp += BIAS;
1713
1714 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1715 {
1716 if (regnum == i || regnum == -1)
1717 {
1718 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1719
1720 /* Handle StackGhost. */
1721 if (i == SPARC_I7_REGNUM)
1722 {
1723 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1724 ULONGEST i7;
1725
1726 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1727 store_unsigned_integer (buf + offset, 8, byte_order,
1728 i7 ^ wcookie);
1729 }
1730
1731 regcache_raw_supply (regcache, i, buf);
1732 }
1733 }
1734 }
1735 else
1736 {
1737 /* Registers are 32-bit. Toss any sign-extension of the stack
1738 pointer. */
1739 sp &= 0xffffffffUL;
1740
1741 /* Clear out the top half of the temporary buffer, and put the
1742 register value in the bottom half if we're in 64-bit mode. */
1743 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1744 {
1745 memset (buf, 0, 4);
1746 offset = 4;
1747 }
1748
1749 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1750 {
1751 if (regnum == i || regnum == -1)
1752 {
1753 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1754 buf + offset, 4);
1755
1756 /* Handle StackGhost. */
1757 if (i == SPARC_I7_REGNUM)
1758 {
1759 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1760 ULONGEST i7;
1761
1762 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1763 store_unsigned_integer (buf + offset, 4, byte_order,
1764 i7 ^ wcookie);
1765 }
1766
1767 regcache_raw_supply (regcache, i, buf);
1768 }
1769 }
1770 }
1771 }
1772
1773 void
1774 sparc_collect_rwindow (const struct regcache *regcache,
1775 CORE_ADDR sp, int regnum)
1776 {
1777 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1778 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1779 int offset = 0;
1780 gdb_byte buf[8];
1781 int i;
1782
1783 if (sp & 1)
1784 {
1785 /* Registers are 64-bit. */
1786 sp += BIAS;
1787
1788 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1789 {
1790 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1791 {
1792 regcache_raw_collect (regcache, i, buf);
1793
1794 /* Handle StackGhost. */
1795 if (i == SPARC_I7_REGNUM)
1796 {
1797 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1798 ULONGEST i7;
1799
1800 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1801 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
1802 }
1803
1804 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1805 }
1806 }
1807 }
1808 else
1809 {
1810 /* Registers are 32-bit. Toss any sign-extension of the stack
1811 pointer. */
1812 sp &= 0xffffffffUL;
1813
1814 /* Only use the bottom half if we're in 64-bit mode. */
1815 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1816 offset = 4;
1817
1818 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1819 {
1820 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1821 {
1822 regcache_raw_collect (regcache, i, buf);
1823
1824 /* Handle StackGhost. */
1825 if (i == SPARC_I7_REGNUM)
1826 {
1827 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1828 ULONGEST i7;
1829
1830 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1831 store_unsigned_integer (buf + offset, 4, byte_order,
1832 i7 ^ wcookie);
1833 }
1834
1835 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1836 buf + offset, 4);
1837 }
1838 }
1839 }
1840 }
1841
1842 /* Helper functions for dealing with register sets. */
1843
1844 void
1845 sparc32_supply_gregset (const struct sparc_gregset *gregset,
1846 struct regcache *regcache,
1847 int regnum, const void *gregs)
1848 {
1849 const gdb_byte *regs = gregs;
1850 gdb_byte zero[4] = { 0 };
1851 int i;
1852
1853 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1854 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1855 regs + gregset->r_psr_offset);
1856
1857 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1858 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1859 regs + gregset->r_pc_offset);
1860
1861 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1862 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1863 regs + gregset->r_npc_offset);
1864
1865 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1866 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1867 regs + gregset->r_y_offset);
1868
1869 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1870 regcache_raw_supply (regcache, SPARC_G0_REGNUM, &zero);
1871
1872 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1873 {
1874 int offset = gregset->r_g1_offset;
1875
1876 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1877 {
1878 if (regnum == i || regnum == -1)
1879 regcache_raw_supply (regcache, i, regs + offset);
1880 offset += 4;
1881 }
1882 }
1883
1884 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1885 {
1886 /* Not all of the register set variants include Locals and
1887 Inputs. For those that don't, we read them off the stack. */
1888 if (gregset->r_l0_offset == -1)
1889 {
1890 ULONGEST sp;
1891
1892 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1893 sparc_supply_rwindow (regcache, sp, regnum);
1894 }
1895 else
1896 {
1897 int offset = gregset->r_l0_offset;
1898
1899 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1900 {
1901 if (regnum == i || regnum == -1)
1902 regcache_raw_supply (regcache, i, regs + offset);
1903 offset += 4;
1904 }
1905 }
1906 }
1907 }
1908
1909 void
1910 sparc32_collect_gregset (const struct sparc_gregset *gregset,
1911 const struct regcache *regcache,
1912 int regnum, void *gregs)
1913 {
1914 gdb_byte *regs = gregs;
1915 int i;
1916
1917 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1918 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1919 regs + gregset->r_psr_offset);
1920
1921 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1922 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1923 regs + gregset->r_pc_offset);
1924
1925 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1926 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1927 regs + gregset->r_npc_offset);
1928
1929 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1930 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1931 regs + gregset->r_y_offset);
1932
1933 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1934 {
1935 int offset = gregset->r_g1_offset;
1936
1937 /* %g0 is always zero. */
1938 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1939 {
1940 if (regnum == i || regnum == -1)
1941 regcache_raw_collect (regcache, i, regs + offset);
1942 offset += 4;
1943 }
1944 }
1945
1946 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1947 {
1948 /* Not all of the register set variants include Locals and
1949 Inputs. For those that don't, we read them off the stack. */
1950 if (gregset->r_l0_offset != -1)
1951 {
1952 int offset = gregset->r_l0_offset;
1953
1954 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1955 {
1956 if (regnum == i || regnum == -1)
1957 regcache_raw_collect (regcache, i, regs + offset);
1958 offset += 4;
1959 }
1960 }
1961 }
1962 }
1963
1964 void
1965 sparc32_supply_fpregset (const struct sparc_fpregset *fpregset,
1966 struct regcache *regcache,
1967 int regnum, const void *fpregs)
1968 {
1969 const gdb_byte *regs = fpregs;
1970 int i;
1971
1972 for (i = 0; i < 32; i++)
1973 {
1974 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1975 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i,
1976 regs + fpregset->r_f0_offset + (i * 4));
1977 }
1978
1979 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1980 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM,
1981 regs + fpregset->r_fsr_offset);
1982 }
1983
1984 void
1985 sparc32_collect_fpregset (const struct sparc_fpregset *fpregset,
1986 const struct regcache *regcache,
1987 int regnum, void *fpregs)
1988 {
1989 gdb_byte *regs = fpregs;
1990 int i;
1991
1992 for (i = 0; i < 32; i++)
1993 {
1994 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1995 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i,
1996 regs + fpregset->r_f0_offset + (i * 4));
1997 }
1998
1999 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2000 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM,
2001 regs + fpregset->r_fsr_offset);
2002 }
2003 \f
2004
2005 /* SunOS 4. */
2006
2007 /* From <machine/reg.h>. */
2008 const struct sparc_gregset sparc32_sunos4_gregset =
2009 {
2010 0 * 4, /* %psr */
2011 1 * 4, /* %pc */
2012 2 * 4, /* %npc */
2013 3 * 4, /* %y */
2014 -1, /* %wim */
2015 -1, /* %tbr */
2016 4 * 4, /* %g1 */
2017 -1 /* %l0 */
2018 };
2019
2020 const struct sparc_fpregset sparc32_sunos4_fpregset =
2021 {
2022 0 * 4, /* %f0 */
2023 33 * 4, /* %fsr */
2024 };
2025
2026 const struct sparc_fpregset sparc32_bsd_fpregset =
2027 {
2028 0 * 4, /* %f0 */
2029 32 * 4, /* %fsr */
2030 };
2031 \f
2032
2033 /* Provide a prototype to silence -Wmissing-prototypes. */
2034 void _initialize_sparc_tdep (void);
2035
2036 void
2037 _initialize_sparc_tdep (void)
2038 {
2039 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
2040 }
This page took 0.100399 seconds and 4 git commands to generate.