1 /* Target-dependent code for SPARC.
3 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "arch-utils.h"
24 #include "dwarf2-frame.h"
25 #include "floatformat.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
39 #include "gdb_assert.h"
40 #include "gdb_string.h"
42 #include "sparc-tdep.h"
46 /* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
49 lists changes with respect to the original 32-bit psABI as defined
50 in the "System V ABI, SPARC Processor Supplement".
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
60 /* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
65 /* The SPARC Floating-Point Quad-Precision format is similar to
66 big-endian IA-64 Quad-Precision format. */
67 #define floatformats_sparc_quad floatformats_ia64_quad
69 /* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
75 /* Macros to extract fields from SPARC instructions. */
76 #define X_OP(i) (((i) >> 30) & 0x3)
77 #define X_RD(i) (((i) >> 25) & 0x1f)
78 #define X_A(i) (((i) >> 29) & 1)
79 #define X_COND(i) (((i) >> 25) & 0xf)
80 #define X_OP2(i) (((i) >> 22) & 0x7)
81 #define X_IMM22(i) ((i) & 0x3fffff)
82 #define X_OP3(i) (((i) >> 19) & 0x3f)
83 #define X_RS1(i) (((i) >> 14) & 0x1f)
84 #define X_RS2(i) ((i) & 0x1f)
85 #define X_I(i) (((i) >> 13) & 1)
86 /* Sign extension macros. */
87 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
88 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
89 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
91 /* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
95 sparc_fetch_instruction (CORE_ADDR pc
)
101 /* If we can't read the instruction at PC, return zero. */
102 if (target_read_memory (pc
, buf
, sizeof (buf
)))
106 for (i
= 0; i
< sizeof (buf
); i
++)
107 insn
= (insn
<< 8) | buf
[i
];
112 /* Return non-zero if the instruction corresponding to PC is an "unimp"
116 sparc_is_unimp_insn (CORE_ADDR pc
)
118 const unsigned long insn
= sparc_fetch_instruction (pc
);
120 return ((insn
& 0xc1c00000) == 0);
123 /* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
130 The same website provides the following description of how
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
146 More information on StackGuard can be found on in:
148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
149 Stack Protection." 2001. Published in USENIX Security Symposium
152 /* Fetch StackGhost Per-Process XOR cookie. */
155 sparc_fetch_wcookie (struct gdbarch
*gdbarch
)
157 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
158 struct target_ops
*ops
= ¤t_target
;
162 len
= target_read (ops
, TARGET_OBJECT_WCOOKIE
, NULL
, buf
, 0, 8);
166 /* We should have either an 32-bit or an 64-bit cookie. */
167 gdb_assert (len
== 4 || len
== 8);
169 return extract_unsigned_integer (buf
, len
, byte_order
);
173 /* The functions on this page are intended to be used to classify
174 function arguments. */
176 /* Check whether TYPE is "Integral or Pointer". */
179 sparc_integral_or_pointer_p (const struct type
*type
)
181 int len
= TYPE_LENGTH (type
);
183 switch (TYPE_CODE (type
))
189 case TYPE_CODE_RANGE
:
190 /* We have byte, half-word, word and extended-word/doubleword
191 integral types. The doubleword is an extension to the
192 original 32-bit ABI by the SCD 2.4.x. */
193 return (len
== 1 || len
== 2 || len
== 4 || len
== 8);
196 /* Allow either 32-bit or 64-bit pointers. */
197 return (len
== 4 || len
== 8);
205 /* Check whether TYPE is "Floating". */
208 sparc_floating_p (const struct type
*type
)
210 switch (TYPE_CODE (type
))
214 int len
= TYPE_LENGTH (type
);
215 return (len
== 4 || len
== 8 || len
== 16);
224 /* Check whether TYPE is "Structure or Union".
226 In terms of Ada subprogram calls, arrays are treated the same as
227 struct and union types. So this function also returns non-zero
231 sparc_structure_or_union_p (const struct type
*type
)
233 switch (TYPE_CODE (type
))
235 case TYPE_CODE_STRUCT
:
236 case TYPE_CODE_UNION
:
237 case TYPE_CODE_ARRAY
:
246 /* Register information. */
248 static const char *sparc32_register_names
[] =
250 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
251 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
252 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
253 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
255 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
256 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
257 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
258 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
260 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
263 /* Total number of registers. */
264 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
266 /* We provide the aliases %d0..%d30 for the floating registers as
267 "psuedo" registers. */
269 static const char *sparc32_pseudo_register_names
[] =
271 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
272 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
275 /* Total number of pseudo registers. */
276 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
278 /* Return the name of register REGNUM. */
281 sparc32_register_name (struct gdbarch
*gdbarch
, int regnum
)
283 if (regnum
>= 0 && regnum
< SPARC32_NUM_REGS
)
284 return sparc32_register_names
[regnum
];
286 if (regnum
< SPARC32_NUM_REGS
+ SPARC32_NUM_PSEUDO_REGS
)
287 return sparc32_pseudo_register_names
[regnum
- SPARC32_NUM_REGS
];
292 /* Construct types for ISA-specific registers. */
295 sparc_psr_type (struct gdbarch
*gdbarch
)
297 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
299 if (!tdep
->sparc_psr_type
)
303 type
= arch_flags_type (gdbarch
, "builtin_type_sparc_psr", 4);
304 append_flags_type_flag (type
, 5, "ET");
305 append_flags_type_flag (type
, 6, "PS");
306 append_flags_type_flag (type
, 7, "S");
307 append_flags_type_flag (type
, 12, "EF");
308 append_flags_type_flag (type
, 13, "EC");
310 tdep
->sparc_psr_type
= type
;
313 return tdep
->sparc_psr_type
;
317 sparc_fsr_type (struct gdbarch
*gdbarch
)
319 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
321 if (!tdep
->sparc_fsr_type
)
325 type
= arch_flags_type (gdbarch
, "builtin_type_sparc_fsr", 4);
326 append_flags_type_flag (type
, 0, "NXA");
327 append_flags_type_flag (type
, 1, "DZA");
328 append_flags_type_flag (type
, 2, "UFA");
329 append_flags_type_flag (type
, 3, "OFA");
330 append_flags_type_flag (type
, 4, "NVA");
331 append_flags_type_flag (type
, 5, "NXC");
332 append_flags_type_flag (type
, 6, "DZC");
333 append_flags_type_flag (type
, 7, "UFC");
334 append_flags_type_flag (type
, 8, "OFC");
335 append_flags_type_flag (type
, 9, "NVC");
336 append_flags_type_flag (type
, 22, "NS");
337 append_flags_type_flag (type
, 23, "NXM");
338 append_flags_type_flag (type
, 24, "DZM");
339 append_flags_type_flag (type
, 25, "UFM");
340 append_flags_type_flag (type
, 26, "OFM");
341 append_flags_type_flag (type
, 27, "NVM");
343 tdep
->sparc_fsr_type
= type
;
346 return tdep
->sparc_fsr_type
;
349 /* Return the GDB type object for the "standard" data type of data in
353 sparc32_register_type (struct gdbarch
*gdbarch
, int regnum
)
355 if (regnum
>= SPARC_F0_REGNUM
&& regnum
<= SPARC_F31_REGNUM
)
356 return builtin_type (gdbarch
)->builtin_float
;
358 if (regnum
>= SPARC32_D0_REGNUM
&& regnum
<= SPARC32_D30_REGNUM
)
359 return builtin_type (gdbarch
)->builtin_double
;
361 if (regnum
== SPARC_SP_REGNUM
|| regnum
== SPARC_FP_REGNUM
)
362 return builtin_type (gdbarch
)->builtin_data_ptr
;
364 if (regnum
== SPARC32_PC_REGNUM
|| regnum
== SPARC32_NPC_REGNUM
)
365 return builtin_type (gdbarch
)->builtin_func_ptr
;
367 if (regnum
== SPARC32_PSR_REGNUM
)
368 return sparc_psr_type (gdbarch
);
370 if (regnum
== SPARC32_FSR_REGNUM
)
371 return sparc_fsr_type (gdbarch
);
373 return builtin_type (gdbarch
)->builtin_int32
;
377 sparc32_pseudo_register_read (struct gdbarch
*gdbarch
,
378 struct regcache
*regcache
,
379 int regnum
, gdb_byte
*buf
)
381 gdb_assert (regnum
>= SPARC32_D0_REGNUM
&& regnum
<= SPARC32_D30_REGNUM
);
383 regnum
= SPARC_F0_REGNUM
+ 2 * (regnum
- SPARC32_D0_REGNUM
);
384 regcache_raw_read (regcache
, regnum
, buf
);
385 regcache_raw_read (regcache
, regnum
+ 1, buf
+ 4);
389 sparc32_pseudo_register_write (struct gdbarch
*gdbarch
,
390 struct regcache
*regcache
,
391 int regnum
, const gdb_byte
*buf
)
393 gdb_assert (regnum
>= SPARC32_D0_REGNUM
&& regnum
<= SPARC32_D30_REGNUM
);
395 regnum
= SPARC_F0_REGNUM
+ 2 * (regnum
- SPARC32_D0_REGNUM
);
396 regcache_raw_write (regcache
, regnum
, buf
);
397 regcache_raw_write (regcache
, regnum
+ 1, buf
+ 4);
402 sparc32_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR address
)
404 /* The ABI requires double-word alignment. */
405 return address
& ~0x7;
409 sparc32_push_dummy_code (struct gdbarch
*gdbarch
, CORE_ADDR sp
,
411 struct value
**args
, int nargs
,
412 struct type
*value_type
,
413 CORE_ADDR
*real_pc
, CORE_ADDR
*bp_addr
,
414 struct regcache
*regcache
)
416 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
421 if (using_struct_return (gdbarch
, NULL
, value_type
))
425 /* This is an UNIMP instruction. */
426 store_unsigned_integer (buf
, 4, byte_order
,
427 TYPE_LENGTH (value_type
) & 0x1fff);
428 write_memory (sp
- 8, buf
, 4);
436 sparc32_store_arguments (struct regcache
*regcache
, int nargs
,
437 struct value
**args
, CORE_ADDR sp
,
438 int struct_return
, CORE_ADDR struct_addr
)
440 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
441 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
442 /* Number of words in the "parameter array". */
443 int num_elements
= 0;
447 for (i
= 0; i
< nargs
; i
++)
449 struct type
*type
= value_type (args
[i
]);
450 int len
= TYPE_LENGTH (type
);
452 if (sparc_structure_or_union_p (type
)
453 || (sparc_floating_p (type
) && len
== 16))
455 /* Structure, Union and Quad-Precision Arguments. */
458 /* Use doubleword alignment for these values. That's always
459 correct, and wasting a few bytes shouldn't be a problem. */
462 write_memory (sp
, value_contents (args
[i
]), len
);
463 args
[i
] = value_from_pointer (lookup_pointer_type (type
), sp
);
466 else if (sparc_floating_p (type
))
468 /* Floating arguments. */
469 gdb_assert (len
== 4 || len
== 8);
470 num_elements
+= (len
/ 4);
474 /* Integral and pointer arguments. */
475 gdb_assert (sparc_integral_or_pointer_p (type
));
478 args
[i
] = value_cast (builtin_type (gdbarch
)->builtin_int32
,
480 num_elements
+= ((len
+ 3) / 4);
484 /* Always allocate at least six words. */
485 sp
-= max (6, num_elements
) * 4;
487 /* The psABI says that "Software convention requires space for the
488 struct/union return value pointer, even if the word is unused." */
491 /* The psABI says that "Although software convention and the
492 operating system require every stack frame to be doubleword
496 for (i
= 0; i
< nargs
; i
++)
498 const bfd_byte
*valbuf
= value_contents (args
[i
]);
499 struct type
*type
= value_type (args
[i
]);
500 int len
= TYPE_LENGTH (type
);
502 gdb_assert (len
== 4 || len
== 8);
506 int regnum
= SPARC_O0_REGNUM
+ element
;
508 regcache_cooked_write (regcache
, regnum
, valbuf
);
509 if (len
> 4 && element
< 5)
510 regcache_cooked_write (regcache
, regnum
+ 1, valbuf
+ 4);
513 /* Always store the argument in memory. */
514 write_memory (sp
+ 4 + element
* 4, valbuf
, len
);
518 gdb_assert (element
== num_elements
);
524 store_unsigned_integer (buf
, 4, byte_order
, struct_addr
);
525 write_memory (sp
, buf
, 4);
532 sparc32_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
533 struct regcache
*regcache
, CORE_ADDR bp_addr
,
534 int nargs
, struct value
**args
, CORE_ADDR sp
,
535 int struct_return
, CORE_ADDR struct_addr
)
537 CORE_ADDR call_pc
= (struct_return
? (bp_addr
- 12) : (bp_addr
- 8));
539 /* Set return address. */
540 regcache_cooked_write_unsigned (regcache
, SPARC_O7_REGNUM
, call_pc
);
542 /* Set up function arguments. */
543 sp
= sparc32_store_arguments (regcache
, nargs
, args
, sp
,
544 struct_return
, struct_addr
);
546 /* Allocate the 16-word window save area. */
549 /* Stack should be doubleword aligned at this point. */
550 gdb_assert (sp
% 8 == 0);
552 /* Finally, update the stack pointer. */
553 regcache_cooked_write_unsigned (regcache
, SPARC_SP_REGNUM
, sp
);
559 /* Use the program counter to determine the contents and size of a
560 breakpoint instruction. Return a pointer to a string of bytes that
561 encode a breakpoint instruction, store the length of the string in
562 *LEN and optionally adjust *PC to point to the correct memory
563 location for inserting the breakpoint. */
565 static const gdb_byte
*
566 sparc_breakpoint_from_pc (struct gdbarch
*gdbarch
, CORE_ADDR
*pc
, int *len
)
568 static const gdb_byte break_insn
[] = { 0x91, 0xd0, 0x20, 0x01 };
570 *len
= sizeof (break_insn
);
575 /* Allocate and initialize a frame cache. */
577 static struct sparc_frame_cache
*
578 sparc_alloc_frame_cache (void)
580 struct sparc_frame_cache
*cache
;
583 cache
= FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache
);
589 /* Frameless until proven otherwise. */
590 cache
->frameless_p
= 1;
592 cache
->struct_return_p
= 0;
597 /* GCC generates several well-known sequences of instructions at the begining
598 of each function prologue when compiling with -fstack-check. If one of
599 such sequences starts at START_PC, then return the address of the
600 instruction immediately past this sequence. Otherwise, return START_PC. */
603 sparc_skip_stack_check (const CORE_ADDR start_pc
)
605 CORE_ADDR pc
= start_pc
;
607 int offset_stack_checking_sequence
= 0;
609 /* With GCC, all stack checking sequences begin with the same two
612 /* sethi <some immediate>,%g1 */
613 insn
= sparc_fetch_instruction (pc
);
615 if (!(X_OP (insn
) == 0 && X_OP2 (insn
) == 0x4 && X_RD (insn
) == 1))
618 /* sub %sp, %g1, %g1 */
619 insn
= sparc_fetch_instruction (pc
);
621 if (!(X_OP (insn
) == 2 && X_OP3 (insn
) == 0x4 && !X_I(insn
)
622 && X_RD (insn
) == 1 && X_RS1 (insn
) == 14 && X_RS2 (insn
) == 1))
625 insn
= sparc_fetch_instruction (pc
);
628 /* First possible sequence:
629 [first two instructions above]
630 clr [%g1 - some immediate] */
632 /* clr [%g1 - some immediate] */
633 if (X_OP (insn
) == 3 && X_OP3(insn
) == 0x4 && X_I(insn
)
634 && X_RS1 (insn
) == 1 && X_RD (insn
) == 0)
636 /* Valid stack-check sequence, return the new PC. */
640 /* Second possible sequence: A small number of probes.
641 [first two instructions above]
643 add %g1, -<some immediate>, %g1
645 [repeat the two instructions above any (small) number of times]
646 clr [%g1 - some immediate] */
649 else if (X_OP (insn
) == 3 && X_OP3(insn
) == 0x4 && !X_I(insn
)
650 && X_RS1 (insn
) == 1 && X_RD (insn
) == 0)
654 /* add %g1, -<some immediate>, %g1 */
655 insn
= sparc_fetch_instruction (pc
);
657 if (!(X_OP (insn
) == 2 && X_OP3(insn
) == 0 && X_I(insn
)
658 && X_RS1 (insn
) == 1 && X_RD (insn
) == 1))
662 insn
= sparc_fetch_instruction (pc
);
664 if (!(X_OP (insn
) == 3 && X_OP3(insn
) == 0x4 && !X_I(insn
)
665 && X_RD (insn
) == 0 && X_RS1 (insn
) == 1))
669 /* clr [%g1 - some immediate] */
670 if (!(X_OP (insn
) == 3 && X_OP3(insn
) == 0x4 && X_I(insn
)
671 && X_RS1 (insn
) == 1 && X_RD (insn
) == 0))
674 /* We found a valid stack-check sequence, return the new PC. */
678 /* Third sequence: A probing loop.
679 [first two instructions above]
680 sethi <some immediate>, %g4
684 add %g1, -<some immediate>, %g1
687 clr [%g4 - some immediate] */
689 /* sethi <some immediate>, %g4 */
690 else if (X_OP (insn
) == 0 && X_OP2 (insn
) == 0x4 && X_RD (insn
) == 4)
692 /* sub %g1, %g4, %g4 */
693 insn
= sparc_fetch_instruction (pc
);
695 if (!(X_OP (insn
) == 2 && X_OP3 (insn
) == 0x4 && !X_I(insn
)
696 && X_RD (insn
) == 4 && X_RS1 (insn
) == 1 && X_RS2 (insn
) == 4))
700 insn
= sparc_fetch_instruction (pc
);
702 if (!(X_OP (insn
) == 2 && X_OP3 (insn
) == 0x14 && !X_I(insn
)
703 && X_RD (insn
) == 0 && X_RS1 (insn
) == 1 && X_RS2 (insn
) == 4))
707 insn
= sparc_fetch_instruction (pc
);
709 if (!(X_OP (insn
) == 0 && X_COND (insn
) == 0x1))
712 /* add %g1, -<some immediate>, %g1 */
713 insn
= sparc_fetch_instruction (pc
);
715 if (!(X_OP (insn
) == 2 && X_OP3(insn
) == 0 && X_I(insn
)
716 && X_RS1 (insn
) == 1 && X_RD (insn
) == 1))
720 insn
= sparc_fetch_instruction (pc
);
722 if (!(X_OP (insn
) == 0 && X_COND (insn
) == 0x8))
726 insn
= sparc_fetch_instruction (pc
);
728 if (!(X_OP (insn
) == 3 && X_OP3(insn
) == 0x4 && !X_I(insn
)
729 && X_RD (insn
) == 0 && X_RS1 (insn
) == 1))
732 /* clr [%g4 - some immediate] */
733 insn
= sparc_fetch_instruction (pc
);
735 if (!(X_OP (insn
) == 3 && X_OP3(insn
) == 0x4 && X_I(insn
)
736 && X_RS1 (insn
) == 4 && X_RD (insn
) == 0))
739 /* We found a valid stack-check sequence, return the new PC. */
743 /* No stack check code in our prologue, return the start_pc. */
748 sparc_analyze_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
,
749 CORE_ADDR current_pc
, struct sparc_frame_cache
*cache
)
751 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
756 pc
= sparc_skip_stack_check (pc
);
758 if (current_pc
<= pc
)
761 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
762 SPARC the linker usually defines a symbol (typically
763 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
764 This symbol makes us end up here with PC pointing at the start of
765 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
766 would do our normal prologue analysis, we would probably conclude
767 that we've got a frame when in reality we don't, since the
768 dynamic linker patches up the first PLT with some code that
769 starts with a SAVE instruction. Patch up PC such that it points
770 at the start of our PLT entry. */
771 if (tdep
->plt_entry_size
> 0 && in_plt_section (current_pc
, NULL
))
772 pc
= current_pc
- ((current_pc
- pc
) % tdep
->plt_entry_size
);
774 insn
= sparc_fetch_instruction (pc
);
776 /* Recognize a SETHI insn and record its destination. */
777 if (X_OP (insn
) == 0 && X_OP2 (insn
) == 0x04)
782 insn
= sparc_fetch_instruction (pc
+ 4);
785 /* Allow for an arithmetic operation on DEST or %g1. */
786 if (X_OP (insn
) == 2 && X_I (insn
)
787 && (X_RD (insn
) == 1 || X_RD (insn
) == dest
))
791 insn
= sparc_fetch_instruction (pc
+ 8);
794 /* Check for the SAVE instruction that sets up the frame. */
795 if (X_OP (insn
) == 2 && X_OP3 (insn
) == 0x3c)
797 cache
->frameless_p
= 0;
798 return pc
+ offset
+ 4;
805 sparc_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
807 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
808 return frame_unwind_register_unsigned (this_frame
, tdep
->pc_regnum
);
811 /* Return PC of first real instruction of the function starting at
815 sparc32_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR start_pc
)
817 struct symtab_and_line sal
;
818 CORE_ADDR func_start
, func_end
;
819 struct sparc_frame_cache cache
;
821 /* This is the preferred method, find the end of the prologue by
822 using the debugging information. */
823 if (find_pc_partial_function (start_pc
, NULL
, &func_start
, &func_end
))
825 sal
= find_pc_line (func_start
, 0);
827 if (sal
.end
< func_end
828 && start_pc
<= sal
.end
)
832 start_pc
= sparc_analyze_prologue (gdbarch
, start_pc
, 0xffffffffUL
, &cache
);
834 /* The psABI says that "Although the first 6 words of arguments
835 reside in registers, the standard stack frame reserves space for
836 them.". It also suggests that a function may use that space to
837 "write incoming arguments 0 to 5" into that space, and that's
838 indeed what GCC seems to be doing. In that case GCC will
839 generate debug information that points to the stack slots instead
840 of the registers, so we should consider the instructions that
841 write out these incoming arguments onto the stack. Of course we
842 only need to do this if we have a stack frame. */
844 while (!cache
.frameless_p
)
846 unsigned long insn
= sparc_fetch_instruction (start_pc
);
848 /* Recognize instructions that store incoming arguments in
849 %i0...%i5 into the corresponding stack slot. */
850 if (X_OP (insn
) == 3 && (X_OP3 (insn
) & 0x3c) == 0x04 && X_I (insn
)
851 && (X_RD (insn
) >= 24 && X_RD (insn
) <= 29) && X_RS1 (insn
) == 30
852 && X_SIMM13 (insn
) == 68 + (X_RD (insn
) - 24) * 4)
866 struct sparc_frame_cache
*
867 sparc_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
869 struct sparc_frame_cache
*cache
;
874 cache
= sparc_alloc_frame_cache ();
877 cache
->pc
= get_frame_func (this_frame
);
879 sparc_analyze_prologue (get_frame_arch (this_frame
), cache
->pc
,
880 get_frame_pc (this_frame
), cache
);
882 if (cache
->frameless_p
)
884 /* This function is frameless, so %fp (%i6) holds the frame
885 pointer for our calling frame. Use %sp (%o6) as this frame's
888 get_frame_register_unsigned (this_frame
, SPARC_SP_REGNUM
);
892 /* For normal frames, %fp (%i6) holds the frame pointer, the
893 base address for the current stack frame. */
895 get_frame_register_unsigned (this_frame
, SPARC_FP_REGNUM
);
905 sparc32_struct_return_from_sym (struct symbol
*sym
)
907 struct type
*type
= check_typedef (SYMBOL_TYPE (sym
));
908 enum type_code code
= TYPE_CODE (type
);
910 if (code
== TYPE_CODE_FUNC
|| code
== TYPE_CODE_METHOD
)
912 type
= check_typedef (TYPE_TARGET_TYPE (type
));
913 if (sparc_structure_or_union_p (type
)
914 || (sparc_floating_p (type
) && TYPE_LENGTH (type
) == 16))
921 struct sparc_frame_cache
*
922 sparc32_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
924 struct sparc_frame_cache
*cache
;
930 cache
= sparc_frame_cache (this_frame
, this_cache
);
932 sym
= find_pc_function (cache
->pc
);
935 cache
->struct_return_p
= sparc32_struct_return_from_sym (sym
);
939 /* There is no debugging information for this function to
940 help us determine whether this function returns a struct
941 or not. So we rely on another heuristic which is to check
942 the instruction at the return address and see if this is
943 an "unimp" instruction. If it is, then it is a struct-return
946 int regnum
= cache
->frameless_p
? SPARC_O7_REGNUM
: SPARC_I7_REGNUM
;
948 pc
= get_frame_register_unsigned (this_frame
, regnum
) + 8;
949 if (sparc_is_unimp_insn (pc
))
950 cache
->struct_return_p
= 1;
957 sparc32_frame_this_id (struct frame_info
*this_frame
, void **this_cache
,
958 struct frame_id
*this_id
)
960 struct sparc_frame_cache
*cache
=
961 sparc32_frame_cache (this_frame
, this_cache
);
963 /* This marks the outermost frame. */
964 if (cache
->base
== 0)
967 (*this_id
) = frame_id_build (cache
->base
, cache
->pc
);
970 static struct value
*
971 sparc32_frame_prev_register (struct frame_info
*this_frame
,
972 void **this_cache
, int regnum
)
974 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
975 struct sparc_frame_cache
*cache
=
976 sparc32_frame_cache (this_frame
, this_cache
);
978 if (regnum
== SPARC32_PC_REGNUM
|| regnum
== SPARC32_NPC_REGNUM
)
980 CORE_ADDR pc
= (regnum
== SPARC32_NPC_REGNUM
) ? 4 : 0;
982 /* If this functions has a Structure, Union or Quad-Precision
983 return value, we have to skip the UNIMP instruction that encodes
984 the size of the structure. */
985 if (cache
->struct_return_p
)
988 regnum
= cache
->frameless_p
? SPARC_O7_REGNUM
: SPARC_I7_REGNUM
;
989 pc
+= get_frame_register_unsigned (this_frame
, regnum
) + 8;
990 return frame_unwind_got_constant (this_frame
, regnum
, pc
);
993 /* Handle StackGhost. */
995 ULONGEST wcookie
= sparc_fetch_wcookie (gdbarch
);
997 if (wcookie
!= 0 && !cache
->frameless_p
&& regnum
== SPARC_I7_REGNUM
)
999 CORE_ADDR addr
= cache
->base
+ (regnum
- SPARC_L0_REGNUM
) * 4;
1002 /* Read the value in from memory. */
1003 i7
= get_frame_memory_unsigned (this_frame
, addr
, 4);
1004 return frame_unwind_got_constant (this_frame
, regnum
, i7
^ wcookie
);
1008 /* The previous frame's `local' and `in' registers have been saved
1009 in the register save area. */
1010 if (!cache
->frameless_p
1011 && regnum
>= SPARC_L0_REGNUM
&& regnum
<= SPARC_I7_REGNUM
)
1013 CORE_ADDR addr
= cache
->base
+ (regnum
- SPARC_L0_REGNUM
) * 4;
1015 return frame_unwind_got_memory (this_frame
, regnum
, addr
);
1018 /* The previous frame's `out' registers are accessible as the
1019 current frame's `in' registers. */
1020 if (!cache
->frameless_p
1021 && regnum
>= SPARC_O0_REGNUM
&& regnum
<= SPARC_O7_REGNUM
)
1022 regnum
+= (SPARC_I0_REGNUM
- SPARC_O0_REGNUM
);
1024 return frame_unwind_got_register (this_frame
, regnum
, regnum
);
1027 static const struct frame_unwind sparc32_frame_unwind
=
1030 sparc32_frame_this_id
,
1031 sparc32_frame_prev_register
,
1033 default_frame_sniffer
1038 sparc32_frame_base_address (struct frame_info
*this_frame
, void **this_cache
)
1040 struct sparc_frame_cache
*cache
=
1041 sparc32_frame_cache (this_frame
, this_cache
);
1046 static const struct frame_base sparc32_frame_base
=
1048 &sparc32_frame_unwind
,
1049 sparc32_frame_base_address
,
1050 sparc32_frame_base_address
,
1051 sparc32_frame_base_address
1054 static struct frame_id
1055 sparc_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
1059 sp
= get_frame_register_unsigned (this_frame
, SPARC_SP_REGNUM
);
1062 return frame_id_build (sp
, get_frame_pc (this_frame
));
1066 /* Extract a function return value of TYPE from REGCACHE, and copy
1067 that into VALBUF. */
1070 sparc32_extract_return_value (struct type
*type
, struct regcache
*regcache
,
1073 int len
= TYPE_LENGTH (type
);
1076 gdb_assert (!sparc_structure_or_union_p (type
));
1077 gdb_assert (!(sparc_floating_p (type
) && len
== 16));
1079 if (sparc_floating_p (type
))
1081 /* Floating return values. */
1082 regcache_cooked_read (regcache
, SPARC_F0_REGNUM
, buf
);
1084 regcache_cooked_read (regcache
, SPARC_F1_REGNUM
, buf
+ 4);
1085 memcpy (valbuf
, buf
, len
);
1089 /* Integral and pointer return values. */
1090 gdb_assert (sparc_integral_or_pointer_p (type
));
1092 regcache_cooked_read (regcache
, SPARC_O0_REGNUM
, buf
);
1095 regcache_cooked_read (regcache
, SPARC_O1_REGNUM
, buf
+ 4);
1096 gdb_assert (len
== 8);
1097 memcpy (valbuf
, buf
, 8);
1101 /* Just stripping off any unused bytes should preserve the
1102 signed-ness just fine. */
1103 memcpy (valbuf
, buf
+ 4 - len
, len
);
1108 /* Store the function return value of type TYPE from VALBUF into
1112 sparc32_store_return_value (struct type
*type
, struct regcache
*regcache
,
1113 const gdb_byte
*valbuf
)
1115 int len
= TYPE_LENGTH (type
);
1118 gdb_assert (!sparc_structure_or_union_p (type
));
1119 gdb_assert (!(sparc_floating_p (type
) && len
== 16));
1120 gdb_assert (len
<= 8);
1122 if (sparc_floating_p (type
))
1124 /* Floating return values. */
1125 memcpy (buf
, valbuf
, len
);
1126 regcache_cooked_write (regcache
, SPARC_F0_REGNUM
, buf
);
1128 regcache_cooked_write (regcache
, SPARC_F1_REGNUM
, buf
+ 4);
1132 /* Integral and pointer return values. */
1133 gdb_assert (sparc_integral_or_pointer_p (type
));
1137 gdb_assert (len
== 8);
1138 memcpy (buf
, valbuf
, 8);
1139 regcache_cooked_write (regcache
, SPARC_O1_REGNUM
, buf
+ 4);
1143 /* ??? Do we need to do any sign-extension here? */
1144 memcpy (buf
+ 4 - len
, valbuf
, len
);
1146 regcache_cooked_write (regcache
, SPARC_O0_REGNUM
, buf
);
1150 static enum return_value_convention
1151 sparc32_return_value (struct gdbarch
*gdbarch
, struct type
*func_type
,
1152 struct type
*type
, struct regcache
*regcache
,
1153 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
1155 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1157 /* The psABI says that "...every stack frame reserves the word at
1158 %fp+64. If a function returns a structure, union, or
1159 quad-precision value, this word should hold the address of the
1160 object into which the return value should be copied." This
1161 guarantees that we can always find the return value, not just
1162 before the function returns. */
1164 if (sparc_structure_or_union_p (type
)
1165 || (sparc_floating_p (type
) && TYPE_LENGTH (type
) == 16))
1172 regcache_cooked_read_unsigned (regcache
, SPARC_SP_REGNUM
, &sp
);
1173 addr
= read_memory_unsigned_integer (sp
+ 64, 4, byte_order
);
1174 read_memory (addr
, readbuf
, TYPE_LENGTH (type
));
1177 return RETURN_VALUE_ABI_PRESERVES_ADDRESS
;
1181 sparc32_extract_return_value (type
, regcache
, readbuf
);
1183 sparc32_store_return_value (type
, regcache
, writebuf
);
1185 return RETURN_VALUE_REGISTER_CONVENTION
;
1189 sparc32_stabs_argument_has_addr (struct gdbarch
*gdbarch
, struct type
*type
)
1191 return (sparc_structure_or_union_p (type
)
1192 || (sparc_floating_p (type
) && TYPE_LENGTH (type
) == 16));
1196 sparc32_dwarf2_struct_return_p (struct frame_info
*this_frame
)
1198 CORE_ADDR pc
= get_frame_address_in_block (this_frame
);
1199 struct symbol
*sym
= find_pc_function (pc
);
1202 return sparc32_struct_return_from_sym (sym
);
1207 sparc32_dwarf2_frame_init_reg (struct gdbarch
*gdbarch
, int regnum
,
1208 struct dwarf2_frame_state_reg
*reg
,
1209 struct frame_info
*this_frame
)
1215 case SPARC_G0_REGNUM
:
1216 /* Since %g0 is always zero, there is no point in saving it, and
1217 people will be inclined omit it from the CFI. Make sure we
1218 don't warn about that. */
1219 reg
->how
= DWARF2_FRAME_REG_SAME_VALUE
;
1221 case SPARC_SP_REGNUM
:
1222 reg
->how
= DWARF2_FRAME_REG_CFA
;
1224 case SPARC32_PC_REGNUM
:
1225 case SPARC32_NPC_REGNUM
:
1226 reg
->how
= DWARF2_FRAME_REG_RA_OFFSET
;
1228 if (sparc32_dwarf2_struct_return_p (this_frame
))
1230 if (regnum
== SPARC32_NPC_REGNUM
)
1232 reg
->loc
.offset
= off
;
1238 /* The SPARC Architecture doesn't have hardware single-step support,
1239 and most operating systems don't implement it either, so we provide
1240 software single-step mechanism. */
1243 sparc_analyze_control_transfer (struct frame_info
*frame
,
1244 CORE_ADDR pc
, CORE_ADDR
*npc
)
1246 unsigned long insn
= sparc_fetch_instruction (pc
);
1247 int conditional_p
= X_COND (insn
) & 0x7;
1249 long offset
= 0; /* Must be signed for sign-extend. */
1251 if (X_OP (insn
) == 0 && X_OP2 (insn
) == 3 && (insn
& 0x1000000) == 0)
1253 /* Branch on Integer Register with Prediction (BPr). */
1257 else if (X_OP (insn
) == 0 && X_OP2 (insn
) == 6)
1259 /* Branch on Floating-Point Condition Codes (FBfcc). */
1261 offset
= 4 * X_DISP22 (insn
);
1263 else if (X_OP (insn
) == 0 && X_OP2 (insn
) == 5)
1265 /* Branch on Floating-Point Condition Codes with Prediction
1268 offset
= 4 * X_DISP19 (insn
);
1270 else if (X_OP (insn
) == 0 && X_OP2 (insn
) == 2)
1272 /* Branch on Integer Condition Codes (Bicc). */
1274 offset
= 4 * X_DISP22 (insn
);
1276 else if (X_OP (insn
) == 0 && X_OP2 (insn
) == 1)
1278 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1280 offset
= 4 * X_DISP19 (insn
);
1282 else if (X_OP (insn
) == 2 && X_OP3 (insn
) == 0x3a)
1284 /* Trap instruction (TRAP). */
1285 return gdbarch_tdep (get_frame_arch (frame
))->step_trap (frame
, insn
);
1288 /* FIXME: Handle DONE and RETRY instructions. */
1294 /* For conditional branches, return nPC + 4 iff the annul
1296 return (X_A (insn
) ? *npc
+ 4 : 0);
1300 /* For unconditional branches, return the target if its
1301 specified condition is "always" and return nPC + 4 if the
1302 condition is "never". If the annul bit is 1, set *NPC to
1304 if (X_COND (insn
) == 0x0)
1305 pc
= *npc
, offset
= 4;
1309 gdb_assert (offset
!= 0);
1318 sparc_step_trap (struct frame_info
*frame
, unsigned long insn
)
1324 sparc_software_single_step (struct frame_info
*frame
)
1326 struct gdbarch
*arch
= get_frame_arch (frame
);
1327 struct gdbarch_tdep
*tdep
= gdbarch_tdep (arch
);
1328 struct address_space
*aspace
= get_frame_address_space (frame
);
1329 CORE_ADDR npc
, nnpc
;
1331 CORE_ADDR pc
, orig_npc
;
1333 pc
= get_frame_register_unsigned (frame
, tdep
->pc_regnum
);
1334 orig_npc
= npc
= get_frame_register_unsigned (frame
, tdep
->npc_regnum
);
1336 /* Analyze the instruction at PC. */
1337 nnpc
= sparc_analyze_control_transfer (frame
, pc
, &npc
);
1339 insert_single_step_breakpoint (arch
, aspace
, npc
);
1342 insert_single_step_breakpoint (arch
, aspace
, nnpc
);
1344 /* Assert that we have set at least one breakpoint, and that
1345 they're not set at the same spot - unless we're going
1346 from here straight to NULL, i.e. a call or jump to 0. */
1347 gdb_assert (npc
!= 0 || nnpc
!= 0 || orig_npc
== 0);
1348 gdb_assert (nnpc
!= npc
|| orig_npc
== 0);
1354 sparc_write_pc (struct regcache
*regcache
, CORE_ADDR pc
)
1356 struct gdbarch_tdep
*tdep
= gdbarch_tdep (get_regcache_arch (regcache
));
1358 regcache_cooked_write_unsigned (regcache
, tdep
->pc_regnum
, pc
);
1359 regcache_cooked_write_unsigned (regcache
, tdep
->npc_regnum
, pc
+ 4);
1363 /* Return the appropriate register set for the core section identified
1364 by SECT_NAME and SECT_SIZE. */
1366 static const struct regset
*
1367 sparc_regset_from_core_section (struct gdbarch
*gdbarch
,
1368 const char *sect_name
, size_t sect_size
)
1370 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
1372 if (strcmp (sect_name
, ".reg") == 0 && sect_size
>= tdep
->sizeof_gregset
)
1373 return tdep
->gregset
;
1375 if (strcmp (sect_name
, ".reg2") == 0 && sect_size
>= tdep
->sizeof_fpregset
)
1376 return tdep
->fpregset
;
1382 static struct gdbarch
*
1383 sparc32_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
1385 struct gdbarch_tdep
*tdep
;
1386 struct gdbarch
*gdbarch
;
1388 /* If there is already a candidate, use it. */
1389 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
1391 return arches
->gdbarch
;
1393 /* Allocate space for the new architecture. */
1394 tdep
= XZALLOC (struct gdbarch_tdep
);
1395 gdbarch
= gdbarch_alloc (&info
, tdep
);
1397 tdep
->pc_regnum
= SPARC32_PC_REGNUM
;
1398 tdep
->npc_regnum
= SPARC32_NPC_REGNUM
;
1399 tdep
->step_trap
= sparc_step_trap
;
1401 set_gdbarch_long_double_bit (gdbarch
, 128);
1402 set_gdbarch_long_double_format (gdbarch
, floatformats_sparc_quad
);
1404 set_gdbarch_num_regs (gdbarch
, SPARC32_NUM_REGS
);
1405 set_gdbarch_register_name (gdbarch
, sparc32_register_name
);
1406 set_gdbarch_register_type (gdbarch
, sparc32_register_type
);
1407 set_gdbarch_num_pseudo_regs (gdbarch
, SPARC32_NUM_PSEUDO_REGS
);
1408 set_gdbarch_pseudo_register_read (gdbarch
, sparc32_pseudo_register_read
);
1409 set_gdbarch_pseudo_register_write (gdbarch
, sparc32_pseudo_register_write
);
1411 /* Register numbers of various important registers. */
1412 set_gdbarch_sp_regnum (gdbarch
, SPARC_SP_REGNUM
); /* %sp */
1413 set_gdbarch_pc_regnum (gdbarch
, SPARC32_PC_REGNUM
); /* %pc */
1414 set_gdbarch_fp0_regnum (gdbarch
, SPARC_F0_REGNUM
); /* %f0 */
1416 /* Call dummy code. */
1417 set_gdbarch_frame_align (gdbarch
, sparc32_frame_align
);
1418 set_gdbarch_call_dummy_location (gdbarch
, ON_STACK
);
1419 set_gdbarch_push_dummy_code (gdbarch
, sparc32_push_dummy_code
);
1420 set_gdbarch_push_dummy_call (gdbarch
, sparc32_push_dummy_call
);
1422 set_gdbarch_return_value (gdbarch
, sparc32_return_value
);
1423 set_gdbarch_stabs_argument_has_addr
1424 (gdbarch
, sparc32_stabs_argument_has_addr
);
1426 set_gdbarch_skip_prologue (gdbarch
, sparc32_skip_prologue
);
1428 /* Stack grows downward. */
1429 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
1431 set_gdbarch_breakpoint_from_pc (gdbarch
, sparc_breakpoint_from_pc
);
1433 set_gdbarch_frame_args_skip (gdbarch
, 8);
1435 set_gdbarch_print_insn (gdbarch
, print_insn_sparc
);
1437 set_gdbarch_software_single_step (gdbarch
, sparc_software_single_step
);
1438 set_gdbarch_write_pc (gdbarch
, sparc_write_pc
);
1440 set_gdbarch_dummy_id (gdbarch
, sparc_dummy_id
);
1442 set_gdbarch_unwind_pc (gdbarch
, sparc_unwind_pc
);
1444 frame_base_set_default (gdbarch
, &sparc32_frame_base
);
1446 /* Hook in the DWARF CFI frame unwinder. */
1447 dwarf2_frame_set_init_reg (gdbarch
, sparc32_dwarf2_frame_init_reg
);
1448 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1449 StackGhost issues have been resolved. */
1451 /* Hook in ABI-specific overrides, if they have been registered. */
1452 gdbarch_init_osabi (info
, gdbarch
);
1454 frame_unwind_append_unwinder (gdbarch
, &sparc32_frame_unwind
);
1456 /* If we have register sets, enable the generic core file support. */
1458 set_gdbarch_regset_from_core_section (gdbarch
,
1459 sparc_regset_from_core_section
);
1464 /* Helper functions for dealing with register windows. */
1467 sparc_supply_rwindow (struct regcache
*regcache
, CORE_ADDR sp
, int regnum
)
1469 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
1470 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1477 /* Registers are 64-bit. */
1480 for (i
= SPARC_L0_REGNUM
; i
<= SPARC_I7_REGNUM
; i
++)
1482 if (regnum
== i
|| regnum
== -1)
1484 target_read_memory (sp
+ ((i
- SPARC_L0_REGNUM
) * 8), buf
, 8);
1486 /* Handle StackGhost. */
1487 if (i
== SPARC_I7_REGNUM
)
1489 ULONGEST wcookie
= sparc_fetch_wcookie (gdbarch
);
1492 i7
= extract_unsigned_integer (buf
+ offset
, 8, byte_order
);
1493 store_unsigned_integer (buf
+ offset
, 8, byte_order
,
1497 regcache_raw_supply (regcache
, i
, buf
);
1503 /* Registers are 32-bit. Toss any sign-extension of the stack
1507 /* Clear out the top half of the temporary buffer, and put the
1508 register value in the bottom half if we're in 64-bit mode. */
1509 if (gdbarch_ptr_bit (get_regcache_arch (regcache
)) == 64)
1515 for (i
= SPARC_L0_REGNUM
; i
<= SPARC_I7_REGNUM
; i
++)
1517 if (regnum
== i
|| regnum
== -1)
1519 target_read_memory (sp
+ ((i
- SPARC_L0_REGNUM
) * 4),
1522 /* Handle StackGhost. */
1523 if (i
== SPARC_I7_REGNUM
)
1525 ULONGEST wcookie
= sparc_fetch_wcookie (gdbarch
);
1528 i7
= extract_unsigned_integer (buf
+ offset
, 4, byte_order
);
1529 store_unsigned_integer (buf
+ offset
, 4, byte_order
,
1533 regcache_raw_supply (regcache
, i
, buf
);
1540 sparc_collect_rwindow (const struct regcache
*regcache
,
1541 CORE_ADDR sp
, int regnum
)
1543 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
1544 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1551 /* Registers are 64-bit. */
1554 for (i
= SPARC_L0_REGNUM
; i
<= SPARC_I7_REGNUM
; i
++)
1556 if (regnum
== -1 || regnum
== SPARC_SP_REGNUM
|| regnum
== i
)
1558 regcache_raw_collect (regcache
, i
, buf
);
1560 /* Handle StackGhost. */
1561 if (i
== SPARC_I7_REGNUM
)
1563 ULONGEST wcookie
= sparc_fetch_wcookie (gdbarch
);
1566 i7
= extract_unsigned_integer (buf
+ offset
, 8, byte_order
);
1567 store_unsigned_integer (buf
, 8, byte_order
, i7
^ wcookie
);
1570 target_write_memory (sp
+ ((i
- SPARC_L0_REGNUM
) * 8), buf
, 8);
1576 /* Registers are 32-bit. Toss any sign-extension of the stack
1580 /* Only use the bottom half if we're in 64-bit mode. */
1581 if (gdbarch_ptr_bit (get_regcache_arch (regcache
)) == 64)
1584 for (i
= SPARC_L0_REGNUM
; i
<= SPARC_I7_REGNUM
; i
++)
1586 if (regnum
== -1 || regnum
== SPARC_SP_REGNUM
|| regnum
== i
)
1588 regcache_raw_collect (regcache
, i
, buf
);
1590 /* Handle StackGhost. */
1591 if (i
== SPARC_I7_REGNUM
)
1593 ULONGEST wcookie
= sparc_fetch_wcookie (gdbarch
);
1596 i7
= extract_unsigned_integer (buf
+ offset
, 4, byte_order
);
1597 store_unsigned_integer (buf
+ offset
, 4, byte_order
,
1601 target_write_memory (sp
+ ((i
- SPARC_L0_REGNUM
) * 4),
1608 /* Helper functions for dealing with register sets. */
1611 sparc32_supply_gregset (const struct sparc_gregset
*gregset
,
1612 struct regcache
*regcache
,
1613 int regnum
, const void *gregs
)
1615 const gdb_byte
*regs
= gregs
;
1618 if (regnum
== SPARC32_PSR_REGNUM
|| regnum
== -1)
1619 regcache_raw_supply (regcache
, SPARC32_PSR_REGNUM
,
1620 regs
+ gregset
->r_psr_offset
);
1622 if (regnum
== SPARC32_PC_REGNUM
|| regnum
== -1)
1623 regcache_raw_supply (regcache
, SPARC32_PC_REGNUM
,
1624 regs
+ gregset
->r_pc_offset
);
1626 if (regnum
== SPARC32_NPC_REGNUM
|| regnum
== -1)
1627 regcache_raw_supply (regcache
, SPARC32_NPC_REGNUM
,
1628 regs
+ gregset
->r_npc_offset
);
1630 if (regnum
== SPARC32_Y_REGNUM
|| regnum
== -1)
1631 regcache_raw_supply (regcache
, SPARC32_Y_REGNUM
,
1632 regs
+ gregset
->r_y_offset
);
1634 if (regnum
== SPARC_G0_REGNUM
|| regnum
== -1)
1635 regcache_raw_supply (regcache
, SPARC_G0_REGNUM
, NULL
);
1637 if ((regnum
>= SPARC_G1_REGNUM
&& regnum
<= SPARC_O7_REGNUM
) || regnum
== -1)
1639 int offset
= gregset
->r_g1_offset
;
1641 for (i
= SPARC_G1_REGNUM
; i
<= SPARC_O7_REGNUM
; i
++)
1643 if (regnum
== i
|| regnum
== -1)
1644 regcache_raw_supply (regcache
, i
, regs
+ offset
);
1649 if ((regnum
>= SPARC_L0_REGNUM
&& regnum
<= SPARC_I7_REGNUM
) || regnum
== -1)
1651 /* Not all of the register set variants include Locals and
1652 Inputs. For those that don't, we read them off the stack. */
1653 if (gregset
->r_l0_offset
== -1)
1657 regcache_cooked_read_unsigned (regcache
, SPARC_SP_REGNUM
, &sp
);
1658 sparc_supply_rwindow (regcache
, sp
, regnum
);
1662 int offset
= gregset
->r_l0_offset
;
1664 for (i
= SPARC_L0_REGNUM
; i
<= SPARC_I7_REGNUM
; i
++)
1666 if (regnum
== i
|| regnum
== -1)
1667 regcache_raw_supply (regcache
, i
, regs
+ offset
);
1675 sparc32_collect_gregset (const struct sparc_gregset
*gregset
,
1676 const struct regcache
*regcache
,
1677 int regnum
, void *gregs
)
1679 gdb_byte
*regs
= gregs
;
1682 if (regnum
== SPARC32_PSR_REGNUM
|| regnum
== -1)
1683 regcache_raw_collect (regcache
, SPARC32_PSR_REGNUM
,
1684 regs
+ gregset
->r_psr_offset
);
1686 if (regnum
== SPARC32_PC_REGNUM
|| regnum
== -1)
1687 regcache_raw_collect (regcache
, SPARC32_PC_REGNUM
,
1688 regs
+ gregset
->r_pc_offset
);
1690 if (regnum
== SPARC32_NPC_REGNUM
|| regnum
== -1)
1691 regcache_raw_collect (regcache
, SPARC32_NPC_REGNUM
,
1692 regs
+ gregset
->r_npc_offset
);
1694 if (regnum
== SPARC32_Y_REGNUM
|| regnum
== -1)
1695 regcache_raw_collect (regcache
, SPARC32_Y_REGNUM
,
1696 regs
+ gregset
->r_y_offset
);
1698 if ((regnum
>= SPARC_G1_REGNUM
&& regnum
<= SPARC_O7_REGNUM
) || regnum
== -1)
1700 int offset
= gregset
->r_g1_offset
;
1702 /* %g0 is always zero. */
1703 for (i
= SPARC_G1_REGNUM
; i
<= SPARC_O7_REGNUM
; i
++)
1705 if (regnum
== i
|| regnum
== -1)
1706 regcache_raw_collect (regcache
, i
, regs
+ offset
);
1711 if ((regnum
>= SPARC_L0_REGNUM
&& regnum
<= SPARC_I7_REGNUM
) || regnum
== -1)
1713 /* Not all of the register set variants include Locals and
1714 Inputs. For those that don't, we read them off the stack. */
1715 if (gregset
->r_l0_offset
!= -1)
1717 int offset
= gregset
->r_l0_offset
;
1719 for (i
= SPARC_L0_REGNUM
; i
<= SPARC_I7_REGNUM
; i
++)
1721 if (regnum
== i
|| regnum
== -1)
1722 regcache_raw_collect (regcache
, i
, regs
+ offset
);
1730 sparc32_supply_fpregset (struct regcache
*regcache
,
1731 int regnum
, const void *fpregs
)
1733 const gdb_byte
*regs
= fpregs
;
1736 for (i
= 0; i
< 32; i
++)
1738 if (regnum
== (SPARC_F0_REGNUM
+ i
) || regnum
== -1)
1739 regcache_raw_supply (regcache
, SPARC_F0_REGNUM
+ i
, regs
+ (i
* 4));
1742 if (regnum
== SPARC32_FSR_REGNUM
|| regnum
== -1)
1743 regcache_raw_supply (regcache
, SPARC32_FSR_REGNUM
, regs
+ (32 * 4) + 4);
1747 sparc32_collect_fpregset (const struct regcache
*regcache
,
1748 int regnum
, void *fpregs
)
1750 gdb_byte
*regs
= fpregs
;
1753 for (i
= 0; i
< 32; i
++)
1755 if (regnum
== (SPARC_F0_REGNUM
+ i
) || regnum
== -1)
1756 regcache_raw_collect (regcache
, SPARC_F0_REGNUM
+ i
, regs
+ (i
* 4));
1759 if (regnum
== SPARC32_FSR_REGNUM
|| regnum
== -1)
1760 regcache_raw_collect (regcache
, SPARC32_FSR_REGNUM
, regs
+ (32 * 4) + 4);
1766 /* From <machine/reg.h>. */
1767 const struct sparc_gregset sparc32_sunos4_gregset
=
1780 /* Provide a prototype to silence -Wmissing-prototypes. */
1781 void _initialize_sparc_tdep (void);
1784 _initialize_sparc_tdep (void)
1786 register_gdbarch_init (bfd_arch_sparc
, sparc32_gdbarch_init
);