2003-01-31 Frank Ch. Eigler <fche@redhat.com>
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for the SPARC for GDB, the GNU debugger.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation,
5 Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* ??? Support for calling functions from gdb in sparc64 is unfinished. */
25
26 #include "defs.h"
27 #include "arch-utils.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "target.h"
31 #include "value.h"
32 #include "bfd.h"
33 #include "gdb_string.h"
34 #include "regcache.h"
35 #include "osabi.h"
36
37 #ifdef USE_PROC_FS
38 #include <sys/procfs.h>
39 /* Prototypes for supply_gregset etc. */
40 #include "gregset.h"
41 #endif
42
43 #include "gdbcore.h"
44
45 #include "symfile.h" /* for 'entry_point_address' */
46
47 /*
48 * Some local macros that have multi-arch and non-multi-arch versions:
49 */
50
51 #if (GDB_MULTI_ARCH > 0)
52
53 /* Does the target have Floating Point registers? */
54 #define SPARC_HAS_FPU (gdbarch_tdep (current_gdbarch)->has_fpu)
55 /* Number of bytes devoted to Floating Point registers: */
56 #define FP_REGISTER_BYTES (gdbarch_tdep (current_gdbarch)->fp_register_bytes)
57 /* Highest numbered Floating Point register. */
58 #define FP_MAX_REGNUM (gdbarch_tdep (current_gdbarch)->fp_max_regnum)
59 /* Size of a general (integer) register: */
60 #define SPARC_INTREG_SIZE (gdbarch_tdep (current_gdbarch)->intreg_size)
61 /* Offset within the call dummy stack of the saved registers. */
62 #define DUMMY_REG_SAVE_OFFSET (gdbarch_tdep (current_gdbarch)->reg_save_offset)
63
64 #else /* non-multi-arch */
65
66
67 /* Does the target have Floating Point registers? */
68 #if defined(TARGET_SPARCLET) || defined(TARGET_SPARCLITE)
69 #define SPARC_HAS_FPU 0
70 #else
71 #define SPARC_HAS_FPU 1
72 #endif
73
74 /* Number of bytes devoted to Floating Point registers: */
75 #if (GDB_TARGET_IS_SPARC64)
76 #define FP_REGISTER_BYTES (64 * 4)
77 #else
78 #if (SPARC_HAS_FPU)
79 #define FP_REGISTER_BYTES (32 * 4)
80 #else
81 #define FP_REGISTER_BYTES 0
82 #endif
83 #endif
84
85 /* Highest numbered Floating Point register. */
86 #if (GDB_TARGET_IS_SPARC64)
87 #define FP_MAX_REGNUM (FP0_REGNUM + 48)
88 #else
89 #define FP_MAX_REGNUM (FP0_REGNUM + 32)
90 #endif
91
92 /* Size of a general (integer) register: */
93 #define SPARC_INTREG_SIZE (REGISTER_RAW_SIZE (G0_REGNUM))
94
95 /* Offset within the call dummy stack of the saved registers. */
96 #if (GDB_TARGET_IS_SPARC64)
97 #define DUMMY_REG_SAVE_OFFSET (128 + 16)
98 #else
99 #define DUMMY_REG_SAVE_OFFSET 0x60
100 #endif
101
102 #endif /* GDB_MULTI_ARCH */
103
104 struct gdbarch_tdep
105 {
106 int has_fpu;
107 int fp_register_bytes;
108 int y_regnum;
109 int fp_max_regnum;
110 int intreg_size;
111 int reg_save_offset;
112 int call_dummy_call_offset;
113 int print_insn_mach;
114 };
115
116 /* Now make GDB_TARGET_IS_SPARC64 a runtime test. */
117 /* FIXME MVS: or try testing bfd_arch_info.arch and bfd_arch_info.mach ...
118 * define GDB_TARGET_IS_SPARC64 \
119 * (TARGET_ARCHITECTURE->arch == bfd_arch_sparc && \
120 * (TARGET_ARCHITECTURE->mach == bfd_mach_sparc_v9 || \
121 * TARGET_ARCHITECTURE->mach == bfd_mach_sparc_v9a))
122 */
123
124 /* From infrun.c */
125 extern int stop_after_trap;
126
127 /* We don't store all registers immediately when requested, since they
128 get sent over in large chunks anyway. Instead, we accumulate most
129 of the changes and send them over once. "deferred_stores" keeps
130 track of which sets of registers we have locally-changed copies of,
131 so we only need send the groups that have changed. */
132
133 int deferred_stores = 0; /* Accumulated stores we want to do eventually. */
134
135
136 /* Some machines, such as Fujitsu SPARClite 86x, have a bi-endian mode
137 where instructions are big-endian and data are little-endian.
138 This flag is set when we detect that the target is of this type. */
139
140 int bi_endian = 0;
141
142
143 /* Fetch a single instruction. Even on bi-endian machines
144 such as sparc86x, instructions are always big-endian. */
145
146 static unsigned long
147 fetch_instruction (CORE_ADDR pc)
148 {
149 unsigned long retval;
150 int i;
151 unsigned char buf[4];
152
153 read_memory (pc, buf, sizeof (buf));
154
155 /* Start at the most significant end of the integer, and work towards
156 the least significant. */
157 retval = 0;
158 for (i = 0; i < sizeof (buf); ++i)
159 retval = (retval << 8) | buf[i];
160 return retval;
161 }
162
163
164 /* Branches with prediction are treated like their non-predicting cousins. */
165 /* FIXME: What about floating point branches? */
166
167 /* Macros to extract fields from sparc instructions. */
168 #define X_OP(i) (((i) >> 30) & 0x3)
169 #define X_RD(i) (((i) >> 25) & 0x1f)
170 #define X_A(i) (((i) >> 29) & 1)
171 #define X_COND(i) (((i) >> 25) & 0xf)
172 #define X_OP2(i) (((i) >> 22) & 0x7)
173 #define X_IMM22(i) ((i) & 0x3fffff)
174 #define X_OP3(i) (((i) >> 19) & 0x3f)
175 #define X_RS1(i) (((i) >> 14) & 0x1f)
176 #define X_I(i) (((i) >> 13) & 1)
177 #define X_IMM13(i) ((i) & 0x1fff)
178 /* Sign extension macros. */
179 #define X_SIMM13(i) ((X_IMM13 (i) ^ 0x1000) - 0x1000)
180 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
181 #define X_CC(i) (((i) >> 20) & 3)
182 #define X_P(i) (((i) >> 19) & 1)
183 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
184 #define X_RCOND(i) (((i) >> 25) & 7)
185 #define X_DISP16(i) ((((((i) >> 6) && 0xc000) | ((i) & 0x3fff)) ^ 0x8000) - 0x8000)
186 #define X_FCN(i) (((i) >> 25) & 31)
187
188 typedef enum
189 {
190 Error, not_branch, bicc, bicca, ba, baa, ticc, ta, done_retry
191 } branch_type;
192
193 /* Simulate single-step ptrace call for sun4. Code written by Gary
194 Beihl (beihl@mcc.com). */
195
196 /* npc4 and next_pc describe the situation at the time that the
197 step-breakpoint was set, not necessary the current value of NPC_REGNUM. */
198 static CORE_ADDR next_pc, npc4, target;
199 static int brknpc4, brktrg;
200 typedef char binsn_quantum[BREAKPOINT_MAX];
201 static binsn_quantum break_mem[3];
202
203 static branch_type isbranch (long, CORE_ADDR, CORE_ADDR *);
204
205 /* single_step() is called just before we want to resume the inferior,
206 if we want to single-step it but there is no hardware or kernel single-step
207 support (as on all SPARCs). We find all the possible targets of the
208 coming instruction and breakpoint them.
209
210 single_step is also called just after the inferior stops. If we had
211 set up a simulated single-step, we undo our damage. */
212
213 void
214 sparc_software_single_step (enum target_signal ignore, /* pid, but we don't need it */
215 int insert_breakpoints_p)
216 {
217 branch_type br;
218 CORE_ADDR pc;
219 long pc_instruction;
220
221 if (insert_breakpoints_p)
222 {
223 /* Always set breakpoint for NPC. */
224 next_pc = read_register (NPC_REGNUM);
225 npc4 = next_pc + 4; /* branch not taken */
226
227 target_insert_breakpoint (next_pc, break_mem[0]);
228 /* printf_unfiltered ("set break at %x\n",next_pc); */
229
230 pc = read_register (PC_REGNUM);
231 pc_instruction = fetch_instruction (pc);
232 br = isbranch (pc_instruction, pc, &target);
233 brknpc4 = brktrg = 0;
234
235 if (br == bicca)
236 {
237 /* Conditional annulled branch will either end up at
238 npc (if taken) or at npc+4 (if not taken).
239 Trap npc+4. */
240 brknpc4 = 1;
241 target_insert_breakpoint (npc4, break_mem[1]);
242 }
243 else if (br == baa && target != next_pc)
244 {
245 /* Unconditional annulled branch will always end up at
246 the target. */
247 brktrg = 1;
248 target_insert_breakpoint (target, break_mem[2]);
249 }
250 else if (GDB_TARGET_IS_SPARC64 && br == done_retry)
251 {
252 brktrg = 1;
253 target_insert_breakpoint (target, break_mem[2]);
254 }
255 }
256 else
257 {
258 /* Remove breakpoints */
259 target_remove_breakpoint (next_pc, break_mem[0]);
260
261 if (brknpc4)
262 target_remove_breakpoint (npc4, break_mem[1]);
263
264 if (brktrg)
265 target_remove_breakpoint (target, break_mem[2]);
266 }
267 }
268 \f
269 struct frame_extra_info
270 {
271 CORE_ADDR bottom;
272 int in_prologue;
273 int flat;
274 /* Following fields only relevant for flat frames. */
275 CORE_ADDR pc_addr;
276 CORE_ADDR fp_addr;
277 /* Add this to ->frame to get the value of the stack pointer at the
278 time of the register saves. */
279 int sp_offset;
280 };
281
282 /* Call this for each newly created frame. For SPARC, we need to
283 calculate the bottom of the frame, and do some extra work if the
284 prologue has been generated via the -mflat option to GCC. In
285 particular, we need to know where the previous fp and the pc have
286 been stashed, since their exact position within the frame may vary. */
287
288 void
289 sparc_init_extra_frame_info (int fromleaf, struct frame_info *fi)
290 {
291 char *name;
292 CORE_ADDR prologue_start, prologue_end;
293 int insn;
294
295 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
296 frame_saved_regs_zalloc (fi);
297
298 get_frame_extra_info (fi)->bottom =
299 (get_next_frame (fi)
300 ? (get_frame_base (fi) == get_frame_base (get_next_frame (fi))
301 ? get_frame_extra_info (get_next_frame (fi))->bottom
302 : get_frame_base (get_next_frame (fi)))
303 : read_sp ());
304
305 /* If fi->next is NULL, then we already set ->frame by passing read_fp()
306 to create_new_frame. */
307 if (get_next_frame (fi))
308 {
309 char *buf;
310
311 buf = alloca (MAX_REGISTER_RAW_SIZE);
312
313 /* Compute ->frame as if not flat. If it is flat, we'll change
314 it later. */
315 if (get_next_frame (get_next_frame (fi)) != NULL
316 && ((get_frame_type (get_next_frame (get_next_frame (fi))) == SIGTRAMP_FRAME)
317 || deprecated_frame_in_dummy (get_next_frame (get_next_frame (fi))))
318 && frameless_look_for_prologue (get_next_frame (fi)))
319 {
320 /* A frameless function interrupted by a signal did not change
321 the frame pointer, fix up frame pointer accordingly. */
322 deprecated_update_frame_base_hack (fi, get_frame_base (get_next_frame (fi)));
323 get_frame_extra_info (fi)->bottom =
324 get_frame_extra_info (get_next_frame (fi))->bottom;
325 }
326 else
327 {
328 /* Should we adjust for stack bias here? */
329 get_saved_register (buf, 0, 0, fi, FP_REGNUM, 0);
330 deprecated_update_frame_base_hack (fi, extract_address (buf, REGISTER_RAW_SIZE (FP_REGNUM)));
331
332 if (GDB_TARGET_IS_SPARC64 && (get_frame_base (fi) & 1))
333 deprecated_update_frame_base_hack (fi, get_frame_base (fi) + 2047);
334 }
335 }
336
337 /* Decide whether this is a function with a ``flat register window''
338 frame. For such functions, the frame pointer is actually in %i7. */
339 get_frame_extra_info (fi)->flat = 0;
340 get_frame_extra_info (fi)->in_prologue = 0;
341 if (find_pc_partial_function (get_frame_pc (fi), &name, &prologue_start, &prologue_end))
342 {
343 /* See if the function starts with an add (which will be of a
344 negative number if a flat frame) to the sp. FIXME: Does not
345 handle large frames which will need more than one instruction
346 to adjust the sp. */
347 insn = fetch_instruction (prologue_start);
348 if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0
349 && X_I (insn) && X_SIMM13 (insn) < 0)
350 {
351 int offset = X_SIMM13 (insn);
352
353 /* Then look for a save of %i7 into the frame. */
354 insn = fetch_instruction (prologue_start + 4);
355 if (X_OP (insn) == 3
356 && X_RD (insn) == 31
357 && X_OP3 (insn) == 4
358 && X_RS1 (insn) == 14)
359 {
360 char *buf;
361
362 buf = alloca (MAX_REGISTER_RAW_SIZE);
363
364 /* We definitely have a flat frame now. */
365 get_frame_extra_info (fi)->flat = 1;
366
367 get_frame_extra_info (fi)->sp_offset = offset;
368
369 /* Overwrite the frame's address with the value in %i7. */
370 get_saved_register (buf, 0, 0, fi, I7_REGNUM, 0);
371 deprecated_update_frame_base_hack (fi, extract_address (buf, REGISTER_RAW_SIZE (I7_REGNUM)));
372
373 if (GDB_TARGET_IS_SPARC64 && (get_frame_base (fi) & 1))
374 deprecated_update_frame_base_hack (fi, get_frame_base (fi) + 2047);
375
376 /* Record where the fp got saved. */
377 get_frame_extra_info (fi)->fp_addr =
378 get_frame_base (fi) + get_frame_extra_info (fi)->sp_offset + X_SIMM13 (insn);
379
380 /* Also try to collect where the pc got saved to. */
381 get_frame_extra_info (fi)->pc_addr = 0;
382 insn = fetch_instruction (prologue_start + 12);
383 if (X_OP (insn) == 3
384 && X_RD (insn) == 15
385 && X_OP3 (insn) == 4
386 && X_RS1 (insn) == 14)
387 get_frame_extra_info (fi)->pc_addr =
388 get_frame_base (fi) + get_frame_extra_info (fi)->sp_offset + X_SIMM13 (insn);
389 }
390 }
391 else
392 {
393 /* Check if the PC is in the function prologue before a SAVE
394 instruction has been executed yet. If so, set the frame
395 to the current value of the stack pointer and set
396 the in_prologue flag. */
397 CORE_ADDR addr;
398 struct symtab_and_line sal;
399
400 sal = find_pc_line (prologue_start, 0);
401 if (sal.line == 0) /* no line info, use PC */
402 prologue_end = get_frame_pc (fi);
403 else if (sal.end < prologue_end)
404 prologue_end = sal.end;
405 if (get_frame_pc (fi) < prologue_end)
406 {
407 for (addr = prologue_start; addr < get_frame_pc (fi); addr += 4)
408 {
409 insn = read_memory_integer (addr, 4);
410 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
411 break; /* SAVE seen, stop searching */
412 }
413 if (addr >= get_frame_pc (fi))
414 {
415 get_frame_extra_info (fi)->in_prologue = 1;
416 deprecated_update_frame_base_hack (fi, read_register (SP_REGNUM));
417 }
418 }
419 }
420 }
421 if (get_next_frame (fi) && get_frame_base (fi) == 0)
422 {
423 /* Kludge to cause init_prev_frame_info to destroy the new frame. */
424 deprecated_update_frame_base_hack (fi, get_frame_base (get_next_frame (fi)));
425 deprecated_update_frame_pc_hack (fi, get_frame_pc (get_next_frame (fi)));
426 }
427 }
428
429 CORE_ADDR
430 sparc_frame_chain (struct frame_info *frame)
431 {
432 /* Value that will cause FRAME_CHAIN_VALID to not worry about the chain
433 value. If it really is zero, we detect it later in
434 sparc_init_prev_frame. */
435 return (CORE_ADDR) 1;
436 }
437
438 CORE_ADDR
439 sparc_extract_struct_value_address (char *regbuf)
440 {
441 return extract_address (regbuf + REGISTER_BYTE (O0_REGNUM),
442 REGISTER_RAW_SIZE (O0_REGNUM));
443 }
444
445 /* Find the pc saved in frame FRAME. */
446
447 CORE_ADDR
448 sparc_frame_saved_pc (struct frame_info *frame)
449 {
450 char *buf;
451 CORE_ADDR addr;
452
453 buf = alloca (MAX_REGISTER_RAW_SIZE);
454 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
455 {
456 /* This is the signal trampoline frame.
457 Get the saved PC from the sigcontext structure. */
458
459 #ifndef SIGCONTEXT_PC_OFFSET
460 #define SIGCONTEXT_PC_OFFSET 12
461 #endif
462
463 CORE_ADDR sigcontext_addr;
464 char *scbuf;
465 int saved_pc_offset = SIGCONTEXT_PC_OFFSET;
466 char *name = NULL;
467
468 scbuf = alloca (TARGET_PTR_BIT / HOST_CHAR_BIT);
469
470 /* Solaris2 ucbsigvechandler passes a pointer to a sigcontext
471 as the third parameter. The offset to the saved pc is 12. */
472 find_pc_partial_function (get_frame_pc (frame), &name,
473 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
474 if (name && STREQ (name, "ucbsigvechandler"))
475 saved_pc_offset = 12;
476
477 /* The sigcontext address is contained in register O2. */
478 get_saved_register (buf, (int *) NULL, (CORE_ADDR *) NULL,
479 frame, O0_REGNUM + 2, (enum lval_type *) NULL);
480 sigcontext_addr = extract_address (buf, REGISTER_RAW_SIZE (O0_REGNUM + 2));
481
482 /* Don't cause a memory_error when accessing sigcontext in case the
483 stack layout has changed or the stack is corrupt. */
484 target_read_memory (sigcontext_addr + saved_pc_offset,
485 scbuf, sizeof (scbuf));
486 return extract_address (scbuf, sizeof (scbuf));
487 }
488 else if (get_frame_extra_info (frame)->in_prologue ||
489 (get_next_frame (frame) != NULL &&
490 ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME) ||
491 deprecated_frame_in_dummy (get_next_frame (frame))) &&
492 frameless_look_for_prologue (frame)))
493 {
494 /* A frameless function interrupted by a signal did not save
495 the PC, it is still in %o7. */
496 get_saved_register (buf, (int *) NULL, (CORE_ADDR *) NULL,
497 frame, O7_REGNUM, (enum lval_type *) NULL);
498 return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE));
499 }
500 if (get_frame_extra_info (frame)->flat)
501 addr = get_frame_extra_info (frame)->pc_addr;
502 else
503 addr = get_frame_extra_info (frame)->bottom + FRAME_SAVED_I0 +
504 SPARC_INTREG_SIZE * (I7_REGNUM - I0_REGNUM);
505
506 if (addr == 0)
507 /* A flat frame leaf function might not save the PC anywhere,
508 just leave it in %o7. */
509 return PC_ADJUST (read_register (O7_REGNUM));
510
511 read_memory (addr, buf, SPARC_INTREG_SIZE);
512 return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE));
513 }
514
515 /* Since an individual frame in the frame cache is defined by two
516 arguments (a frame pointer and a stack pointer), we need two
517 arguments to get info for an arbitrary stack frame. This routine
518 takes two arguments and makes the cached frames look as if these
519 two arguments defined a frame on the cache. This allows the rest
520 of info frame to extract the important arguments without
521 difficulty. */
522
523 struct frame_info *
524 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
525 {
526 struct frame_info *frame;
527
528 if (argc != 2)
529 error ("Sparc frame specifications require two arguments: fp and sp");
530
531 frame = create_new_frame (argv[0], 0);
532
533 if (!frame)
534 internal_error (__FILE__, __LINE__,
535 "create_new_frame returned invalid frame");
536
537 get_frame_extra_info (frame)->bottom = argv[1];
538 deprecated_update_frame_pc_hack (frame, FRAME_SAVED_PC (frame));
539 return frame;
540 }
541
542 /* Given a pc value, skip it forward past the function prologue by
543 disassembling instructions that appear to be a prologue.
544
545 If FRAMELESS_P is set, we are only testing to see if the function
546 is frameless. This allows a quicker answer.
547
548 This routine should be more specific in its actions; making sure
549 that it uses the same register in the initial prologue section. */
550
551 static CORE_ADDR examine_prologue (CORE_ADDR, int, struct frame_info *,
552 CORE_ADDR *);
553
554 static CORE_ADDR
555 examine_prologue (CORE_ADDR start_pc, int frameless_p, struct frame_info *fi,
556 CORE_ADDR *saved_regs)
557 {
558 int insn;
559 int dest = -1;
560 CORE_ADDR pc = start_pc;
561 int is_flat = 0;
562
563 insn = fetch_instruction (pc);
564
565 /* Recognize the `sethi' insn and record its destination. */
566 if (X_OP (insn) == 0 && X_OP2 (insn) == 4)
567 {
568 dest = X_RD (insn);
569 pc += 4;
570 insn = fetch_instruction (pc);
571 }
572
573 /* Recognize an add immediate value to register to either %g1 or
574 the destination register recorded above. Actually, this might
575 well recognize several different arithmetic operations.
576 It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1"
577 followed by "save %sp, %g1, %sp" is a valid prologue (Not that
578 I imagine any compiler really does that, however). */
579 if (X_OP (insn) == 2
580 && X_I (insn)
581 && (X_RD (insn) == 1 || X_RD (insn) == dest))
582 {
583 pc += 4;
584 insn = fetch_instruction (pc);
585 }
586
587 /* Recognize any SAVE insn. */
588 if (X_OP (insn) == 2 && X_OP3 (insn) == 60)
589 {
590 pc += 4;
591 if (frameless_p) /* If the save is all we care about, */
592 return pc; /* return before doing more work */
593 insn = fetch_instruction (pc);
594 }
595 /* Recognize add to %sp. */
596 else if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0)
597 {
598 pc += 4;
599 if (frameless_p) /* If the add is all we care about, */
600 return pc; /* return before doing more work */
601 is_flat = 1;
602 insn = fetch_instruction (pc);
603 /* Recognize store of frame pointer (i7). */
604 if (X_OP (insn) == 3
605 && X_RD (insn) == 31
606 && X_OP3 (insn) == 4
607 && X_RS1 (insn) == 14)
608 {
609 pc += 4;
610 insn = fetch_instruction (pc);
611
612 /* Recognize sub %sp, <anything>, %i7. */
613 if (X_OP (insn) == 2
614 && X_OP3 (insn) == 4
615 && X_RS1 (insn) == 14
616 && X_RD (insn) == 31)
617 {
618 pc += 4;
619 insn = fetch_instruction (pc);
620 }
621 else
622 return pc;
623 }
624 else
625 return pc;
626 }
627 else
628 /* Without a save or add instruction, it's not a prologue. */
629 return start_pc;
630
631 while (1)
632 {
633 /* Recognize stores into the frame from the input registers.
634 This recognizes all non alternate stores of an input register,
635 into a location offset from the frame pointer between
636 +68 and +92. */
637
638 /* The above will fail for arguments that are promoted
639 (eg. shorts to ints or floats to doubles), because the compiler
640 will pass them in positive-offset frame space, but the prologue
641 will save them (after conversion) in negative frame space at an
642 unpredictable offset. Therefore I am going to remove the
643 restriction on the target-address of the save, on the theory
644 that any unbroken sequence of saves from input registers must
645 be part of the prologue. In un-optimized code (at least), I'm
646 fairly sure that the compiler would emit SOME other instruction
647 (eg. a move or add) before emitting another save that is actually
648 a part of the function body.
649
650 Besides, the reserved stack space is different for SPARC64 anyway.
651
652 MVS 4/23/2000 */
653
654 if (X_OP (insn) == 3
655 && (X_OP3 (insn) & 0x3c) == 4 /* Store, non-alternate. */
656 && (X_RD (insn) & 0x18) == 0x18 /* Input register. */
657 && X_I (insn) /* Immediate mode. */
658 && X_RS1 (insn) == 30) /* Off of frame pointer. */
659 ; /* empty statement -- fall thru to end of loop */
660 else if (GDB_TARGET_IS_SPARC64
661 && X_OP (insn) == 3
662 && (X_OP3 (insn) & 0x3c) == 12 /* store, extended (64-bit) */
663 && (X_RD (insn) & 0x18) == 0x18 /* input register */
664 && X_I (insn) /* immediate mode */
665 && X_RS1 (insn) == 30) /* off of frame pointer */
666 ; /* empty statement -- fall thru to end of loop */
667 else if (X_OP (insn) == 3
668 && (X_OP3 (insn) & 0x3c) == 36 /* store, floating-point */
669 && X_I (insn) /* immediate mode */
670 && X_RS1 (insn) == 30) /* off of frame pointer */
671 ; /* empty statement -- fall thru to end of loop */
672 else if (is_flat
673 && X_OP (insn) == 3
674 && X_OP3 (insn) == 4 /* store? */
675 && X_RS1 (insn) == 14) /* off of frame pointer */
676 {
677 if (saved_regs && X_I (insn))
678 saved_regs[X_RD (insn)] =
679 get_frame_base (fi) + get_frame_extra_info (fi)->sp_offset + X_SIMM13 (insn);
680 }
681 else
682 break;
683 pc += 4;
684 insn = fetch_instruction (pc);
685 }
686
687 return pc;
688 }
689
690 /* Advance PC across any function entry prologue instructions to reach
691 some "real" code. */
692
693 CORE_ADDR
694 sparc_skip_prologue (CORE_ADDR start_pc)
695 {
696 struct symtab_and_line sal;
697 CORE_ADDR func_start, func_end;
698
699 /* This is the preferred method, find the end of the prologue by
700 using the debugging information. */
701 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
702 {
703 sal = find_pc_line (func_start, 0);
704
705 if (sal.end < func_end
706 && start_pc <= sal.end)
707 return sal.end;
708 }
709
710 /* Oh well, examine the code by hand. */
711 return examine_prologue (start_pc, 0, NULL, NULL);
712 }
713
714 /* Is the prologue at IP frameless? */
715
716 int
717 sparc_prologue_frameless_p (CORE_ADDR ip)
718 {
719 return ip == examine_prologue (ip, 1, NULL, NULL);
720 }
721
722 /* Check instruction at ADDR to see if it is a branch.
723 All non-annulled instructions will go to NPC or will trap.
724 Set *TARGET if we find a candidate branch; set to zero if not.
725
726 This isn't static as it's used by remote-sa.sparc.c. */
727
728 static branch_type
729 isbranch (long instruction, CORE_ADDR addr, CORE_ADDR *target)
730 {
731 branch_type val = not_branch;
732 long int offset = 0; /* Must be signed for sign-extend. */
733
734 *target = 0;
735
736 if (X_OP (instruction) == 0
737 && (X_OP2 (instruction) == 2
738 || X_OP2 (instruction) == 6
739 || X_OP2 (instruction) == 1
740 || X_OP2 (instruction) == 3
741 || X_OP2 (instruction) == 5
742 || (GDB_TARGET_IS_SPARC64 && X_OP2 (instruction) == 7)))
743 {
744 if (X_COND (instruction) == 8)
745 val = X_A (instruction) ? baa : ba;
746 else
747 val = X_A (instruction) ? bicca : bicc;
748 switch (X_OP2 (instruction))
749 {
750 case 7:
751 if (!GDB_TARGET_IS_SPARC64)
752 break;
753 /* else fall thru */
754 case 2:
755 case 6:
756 offset = 4 * X_DISP22 (instruction);
757 break;
758 case 1:
759 case 5:
760 offset = 4 * X_DISP19 (instruction);
761 break;
762 case 3:
763 offset = 4 * X_DISP16 (instruction);
764 break;
765 }
766 *target = addr + offset;
767 }
768 else if (GDB_TARGET_IS_SPARC64
769 && X_OP (instruction) == 2
770 && X_OP3 (instruction) == 62)
771 {
772 if (X_FCN (instruction) == 0)
773 {
774 /* done */
775 *target = read_register (TNPC_REGNUM);
776 val = done_retry;
777 }
778 else if (X_FCN (instruction) == 1)
779 {
780 /* retry */
781 *target = read_register (TPC_REGNUM);
782 val = done_retry;
783 }
784 }
785
786 return val;
787 }
788 \f
789 /* Find register number REGNUM relative to FRAME and put its
790 (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
791 was optimized out (and thus can't be fetched). If the variable
792 was fetched from memory, set *ADDRP to where it was fetched from,
793 otherwise it was fetched from a register.
794
795 The argument RAW_BUFFER must point to aligned memory. */
796
797 void
798 sparc_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
799 struct frame_info *frame, int regnum,
800 enum lval_type *lval)
801 {
802 struct frame_info *frame1;
803 CORE_ADDR addr;
804
805 if (!target_has_registers)
806 error ("No registers.");
807
808 if (optimized)
809 *optimized = 0;
810
811 addr = 0;
812
813 /* FIXME This code extracted from infcmd.c; should put elsewhere! */
814 if (frame == NULL)
815 {
816 /* error ("No selected frame."); */
817 if (!target_has_registers)
818 error ("The program has no registers now.");
819 if (deprecated_selected_frame == NULL)
820 error ("No selected frame.");
821 /* Try to use selected frame */
822 frame = get_prev_frame (deprecated_selected_frame);
823 if (frame == 0)
824 error ("Cmd not meaningful in the outermost frame.");
825 }
826
827
828 frame1 = get_next_frame (frame);
829
830 /* Get saved PC from the frame info if not in innermost frame. */
831 if (regnum == PC_REGNUM && frame1 != NULL)
832 {
833 if (lval != NULL)
834 *lval = not_lval;
835 if (raw_buffer != NULL)
836 {
837 /* Put it back in target format. */
838 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), get_frame_pc (frame));
839 }
840 if (addrp != NULL)
841 *addrp = 0;
842 return;
843 }
844
845 while (frame1 != NULL)
846 {
847 /* FIXME MVS: wrong test for dummy frame at entry. */
848
849 if (get_frame_pc (frame1) >= (get_frame_extra_info (frame1)->bottom
850 ? get_frame_extra_info (frame1)->bottom
851 : read_sp ())
852 && get_frame_pc (frame1) <= get_frame_base (frame1))
853 {
854 /* Dummy frame. All but the window regs are in there somewhere.
855 The window registers are saved on the stack, just like in a
856 normal frame. */
857 if (regnum >= G1_REGNUM && regnum < G1_REGNUM + 7)
858 addr = get_frame_base (frame1) + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
859 - (FP_REGISTER_BYTES + 8 * SPARC_INTREG_SIZE);
860 else if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
861 /* NOTE: cagney/2002-05-04: The call to get_prev_frame()
862 is safe/cheap - there will always be a prev frame.
863 This is because frame1 is initialized to frame->next
864 (frame1->prev == frame) and is then advanced towards
865 the innermost (next) frame. */
866 addr = (get_frame_extra_info (get_prev_frame (frame1))->bottom
867 + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
868 + FRAME_SAVED_I0);
869 else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
870 /* NOTE: cagney/2002-05-04: The call to get_prev_frame()
871 is safe/cheap - there will always be a prev frame.
872 This is because frame1 is initialized to frame->next
873 (frame1->prev == frame) and is then advanced towards
874 the innermost (next) frame. */
875 addr = (get_frame_extra_info (get_prev_frame (frame1))->bottom
876 + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
877 + FRAME_SAVED_L0);
878 else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
879 addr = get_frame_base (frame1) + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
880 - (FP_REGISTER_BYTES + 16 * SPARC_INTREG_SIZE);
881 else if (SPARC_HAS_FPU &&
882 regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32)
883 addr = get_frame_base (frame1) + (regnum - FP0_REGNUM) * 4
884 - (FP_REGISTER_BYTES);
885 else if (GDB_TARGET_IS_SPARC64 && SPARC_HAS_FPU &&
886 regnum >= FP0_REGNUM + 32 && regnum < FP_MAX_REGNUM)
887 addr = get_frame_base (frame1) + 32 * 4 + (regnum - FP0_REGNUM - 32) * 8
888 - (FP_REGISTER_BYTES);
889 else if (regnum >= Y_REGNUM && regnum < NUM_REGS)
890 addr = get_frame_base (frame1) + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE
891 - (FP_REGISTER_BYTES + 24 * SPARC_INTREG_SIZE);
892 }
893 else if (get_frame_extra_info (frame1)->flat)
894 {
895
896 if (regnum == RP_REGNUM)
897 addr = get_frame_extra_info (frame1)->pc_addr;
898 else if (regnum == I7_REGNUM)
899 addr = get_frame_extra_info (frame1)->fp_addr;
900 else
901 {
902 CORE_ADDR func_start;
903 CORE_ADDR *regs;
904
905 regs = alloca (NUM_REGS * sizeof (CORE_ADDR));
906 memset (regs, 0, NUM_REGS * sizeof (CORE_ADDR));
907
908 find_pc_partial_function (get_frame_pc (frame1), NULL, &func_start, NULL);
909 examine_prologue (func_start, 0, frame1, regs);
910 addr = regs[regnum];
911 }
912 }
913 else
914 {
915 /* Normal frame. Local and In registers are saved on stack. */
916 if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
917 addr = (get_frame_extra_info (get_prev_frame (frame1))->bottom
918 + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
919 + FRAME_SAVED_I0);
920 else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
921 addr = (get_frame_extra_info (get_prev_frame (frame1))->bottom
922 + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
923 + FRAME_SAVED_L0);
924 else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
925 {
926 /* Outs become ins. */
927 get_saved_register (raw_buffer, optimized, addrp, frame1,
928 (regnum - O0_REGNUM + I0_REGNUM), lval);
929 return;
930 }
931 }
932 if (addr != 0)
933 break;
934 frame1 = get_next_frame (frame1);
935 }
936 if (addr != 0)
937 {
938 if (lval != NULL)
939 *lval = lval_memory;
940 if (regnum == SP_REGNUM)
941 {
942 if (raw_buffer != NULL)
943 {
944 /* Put it back in target format. */
945 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), addr);
946 }
947 if (addrp != NULL)
948 *addrp = 0;
949 return;
950 }
951 if (raw_buffer != NULL)
952 read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
953 }
954 else
955 {
956 if (lval != NULL)
957 *lval = lval_register;
958 addr = REGISTER_BYTE (regnum);
959 if (raw_buffer != NULL)
960 deprecated_read_register_gen (regnum, raw_buffer);
961 }
962 if (addrp != NULL)
963 *addrp = addr;
964 }
965
966 /* Push an empty stack frame, and record in it the current PC, regs, etc.
967
968 We save the non-windowed registers and the ins. The locals and outs
969 are new; they don't need to be saved. The i's and l's of
970 the last frame were already saved on the stack. */
971
972 /* Definitely see tm-sparc.h for more doc of the frame format here. */
973
974 /* See tm-sparc.h for how this is calculated. */
975
976 #define DUMMY_STACK_REG_BUF_SIZE \
977 (((8+8+8) * SPARC_INTREG_SIZE) + FP_REGISTER_BYTES)
978 #define DUMMY_STACK_SIZE \
979 (DUMMY_STACK_REG_BUF_SIZE + DUMMY_REG_SAVE_OFFSET)
980
981 void
982 sparc_push_dummy_frame (void)
983 {
984 CORE_ADDR sp, old_sp;
985 char *register_temp;
986
987 register_temp = alloca (DUMMY_STACK_SIZE);
988
989 old_sp = sp = read_sp ();
990
991 if (GDB_TARGET_IS_SPARC64)
992 {
993 /* PC, NPC, CCR, FSR, FPRS, Y, ASI */
994 deprecated_read_register_bytes (REGISTER_BYTE (PC_REGNUM),
995 &register_temp[0],
996 REGISTER_RAW_SIZE (PC_REGNUM) * 7);
997 deprecated_read_register_bytes (REGISTER_BYTE (PSTATE_REGNUM),
998 &register_temp[7 * SPARC_INTREG_SIZE],
999 REGISTER_RAW_SIZE (PSTATE_REGNUM));
1000 /* FIXME: not sure what needs to be saved here. */
1001 }
1002 else
1003 {
1004 /* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */
1005 deprecated_read_register_bytes (REGISTER_BYTE (Y_REGNUM),
1006 &register_temp[0],
1007 REGISTER_RAW_SIZE (Y_REGNUM) * 8);
1008 }
1009
1010 deprecated_read_register_bytes (REGISTER_BYTE (O0_REGNUM),
1011 &register_temp[8 * SPARC_INTREG_SIZE],
1012 SPARC_INTREG_SIZE * 8);
1013
1014 deprecated_read_register_bytes (REGISTER_BYTE (G0_REGNUM),
1015 &register_temp[16 * SPARC_INTREG_SIZE],
1016 SPARC_INTREG_SIZE * 8);
1017
1018 if (SPARC_HAS_FPU)
1019 deprecated_read_register_bytes (REGISTER_BYTE (FP0_REGNUM),
1020 &register_temp[24 * SPARC_INTREG_SIZE],
1021 FP_REGISTER_BYTES);
1022
1023 sp -= DUMMY_STACK_SIZE;
1024
1025 write_sp (sp);
1026
1027 write_memory (sp + DUMMY_REG_SAVE_OFFSET, &register_temp[0],
1028 DUMMY_STACK_REG_BUF_SIZE);
1029
1030 if (strcmp (target_shortname, "sim") != 0)
1031 {
1032 /* NOTE: cagney/2002-04-04: The code below originally contained
1033 GDB's _only_ call to write_fp(). That call was eliminated by
1034 inlining the corresponding code. For the 64 bit case, the
1035 old function (sparc64_write_fp) did the below although I'm
1036 not clear why. The same goes for why this is only done when
1037 the underlying target is a simulator. */
1038 if (GDB_TARGET_IS_SPARC64)
1039 {
1040 /* Target is a 64 bit SPARC. */
1041 CORE_ADDR oldfp = read_register (FP_REGNUM);
1042 if (oldfp & 1)
1043 write_register (FP_REGNUM, old_sp - 2047);
1044 else
1045 write_register (FP_REGNUM, old_sp);
1046 }
1047 else
1048 {
1049 /* Target is a 32 bit SPARC. */
1050 write_register (FP_REGNUM, old_sp);
1051 }
1052 /* Set return address register for the call dummy to the current PC. */
1053 write_register (I7_REGNUM, read_pc () - 8);
1054 }
1055 else
1056 {
1057 /* The call dummy will write this value to FP before executing
1058 the 'save'. This ensures that register window flushes work
1059 correctly in the simulator. */
1060 write_register (G0_REGNUM + 1, read_register (FP_REGNUM));
1061
1062 /* The call dummy will write this value to FP after executing
1063 the 'save'. */
1064 write_register (G0_REGNUM + 2, old_sp);
1065
1066 /* The call dummy will write this value to the return address (%i7) after
1067 executing the 'save'. */
1068 write_register (G0_REGNUM + 3, read_pc () - 8);
1069
1070 /* Set the FP that the call dummy will be using after the 'save'.
1071 This makes backtraces from an inferior function call work properly. */
1072 write_register (FP_REGNUM, old_sp);
1073 }
1074 }
1075
1076 /* sparc_frame_find_saved_regs (). This function is here only because
1077 pop_frame uses it. Note there is an interesting corner case which
1078 I think few ports of GDB get right--if you are popping a frame
1079 which does not save some register that *is* saved by a more inner
1080 frame (such a frame will never be a dummy frame because dummy
1081 frames save all registers). Rewriting pop_frame to use
1082 get_saved_register would solve this problem and also get rid of the
1083 ugly duplication between sparc_frame_find_saved_regs and
1084 get_saved_register.
1085
1086 Stores, into an array of CORE_ADDR,
1087 the addresses of the saved registers of frame described by FRAME_INFO.
1088 This includes special registers such as pc and fp saved in special
1089 ways in the stack frame. sp is even more special:
1090 the address we return for it IS the sp for the next frame.
1091
1092 Note that on register window machines, we are currently making the
1093 assumption that window registers are being saved somewhere in the
1094 frame in which they are being used. If they are stored in an
1095 inferior frame, find_saved_register will break.
1096
1097 On the Sun 4, the only time all registers are saved is when
1098 a dummy frame is involved. Otherwise, the only saved registers
1099 are the LOCAL and IN registers which are saved as a result
1100 of the "save/restore" opcodes. This condition is determined
1101 by address rather than by value.
1102
1103 The "pc" is not stored in a frame on the SPARC. (What is stored
1104 is a return address minus 8.) sparc_pop_frame knows how to
1105 deal with that. Other routines might or might not.
1106
1107 See tm-sparc.h (PUSH_DUMMY_FRAME and friends) for CRITICAL information
1108 about how this works. */
1109
1110 static void sparc_frame_find_saved_regs (struct frame_info *, CORE_ADDR *);
1111
1112 static void
1113 sparc_frame_find_saved_regs (struct frame_info *fi, CORE_ADDR *saved_regs_addr)
1114 {
1115 register int regnum;
1116 CORE_ADDR frame_addr = get_frame_base (fi);
1117
1118 if (!fi)
1119 internal_error (__FILE__, __LINE__,
1120 "Bad frame info struct in FRAME_FIND_SAVED_REGS");
1121
1122 memset (saved_regs_addr, 0, NUM_REGS * sizeof (CORE_ADDR));
1123
1124 if (get_frame_pc (fi) >= (get_frame_extra_info (fi)->bottom
1125 ? get_frame_extra_info (fi)->bottom
1126 : read_sp ())
1127 && get_frame_pc (fi) <= get_frame_base (fi))
1128 {
1129 /* Dummy frame. All but the window regs are in there somewhere. */
1130 for (regnum = G1_REGNUM; regnum < G1_REGNUM + 7; regnum++)
1131 saved_regs_addr[regnum] =
1132 frame_addr + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
1133 - DUMMY_STACK_REG_BUF_SIZE + 16 * SPARC_INTREG_SIZE;
1134
1135 for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++)
1136 saved_regs_addr[regnum] =
1137 frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
1138 - DUMMY_STACK_REG_BUF_SIZE + 8 * SPARC_INTREG_SIZE;
1139
1140 if (SPARC_HAS_FPU)
1141 for (regnum = FP0_REGNUM; regnum < FP_MAX_REGNUM; regnum++)
1142 saved_regs_addr[regnum] = frame_addr + (regnum - FP0_REGNUM) * 4
1143 - DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE;
1144
1145 if (GDB_TARGET_IS_SPARC64)
1146 {
1147 for (regnum = PC_REGNUM; regnum < PC_REGNUM + 7; regnum++)
1148 {
1149 saved_regs_addr[regnum] =
1150 frame_addr + (regnum - PC_REGNUM) * SPARC_INTREG_SIZE
1151 - DUMMY_STACK_REG_BUF_SIZE;
1152 }
1153 saved_regs_addr[PSTATE_REGNUM] =
1154 frame_addr + 8 * SPARC_INTREG_SIZE - DUMMY_STACK_REG_BUF_SIZE;
1155 }
1156 else
1157 for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++)
1158 saved_regs_addr[regnum] =
1159 frame_addr + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE
1160 - DUMMY_STACK_REG_BUF_SIZE;
1161
1162 frame_addr = (get_frame_extra_info (fi)->bottom
1163 ? get_frame_extra_info (fi)->bottom
1164 : read_sp ());
1165 }
1166 else if (get_frame_extra_info (fi)->flat)
1167 {
1168 CORE_ADDR func_start;
1169 find_pc_partial_function (get_frame_pc (fi), NULL, &func_start, NULL);
1170 examine_prologue (func_start, 0, fi, saved_regs_addr);
1171
1172 /* Flat register window frame. */
1173 saved_regs_addr[RP_REGNUM] = get_frame_extra_info (fi)->pc_addr;
1174 saved_regs_addr[I7_REGNUM] = get_frame_extra_info (fi)->fp_addr;
1175 }
1176 else
1177 {
1178 /* Normal frame. Just Local and In registers */
1179 frame_addr = (get_frame_extra_info (fi)->bottom
1180 ? get_frame_extra_info (fi)->bottom
1181 : read_sp ());
1182 for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; regnum++)
1183 saved_regs_addr[regnum] =
1184 (frame_addr + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
1185 + FRAME_SAVED_L0);
1186 for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++)
1187 saved_regs_addr[regnum] =
1188 (frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
1189 + FRAME_SAVED_I0);
1190 }
1191 if (get_next_frame (fi))
1192 {
1193 if (get_frame_extra_info (fi)->flat)
1194 {
1195 saved_regs_addr[O7_REGNUM] = get_frame_extra_info (fi)->pc_addr;
1196 }
1197 else
1198 {
1199 /* Pull off either the next frame pointer or the stack pointer */
1200 CORE_ADDR next_next_frame_addr =
1201 (get_frame_extra_info (get_next_frame (fi))->bottom
1202 ? get_frame_extra_info (get_next_frame (fi))->bottom
1203 : read_sp ());
1204 for (regnum = O0_REGNUM; regnum < O0_REGNUM + 8; regnum++)
1205 saved_regs_addr[regnum] =
1206 (next_next_frame_addr
1207 + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
1208 + FRAME_SAVED_I0);
1209 }
1210 }
1211 /* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */
1212 /* FIXME -- should this adjust for the sparc64 offset? */
1213 saved_regs_addr[SP_REGNUM] = get_frame_base (fi);
1214 }
1215
1216 /* Discard from the stack the innermost frame, restoring all saved registers.
1217
1218 Note that the values stored in fsr by
1219 deprecated_get_frame_saved_regs are *in the context of the called
1220 frame*. What this means is that the i regs of fsr must be restored
1221 into the o regs of the (calling) frame that we pop into. We don't
1222 care about the output regs of the calling frame, since unless it's
1223 a dummy frame, it won't have any output regs in it.
1224
1225 We never have to bother with %l (local) regs, since the called routine's
1226 locals get tossed, and the calling routine's locals are already saved
1227 on its stack. */
1228
1229 /* Definitely see tm-sparc.h for more doc of the frame format here. */
1230
1231 void
1232 sparc_pop_frame (void)
1233 {
1234 register struct frame_info *frame = get_current_frame ();
1235 register CORE_ADDR pc;
1236 CORE_ADDR *fsr;
1237 char *raw_buffer;
1238 int regnum;
1239
1240 fsr = alloca (NUM_REGS * sizeof (CORE_ADDR));
1241 raw_buffer = alloca (REGISTER_BYTES);
1242 sparc_frame_find_saved_regs (frame, &fsr[0]);
1243 if (SPARC_HAS_FPU)
1244 {
1245 if (fsr[FP0_REGNUM])
1246 {
1247 read_memory (fsr[FP0_REGNUM], raw_buffer, FP_REGISTER_BYTES);
1248 deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM),
1249 raw_buffer, FP_REGISTER_BYTES);
1250 }
1251 if (!(GDB_TARGET_IS_SPARC64))
1252 {
1253 if (fsr[FPS_REGNUM])
1254 {
1255 read_memory (fsr[FPS_REGNUM], raw_buffer, SPARC_INTREG_SIZE);
1256 deprecated_write_register_gen (FPS_REGNUM, raw_buffer);
1257 }
1258 if (fsr[CPS_REGNUM])
1259 {
1260 read_memory (fsr[CPS_REGNUM], raw_buffer, SPARC_INTREG_SIZE);
1261 deprecated_write_register_gen (CPS_REGNUM, raw_buffer);
1262 }
1263 }
1264 }
1265 if (fsr[G1_REGNUM])
1266 {
1267 read_memory (fsr[G1_REGNUM], raw_buffer, 7 * SPARC_INTREG_SIZE);
1268 deprecated_write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer,
1269 7 * SPARC_INTREG_SIZE);
1270 }
1271
1272 if (get_frame_extra_info (frame)->flat)
1273 {
1274 /* Each register might or might not have been saved, need to test
1275 individually. */
1276 for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; ++regnum)
1277 if (fsr[regnum])
1278 write_register (regnum, read_memory_integer (fsr[regnum],
1279 SPARC_INTREG_SIZE));
1280 for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; ++regnum)
1281 if (fsr[regnum])
1282 write_register (regnum, read_memory_integer (fsr[regnum],
1283 SPARC_INTREG_SIZE));
1284
1285 /* Handle all outs except stack pointer (o0-o5; o7). */
1286 for (regnum = O0_REGNUM; regnum < O0_REGNUM + 6; ++regnum)
1287 if (fsr[regnum])
1288 write_register (regnum, read_memory_integer (fsr[regnum],
1289 SPARC_INTREG_SIZE));
1290 if (fsr[O0_REGNUM + 7])
1291 write_register (O0_REGNUM + 7,
1292 read_memory_integer (fsr[O0_REGNUM + 7],
1293 SPARC_INTREG_SIZE));
1294
1295 write_sp (get_frame_base (frame));
1296 }
1297 else if (fsr[I0_REGNUM])
1298 {
1299 CORE_ADDR sp;
1300
1301 char *reg_temp;
1302
1303 reg_temp = alloca (SPARC_INTREG_SIZE * 16);
1304
1305 read_memory (fsr[I0_REGNUM], raw_buffer, 8 * SPARC_INTREG_SIZE);
1306
1307 /* Get the ins and locals which we are about to restore. Just
1308 moving the stack pointer is all that is really needed, except
1309 store_inferior_registers is then going to write the ins and
1310 locals from the registers array, so we need to muck with the
1311 registers array. */
1312 sp = fsr[SP_REGNUM];
1313
1314 if (GDB_TARGET_IS_SPARC64 && (sp & 1))
1315 sp += 2047;
1316
1317 read_memory (sp, reg_temp, SPARC_INTREG_SIZE * 16);
1318
1319 /* Restore the out registers.
1320 Among other things this writes the new stack pointer. */
1321 deprecated_write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer,
1322 SPARC_INTREG_SIZE * 8);
1323
1324 deprecated_write_register_bytes (REGISTER_BYTE (L0_REGNUM), reg_temp,
1325 SPARC_INTREG_SIZE * 16);
1326 }
1327
1328 if (!(GDB_TARGET_IS_SPARC64))
1329 if (fsr[PS_REGNUM])
1330 write_register (PS_REGNUM,
1331 read_memory_integer (fsr[PS_REGNUM],
1332 REGISTER_RAW_SIZE (PS_REGNUM)));
1333
1334 if (fsr[Y_REGNUM])
1335 write_register (Y_REGNUM,
1336 read_memory_integer (fsr[Y_REGNUM],
1337 REGISTER_RAW_SIZE (Y_REGNUM)));
1338 if (fsr[PC_REGNUM])
1339 {
1340 /* Explicitly specified PC (and maybe NPC) -- just restore them. */
1341 write_register (PC_REGNUM,
1342 read_memory_integer (fsr[PC_REGNUM],
1343 REGISTER_RAW_SIZE (PC_REGNUM)));
1344 if (fsr[NPC_REGNUM])
1345 write_register (NPC_REGNUM,
1346 read_memory_integer (fsr[NPC_REGNUM],
1347 REGISTER_RAW_SIZE (NPC_REGNUM)));
1348 }
1349 else if (get_frame_extra_info (frame)->flat)
1350 {
1351 if (get_frame_extra_info (frame)->pc_addr)
1352 pc = PC_ADJUST ((CORE_ADDR)
1353 read_memory_integer (get_frame_extra_info (frame)->pc_addr,
1354 REGISTER_RAW_SIZE (PC_REGNUM)));
1355 else
1356 {
1357 /* I think this happens only in the innermost frame, if so then
1358 it is a complicated way of saying
1359 "pc = read_register (O7_REGNUM);". */
1360 char *buf;
1361
1362 buf = alloca (MAX_REGISTER_RAW_SIZE);
1363 get_saved_register (buf, 0, 0, frame, O7_REGNUM, 0);
1364 pc = PC_ADJUST (extract_address
1365 (buf, REGISTER_RAW_SIZE (O7_REGNUM)));
1366 }
1367
1368 write_register (PC_REGNUM, pc);
1369 write_register (NPC_REGNUM, pc + 4);
1370 }
1371 else if (fsr[I7_REGNUM])
1372 {
1373 /* Return address in %i7 -- adjust it, then restore PC and NPC from it */
1374 pc = PC_ADJUST ((CORE_ADDR) read_memory_integer (fsr[I7_REGNUM],
1375 SPARC_INTREG_SIZE));
1376 write_register (PC_REGNUM, pc);
1377 write_register (NPC_REGNUM, pc + 4);
1378 }
1379 flush_cached_frames ();
1380 }
1381
1382 /* On the Sun 4 under SunOS, the compile will leave a fake insn which
1383 encodes the structure size being returned. If we detect such
1384 a fake insn, step past it. */
1385
1386 CORE_ADDR
1387 sparc_pc_adjust (CORE_ADDR pc)
1388 {
1389 unsigned long insn;
1390 char buf[4];
1391 int err;
1392
1393 err = target_read_memory (pc + 8, buf, 4);
1394 insn = extract_unsigned_integer (buf, 4);
1395 if ((err == 0) && (insn & 0xffc00000) == 0)
1396 return pc + 12;
1397 else
1398 return pc + 8;
1399 }
1400
1401 /* If pc is in a shared library trampoline, return its target.
1402 The SunOs 4.x linker rewrites the jump table entries for PIC
1403 compiled modules in the main executable to bypass the dynamic linker
1404 with jumps of the form
1405 sethi %hi(addr),%g1
1406 jmp %g1+%lo(addr)
1407 and removes the corresponding jump table relocation entry in the
1408 dynamic relocations.
1409 find_solib_trampoline_target relies on the presence of the jump
1410 table relocation entry, so we have to detect these jump instructions
1411 by hand. */
1412
1413 CORE_ADDR
1414 sunos4_skip_trampoline_code (CORE_ADDR pc)
1415 {
1416 unsigned long insn1;
1417 char buf[4];
1418 int err;
1419
1420 err = target_read_memory (pc, buf, 4);
1421 insn1 = extract_unsigned_integer (buf, 4);
1422 if (err == 0 && (insn1 & 0xffc00000) == 0x03000000)
1423 {
1424 unsigned long insn2;
1425
1426 err = target_read_memory (pc + 4, buf, 4);
1427 insn2 = extract_unsigned_integer (buf, 4);
1428 if (err == 0 && (insn2 & 0xffffe000) == 0x81c06000)
1429 {
1430 CORE_ADDR target_pc = (insn1 & 0x3fffff) << 10;
1431 int delta = insn2 & 0x1fff;
1432
1433 /* Sign extend the displacement. */
1434 if (delta & 0x1000)
1435 delta |= ~0x1fff;
1436 return target_pc + delta;
1437 }
1438 }
1439 return find_solib_trampoline_target (pc);
1440 }
1441 \f
1442 #ifdef USE_PROC_FS /* Target dependent support for /proc */
1443 /* *INDENT-OFF* */
1444 /* The /proc interface divides the target machine's register set up into
1445 two different sets, the general register set (gregset) and the floating
1446 point register set (fpregset). For each set, there is an ioctl to get
1447 the current register set and another ioctl to set the current values.
1448
1449 The actual structure passed through the ioctl interface is, of course,
1450 naturally machine dependent, and is different for each set of registers.
1451 For the sparc for example, the general register set is typically defined
1452 by:
1453
1454 typedef int gregset_t[38];
1455
1456 #define R_G0 0
1457 ...
1458 #define R_TBR 37
1459
1460 and the floating point set by:
1461
1462 typedef struct prfpregset {
1463 union {
1464 u_long pr_regs[32];
1465 double pr_dregs[16];
1466 } pr_fr;
1467 void * pr_filler;
1468 u_long pr_fsr;
1469 u_char pr_qcnt;
1470 u_char pr_q_entrysize;
1471 u_char pr_en;
1472 u_long pr_q[64];
1473 } prfpregset_t;
1474
1475 These routines provide the packing and unpacking of gregset_t and
1476 fpregset_t formatted data.
1477
1478 */
1479 /* *INDENT-ON* */
1480
1481 /* Given a pointer to a general register set in /proc format (gregset_t *),
1482 unpack the register contents and supply them as gdb's idea of the current
1483 register values. */
1484
1485 void
1486 supply_gregset (gdb_gregset_t *gregsetp)
1487 {
1488 prgreg_t *regp = (prgreg_t *) gregsetp;
1489 int regi, offset = 0;
1490
1491 /* If the host is 64-bit sparc, but the target is 32-bit sparc,
1492 then the gregset may contain 64-bit ints while supply_register
1493 is expecting 32-bit ints. Compensate. */
1494 if (sizeof (regp[0]) == 8 && SPARC_INTREG_SIZE == 4)
1495 offset = 4;
1496
1497 /* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers. */
1498 /* FIXME MVS: assumes the order of the first 32 elements... */
1499 for (regi = G0_REGNUM; regi <= I7_REGNUM; regi++)
1500 {
1501 supply_register (regi, ((char *) (regp + regi)) + offset);
1502 }
1503
1504 /* These require a bit more care. */
1505 supply_register (PC_REGNUM, ((char *) (regp + R_PC)) + offset);
1506 supply_register (NPC_REGNUM, ((char *) (regp + R_nPC)) + offset);
1507 supply_register (Y_REGNUM, ((char *) (regp + R_Y)) + offset);
1508
1509 if (GDB_TARGET_IS_SPARC64)
1510 {
1511 #ifdef R_CCR
1512 supply_register (CCR_REGNUM, ((char *) (regp + R_CCR)) + offset);
1513 #else
1514 supply_register (CCR_REGNUM, NULL);
1515 #endif
1516 #ifdef R_FPRS
1517 supply_register (FPRS_REGNUM, ((char *) (regp + R_FPRS)) + offset);
1518 #else
1519 supply_register (FPRS_REGNUM, NULL);
1520 #endif
1521 #ifdef R_ASI
1522 supply_register (ASI_REGNUM, ((char *) (regp + R_ASI)) + offset);
1523 #else
1524 supply_register (ASI_REGNUM, NULL);
1525 #endif
1526 }
1527 else /* sparc32 */
1528 {
1529 #ifdef R_PS
1530 supply_register (PS_REGNUM, ((char *) (regp + R_PS)) + offset);
1531 #else
1532 supply_register (PS_REGNUM, NULL);
1533 #endif
1534
1535 /* For 64-bit hosts, R_WIM and R_TBR may not be defined.
1536 Steal R_ASI and R_FPRS, and hope for the best! */
1537
1538 #if !defined (R_WIM) && defined (R_ASI)
1539 #define R_WIM R_ASI
1540 #endif
1541
1542 #if !defined (R_TBR) && defined (R_FPRS)
1543 #define R_TBR R_FPRS
1544 #endif
1545
1546 #if defined (R_WIM)
1547 supply_register (WIM_REGNUM, ((char *) (regp + R_WIM)) + offset);
1548 #else
1549 supply_register (WIM_REGNUM, NULL);
1550 #endif
1551
1552 #if defined (R_TBR)
1553 supply_register (TBR_REGNUM, ((char *) (regp + R_TBR)) + offset);
1554 #else
1555 supply_register (TBR_REGNUM, NULL);
1556 #endif
1557 }
1558
1559 /* Fill inaccessible registers with zero. */
1560 if (GDB_TARGET_IS_SPARC64)
1561 {
1562 /*
1563 * don't know how to get value of any of the following:
1564 */
1565 supply_register (VER_REGNUM, NULL);
1566 supply_register (TICK_REGNUM, NULL);
1567 supply_register (PIL_REGNUM, NULL);
1568 supply_register (PSTATE_REGNUM, NULL);
1569 supply_register (TSTATE_REGNUM, NULL);
1570 supply_register (TBA_REGNUM, NULL);
1571 supply_register (TL_REGNUM, NULL);
1572 supply_register (TT_REGNUM, NULL);
1573 supply_register (TPC_REGNUM, NULL);
1574 supply_register (TNPC_REGNUM, NULL);
1575 supply_register (WSTATE_REGNUM, NULL);
1576 supply_register (CWP_REGNUM, NULL);
1577 supply_register (CANSAVE_REGNUM, NULL);
1578 supply_register (CANRESTORE_REGNUM, NULL);
1579 supply_register (CLEANWIN_REGNUM, NULL);
1580 supply_register (OTHERWIN_REGNUM, NULL);
1581 supply_register (ASR16_REGNUM, NULL);
1582 supply_register (ASR17_REGNUM, NULL);
1583 supply_register (ASR18_REGNUM, NULL);
1584 supply_register (ASR19_REGNUM, NULL);
1585 supply_register (ASR20_REGNUM, NULL);
1586 supply_register (ASR21_REGNUM, NULL);
1587 supply_register (ASR22_REGNUM, NULL);
1588 supply_register (ASR23_REGNUM, NULL);
1589 supply_register (ASR24_REGNUM, NULL);
1590 supply_register (ASR25_REGNUM, NULL);
1591 supply_register (ASR26_REGNUM, NULL);
1592 supply_register (ASR27_REGNUM, NULL);
1593 supply_register (ASR28_REGNUM, NULL);
1594 supply_register (ASR29_REGNUM, NULL);
1595 supply_register (ASR30_REGNUM, NULL);
1596 supply_register (ASR31_REGNUM, NULL);
1597 supply_register (ICC_REGNUM, NULL);
1598 supply_register (XCC_REGNUM, NULL);
1599 }
1600 else
1601 {
1602 supply_register (CPS_REGNUM, NULL);
1603 }
1604 }
1605
1606 void
1607 fill_gregset (gdb_gregset_t *gregsetp, int regno)
1608 {
1609 prgreg_t *regp = (prgreg_t *) gregsetp;
1610 int regi, offset = 0;
1611
1612 /* If the host is 64-bit sparc, but the target is 32-bit sparc,
1613 then the gregset may contain 64-bit ints while supply_register
1614 is expecting 32-bit ints. Compensate. */
1615 if (sizeof (regp[0]) == 8 && SPARC_INTREG_SIZE == 4)
1616 offset = 4;
1617
1618 for (regi = 0; regi <= R_I7; regi++)
1619 if ((regno == -1) || (regno == regi))
1620 deprecated_read_register_gen (regi, (char *) (regp + regi) + offset);
1621
1622 if ((regno == -1) || (regno == PC_REGNUM))
1623 deprecated_read_register_gen (PC_REGNUM, (char *) (regp + R_PC) + offset);
1624
1625 if ((regno == -1) || (regno == NPC_REGNUM))
1626 deprecated_read_register_gen (NPC_REGNUM, (char *) (regp + R_nPC) + offset);
1627
1628 if ((regno == -1) || (regno == Y_REGNUM))
1629 deprecated_read_register_gen (Y_REGNUM, (char *) (regp + R_Y) + offset);
1630
1631 if (GDB_TARGET_IS_SPARC64)
1632 {
1633 #ifdef R_CCR
1634 if (regno == -1 || regno == CCR_REGNUM)
1635 deprecated_read_register_gen (CCR_REGNUM, ((char *) (regp + R_CCR)) + offset);
1636 #endif
1637 #ifdef R_FPRS
1638 if (regno == -1 || regno == FPRS_REGNUM)
1639 deprecated_read_register_gen (FPRS_REGNUM, ((char *) (regp + R_FPRS)) + offset);
1640 #endif
1641 #ifdef R_ASI
1642 if (regno == -1 || regno == ASI_REGNUM)
1643 deprecated_read_register_gen (ASI_REGNUM, ((char *) (regp + R_ASI)) + offset);
1644 #endif
1645 }
1646 else /* sparc32 */
1647 {
1648 #ifdef R_PS
1649 if (regno == -1 || regno == PS_REGNUM)
1650 deprecated_read_register_gen (PS_REGNUM, ((char *) (regp + R_PS)) + offset);
1651 #endif
1652
1653 /* For 64-bit hosts, R_WIM and R_TBR may not be defined.
1654 Steal R_ASI and R_FPRS, and hope for the best! */
1655
1656 #if !defined (R_WIM) && defined (R_ASI)
1657 #define R_WIM R_ASI
1658 #endif
1659
1660 #if !defined (R_TBR) && defined (R_FPRS)
1661 #define R_TBR R_FPRS
1662 #endif
1663
1664 #if defined (R_WIM)
1665 if (regno == -1 || regno == WIM_REGNUM)
1666 deprecated_read_register_gen (WIM_REGNUM, ((char *) (regp + R_WIM)) + offset);
1667 #else
1668 if (regno == -1 || regno == WIM_REGNUM)
1669 deprecated_read_register_gen (WIM_REGNUM, NULL);
1670 #endif
1671
1672 #if defined (R_TBR)
1673 if (regno == -1 || regno == TBR_REGNUM)
1674 deprecated_read_register_gen (TBR_REGNUM, ((char *) (regp + R_TBR)) + offset);
1675 #else
1676 if (regno == -1 || regno == TBR_REGNUM)
1677 deprecated_read_register_gen (TBR_REGNUM, NULL);
1678 #endif
1679 }
1680 }
1681
1682 /* Given a pointer to a floating point register set in /proc format
1683 (fpregset_t *), unpack the register contents and supply them as gdb's
1684 idea of the current floating point register values. */
1685
1686 void
1687 supply_fpregset (gdb_fpregset_t *fpregsetp)
1688 {
1689 register int regi;
1690 char *from;
1691
1692 if (!SPARC_HAS_FPU)
1693 return;
1694
1695 for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++)
1696 {
1697 from = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM];
1698 supply_register (regi, from);
1699 }
1700
1701 if (GDB_TARGET_IS_SPARC64)
1702 {
1703 /*
1704 * don't know how to get value of the following.
1705 */
1706 supply_register (FSR_REGNUM, NULL); /* zero it out for now */
1707 supply_register (FCC0_REGNUM, NULL);
1708 supply_register (FCC1_REGNUM, NULL); /* don't know how to get value */
1709 supply_register (FCC2_REGNUM, NULL); /* don't know how to get value */
1710 supply_register (FCC3_REGNUM, NULL); /* don't know how to get value */
1711 }
1712 else
1713 {
1714 supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr));
1715 }
1716 }
1717
1718 /* Given a pointer to a floating point register set in /proc format
1719 (fpregset_t *), update the register specified by REGNO from gdb's idea
1720 of the current floating point register set. If REGNO is -1, update
1721 them all. */
1722 /* This will probably need some changes for sparc64. */
1723
1724 void
1725 fill_fpregset (gdb_fpregset_t *fpregsetp, int regno)
1726 {
1727 int regi;
1728 char *to;
1729 char *from;
1730
1731 if (!SPARC_HAS_FPU)
1732 return;
1733
1734 for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++)
1735 {
1736 if ((regno == -1) || (regno == regi))
1737 {
1738 from = (char *) &deprecated_registers[REGISTER_BYTE (regi)];
1739 to = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM];
1740 memcpy (to, from, REGISTER_RAW_SIZE (regi));
1741 }
1742 }
1743
1744 if (!(GDB_TARGET_IS_SPARC64)) /* FIXME: does Sparc64 have this register? */
1745 if ((regno == -1) || (regno == FPS_REGNUM))
1746 {
1747 from = (char *)&deprecated_registers[REGISTER_BYTE (FPS_REGNUM)];
1748 to = (char *) &fpregsetp->pr_fsr;
1749 memcpy (to, from, REGISTER_RAW_SIZE (FPS_REGNUM));
1750 }
1751 }
1752
1753 #endif /* USE_PROC_FS */
1754
1755 /* Because of Multi-arch, GET_LONGJMP_TARGET is always defined. So test
1756 for a definition of JB_PC. */
1757 #ifdef JB_PC
1758
1759 /* Figure out where the longjmp will land. We expect that we have just entered
1760 longjmp and haven't yet setup the stack frame, so the args are still in the
1761 output regs. %o0 (O0_REGNUM) points at the jmp_buf structure from which we
1762 extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
1763 This routine returns true on success */
1764
1765 int
1766 get_longjmp_target (CORE_ADDR *pc)
1767 {
1768 CORE_ADDR jb_addr;
1769 #define LONGJMP_TARGET_SIZE 4
1770 char buf[LONGJMP_TARGET_SIZE];
1771
1772 jb_addr = read_register (O0_REGNUM);
1773
1774 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
1775 LONGJMP_TARGET_SIZE))
1776 return 0;
1777
1778 *pc = extract_address (buf, LONGJMP_TARGET_SIZE);
1779
1780 return 1;
1781 }
1782 #endif /* GET_LONGJMP_TARGET */
1783 \f
1784 #ifdef STATIC_TRANSFORM_NAME
1785 /* SunPRO (3.0 at least), encodes the static variables. This is not
1786 related to C++ mangling, it is done for C too. */
1787
1788 char *
1789 sunpro_static_transform_name (char *name)
1790 {
1791 char *p;
1792 if (name[0] == '$')
1793 {
1794 /* For file-local statics there will be a dollar sign, a bunch
1795 of junk (the contents of which match a string given in the
1796 N_OPT), a period and the name. For function-local statics
1797 there will be a bunch of junk (which seems to change the
1798 second character from 'A' to 'B'), a period, the name of the
1799 function, and the name. So just skip everything before the
1800 last period. */
1801 p = strrchr (name, '.');
1802 if (p != NULL)
1803 name = p + 1;
1804 }
1805 return name;
1806 }
1807 #endif /* STATIC_TRANSFORM_NAME */
1808 \f
1809
1810 /* Utilities for printing registers.
1811 Page numbers refer to the SPARC Architecture Manual. */
1812
1813 static void dump_ccreg (char *, int);
1814
1815 static void
1816 dump_ccreg (char *reg, int val)
1817 {
1818 /* page 41 */
1819 printf_unfiltered ("%s:%s,%s,%s,%s", reg,
1820 val & 8 ? "N" : "NN",
1821 val & 4 ? "Z" : "NZ",
1822 val & 2 ? "O" : "NO",
1823 val & 1 ? "C" : "NC");
1824 }
1825
1826 static char *
1827 decode_asi (int val)
1828 {
1829 /* page 72 */
1830 switch (val)
1831 {
1832 case 4:
1833 return "ASI_NUCLEUS";
1834 case 0x0c:
1835 return "ASI_NUCLEUS_LITTLE";
1836 case 0x10:
1837 return "ASI_AS_IF_USER_PRIMARY";
1838 case 0x11:
1839 return "ASI_AS_IF_USER_SECONDARY";
1840 case 0x18:
1841 return "ASI_AS_IF_USER_PRIMARY_LITTLE";
1842 case 0x19:
1843 return "ASI_AS_IF_USER_SECONDARY_LITTLE";
1844 case 0x80:
1845 return "ASI_PRIMARY";
1846 case 0x81:
1847 return "ASI_SECONDARY";
1848 case 0x82:
1849 return "ASI_PRIMARY_NOFAULT";
1850 case 0x83:
1851 return "ASI_SECONDARY_NOFAULT";
1852 case 0x88:
1853 return "ASI_PRIMARY_LITTLE";
1854 case 0x89:
1855 return "ASI_SECONDARY_LITTLE";
1856 case 0x8a:
1857 return "ASI_PRIMARY_NOFAULT_LITTLE";
1858 case 0x8b:
1859 return "ASI_SECONDARY_NOFAULT_LITTLE";
1860 default:
1861 return NULL;
1862 }
1863 }
1864
1865 /* Pretty print various registers. */
1866 /* FIXME: Would be nice if this did some fancy things for 32 bit sparc. */
1867
1868 static void
1869 sparc_print_register_hook (int regno)
1870 {
1871 ULONGEST val;
1872
1873 /* Handle double/quad versions of lower 32 fp regs. */
1874 if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32
1875 && (regno & 1) == 0)
1876 {
1877 char value[16];
1878
1879 if (frame_register_read (deprecated_selected_frame, regno, value)
1880 && frame_register_read (deprecated_selected_frame, regno + 1, value + 4))
1881 {
1882 printf_unfiltered ("\t");
1883 print_floating (value, builtin_type_double, gdb_stdout);
1884 }
1885 #if 0 /* FIXME: gdb doesn't handle long doubles */
1886 if ((regno & 3) == 0)
1887 {
1888 if (frame_register_read (deprecated_selected_frame, regno + 2, value + 8)
1889 && frame_register_read (deprecated_selected_frame, regno + 3, value + 12))
1890 {
1891 printf_unfiltered ("\t");
1892 print_floating (value, builtin_type_long_double, gdb_stdout);
1893 }
1894 }
1895 #endif
1896 return;
1897 }
1898
1899 #if 0 /* FIXME: gdb doesn't handle long doubles */
1900 /* Print upper fp regs as long double if appropriate. */
1901 if (regno >= FP0_REGNUM + 32 && regno < FP_MAX_REGNUM
1902 /* We test for even numbered regs and not a multiple of 4 because
1903 the upper fp regs are recorded as doubles. */
1904 && (regno & 1) == 0)
1905 {
1906 char value[16];
1907
1908 if (frame_register_read (deprecated_selected_frame, regno, value)
1909 && frame_register_read (deprecated_selected_frame, regno + 1, value + 8))
1910 {
1911 printf_unfiltered ("\t");
1912 print_floating (value, builtin_type_long_double, gdb_stdout);
1913 }
1914 return;
1915 }
1916 #endif
1917
1918 /* FIXME: Some of these are priviledged registers.
1919 Not sure how they should be handled. */
1920
1921 #define BITS(n, mask) ((int) (((val) >> (n)) & (mask)))
1922
1923 val = read_register (regno);
1924
1925 /* pages 40 - 60 */
1926 if (GDB_TARGET_IS_SPARC64)
1927 switch (regno)
1928 {
1929 case CCR_REGNUM:
1930 printf_unfiltered ("\t");
1931 dump_ccreg ("xcc", val >> 4);
1932 printf_unfiltered (", ");
1933 dump_ccreg ("icc", val & 15);
1934 break;
1935 case FPRS_REGNUM:
1936 printf ("\tfef:%d, du:%d, dl:%d",
1937 BITS (2, 1), BITS (1, 1), BITS (0, 1));
1938 break;
1939 case FSR_REGNUM:
1940 {
1941 static char *fcc[4] =
1942 {"=", "<", ">", "?"};
1943 static char *rd[4] =
1944 {"N", "0", "+", "-"};
1945 /* Long, but I'd rather leave it as is and use a wide screen. */
1946 printf_filtered ("\t0:%s, 1:%s, 2:%s, 3:%s, rd:%s, tem:%d, ",
1947 fcc[BITS (10, 3)], fcc[BITS (32, 3)],
1948 fcc[BITS (34, 3)], fcc[BITS (36, 3)],
1949 rd[BITS (30, 3)], BITS (23, 31));
1950 printf_filtered ("ns:%d, ver:%d, ftt:%d, qne:%d, aexc:%d, cexc:%d",
1951 BITS (22, 1), BITS (17, 7), BITS (14, 7),
1952 BITS (13, 1), BITS (5, 31), BITS (0, 31));
1953 break;
1954 }
1955 case ASI_REGNUM:
1956 {
1957 char *asi = decode_asi (val);
1958 if (asi != NULL)
1959 printf ("\t%s", asi);
1960 break;
1961 }
1962 case VER_REGNUM:
1963 printf ("\tmanuf:%d, impl:%d, mask:%d, maxtl:%d, maxwin:%d",
1964 BITS (48, 0xffff), BITS (32, 0xffff),
1965 BITS (24, 0xff), BITS (8, 0xff), BITS (0, 31));
1966 break;
1967 case PSTATE_REGNUM:
1968 {
1969 static char *mm[4] =
1970 {"tso", "pso", "rso", "?"};
1971 printf_filtered ("\tcle:%d, tle:%d, mm:%s, red:%d, ",
1972 BITS (9, 1), BITS (8, 1),
1973 mm[BITS (6, 3)], BITS (5, 1));
1974 printf_filtered ("pef:%d, am:%d, priv:%d, ie:%d, ag:%d",
1975 BITS (4, 1), BITS (3, 1), BITS (2, 1),
1976 BITS (1, 1), BITS (0, 1));
1977 break;
1978 }
1979 case TSTATE_REGNUM:
1980 /* FIXME: print all 4? */
1981 break;
1982 case TT_REGNUM:
1983 /* FIXME: print all 4? */
1984 break;
1985 case TPC_REGNUM:
1986 /* FIXME: print all 4? */
1987 break;
1988 case TNPC_REGNUM:
1989 /* FIXME: print all 4? */
1990 break;
1991 case WSTATE_REGNUM:
1992 printf ("\tother:%d, normal:%d", BITS (3, 7), BITS (0, 7));
1993 break;
1994 case CWP_REGNUM:
1995 printf ("\t%d", BITS (0, 31));
1996 break;
1997 case CANSAVE_REGNUM:
1998 printf ("\t%-2d before spill", BITS (0, 31));
1999 break;
2000 case CANRESTORE_REGNUM:
2001 printf ("\t%-2d before fill", BITS (0, 31));
2002 break;
2003 case CLEANWIN_REGNUM:
2004 printf ("\t%-2d before clean", BITS (0, 31));
2005 break;
2006 case OTHERWIN_REGNUM:
2007 printf ("\t%d", BITS (0, 31));
2008 break;
2009 }
2010 else /* Sparc32 */
2011 switch (regno)
2012 {
2013 case PS_REGNUM:
2014 printf ("\ticc:%c%c%c%c, pil:%d, s:%d, ps:%d, et:%d, cwp:%d",
2015 BITS (23, 1) ? 'N' : '-', BITS (22, 1) ? 'Z' : '-',
2016 BITS (21, 1) ? 'V' : '-', BITS (20, 1) ? 'C' : '-',
2017 BITS (8, 15), BITS (7, 1), BITS (6, 1), BITS (5, 1),
2018 BITS (0, 31));
2019 break;
2020 case FPS_REGNUM:
2021 {
2022 static char *fcc[4] =
2023 {"=", "<", ">", "?"};
2024 static char *rd[4] =
2025 {"N", "0", "+", "-"};
2026 /* Long, but I'd rather leave it as is and use a wide screen. */
2027 printf ("\trd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, "
2028 "fcc:%s, aexc:%d, cexc:%d",
2029 rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7),
2030 BITS (14, 7), BITS (13, 1), fcc[BITS (10, 3)], BITS (5, 31),
2031 BITS (0, 31));
2032 break;
2033 }
2034 }
2035
2036 #undef BITS
2037 }
2038
2039 static void
2040 sparc_print_registers (struct gdbarch *gdbarch,
2041 struct ui_file *file,
2042 struct frame_info *frame,
2043 int regnum, int print_all,
2044 void (*print_register_hook) (int))
2045 {
2046 int i;
2047 const int numregs = NUM_REGS + NUM_PSEUDO_REGS;
2048 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
2049 char *virtual_buffer = alloca (MAX_REGISTER_VIRTUAL_SIZE);
2050
2051 for (i = 0; i < numregs; i++)
2052 {
2053 /* Decide between printing all regs, non-float / vector regs, or
2054 specific reg. */
2055 if (regnum == -1)
2056 {
2057 if (!print_all)
2058 {
2059 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT)
2060 continue;
2061 if (TYPE_VECTOR (REGISTER_VIRTUAL_TYPE (i)))
2062 continue;
2063 }
2064 }
2065 else
2066 {
2067 if (i != regnum)
2068 continue;
2069 }
2070
2071 /* If the register name is empty, it is undefined for this
2072 processor, so don't display anything. */
2073 if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
2074 continue;
2075
2076 fputs_filtered (REGISTER_NAME (i), file);
2077 print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), file);
2078
2079 /* Get the data in raw format. */
2080 if (! frame_register_read (frame, i, raw_buffer))
2081 {
2082 fprintf_filtered (file, "*value not available*\n");
2083 continue;
2084 }
2085
2086 /* FIXME: cagney/2002-08-03: This code shouldn't be necessary.
2087 The function frame_register_read() should have returned the
2088 pre-cooked register so no conversion is necessary. */
2089 /* Convert raw data to virtual format if necessary. */
2090 if (REGISTER_CONVERTIBLE (i))
2091 {
2092 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
2093 raw_buffer, virtual_buffer);
2094 }
2095 else
2096 {
2097 memcpy (virtual_buffer, raw_buffer,
2098 REGISTER_VIRTUAL_SIZE (i));
2099 }
2100
2101 /* If virtual format is floating, print it that way, and in raw
2102 hex. */
2103 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT)
2104 {
2105 int j;
2106
2107 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
2108 file, 0, 1, 0, Val_pretty_default);
2109
2110 fprintf_filtered (file, "\t(raw 0x");
2111 for (j = 0; j < REGISTER_RAW_SIZE (i); j++)
2112 {
2113 int idx;
2114 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2115 idx = j;
2116 else
2117 idx = REGISTER_RAW_SIZE (i) - 1 - j;
2118 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[idx]);
2119 }
2120 fprintf_filtered (file, ")");
2121 }
2122 else
2123 {
2124 /* Print the register in hex. */
2125 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
2126 file, 'x', 1, 0, Val_pretty_default);
2127 /* If not a vector register, print it also according to its
2128 natural format. */
2129 if (TYPE_VECTOR (REGISTER_VIRTUAL_TYPE (i)) == 0)
2130 {
2131 fprintf_filtered (file, "\t");
2132 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
2133 file, 0, 1, 0, Val_pretty_default);
2134 }
2135 }
2136
2137 /* Some sparc specific info. */
2138 if (print_register_hook != NULL)
2139 print_register_hook (i);
2140
2141 fprintf_filtered (file, "\n");
2142 }
2143 }
2144
2145 static void
2146 sparc_print_registers_info (struct gdbarch *gdbarch,
2147 struct ui_file *file,
2148 struct frame_info *frame,
2149 int regnum, int print_all)
2150 {
2151 sparc_print_registers (gdbarch, file, frame, regnum, print_all,
2152 sparc_print_register_hook);
2153 }
2154
2155 void
2156 sparc_do_registers_info (int regnum, int all)
2157 {
2158 sparc_print_registers_info (current_gdbarch, gdb_stdout, deprecated_selected_frame,
2159 regnum, all);
2160 }
2161
2162 static void
2163 sparclet_print_registers_info (struct gdbarch *gdbarch,
2164 struct ui_file *file,
2165 struct frame_info *frame,
2166 int regnum, int print_all)
2167 {
2168 sparc_print_registers (gdbarch, file, frame, regnum, print_all, NULL);
2169 }
2170
2171 void
2172 sparclet_do_registers_info (int regnum, int all)
2173 {
2174 sparclet_print_registers_info (current_gdbarch, gdb_stdout,
2175 deprecated_selected_frame, regnum, all);
2176 }
2177
2178 \f
2179 int
2180 gdb_print_insn_sparc (bfd_vma memaddr, disassemble_info *info)
2181 {
2182 /* It's necessary to override mach again because print_insn messes it up. */
2183 info->mach = TARGET_ARCHITECTURE->mach;
2184 return print_insn_sparc (memaddr, info);
2185 }
2186 \f
2187 /* The SPARC passes the arguments on the stack; arguments smaller
2188 than an int are promoted to an int. The first 6 words worth of
2189 args are also passed in registers o0 - o5. */
2190
2191 CORE_ADDR
2192 sparc32_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
2193 int struct_return, CORE_ADDR struct_addr)
2194 {
2195 int i, j, oregnum;
2196 int accumulate_size = 0;
2197 struct sparc_arg
2198 {
2199 char *contents;
2200 int len;
2201 int offset;
2202 };
2203 struct sparc_arg *sparc_args =
2204 (struct sparc_arg *) alloca (nargs * sizeof (struct sparc_arg));
2205 struct sparc_arg *m_arg;
2206
2207 /* Promote arguments if necessary, and calculate their stack offsets
2208 and sizes. */
2209 for (i = 0, m_arg = sparc_args; i < nargs; i++, m_arg++)
2210 {
2211 struct value *arg = args[i];
2212 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2213 /* Cast argument to long if necessary as the compiler does it too. */
2214 switch (TYPE_CODE (arg_type))
2215 {
2216 case TYPE_CODE_INT:
2217 case TYPE_CODE_BOOL:
2218 case TYPE_CODE_CHAR:
2219 case TYPE_CODE_RANGE:
2220 case TYPE_CODE_ENUM:
2221 if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
2222 {
2223 arg_type = builtin_type_long;
2224 arg = value_cast (arg_type, arg);
2225 }
2226 break;
2227 default:
2228 break;
2229 }
2230 m_arg->len = TYPE_LENGTH (arg_type);
2231 m_arg->offset = accumulate_size;
2232 accumulate_size = (accumulate_size + m_arg->len + 3) & ~3;
2233 m_arg->contents = VALUE_CONTENTS (arg);
2234 }
2235
2236 /* Make room for the arguments on the stack. */
2237 accumulate_size += CALL_DUMMY_STACK_ADJUST;
2238 sp = ((sp - accumulate_size) & ~7) + CALL_DUMMY_STACK_ADJUST;
2239
2240 /* `Push' arguments on the stack. */
2241 for (i = 0, oregnum = 0, m_arg = sparc_args;
2242 i < nargs;
2243 i++, m_arg++)
2244 {
2245 write_memory (sp + m_arg->offset, m_arg->contents, m_arg->len);
2246 for (j = 0;
2247 j < m_arg->len && oregnum < 6;
2248 j += SPARC_INTREG_SIZE, oregnum++)
2249 deprecated_write_register_gen (O0_REGNUM + oregnum, m_arg->contents + j);
2250 }
2251
2252 return sp;
2253 }
2254
2255
2256 /* Extract from an array REGBUF containing the (raw) register state
2257 a function return value of type TYPE, and copy that, in virtual format,
2258 into VALBUF. */
2259
2260 void
2261 sparc32_extract_return_value (struct type *type, char *regbuf, char *valbuf)
2262 {
2263 int typelen = TYPE_LENGTH (type);
2264 int regsize = REGISTER_RAW_SIZE (O0_REGNUM);
2265
2266 if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
2267 memcpy (valbuf, &regbuf[REGISTER_BYTE (FP0_REGNUM)], typelen);
2268 else
2269 memcpy (valbuf,
2270 &regbuf[O0_REGNUM * regsize +
2271 (typelen >= regsize
2272 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE ? 0
2273 : regsize - typelen)],
2274 typelen);
2275 }
2276
2277
2278 /* Write into appropriate registers a function return value
2279 of type TYPE, given in virtual format. On SPARCs with FPUs,
2280 float values are returned in %f0 (and %f1). In all other cases,
2281 values are returned in register %o0. */
2282
2283 void
2284 sparc_store_return_value (struct type *type, char *valbuf)
2285 {
2286 int regno;
2287 char *buffer;
2288
2289 buffer = alloca (MAX_REGISTER_RAW_SIZE);
2290
2291 if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
2292 /* Floating-point values are returned in the register pair */
2293 /* formed by %f0 and %f1 (doubles are, anyway). */
2294 regno = FP0_REGNUM;
2295 else
2296 /* Other values are returned in register %o0. */
2297 regno = O0_REGNUM;
2298
2299 /* Add leading zeros to the value. */
2300 if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (regno))
2301 {
2302 memset (buffer, 0, REGISTER_RAW_SIZE (regno));
2303 memcpy (buffer + REGISTER_RAW_SIZE (regno) - TYPE_LENGTH (type), valbuf,
2304 TYPE_LENGTH (type));
2305 deprecated_write_register_gen (regno, buffer);
2306 }
2307 else
2308 deprecated_write_register_bytes (REGISTER_BYTE (regno), valbuf,
2309 TYPE_LENGTH (type));
2310 }
2311
2312 extern void
2313 sparclet_store_return_value (struct type *type, char *valbuf)
2314 {
2315 /* Other values are returned in register %o0. */
2316 deprecated_write_register_bytes (REGISTER_BYTE (O0_REGNUM), valbuf,
2317 TYPE_LENGTH (type));
2318 }
2319
2320
2321 #ifndef CALL_DUMMY_CALL_OFFSET
2322 #define CALL_DUMMY_CALL_OFFSET \
2323 (gdbarch_tdep (current_gdbarch)->call_dummy_call_offset)
2324 #endif /* CALL_DUMMY_CALL_OFFSET */
2325
2326 /* Insert the function address into a call dummy instruction sequence
2327 stored at DUMMY.
2328
2329 For structs and unions, if the function was compiled with Sun cc,
2330 it expects 'unimp' after the call. But gcc doesn't use that
2331 (twisted) convention. So leave a nop there for gcc (FIX_CALL_DUMMY
2332 can assume it is operating on a pristine CALL_DUMMY, not one that
2333 has already been customized for a different function). */
2334
2335 void
2336 sparc_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
2337 struct type *value_type, int using_gcc)
2338 {
2339 int i;
2340
2341 /* Store the relative adddress of the target function into the
2342 'call' instruction. */
2343 store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET, 4,
2344 (0x40000000
2345 | (((fun - (pc + CALL_DUMMY_CALL_OFFSET)) >> 2)
2346 & 0x3fffffff)));
2347
2348 /* If the called function returns an aggregate value, fill in the UNIMP
2349 instruction containing the size of the returned aggregate return value,
2350 which follows the call instruction.
2351 For details see the SPARC Architecture Manual Version 8, Appendix D.3.
2352
2353 Adjust the call_dummy_breakpoint_offset for the bp_call_dummy breakpoint
2354 to the proper address in the call dummy, so that `finish' after a stop
2355 in a call dummy works.
2356 Tweeking current_gdbarch is not an optimal solution, but the call to
2357 sparc_fix_call_dummy is immediately followed by a call to run_stack_dummy,
2358 which is the only function where dummy_breakpoint_offset is actually
2359 used, if it is non-zero. */
2360 if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
2361 || TYPE_CODE (value_type) == TYPE_CODE_UNION)
2362 {
2363 store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET + 8, 4,
2364 TYPE_LENGTH (value_type) & 0x1fff);
2365 set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 0x30);
2366 }
2367 else
2368 set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 0x2c);
2369
2370 if (!(GDB_TARGET_IS_SPARC64))
2371 {
2372 /* If this is not a simulator target, change the first four
2373 instructions of the call dummy to NOPs. Those instructions
2374 include a 'save' instruction and are designed to work around
2375 problems with register window flushing in the simulator. */
2376
2377 if (strcmp (target_shortname, "sim") != 0)
2378 {
2379 for (i = 0; i < 4; i++)
2380 store_unsigned_integer (dummy + (i * 4), 4, 0x01000000);
2381 }
2382 }
2383
2384 /* If this is a bi-endian target, GDB has written the call dummy
2385 in little-endian order. We must byte-swap it back to big-endian. */
2386 if (bi_endian)
2387 {
2388 for (i = 0; i < CALL_DUMMY_LENGTH; i += 4)
2389 {
2390 char tmp = dummy[i];
2391 dummy[i] = dummy[i + 3];
2392 dummy[i + 3] = tmp;
2393 tmp = dummy[i + 1];
2394 dummy[i + 1] = dummy[i + 2];
2395 dummy[i + 2] = tmp;
2396 }
2397 }
2398 }
2399
2400
2401 /* Set target byte order based on machine type. */
2402
2403 static int
2404 sparc_target_architecture_hook (const bfd_arch_info_type *ap)
2405 {
2406 int i, j;
2407
2408 if (ap->mach == bfd_mach_sparc_sparclite_le)
2409 {
2410 target_byte_order = BFD_ENDIAN_LITTLE;
2411 bi_endian = 1;
2412 }
2413 else
2414 bi_endian = 0;
2415 return 1;
2416 }
2417 \f
2418
2419 /*
2420 * Module "constructor" function.
2421 */
2422
2423 static struct gdbarch * sparc_gdbarch_init (struct gdbarch_info info,
2424 struct gdbarch_list *arches);
2425 static void sparc_dump_tdep (struct gdbarch *, struct ui_file *);
2426
2427 void
2428 _initialize_sparc_tdep (void)
2429 {
2430 /* Hook us into the gdbarch mechanism. */
2431 gdbarch_register (bfd_arch_sparc, sparc_gdbarch_init, sparc_dump_tdep);
2432
2433 tm_print_insn = gdb_print_insn_sparc;
2434 tm_print_insn_info.mach = TM_PRINT_INSN_MACH; /* Selects sparc/sparclite */
2435 target_architecture_hook = sparc_target_architecture_hook;
2436 }
2437
2438 /* Compensate for stack bias. Note that we currently don't handle
2439 mixed 32/64 bit code. */
2440
2441 CORE_ADDR
2442 sparc64_read_sp (void)
2443 {
2444 CORE_ADDR sp = read_register (SP_REGNUM);
2445
2446 if (sp & 1)
2447 sp += 2047;
2448 return sp;
2449 }
2450
2451 CORE_ADDR
2452 sparc64_read_fp (void)
2453 {
2454 CORE_ADDR fp = read_register (FP_REGNUM);
2455
2456 if (fp & 1)
2457 fp += 2047;
2458 return fp;
2459 }
2460
2461 void
2462 sparc64_write_sp (CORE_ADDR val)
2463 {
2464 CORE_ADDR oldsp = read_register (SP_REGNUM);
2465 if (oldsp & 1)
2466 write_register (SP_REGNUM, val - 2047);
2467 else
2468 write_register (SP_REGNUM, val);
2469 }
2470
2471 /* The SPARC 64 ABI passes floating-point arguments in FP0 to FP31,
2472 and all other arguments in O0 to O5. They are also copied onto
2473 the stack in the correct places. Apparently (empirically),
2474 structs of less than 16 bytes are passed member-by-member in
2475 separate registers, but I am unable to figure out the algorithm.
2476 Some members go in floating point regs, but I don't know which.
2477
2478 FIXME: Handle small structs (less than 16 bytes containing floats).
2479
2480 The counting regimen for using both integer and FP registers
2481 for argument passing is rather odd -- a single counter is used
2482 for both; this means that if the arguments alternate between
2483 int and float, we will waste every other register of both types. */
2484
2485 CORE_ADDR
2486 sparc64_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
2487 int struct_return, CORE_ADDR struct_retaddr)
2488 {
2489 int i, j, register_counter = 0;
2490 CORE_ADDR tempsp;
2491 struct type *sparc_intreg_type =
2492 TYPE_LENGTH (builtin_type_long) == SPARC_INTREG_SIZE ?
2493 builtin_type_long : builtin_type_long_long;
2494
2495 sp = (sp & ~(((unsigned long) SPARC_INTREG_SIZE) - 1UL));
2496
2497 /* Figure out how much space we'll need. */
2498 for (i = nargs - 1; i >= 0; i--)
2499 {
2500 int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[i])));
2501 struct value *copyarg = args[i];
2502 int copylen = len;
2503
2504 if (copylen < SPARC_INTREG_SIZE)
2505 {
2506 copyarg = value_cast (sparc_intreg_type, copyarg);
2507 copylen = SPARC_INTREG_SIZE;
2508 }
2509 sp -= copylen;
2510 }
2511
2512 /* Round down. */
2513 sp = sp & ~7;
2514 tempsp = sp;
2515
2516 /* if STRUCT_RETURN, then first argument is the struct return location. */
2517 if (struct_return)
2518 write_register (O0_REGNUM + register_counter++, struct_retaddr);
2519
2520 /* Now write the arguments onto the stack, while writing FP
2521 arguments into the FP registers, and other arguments into the
2522 first six 'O' registers. */
2523
2524 for (i = 0; i < nargs; i++)
2525 {
2526 int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[i])));
2527 struct value *copyarg = args[i];
2528 enum type_code typecode = TYPE_CODE (VALUE_TYPE (args[i]));
2529 int copylen = len;
2530
2531 if (typecode == TYPE_CODE_INT ||
2532 typecode == TYPE_CODE_BOOL ||
2533 typecode == TYPE_CODE_CHAR ||
2534 typecode == TYPE_CODE_RANGE ||
2535 typecode == TYPE_CODE_ENUM)
2536 if (len < SPARC_INTREG_SIZE)
2537 {
2538 /* Small ints will all take up the size of one intreg on
2539 the stack. */
2540 copyarg = value_cast (sparc_intreg_type, copyarg);
2541 copylen = SPARC_INTREG_SIZE;
2542 }
2543
2544 write_memory (tempsp, VALUE_CONTENTS (copyarg), copylen);
2545 tempsp += copylen;
2546
2547 /* Corner case: Structs consisting of a single float member are floats.
2548 * FIXME! I don't know about structs containing multiple floats!
2549 * Structs containing mixed floats and ints are even more weird.
2550 */
2551
2552
2553
2554 /* Separate float args from all other args. */
2555 if (typecode == TYPE_CODE_FLT && SPARC_HAS_FPU)
2556 {
2557 if (register_counter < 16)
2558 {
2559 /* This arg gets copied into a FP register. */
2560 int fpreg;
2561
2562 switch (len) {
2563 case 4: /* Single-precision (float) */
2564 fpreg = FP0_REGNUM + 2 * register_counter + 1;
2565 register_counter += 1;
2566 break;
2567 case 8: /* Double-precision (double) */
2568 fpreg = FP0_REGNUM + 2 * register_counter;
2569 register_counter += 1;
2570 break;
2571 case 16: /* Quad-precision (long double) */
2572 fpreg = FP0_REGNUM + 2 * register_counter;
2573 register_counter += 2;
2574 break;
2575 default:
2576 internal_error (__FILE__, __LINE__, "bad switch");
2577 }
2578 deprecated_write_register_bytes (REGISTER_BYTE (fpreg),
2579 VALUE_CONTENTS (args[i]),
2580 len);
2581 }
2582 }
2583 else /* all other args go into the first six 'o' registers */
2584 {
2585 for (j = 0;
2586 j < len && register_counter < 6;
2587 j += SPARC_INTREG_SIZE)
2588 {
2589 int oreg = O0_REGNUM + register_counter;
2590
2591 deprecated_write_register_gen (oreg, VALUE_CONTENTS (copyarg) + j);
2592 register_counter += 1;
2593 }
2594 }
2595 }
2596 return sp;
2597 }
2598
2599 /* Values <= 32 bytes are returned in o0-o3 (floating-point values are
2600 returned in f0-f3). */
2601
2602 void
2603 sp64_extract_return_value (struct type *type, char *regbuf, char *valbuf,
2604 int bitoffset)
2605 {
2606 int typelen = TYPE_LENGTH (type);
2607 int regsize = REGISTER_RAW_SIZE (O0_REGNUM);
2608
2609 if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
2610 {
2611 memcpy (valbuf, &regbuf[REGISTER_BYTE (FP0_REGNUM)], typelen);
2612 return;
2613 }
2614
2615 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
2616 || (TYPE_LENGTH (type) > 32))
2617 {
2618 memcpy (valbuf,
2619 &regbuf[O0_REGNUM * regsize +
2620 (typelen >= regsize ? 0 : regsize - typelen)],
2621 typelen);
2622 return;
2623 }
2624 else
2625 {
2626 char *o0 = &regbuf[O0_REGNUM * regsize];
2627 char *f0 = &regbuf[FP0_REGNUM * regsize];
2628 int x;
2629
2630 for (x = 0; x < TYPE_NFIELDS (type); x++)
2631 {
2632 struct field *f = &TYPE_FIELDS (type)[x];
2633 /* FIXME: We may need to handle static fields here. */
2634 int whichreg = (f->loc.bitpos + bitoffset) / 32;
2635 int remainder = ((f->loc.bitpos + bitoffset) % 32) / 8;
2636 int where = (f->loc.bitpos + bitoffset) / 8;
2637 int size = TYPE_LENGTH (f->type);
2638 int typecode = TYPE_CODE (f->type);
2639
2640 if (typecode == TYPE_CODE_STRUCT)
2641 {
2642 sp64_extract_return_value (f->type,
2643 regbuf,
2644 valbuf,
2645 bitoffset + f->loc.bitpos);
2646 }
2647 else if (typecode == TYPE_CODE_FLT && SPARC_HAS_FPU)
2648 {
2649 memcpy (valbuf + where, &f0[whichreg * 4] + remainder, size);
2650 }
2651 else
2652 {
2653 memcpy (valbuf + where, &o0[whichreg * 4] + remainder, size);
2654 }
2655 }
2656 }
2657 }
2658
2659 extern void
2660 sparc64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
2661 {
2662 sp64_extract_return_value (type, regbuf, valbuf, 0);
2663 }
2664
2665 extern void
2666 sparclet_extract_return_value (struct type *type,
2667 char *regbuf,
2668 char *valbuf)
2669 {
2670 regbuf += REGISTER_RAW_SIZE (O0_REGNUM) * 8;
2671 if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (O0_REGNUM))
2672 regbuf += REGISTER_RAW_SIZE (O0_REGNUM) - TYPE_LENGTH (type);
2673
2674 memcpy ((void *) valbuf, regbuf, TYPE_LENGTH (type));
2675 }
2676
2677
2678 extern CORE_ADDR
2679 sparc32_stack_align (CORE_ADDR addr)
2680 {
2681 return ((addr + 7) & -8);
2682 }
2683
2684 extern CORE_ADDR
2685 sparc64_stack_align (CORE_ADDR addr)
2686 {
2687 return ((addr + 15) & -16);
2688 }
2689
2690 extern void
2691 sparc_print_extra_frame_info (struct frame_info *fi)
2692 {
2693 if (fi && get_frame_extra_info (fi) && get_frame_extra_info (fi)->flat)
2694 printf_filtered (" flat, pc saved at 0x%s, fp saved at 0x%s\n",
2695 paddr_nz (get_frame_extra_info (fi)->pc_addr),
2696 paddr_nz (get_frame_extra_info (fi)->fp_addr));
2697 }
2698
2699 /* MULTI_ARCH support */
2700
2701 static const char *
2702 sparc32_register_name (int regno)
2703 {
2704 static char *register_names[] =
2705 { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
2706 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
2707 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
2708 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
2709
2710 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
2711 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
2712 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
2713 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
2714
2715 "y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr"
2716 };
2717
2718 if (regno < 0 ||
2719 regno >= (sizeof (register_names) / sizeof (register_names[0])))
2720 return NULL;
2721 else
2722 return register_names[regno];
2723 }
2724
2725 static const char *
2726 sparc64_register_name (int regno)
2727 {
2728 static char *register_names[] =
2729 { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
2730 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
2731 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
2732 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
2733
2734 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
2735 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
2736 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
2737 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
2738 "f32", "f34", "f36", "f38", "f40", "f42", "f44", "f46",
2739 "f48", "f50", "f52", "f54", "f56", "f58", "f60", "f62",
2740
2741 "pc", "npc", "ccr", "fsr", "fprs", "y", "asi", "ver",
2742 "tick", "pil", "pstate", "tstate", "tba", "tl", "tt", "tpc",
2743 "tnpc", "wstate", "cwp", "cansave", "canrestore", "cleanwin", "otherwin",
2744 "asr16", "asr17", "asr18", "asr19", "asr20", "asr21", "asr22", "asr23",
2745 "asr24", "asr25", "asr26", "asr27", "asr28", "asr29", "asr30", "asr31",
2746 /* These are here at the end to simplify removing them if we have to. */
2747 "icc", "xcc", "fcc0", "fcc1", "fcc2", "fcc3"
2748 };
2749
2750 if (regno < 0 ||
2751 regno >= (sizeof (register_names) / sizeof (register_names[0])))
2752 return NULL;
2753 else
2754 return register_names[regno];
2755 }
2756
2757 static const char *
2758 sparclite_register_name (int regno)
2759 {
2760 static char *register_names[] =
2761 { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
2762 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
2763 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
2764 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
2765
2766 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
2767 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
2768 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
2769 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
2770
2771 "y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr",
2772 "dia1", "dia2", "dda1", "dda2", "ddv1", "ddv2", "dcr", "dsr"
2773 };
2774
2775 if (regno < 0 ||
2776 regno >= (sizeof (register_names) / sizeof (register_names[0])))
2777 return NULL;
2778 else
2779 return register_names[regno];
2780 }
2781
2782 static const char *
2783 sparclet_register_name (int regno)
2784 {
2785 static char *register_names[] =
2786 { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
2787 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
2788 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
2789 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
2790
2791 "", "", "", "", "", "", "", "", /* no floating point registers */
2792 "", "", "", "", "", "", "", "",
2793 "", "", "", "", "", "", "", "",
2794 "", "", "", "", "", "", "", "",
2795
2796 "y", "psr", "wim", "tbr", "pc", "npc", "", "", /* no FPSR or CPSR */
2797 "ccsr", "ccpr", "cccrcr", "ccor", "ccobr", "ccibr", "ccir", "",
2798
2799 /* ASR15 ASR19 (don't display them) */
2800 "asr1", "", "asr17", "asr18", "", "asr20", "asr21", "asr22"
2801 /* None of the rest get displayed */
2802 #if 0
2803 "awr0", "awr1", "awr2", "awr3", "awr4", "awr5", "awr6", "awr7",
2804 "awr8", "awr9", "awr10", "awr11", "awr12", "awr13", "awr14", "awr15",
2805 "awr16", "awr17", "awr18", "awr19", "awr20", "awr21", "awr22", "awr23",
2806 "awr24", "awr25", "awr26", "awr27", "awr28", "awr29", "awr30", "awr31",
2807 "apsr"
2808 #endif /* 0 */
2809 };
2810
2811 if (regno < 0 ||
2812 regno >= (sizeof (register_names) / sizeof (register_names[0])))
2813 return NULL;
2814 else
2815 return register_names[regno];
2816 }
2817
2818 CORE_ADDR
2819 sparc_push_return_address (CORE_ADDR pc_unused, CORE_ADDR sp)
2820 {
2821 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
2822 {
2823 /* The return PC of the dummy_frame is the former 'current' PC
2824 (where we were before we made the target function call).
2825 This is saved in %i7 by push_dummy_frame.
2826
2827 We will save the 'call dummy location' (ie. the address
2828 to which the target function will return) in %o7.
2829 This address will actually be the program's entry point.
2830 There will be a special call_dummy breakpoint there. */
2831
2832 write_register (O7_REGNUM,
2833 CALL_DUMMY_ADDRESS () - 8);
2834 }
2835
2836 return sp;
2837 }
2838
2839 /* Should call_function allocate stack space for a struct return? */
2840
2841 static int
2842 sparc64_use_struct_convention (int gcc_p, struct type *type)
2843 {
2844 return (TYPE_LENGTH (type) > 32);
2845 }
2846
2847 /* Store the address of the place in which to copy the structure the
2848 subroutine will return. This is called from call_function_by_hand.
2849 The ultimate mystery is, tho, what is the value "16"?
2850
2851 MVS: That's the offset from where the sp is now, to where the
2852 subroutine is gonna expect to find the struct return address. */
2853
2854 static void
2855 sparc32_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2856 {
2857 char *val;
2858 CORE_ADDR o7;
2859
2860 val = alloca (SPARC_INTREG_SIZE);
2861 store_unsigned_integer (val, SPARC_INTREG_SIZE, addr);
2862 write_memory (sp + (16 * SPARC_INTREG_SIZE), val, SPARC_INTREG_SIZE);
2863
2864 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
2865 {
2866 /* Now adjust the value of the link register, which was previously
2867 stored by push_return_address. Functions that return structs are
2868 peculiar in that they return to link register + 12, rather than
2869 link register + 8. */
2870
2871 o7 = read_register (O7_REGNUM);
2872 write_register (O7_REGNUM, o7 - 4);
2873 }
2874 }
2875
2876 static void
2877 sparc64_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2878 {
2879 /* FIXME: V9 uses %o0 for this. */
2880 /* FIXME MVS: Only for small enough structs!!! */
2881
2882 target_write_memory (sp + (16 * SPARC_INTREG_SIZE),
2883 (char *) &addr, SPARC_INTREG_SIZE);
2884 #if 0
2885 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
2886 {
2887 /* Now adjust the value of the link register, which was previously
2888 stored by push_return_address. Functions that return structs are
2889 peculiar in that they return to link register + 12, rather than
2890 link register + 8. */
2891
2892 write_register (O7_REGNUM, read_register (O7_REGNUM) - 4);
2893 }
2894 #endif
2895 }
2896
2897 /* Default target data type for register REGNO. */
2898
2899 static struct type *
2900 sparc32_register_virtual_type (int regno)
2901 {
2902 if (regno == PC_REGNUM ||
2903 regno == FP_REGNUM ||
2904 regno == SP_REGNUM)
2905 return builtin_type_unsigned_int;
2906 if (regno < 32)
2907 return builtin_type_int;
2908 if (regno < 64)
2909 return builtin_type_float;
2910 return builtin_type_int;
2911 }
2912
2913 static struct type *
2914 sparc64_register_virtual_type (int regno)
2915 {
2916 if (regno == PC_REGNUM ||
2917 regno == FP_REGNUM ||
2918 regno == SP_REGNUM)
2919 return builtin_type_unsigned_long_long;
2920 if (regno < 32)
2921 return builtin_type_long_long;
2922 if (regno < 64)
2923 return builtin_type_float;
2924 if (regno < 80)
2925 return builtin_type_double;
2926 return builtin_type_long_long;
2927 }
2928
2929 /* Number of bytes of storage in the actual machine representation for
2930 register REGNO. */
2931
2932 static int
2933 sparc32_register_size (int regno)
2934 {
2935 return 4;
2936 }
2937
2938 static int
2939 sparc64_register_size (int regno)
2940 {
2941 return (regno < 32 ? 8 : regno < 64 ? 4 : 8);
2942 }
2943
2944 /* Index within the `registers' buffer of the first byte of the space
2945 for register REGNO. */
2946
2947 static int
2948 sparc32_register_byte (int regno)
2949 {
2950 return (regno * 4);
2951 }
2952
2953 static int
2954 sparc64_register_byte (int regno)
2955 {
2956 if (regno < 32)
2957 return regno * 8;
2958 else if (regno < 64)
2959 return 32 * 8 + (regno - 32) * 4;
2960 else if (regno < 80)
2961 return 32 * 8 + 32 * 4 + (regno - 64) * 8;
2962 else
2963 return 64 * 8 + (regno - 80) * 8;
2964 }
2965
2966 /* Immediately after a function call, return the saved pc.
2967 Can't go through the frames for this because on some machines
2968 the new frame is not set up until the new function executes
2969 some instructions. */
2970
2971 static CORE_ADDR
2972 sparc_saved_pc_after_call (struct frame_info *fi)
2973 {
2974 return sparc_pc_adjust (read_register (RP_REGNUM));
2975 }
2976
2977 /* Convert registers between 'raw' and 'virtual' formats.
2978 They are the same on sparc, so there's nothing to do. */
2979
2980 static void
2981 sparc_convert_to_virtual (int regnum, struct type *type, char *from, char *to)
2982 { /* do nothing (should never be called) */
2983 }
2984
2985 static void
2986 sparc_convert_to_raw (struct type *type, int regnum, char *from, char *to)
2987 { /* do nothing (should never be called) */
2988 }
2989
2990 /* Init saved regs: nothing to do, just a place-holder function. */
2991
2992 static void
2993 sparc_frame_init_saved_regs (struct frame_info *fi_ignored)
2994 { /* no-op */
2995 }
2996
2997 /* gdbarch fix call dummy:
2998 All this function does is rearrange the arguments before calling
2999 sparc_fix_call_dummy (which does the real work). */
3000
3001 static void
3002 sparc_gdbarch_fix_call_dummy (char *dummy,
3003 CORE_ADDR pc,
3004 CORE_ADDR fun,
3005 int nargs,
3006 struct value **args,
3007 struct type *type,
3008 int gcc_p)
3009 {
3010 if (CALL_DUMMY_LOCATION == ON_STACK)
3011 sparc_fix_call_dummy (dummy, pc, fun, type, gcc_p);
3012 }
3013
3014 /* CALL_DUMMY_ADDRESS: fetch the breakpoint address for a call dummy. */
3015
3016 static CORE_ADDR
3017 sparc_call_dummy_address (void)
3018 {
3019 return (CALL_DUMMY_START_OFFSET) + CALL_DUMMY_BREAKPOINT_OFFSET;
3020 }
3021
3022 /* Supply the Y register number to those that need it. */
3023
3024 int
3025 sparc_y_regnum (void)
3026 {
3027 return gdbarch_tdep (current_gdbarch)->y_regnum;
3028 }
3029
3030 int
3031 sparc_reg_struct_has_addr (int gcc_p, struct type *type)
3032 {
3033 if (GDB_TARGET_IS_SPARC64)
3034 return (TYPE_LENGTH (type) > 32);
3035 else
3036 return (gcc_p != 1);
3037 }
3038
3039 int
3040 sparc_intreg_size (void)
3041 {
3042 return SPARC_INTREG_SIZE;
3043 }
3044
3045 static int
3046 sparc_return_value_on_stack (struct type *type)
3047 {
3048 if (TYPE_CODE (type) == TYPE_CODE_FLT &&
3049 TYPE_LENGTH (type) > 8)
3050 return 1;
3051 else
3052 return 0;
3053 }
3054
3055 /*
3056 * Gdbarch "constructor" function.
3057 */
3058
3059 #define SPARC32_CALL_DUMMY_ON_STACK
3060
3061 #define SPARC_SP_REGNUM 14
3062 #define SPARC_FP_REGNUM 30
3063 #define SPARC_FP0_REGNUM 32
3064 #define SPARC32_NPC_REGNUM 69
3065 #define SPARC32_PC_REGNUM 68
3066 #define SPARC32_Y_REGNUM 64
3067 #define SPARC64_PC_REGNUM 80
3068 #define SPARC64_NPC_REGNUM 81
3069 #define SPARC64_Y_REGNUM 85
3070
3071 static struct gdbarch *
3072 sparc_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3073 {
3074 struct gdbarch *gdbarch;
3075 struct gdbarch_tdep *tdep;
3076
3077 static LONGEST call_dummy_32[] =
3078 { 0xbc100001, 0x9de38000, 0xbc100002, 0xbe100003,
3079 0xda03a058, 0xd803a054, 0xd603a050, 0xd403a04c,
3080 0xd203a048, 0x40000000, 0xd003a044, 0x01000000,
3081 0x91d02001, 0x01000000
3082 };
3083 static LONGEST call_dummy_64[] =
3084 { 0x9de3bec0fd3fa7f7LL, 0xf93fa7eff53fa7e7LL,
3085 0xf13fa7dfed3fa7d7LL, 0xe93fa7cfe53fa7c7LL,
3086 0xe13fa7bfdd3fa7b7LL, 0xd93fa7afd53fa7a7LL,
3087 0xd13fa79fcd3fa797LL, 0xc93fa78fc53fa787LL,
3088 0xc13fa77fcc3fa777LL, 0xc83fa76fc43fa767LL,
3089 0xc03fa75ffc3fa757LL, 0xf83fa74ff43fa747LL,
3090 0xf03fa73f01000000LL, 0x0100000001000000LL,
3091 0x0100000091580000LL, 0xd027a72b93500000LL,
3092 0xd027a72791480000LL, 0xd027a72391400000LL,
3093 0xd027a71fda5ba8a7LL, 0xd85ba89fd65ba897LL,
3094 0xd45ba88fd25ba887LL, 0x9fc02000d05ba87fLL,
3095 0x0100000091d02001LL, 0x0100000001000000LL
3096 };
3097 static LONGEST call_dummy_nil[] = {0};
3098
3099 /* Try to determine the OS ABI of the object we are loading. */
3100
3101 if (info.abfd != NULL
3102 && info.osabi == GDB_OSABI_UNKNOWN)
3103 {
3104 /* If it's an ELF file, assume it's Solaris. */
3105 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
3106 info.osabi = GDB_OSABI_SOLARIS;
3107 }
3108
3109 /* First see if there is already a gdbarch that can satisfy the request. */
3110 arches = gdbarch_list_lookup_by_info (arches, &info);
3111 if (arches != NULL)
3112 return arches->gdbarch;
3113
3114 /* None found: is the request for a sparc architecture? */
3115 if (info.bfd_arch_info->arch != bfd_arch_sparc)
3116 return NULL; /* No; then it's not for us. */
3117
3118 /* Yes: create a new gdbarch for the specified machine type. */
3119 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
3120 gdbarch = gdbarch_alloc (&info, tdep);
3121
3122 /* First set settings that are common for all sparc architectures. */
3123 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3124 set_gdbarch_breakpoint_from_pc (gdbarch, memory_breakpoint_from_pc);
3125 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
3126 set_gdbarch_call_dummy_p (gdbarch, 1);
3127 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 1);
3128 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3129 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3130 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, sparc_extract_struct_value_address);
3131 set_gdbarch_fix_call_dummy (gdbarch, sparc_gdbarch_fix_call_dummy);
3132 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3133 set_gdbarch_fp_regnum (gdbarch, SPARC_FP_REGNUM);
3134 set_gdbarch_fp0_regnum (gdbarch, SPARC_FP0_REGNUM);
3135 set_gdbarch_frame_chain (gdbarch, sparc_frame_chain);
3136 set_gdbarch_frame_init_saved_regs (gdbarch, sparc_frame_init_saved_regs);
3137 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
3138 set_gdbarch_frame_saved_pc (gdbarch, sparc_frame_saved_pc);
3139 set_gdbarch_frameless_function_invocation (gdbarch,
3140 frameless_look_for_prologue);
3141 set_gdbarch_get_saved_register (gdbarch, sparc_get_saved_register);
3142 set_gdbarch_init_extra_frame_info (gdbarch, sparc_init_extra_frame_info);
3143 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3144 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3145 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3146 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3147 set_gdbarch_max_register_raw_size (gdbarch, 8);
3148 set_gdbarch_max_register_virtual_size (gdbarch, 8);
3149 set_gdbarch_pop_frame (gdbarch, sparc_pop_frame);
3150 set_gdbarch_push_return_address (gdbarch, sparc_push_return_address);
3151 set_gdbarch_push_dummy_frame (gdbarch, sparc_push_dummy_frame);
3152 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
3153 set_gdbarch_register_convert_to_raw (gdbarch, sparc_convert_to_raw);
3154 set_gdbarch_register_convert_to_virtual (gdbarch,
3155 sparc_convert_to_virtual);
3156 set_gdbarch_register_convertible (gdbarch,
3157 generic_register_convertible_not);
3158 set_gdbarch_reg_struct_has_addr (gdbarch, sparc_reg_struct_has_addr);
3159 set_gdbarch_return_value_on_stack (gdbarch, sparc_return_value_on_stack);
3160 set_gdbarch_saved_pc_after_call (gdbarch, sparc_saved_pc_after_call);
3161 set_gdbarch_prologue_frameless_p (gdbarch, sparc_prologue_frameless_p);
3162 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3163 set_gdbarch_skip_prologue (gdbarch, sparc_skip_prologue);
3164 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM);
3165 set_gdbarch_deprecated_use_generic_dummy_frames (gdbarch, 0);
3166 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
3167
3168 /*
3169 * Settings that depend only on 32/64 bit word size
3170 */
3171
3172 switch (info.bfd_arch_info->mach)
3173 {
3174 case bfd_mach_sparc:
3175 case bfd_mach_sparc_sparclet:
3176 case bfd_mach_sparc_sparclite:
3177 case bfd_mach_sparc_v8plus:
3178 case bfd_mach_sparc_v8plusa:
3179 case bfd_mach_sparc_sparclite_le:
3180 /* 32-bit machine types: */
3181
3182 #ifdef SPARC32_CALL_DUMMY_ON_STACK
3183 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_on_stack);
3184 set_gdbarch_call_dummy_address (gdbarch, sparc_call_dummy_address);
3185 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0x30);
3186 set_gdbarch_call_dummy_length (gdbarch, 0x38);
3187
3188 /* NOTE: cagney/2002-04-26: Based from info posted by Peter
3189 Schauer around Oct '99. Briefly, due to aspects of the SPARC
3190 ABI, it isn't possible to use ON_STACK with a strictly
3191 compliant compiler.
3192
3193 Peter Schauer writes ...
3194
3195 No, any call from GDB to a user function returning a
3196 struct/union will fail miserably. Try this:
3197
3198 *NOINDENT*
3199 struct x
3200 {
3201 int a[4];
3202 };
3203
3204 struct x gx;
3205
3206 struct x
3207 sret ()
3208 {
3209 return gx;
3210 }
3211
3212 main ()
3213 {
3214 int i;
3215 for (i = 0; i < 4; i++)
3216 gx.a[i] = i + 1;
3217 gx = sret ();
3218 }
3219 *INDENT*
3220
3221 Set a breakpoint at the gx = sret () statement, run to it and
3222 issue a `print sret()'. It will not succed with your
3223 approach, and I doubt that continuing the program will work
3224 as well.
3225
3226 For details of the ABI see the Sparc Architecture Manual. I
3227 have Version 8 (Prentice Hall ISBN 0-13-825001-4) and the
3228 calling conventions for functions returning aggregate values
3229 are explained in Appendix D.3. */
3230
3231 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
3232 set_gdbarch_call_dummy_words (gdbarch, call_dummy_32);
3233 #else
3234 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
3235 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
3236 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
3237 set_gdbarch_call_dummy_length (gdbarch, 0);
3238 set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil);
3239 #endif
3240 set_gdbarch_call_dummy_stack_adjust (gdbarch, 68);
3241 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
3242 set_gdbarch_frame_args_skip (gdbarch, 68);
3243 set_gdbarch_function_start_offset (gdbarch, 0);
3244 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3245 set_gdbarch_npc_regnum (gdbarch, SPARC32_NPC_REGNUM);
3246 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM);
3247 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3248 set_gdbarch_push_arguments (gdbarch, sparc32_push_arguments);
3249 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
3250 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
3251
3252 set_gdbarch_register_byte (gdbarch, sparc32_register_byte);
3253 set_gdbarch_register_raw_size (gdbarch, sparc32_register_size);
3254 set_gdbarch_register_size (gdbarch, 4);
3255 set_gdbarch_register_virtual_size (gdbarch, sparc32_register_size);
3256 set_gdbarch_register_virtual_type (gdbarch,
3257 sparc32_register_virtual_type);
3258 #ifdef SPARC32_CALL_DUMMY_ON_STACK
3259 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_32));
3260 #else
3261 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
3262 #endif
3263 set_gdbarch_stack_align (gdbarch, sparc32_stack_align);
3264 set_gdbarch_store_struct_return (gdbarch, sparc32_store_struct_return);
3265 set_gdbarch_use_struct_convention (gdbarch,
3266 generic_use_struct_convention);
3267 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
3268 tdep->y_regnum = SPARC32_Y_REGNUM;
3269 tdep->fp_max_regnum = SPARC_FP0_REGNUM + 32;
3270 tdep->intreg_size = 4;
3271 tdep->reg_save_offset = 0x60;
3272 tdep->call_dummy_call_offset = 0x24;
3273 break;
3274
3275 case bfd_mach_sparc_v9:
3276 case bfd_mach_sparc_v9a:
3277 /* 64-bit machine types: */
3278 default: /* Any new machine type is likely to be 64-bit. */
3279
3280 #ifdef SPARC64_CALL_DUMMY_ON_STACK
3281 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_on_stack);
3282 set_gdbarch_call_dummy_address (gdbarch, sparc_call_dummy_address);
3283 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 8 * 4);
3284 set_gdbarch_call_dummy_length (gdbarch, 192);
3285 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
3286 set_gdbarch_call_dummy_start_offset (gdbarch, 148);
3287 set_gdbarch_call_dummy_words (gdbarch, call_dummy_64);
3288 #else
3289 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
3290 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
3291 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
3292 set_gdbarch_call_dummy_length (gdbarch, 0);
3293 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
3294 set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil);
3295 #endif
3296 set_gdbarch_call_dummy_stack_adjust (gdbarch, 128);
3297 set_gdbarch_frame_args_skip (gdbarch, 136);
3298 set_gdbarch_function_start_offset (gdbarch, 0);
3299 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3300 set_gdbarch_npc_regnum (gdbarch, SPARC64_NPC_REGNUM);
3301 set_gdbarch_pc_regnum (gdbarch, SPARC64_PC_REGNUM);
3302 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3303 set_gdbarch_push_arguments (gdbarch, sparc64_push_arguments);
3304 /* NOTE different for at_entry */
3305 set_gdbarch_read_fp (gdbarch, sparc64_read_fp);
3306 set_gdbarch_read_sp (gdbarch, sparc64_read_sp);
3307 /* Some of the registers aren't 64 bits, but it's a lot simpler just
3308 to assume they all are (since most of them are). */
3309 set_gdbarch_register_byte (gdbarch, sparc64_register_byte);
3310 set_gdbarch_register_raw_size (gdbarch, sparc64_register_size);
3311 set_gdbarch_register_size (gdbarch, 8);
3312 set_gdbarch_register_virtual_size (gdbarch, sparc64_register_size);
3313 set_gdbarch_register_virtual_type (gdbarch,
3314 sparc64_register_virtual_type);
3315 #ifdef SPARC64_CALL_DUMMY_ON_STACK
3316 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_64));
3317 #else
3318 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
3319 #endif
3320 set_gdbarch_stack_align (gdbarch, sparc64_stack_align);
3321 set_gdbarch_store_struct_return (gdbarch, sparc64_store_struct_return);
3322 set_gdbarch_use_struct_convention (gdbarch,
3323 sparc64_use_struct_convention);
3324 set_gdbarch_write_sp (gdbarch, sparc64_write_sp);
3325 tdep->y_regnum = SPARC64_Y_REGNUM;
3326 tdep->fp_max_regnum = SPARC_FP0_REGNUM + 48;
3327 tdep->intreg_size = 8;
3328 tdep->reg_save_offset = 0x90;
3329 tdep->call_dummy_call_offset = 148 + 4 * 5;
3330 break;
3331 }
3332
3333 /*
3334 * Settings that vary per-architecture:
3335 */
3336
3337 switch (info.bfd_arch_info->mach)
3338 {
3339 case bfd_mach_sparc:
3340 set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
3341 set_gdbarch_num_regs (gdbarch, 72);
3342 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
3343 set_gdbarch_register_name (gdbarch, sparc32_register_name);
3344 set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
3345 tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3346 tdep->fp_register_bytes = 32 * 4;
3347 tdep->print_insn_mach = bfd_mach_sparc;
3348 break;
3349 case bfd_mach_sparc_sparclet:
3350 set_gdbarch_deprecated_extract_return_value (gdbarch, sparclet_extract_return_value);
3351 set_gdbarch_num_regs (gdbarch, 32 + 32 + 8 + 8 + 8);
3352 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4 + 8*4);
3353 set_gdbarch_register_name (gdbarch, sparclet_register_name);
3354 set_gdbarch_deprecated_store_return_value (gdbarch, sparclet_store_return_value);
3355 tdep->has_fpu = 0; /* (all but sparclet and sparclite) */
3356 tdep->fp_register_bytes = 0;
3357 tdep->print_insn_mach = bfd_mach_sparc_sparclet;
3358 break;
3359 case bfd_mach_sparc_sparclite:
3360 set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
3361 set_gdbarch_num_regs (gdbarch, 80);
3362 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4);
3363 set_gdbarch_register_name (gdbarch, sparclite_register_name);
3364 set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
3365 tdep->has_fpu = 0; /* (all but sparclet and sparclite) */
3366 tdep->fp_register_bytes = 0;
3367 tdep->print_insn_mach = bfd_mach_sparc_sparclite;
3368 break;
3369 case bfd_mach_sparc_v8plus:
3370 set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
3371 set_gdbarch_num_regs (gdbarch, 72);
3372 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
3373 set_gdbarch_register_name (gdbarch, sparc32_register_name);
3374 set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
3375 tdep->print_insn_mach = bfd_mach_sparc;
3376 tdep->fp_register_bytes = 32 * 4;
3377 tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3378 break;
3379 case bfd_mach_sparc_v8plusa:
3380 set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
3381 set_gdbarch_num_regs (gdbarch, 72);
3382 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
3383 set_gdbarch_register_name (gdbarch, sparc32_register_name);
3384 set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
3385 tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3386 tdep->fp_register_bytes = 32 * 4;
3387 tdep->print_insn_mach = bfd_mach_sparc;
3388 break;
3389 case bfd_mach_sparc_sparclite_le:
3390 set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
3391 set_gdbarch_num_regs (gdbarch, 80);
3392 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4);
3393 set_gdbarch_register_name (gdbarch, sparclite_register_name);
3394 set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
3395 tdep->has_fpu = 0; /* (all but sparclet and sparclite) */
3396 tdep->fp_register_bytes = 0;
3397 tdep->print_insn_mach = bfd_mach_sparc_sparclite;
3398 break;
3399 case bfd_mach_sparc_v9:
3400 set_gdbarch_deprecated_extract_return_value (gdbarch, sparc64_extract_return_value);
3401 set_gdbarch_num_regs (gdbarch, 125);
3402 set_gdbarch_register_bytes (gdbarch, 32*8 + 32*8 + 45*8);
3403 set_gdbarch_register_name (gdbarch, sparc64_register_name);
3404 set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
3405 tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3406 tdep->fp_register_bytes = 64 * 4;
3407 tdep->print_insn_mach = bfd_mach_sparc_v9a;
3408 break;
3409 case bfd_mach_sparc_v9a:
3410 set_gdbarch_deprecated_extract_return_value (gdbarch, sparc64_extract_return_value);
3411 set_gdbarch_num_regs (gdbarch, 125);
3412 set_gdbarch_register_bytes (gdbarch, 32*8 + 32*8 + 45*8);
3413 set_gdbarch_register_name (gdbarch, sparc64_register_name);
3414 set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
3415 tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3416 tdep->fp_register_bytes = 64 * 4;
3417 tdep->print_insn_mach = bfd_mach_sparc_v9a;
3418 break;
3419 }
3420
3421 /* Hook in OS ABI-specific overrides, if they have been registered. */
3422 gdbarch_init_osabi (info, gdbarch);
3423
3424 return gdbarch;
3425 }
3426
3427 static void
3428 sparc_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3429 {
3430 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3431
3432 if (tdep == NULL)
3433 return;
3434
3435 fprintf_unfiltered (file, "sparc_dump_tdep: has_fpu = %d\n",
3436 tdep->has_fpu);
3437 fprintf_unfiltered (file, "sparc_dump_tdep: fp_register_bytes = %d\n",
3438 tdep->fp_register_bytes);
3439 fprintf_unfiltered (file, "sparc_dump_tdep: y_regnum = %d\n",
3440 tdep->y_regnum);
3441 fprintf_unfiltered (file, "sparc_dump_tdep: fp_max_regnum = %d\n",
3442 tdep->fp_max_regnum);
3443 fprintf_unfiltered (file, "sparc_dump_tdep: intreg_size = %d\n",
3444 tdep->intreg_size);
3445 fprintf_unfiltered (file, "sparc_dump_tdep: reg_save_offset = %d\n",
3446 tdep->reg_save_offset);
3447 fprintf_unfiltered (file, "sparc_dump_tdep: call_dummy_call_offset = %d\n",
3448 tdep->call_dummy_call_offset);
3449 fprintf_unfiltered (file, "sparc_dump_tdep: print_insn_match = %d\n",
3450 tdep->print_insn_mach);
3451 }
This page took 0.142417 seconds and 4 git commands to generate.