* sparc-nat.c (sparc_fetch_inferior_registers): Explicitly supply
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for SPARC.
2
3 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "arch-utils.h"
23 #include "dis-asm.h"
24 #include "dwarf2-frame.h"
25 #include "floatformat.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "gdbcore.h"
30 #include "gdbtypes.h"
31 #include "inferior.h"
32 #include "symtab.h"
33 #include "objfiles.h"
34 #include "osabi.h"
35 #include "regcache.h"
36 #include "target.h"
37 #include "value.h"
38
39 #include "gdb_assert.h"
40 #include "gdb_string.h"
41
42 #include "sparc-tdep.h"
43
44 struct regset;
45
46 /* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
49 lists changes with respect to the original 32-bit psABI as defined
50 in the "System V ABI, SPARC Processor Supplement".
51
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
58 2.x is SVR4-based. */
59
60 /* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
64
65 /* The SPARC Floating-Point Quad-Precision format is similar to
66 big-endian IA-64 Quad-Precision format. */
67 #define floatformats_sparc_quad floatformats_ia64_quad
68
69 /* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
72 #undef BIAS
73 #define BIAS 2047
74
75 /* Macros to extract fields from SPARC instructions. */
76 #define X_OP(i) (((i) >> 30) & 0x3)
77 #define X_RD(i) (((i) >> 25) & 0x1f)
78 #define X_A(i) (((i) >> 29) & 1)
79 #define X_COND(i) (((i) >> 25) & 0xf)
80 #define X_OP2(i) (((i) >> 22) & 0x7)
81 #define X_IMM22(i) ((i) & 0x3fffff)
82 #define X_OP3(i) (((i) >> 19) & 0x3f)
83 #define X_RS1(i) (((i) >> 14) & 0x1f)
84 #define X_RS2(i) ((i) & 0x1f)
85 #define X_I(i) (((i) >> 13) & 1)
86 /* Sign extension macros. */
87 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
88 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
89 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
90
91 /* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
93
94 unsigned long
95 sparc_fetch_instruction (CORE_ADDR pc)
96 {
97 gdb_byte buf[4];
98 unsigned long insn;
99 int i;
100
101 /* If we can't read the instruction at PC, return zero. */
102 if (target_read_memory (pc, buf, sizeof (buf)))
103 return 0;
104
105 insn = 0;
106 for (i = 0; i < sizeof (buf); i++)
107 insn = (insn << 8) | buf[i];
108 return insn;
109 }
110 \f
111
112 /* Return non-zero if the instruction corresponding to PC is an "unimp"
113 instruction. */
114
115 static int
116 sparc_is_unimp_insn (CORE_ADDR pc)
117 {
118 const unsigned long insn = sparc_fetch_instruction (pc);
119
120 return ((insn & 0xc1c00000) == 0);
121 }
122
123 /* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
129
130 The same website provides the following description of how
131 StackGhost works:
132
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
142
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
145
146 More information on StackGuard can be found on in:
147
148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
149 Stack Protection." 2001. Published in USENIX Security Symposium
150 '01. */
151
152 /* Fetch StackGhost Per-Process XOR cookie. */
153
154 ULONGEST
155 sparc_fetch_wcookie (struct gdbarch *gdbarch)
156 {
157 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
158 struct target_ops *ops = &current_target;
159 gdb_byte buf[8];
160 int len;
161
162 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
163 if (len == -1)
164 return 0;
165
166 /* We should have either an 32-bit or an 64-bit cookie. */
167 gdb_assert (len == 4 || len == 8);
168
169 return extract_unsigned_integer (buf, len, byte_order);
170 }
171 \f
172
173 /* The functions on this page are intended to be used to classify
174 function arguments. */
175
176 /* Check whether TYPE is "Integral or Pointer". */
177
178 static int
179 sparc_integral_or_pointer_p (const struct type *type)
180 {
181 int len = TYPE_LENGTH (type);
182
183 switch (TYPE_CODE (type))
184 {
185 case TYPE_CODE_INT:
186 case TYPE_CODE_BOOL:
187 case TYPE_CODE_CHAR:
188 case TYPE_CODE_ENUM:
189 case TYPE_CODE_RANGE:
190 /* We have byte, half-word, word and extended-word/doubleword
191 integral types. The doubleword is an extension to the
192 original 32-bit ABI by the SCD 2.4.x. */
193 return (len == 1 || len == 2 || len == 4 || len == 8);
194 case TYPE_CODE_PTR:
195 case TYPE_CODE_REF:
196 /* Allow either 32-bit or 64-bit pointers. */
197 return (len == 4 || len == 8);
198 default:
199 break;
200 }
201
202 return 0;
203 }
204
205 /* Check whether TYPE is "Floating". */
206
207 static int
208 sparc_floating_p (const struct type *type)
209 {
210 switch (TYPE_CODE (type))
211 {
212 case TYPE_CODE_FLT:
213 {
214 int len = TYPE_LENGTH (type);
215 return (len == 4 || len == 8 || len == 16);
216 }
217 default:
218 break;
219 }
220
221 return 0;
222 }
223
224 /* Check whether TYPE is "Structure or Union".
225
226 In terms of Ada subprogram calls, arrays are treated the same as
227 struct and union types. So this function also returns non-zero
228 for array types. */
229
230 static int
231 sparc_structure_or_union_p (const struct type *type)
232 {
233 switch (TYPE_CODE (type))
234 {
235 case TYPE_CODE_STRUCT:
236 case TYPE_CODE_UNION:
237 case TYPE_CODE_ARRAY:
238 return 1;
239 default:
240 break;
241 }
242
243 return 0;
244 }
245
246 /* Register information. */
247
248 static const char *sparc32_register_names[] =
249 {
250 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
251 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
252 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
253 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
254
255 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
256 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
257 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
258 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
259
260 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
261 };
262
263 /* Total number of registers. */
264 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
265
266 /* We provide the aliases %d0..%d30 for the floating registers as
267 "psuedo" registers. */
268
269 static const char *sparc32_pseudo_register_names[] =
270 {
271 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
272 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
273 };
274
275 /* Total number of pseudo registers. */
276 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
277
278 /* Return the name of register REGNUM. */
279
280 static const char *
281 sparc32_register_name (struct gdbarch *gdbarch, int regnum)
282 {
283 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
284 return sparc32_register_names[regnum];
285
286 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
287 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
288
289 return NULL;
290 }
291 \f
292 /* Construct types for ISA-specific registers. */
293
294 static struct type *
295 sparc_psr_type (struct gdbarch *gdbarch)
296 {
297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
298
299 if (!tdep->sparc_psr_type)
300 {
301 struct type *type;
302
303 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
304 append_flags_type_flag (type, 5, "ET");
305 append_flags_type_flag (type, 6, "PS");
306 append_flags_type_flag (type, 7, "S");
307 append_flags_type_flag (type, 12, "EF");
308 append_flags_type_flag (type, 13, "EC");
309
310 tdep->sparc_psr_type = type;
311 }
312
313 return tdep->sparc_psr_type;
314 }
315
316 static struct type *
317 sparc_fsr_type (struct gdbarch *gdbarch)
318 {
319 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
320
321 if (!tdep->sparc_fsr_type)
322 {
323 struct type *type;
324
325 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
326 append_flags_type_flag (type, 0, "NXA");
327 append_flags_type_flag (type, 1, "DZA");
328 append_flags_type_flag (type, 2, "UFA");
329 append_flags_type_flag (type, 3, "OFA");
330 append_flags_type_flag (type, 4, "NVA");
331 append_flags_type_flag (type, 5, "NXC");
332 append_flags_type_flag (type, 6, "DZC");
333 append_flags_type_flag (type, 7, "UFC");
334 append_flags_type_flag (type, 8, "OFC");
335 append_flags_type_flag (type, 9, "NVC");
336 append_flags_type_flag (type, 22, "NS");
337 append_flags_type_flag (type, 23, "NXM");
338 append_flags_type_flag (type, 24, "DZM");
339 append_flags_type_flag (type, 25, "UFM");
340 append_flags_type_flag (type, 26, "OFM");
341 append_flags_type_flag (type, 27, "NVM");
342
343 tdep->sparc_fsr_type = type;
344 }
345
346 return tdep->sparc_fsr_type;
347 }
348
349 /* Return the GDB type object for the "standard" data type of data in
350 register REGNUM. */
351
352 static struct type *
353 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
354 {
355 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
356 return builtin_type (gdbarch)->builtin_float;
357
358 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
359 return builtin_type (gdbarch)->builtin_double;
360
361 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
362 return builtin_type (gdbarch)->builtin_data_ptr;
363
364 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
365 return builtin_type (gdbarch)->builtin_func_ptr;
366
367 if (regnum == SPARC32_PSR_REGNUM)
368 return sparc_psr_type (gdbarch);
369
370 if (regnum == SPARC32_FSR_REGNUM)
371 return sparc_fsr_type (gdbarch);
372
373 return builtin_type (gdbarch)->builtin_int32;
374 }
375
376 static enum register_status
377 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
378 struct regcache *regcache,
379 int regnum, gdb_byte *buf)
380 {
381 enum register_status status;
382
383 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
384
385 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
386 status = regcache_raw_read (regcache, regnum, buf);
387 if (status == REG_VALID)
388 status = regcache_raw_read (regcache, regnum + 1, buf + 4);
389 return status;
390 }
391
392 static void
393 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
394 struct regcache *regcache,
395 int regnum, const gdb_byte *buf)
396 {
397 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
398
399 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
400 regcache_raw_write (regcache, regnum, buf);
401 regcache_raw_write (regcache, regnum + 1, buf + 4);
402 }
403 \f
404
405 static CORE_ADDR
406 sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
407 {
408 /* The ABI requires double-word alignment. */
409 return address & ~0x7;
410 }
411
412 static CORE_ADDR
413 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
414 CORE_ADDR funcaddr,
415 struct value **args, int nargs,
416 struct type *value_type,
417 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
418 struct regcache *regcache)
419 {
420 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
421
422 *bp_addr = sp - 4;
423 *real_pc = funcaddr;
424
425 if (using_struct_return (gdbarch, NULL, value_type))
426 {
427 gdb_byte buf[4];
428
429 /* This is an UNIMP instruction. */
430 store_unsigned_integer (buf, 4, byte_order,
431 TYPE_LENGTH (value_type) & 0x1fff);
432 write_memory (sp - 8, buf, 4);
433 return sp - 8;
434 }
435
436 return sp - 4;
437 }
438
439 static CORE_ADDR
440 sparc32_store_arguments (struct regcache *regcache, int nargs,
441 struct value **args, CORE_ADDR sp,
442 int struct_return, CORE_ADDR struct_addr)
443 {
444 struct gdbarch *gdbarch = get_regcache_arch (regcache);
445 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
446 /* Number of words in the "parameter array". */
447 int num_elements = 0;
448 int element = 0;
449 int i;
450
451 for (i = 0; i < nargs; i++)
452 {
453 struct type *type = value_type (args[i]);
454 int len = TYPE_LENGTH (type);
455
456 if (sparc_structure_or_union_p (type)
457 || (sparc_floating_p (type) && len == 16))
458 {
459 /* Structure, Union and Quad-Precision Arguments. */
460 sp -= len;
461
462 /* Use doubleword alignment for these values. That's always
463 correct, and wasting a few bytes shouldn't be a problem. */
464 sp &= ~0x7;
465
466 write_memory (sp, value_contents (args[i]), len);
467 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
468 num_elements++;
469 }
470 else if (sparc_floating_p (type))
471 {
472 /* Floating arguments. */
473 gdb_assert (len == 4 || len == 8);
474 num_elements += (len / 4);
475 }
476 else
477 {
478 /* Integral and pointer arguments. */
479 gdb_assert (sparc_integral_or_pointer_p (type));
480
481 if (len < 4)
482 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
483 args[i]);
484 num_elements += ((len + 3) / 4);
485 }
486 }
487
488 /* Always allocate at least six words. */
489 sp -= max (6, num_elements) * 4;
490
491 /* The psABI says that "Software convention requires space for the
492 struct/union return value pointer, even if the word is unused." */
493 sp -= 4;
494
495 /* The psABI says that "Although software convention and the
496 operating system require every stack frame to be doubleword
497 aligned." */
498 sp &= ~0x7;
499
500 for (i = 0; i < nargs; i++)
501 {
502 const bfd_byte *valbuf = value_contents (args[i]);
503 struct type *type = value_type (args[i]);
504 int len = TYPE_LENGTH (type);
505
506 gdb_assert (len == 4 || len == 8);
507
508 if (element < 6)
509 {
510 int regnum = SPARC_O0_REGNUM + element;
511
512 regcache_cooked_write (regcache, regnum, valbuf);
513 if (len > 4 && element < 5)
514 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
515 }
516
517 /* Always store the argument in memory. */
518 write_memory (sp + 4 + element * 4, valbuf, len);
519 element += len / 4;
520 }
521
522 gdb_assert (element == num_elements);
523
524 if (struct_return)
525 {
526 gdb_byte buf[4];
527
528 store_unsigned_integer (buf, 4, byte_order, struct_addr);
529 write_memory (sp, buf, 4);
530 }
531
532 return sp;
533 }
534
535 static CORE_ADDR
536 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
537 struct regcache *regcache, CORE_ADDR bp_addr,
538 int nargs, struct value **args, CORE_ADDR sp,
539 int struct_return, CORE_ADDR struct_addr)
540 {
541 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
542
543 /* Set return address. */
544 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
545
546 /* Set up function arguments. */
547 sp = sparc32_store_arguments (regcache, nargs, args, sp,
548 struct_return, struct_addr);
549
550 /* Allocate the 16-word window save area. */
551 sp -= 16 * 4;
552
553 /* Stack should be doubleword aligned at this point. */
554 gdb_assert (sp % 8 == 0);
555
556 /* Finally, update the stack pointer. */
557 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
558
559 return sp;
560 }
561 \f
562
563 /* Use the program counter to determine the contents and size of a
564 breakpoint instruction. Return a pointer to a string of bytes that
565 encode a breakpoint instruction, store the length of the string in
566 *LEN and optionally adjust *PC to point to the correct memory
567 location for inserting the breakpoint. */
568
569 static const gdb_byte *
570 sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
571 {
572 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
573
574 *len = sizeof (break_insn);
575 return break_insn;
576 }
577 \f
578
579 /* Allocate and initialize a frame cache. */
580
581 static struct sparc_frame_cache *
582 sparc_alloc_frame_cache (void)
583 {
584 struct sparc_frame_cache *cache;
585 int i;
586
587 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
588
589 /* Base address. */
590 cache->base = 0;
591 cache->pc = 0;
592
593 /* Frameless until proven otherwise. */
594 cache->frameless_p = 1;
595
596 cache->struct_return_p = 0;
597
598 return cache;
599 }
600
601 /* GCC generates several well-known sequences of instructions at the begining
602 of each function prologue when compiling with -fstack-check. If one of
603 such sequences starts at START_PC, then return the address of the
604 instruction immediately past this sequence. Otherwise, return START_PC. */
605
606 static CORE_ADDR
607 sparc_skip_stack_check (const CORE_ADDR start_pc)
608 {
609 CORE_ADDR pc = start_pc;
610 unsigned long insn;
611 int offset_stack_checking_sequence = 0;
612
613 /* With GCC, all stack checking sequences begin with the same two
614 instructions. */
615
616 /* sethi <some immediate>,%g1 */
617 insn = sparc_fetch_instruction (pc);
618 pc = pc + 4;
619 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
620 return start_pc;
621
622 /* sub %sp, %g1, %g1 */
623 insn = sparc_fetch_instruction (pc);
624 pc = pc + 4;
625 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
626 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
627 return start_pc;
628
629 insn = sparc_fetch_instruction (pc);
630 pc = pc + 4;
631
632 /* First possible sequence:
633 [first two instructions above]
634 clr [%g1 - some immediate] */
635
636 /* clr [%g1 - some immediate] */
637 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
638 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
639 {
640 /* Valid stack-check sequence, return the new PC. */
641 return pc;
642 }
643
644 /* Second possible sequence: A small number of probes.
645 [first two instructions above]
646 clr [%g1]
647 add %g1, -<some immediate>, %g1
648 clr [%g1]
649 [repeat the two instructions above any (small) number of times]
650 clr [%g1 - some immediate] */
651
652 /* clr [%g1] */
653 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
654 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
655 {
656 while (1)
657 {
658 /* add %g1, -<some immediate>, %g1 */
659 insn = sparc_fetch_instruction (pc);
660 pc = pc + 4;
661 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
662 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
663 break;
664
665 /* clr [%g1] */
666 insn = sparc_fetch_instruction (pc);
667 pc = pc + 4;
668 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
669 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
670 return start_pc;
671 }
672
673 /* clr [%g1 - some immediate] */
674 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
675 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
676 return start_pc;
677
678 /* We found a valid stack-check sequence, return the new PC. */
679 return pc;
680 }
681
682 /* Third sequence: A probing loop.
683 [first two instructions above]
684 sethi <some immediate>, %g4
685 sub %g1, %g4, %g4
686 cmp %g1, %g4
687 be <disp>
688 add %g1, -<some immediate>, %g1
689 ba <disp>
690 clr [%g1]
691 clr [%g4 - some immediate] */
692
693 /* sethi <some immediate>, %g4 */
694 else if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
695 {
696 /* sub %g1, %g4, %g4 */
697 insn = sparc_fetch_instruction (pc);
698 pc = pc + 4;
699 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
700 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
701 return start_pc;
702
703 /* cmp %g1, %g4 */
704 insn = sparc_fetch_instruction (pc);
705 pc = pc + 4;
706 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
707 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
708 return start_pc;
709
710 /* be <disp> */
711 insn = sparc_fetch_instruction (pc);
712 pc = pc + 4;
713 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
714 return start_pc;
715
716 /* add %g1, -<some immediate>, %g1 */
717 insn = sparc_fetch_instruction (pc);
718 pc = pc + 4;
719 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
720 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
721 return start_pc;
722
723 /* ba <disp> */
724 insn = sparc_fetch_instruction (pc);
725 pc = pc + 4;
726 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
727 return start_pc;
728
729 /* clr [%g1] */
730 insn = sparc_fetch_instruction (pc);
731 pc = pc + 4;
732 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
733 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
734 return start_pc;
735
736 /* clr [%g4 - some immediate] */
737 insn = sparc_fetch_instruction (pc);
738 pc = pc + 4;
739 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
740 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
741 return start_pc;
742
743 /* We found a valid stack-check sequence, return the new PC. */
744 return pc;
745 }
746
747 /* No stack check code in our prologue, return the start_pc. */
748 return start_pc;
749 }
750
751 CORE_ADDR
752 sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
753 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
754 {
755 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
756 unsigned long insn;
757 int offset = 0;
758 int dest = -1;
759
760 pc = sparc_skip_stack_check (pc);
761
762 if (current_pc <= pc)
763 return current_pc;
764
765 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
766 SPARC the linker usually defines a symbol (typically
767 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
768 This symbol makes us end up here with PC pointing at the start of
769 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
770 would do our normal prologue analysis, we would probably conclude
771 that we've got a frame when in reality we don't, since the
772 dynamic linker patches up the first PLT with some code that
773 starts with a SAVE instruction. Patch up PC such that it points
774 at the start of our PLT entry. */
775 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
776 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
777
778 insn = sparc_fetch_instruction (pc);
779
780 /* Recognize a SETHI insn and record its destination. */
781 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
782 {
783 dest = X_RD (insn);
784 offset += 4;
785
786 insn = sparc_fetch_instruction (pc + 4);
787 }
788
789 /* Allow for an arithmetic operation on DEST or %g1. */
790 if (X_OP (insn) == 2 && X_I (insn)
791 && (X_RD (insn) == 1 || X_RD (insn) == dest))
792 {
793 offset += 4;
794
795 insn = sparc_fetch_instruction (pc + 8);
796 }
797
798 /* Check for the SAVE instruction that sets up the frame. */
799 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
800 {
801 cache->frameless_p = 0;
802 return pc + offset + 4;
803 }
804
805 return pc;
806 }
807
808 static CORE_ADDR
809 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
810 {
811 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
812 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
813 }
814
815 /* Return PC of first real instruction of the function starting at
816 START_PC. */
817
818 static CORE_ADDR
819 sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
820 {
821 struct symtab_and_line sal;
822 CORE_ADDR func_start, func_end;
823 struct sparc_frame_cache cache;
824
825 /* This is the preferred method, find the end of the prologue by
826 using the debugging information. */
827 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
828 {
829 sal = find_pc_line (func_start, 0);
830
831 if (sal.end < func_end
832 && start_pc <= sal.end)
833 return sal.end;
834 }
835
836 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
837
838 /* The psABI says that "Although the first 6 words of arguments
839 reside in registers, the standard stack frame reserves space for
840 them.". It also suggests that a function may use that space to
841 "write incoming arguments 0 to 5" into that space, and that's
842 indeed what GCC seems to be doing. In that case GCC will
843 generate debug information that points to the stack slots instead
844 of the registers, so we should consider the instructions that
845 write out these incoming arguments onto the stack. Of course we
846 only need to do this if we have a stack frame. */
847
848 while (!cache.frameless_p)
849 {
850 unsigned long insn = sparc_fetch_instruction (start_pc);
851
852 /* Recognize instructions that store incoming arguments in
853 %i0...%i5 into the corresponding stack slot. */
854 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
855 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
856 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
857 {
858 start_pc += 4;
859 continue;
860 }
861
862 break;
863 }
864
865 return start_pc;
866 }
867
868 /* Normal frames. */
869
870 struct sparc_frame_cache *
871 sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
872 {
873 struct sparc_frame_cache *cache;
874
875 if (*this_cache)
876 return *this_cache;
877
878 cache = sparc_alloc_frame_cache ();
879 *this_cache = cache;
880
881 cache->pc = get_frame_func (this_frame);
882 if (cache->pc != 0)
883 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
884 get_frame_pc (this_frame), cache);
885
886 if (cache->frameless_p)
887 {
888 /* This function is frameless, so %fp (%i6) holds the frame
889 pointer for our calling frame. Use %sp (%o6) as this frame's
890 base address. */
891 cache->base =
892 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
893 }
894 else
895 {
896 /* For normal frames, %fp (%i6) holds the frame pointer, the
897 base address for the current stack frame. */
898 cache->base =
899 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
900 }
901
902 if (cache->base & 1)
903 cache->base += BIAS;
904
905 return cache;
906 }
907
908 static int
909 sparc32_struct_return_from_sym (struct symbol *sym)
910 {
911 struct type *type = check_typedef (SYMBOL_TYPE (sym));
912 enum type_code code = TYPE_CODE (type);
913
914 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
915 {
916 type = check_typedef (TYPE_TARGET_TYPE (type));
917 if (sparc_structure_or_union_p (type)
918 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
919 return 1;
920 }
921
922 return 0;
923 }
924
925 struct sparc_frame_cache *
926 sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
927 {
928 struct sparc_frame_cache *cache;
929 struct symbol *sym;
930
931 if (*this_cache)
932 return *this_cache;
933
934 cache = sparc_frame_cache (this_frame, this_cache);
935
936 sym = find_pc_function (cache->pc);
937 if (sym)
938 {
939 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
940 }
941 else
942 {
943 /* There is no debugging information for this function to
944 help us determine whether this function returns a struct
945 or not. So we rely on another heuristic which is to check
946 the instruction at the return address and see if this is
947 an "unimp" instruction. If it is, then it is a struct-return
948 function. */
949 CORE_ADDR pc;
950 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
951
952 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
953 if (sparc_is_unimp_insn (pc))
954 cache->struct_return_p = 1;
955 }
956
957 return cache;
958 }
959
960 static void
961 sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
962 struct frame_id *this_id)
963 {
964 struct sparc_frame_cache *cache =
965 sparc32_frame_cache (this_frame, this_cache);
966
967 /* This marks the outermost frame. */
968 if (cache->base == 0)
969 return;
970
971 (*this_id) = frame_id_build (cache->base, cache->pc);
972 }
973
974 static struct value *
975 sparc32_frame_prev_register (struct frame_info *this_frame,
976 void **this_cache, int regnum)
977 {
978 struct gdbarch *gdbarch = get_frame_arch (this_frame);
979 struct sparc_frame_cache *cache =
980 sparc32_frame_cache (this_frame, this_cache);
981
982 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
983 {
984 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
985
986 /* If this functions has a Structure, Union or Quad-Precision
987 return value, we have to skip the UNIMP instruction that encodes
988 the size of the structure. */
989 if (cache->struct_return_p)
990 pc += 4;
991
992 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
993 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
994 return frame_unwind_got_constant (this_frame, regnum, pc);
995 }
996
997 /* Handle StackGhost. */
998 {
999 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1000
1001 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1002 {
1003 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1004 ULONGEST i7;
1005
1006 /* Read the value in from memory. */
1007 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1008 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
1009 }
1010 }
1011
1012 /* The previous frame's `local' and `in' registers have been saved
1013 in the register save area. */
1014 if (!cache->frameless_p
1015 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
1016 {
1017 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1018
1019 return frame_unwind_got_memory (this_frame, regnum, addr);
1020 }
1021
1022 /* The previous frame's `out' registers are accessible as the
1023 current frame's `in' registers. */
1024 if (!cache->frameless_p
1025 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
1026 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1027
1028 return frame_unwind_got_register (this_frame, regnum, regnum);
1029 }
1030
1031 static const struct frame_unwind sparc32_frame_unwind =
1032 {
1033 NORMAL_FRAME,
1034 default_frame_unwind_stop_reason,
1035 sparc32_frame_this_id,
1036 sparc32_frame_prev_register,
1037 NULL,
1038 default_frame_sniffer
1039 };
1040 \f
1041
1042 static CORE_ADDR
1043 sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
1044 {
1045 struct sparc_frame_cache *cache =
1046 sparc32_frame_cache (this_frame, this_cache);
1047
1048 return cache->base;
1049 }
1050
1051 static const struct frame_base sparc32_frame_base =
1052 {
1053 &sparc32_frame_unwind,
1054 sparc32_frame_base_address,
1055 sparc32_frame_base_address,
1056 sparc32_frame_base_address
1057 };
1058
1059 static struct frame_id
1060 sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1061 {
1062 CORE_ADDR sp;
1063
1064 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1065 if (sp & 1)
1066 sp += BIAS;
1067 return frame_id_build (sp, get_frame_pc (this_frame));
1068 }
1069 \f
1070
1071 /* Extract a function return value of TYPE from REGCACHE, and copy
1072 that into VALBUF. */
1073
1074 static void
1075 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
1076 gdb_byte *valbuf)
1077 {
1078 int len = TYPE_LENGTH (type);
1079 gdb_byte buf[8];
1080
1081 gdb_assert (!sparc_structure_or_union_p (type));
1082 gdb_assert (!(sparc_floating_p (type) && len == 16));
1083
1084 if (sparc_floating_p (type))
1085 {
1086 /* Floating return values. */
1087 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1088 if (len > 4)
1089 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1090 memcpy (valbuf, buf, len);
1091 }
1092 else
1093 {
1094 /* Integral and pointer return values. */
1095 gdb_assert (sparc_integral_or_pointer_p (type));
1096
1097 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1098 if (len > 4)
1099 {
1100 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1101 gdb_assert (len == 8);
1102 memcpy (valbuf, buf, 8);
1103 }
1104 else
1105 {
1106 /* Just stripping off any unused bytes should preserve the
1107 signed-ness just fine. */
1108 memcpy (valbuf, buf + 4 - len, len);
1109 }
1110 }
1111 }
1112
1113 /* Store the function return value of type TYPE from VALBUF into
1114 REGCACHE. */
1115
1116 static void
1117 sparc32_store_return_value (struct type *type, struct regcache *regcache,
1118 const gdb_byte *valbuf)
1119 {
1120 int len = TYPE_LENGTH (type);
1121 gdb_byte buf[8];
1122
1123 gdb_assert (!sparc_structure_or_union_p (type));
1124 gdb_assert (!(sparc_floating_p (type) && len == 16));
1125 gdb_assert (len <= 8);
1126
1127 if (sparc_floating_p (type))
1128 {
1129 /* Floating return values. */
1130 memcpy (buf, valbuf, len);
1131 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1132 if (len > 4)
1133 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1134 }
1135 else
1136 {
1137 /* Integral and pointer return values. */
1138 gdb_assert (sparc_integral_or_pointer_p (type));
1139
1140 if (len > 4)
1141 {
1142 gdb_assert (len == 8);
1143 memcpy (buf, valbuf, 8);
1144 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
1145 }
1146 else
1147 {
1148 /* ??? Do we need to do any sign-extension here? */
1149 memcpy (buf + 4 - len, valbuf, len);
1150 }
1151 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
1152 }
1153 }
1154
1155 static enum return_value_convention
1156 sparc32_return_value (struct gdbarch *gdbarch, struct type *func_type,
1157 struct type *type, struct regcache *regcache,
1158 gdb_byte *readbuf, const gdb_byte *writebuf)
1159 {
1160 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1161
1162 /* The psABI says that "...every stack frame reserves the word at
1163 %fp+64. If a function returns a structure, union, or
1164 quad-precision value, this word should hold the address of the
1165 object into which the return value should be copied." This
1166 guarantees that we can always find the return value, not just
1167 before the function returns. */
1168
1169 if (sparc_structure_or_union_p (type)
1170 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1171 {
1172 if (readbuf)
1173 {
1174 ULONGEST sp;
1175 CORE_ADDR addr;
1176
1177 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1178 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1179 read_memory (addr, readbuf, TYPE_LENGTH (type));
1180 }
1181
1182 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1183 }
1184
1185 if (readbuf)
1186 sparc32_extract_return_value (type, regcache, readbuf);
1187 if (writebuf)
1188 sparc32_store_return_value (type, regcache, writebuf);
1189
1190 return RETURN_VALUE_REGISTER_CONVENTION;
1191 }
1192
1193 static int
1194 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1195 {
1196 return (sparc_structure_or_union_p (type)
1197 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1198 }
1199
1200 static int
1201 sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
1202 {
1203 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1204 struct symbol *sym = find_pc_function (pc);
1205
1206 if (sym)
1207 return sparc32_struct_return_from_sym (sym);
1208 return 0;
1209 }
1210
1211 static void
1212 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1213 struct dwarf2_frame_state_reg *reg,
1214 struct frame_info *this_frame)
1215 {
1216 int off;
1217
1218 switch (regnum)
1219 {
1220 case SPARC_G0_REGNUM:
1221 /* Since %g0 is always zero, there is no point in saving it, and
1222 people will be inclined omit it from the CFI. Make sure we
1223 don't warn about that. */
1224 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1225 break;
1226 case SPARC_SP_REGNUM:
1227 reg->how = DWARF2_FRAME_REG_CFA;
1228 break;
1229 case SPARC32_PC_REGNUM:
1230 case SPARC32_NPC_REGNUM:
1231 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1232 off = 8;
1233 if (sparc32_dwarf2_struct_return_p (this_frame))
1234 off += 4;
1235 if (regnum == SPARC32_NPC_REGNUM)
1236 off += 4;
1237 reg->loc.offset = off;
1238 break;
1239 }
1240 }
1241
1242 \f
1243 /* The SPARC Architecture doesn't have hardware single-step support,
1244 and most operating systems don't implement it either, so we provide
1245 software single-step mechanism. */
1246
1247 static CORE_ADDR
1248 sparc_analyze_control_transfer (struct frame_info *frame,
1249 CORE_ADDR pc, CORE_ADDR *npc)
1250 {
1251 unsigned long insn = sparc_fetch_instruction (pc);
1252 int conditional_p = X_COND (insn) & 0x7;
1253 int branch_p = 0;
1254 long offset = 0; /* Must be signed for sign-extend. */
1255
1256 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
1257 {
1258 /* Branch on Integer Register with Prediction (BPr). */
1259 branch_p = 1;
1260 conditional_p = 1;
1261 }
1262 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1263 {
1264 /* Branch on Floating-Point Condition Codes (FBfcc). */
1265 branch_p = 1;
1266 offset = 4 * X_DISP22 (insn);
1267 }
1268 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1269 {
1270 /* Branch on Floating-Point Condition Codes with Prediction
1271 (FBPfcc). */
1272 branch_p = 1;
1273 offset = 4 * X_DISP19 (insn);
1274 }
1275 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1276 {
1277 /* Branch on Integer Condition Codes (Bicc). */
1278 branch_p = 1;
1279 offset = 4 * X_DISP22 (insn);
1280 }
1281 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1282 {
1283 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1284 branch_p = 1;
1285 offset = 4 * X_DISP19 (insn);
1286 }
1287 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1288 {
1289 /* Trap instruction (TRAP). */
1290 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
1291 }
1292
1293 /* FIXME: Handle DONE and RETRY instructions. */
1294
1295 if (branch_p)
1296 {
1297 if (conditional_p)
1298 {
1299 /* For conditional branches, return nPC + 4 iff the annul
1300 bit is 1. */
1301 return (X_A (insn) ? *npc + 4 : 0);
1302 }
1303 else
1304 {
1305 /* For unconditional branches, return the target if its
1306 specified condition is "always" and return nPC + 4 if the
1307 condition is "never". If the annul bit is 1, set *NPC to
1308 zero. */
1309 if (X_COND (insn) == 0x0)
1310 pc = *npc, offset = 4;
1311 if (X_A (insn))
1312 *npc = 0;
1313
1314 gdb_assert (offset != 0);
1315 return pc + offset;
1316 }
1317 }
1318
1319 return 0;
1320 }
1321
1322 static CORE_ADDR
1323 sparc_step_trap (struct frame_info *frame, unsigned long insn)
1324 {
1325 return 0;
1326 }
1327
1328 int
1329 sparc_software_single_step (struct frame_info *frame)
1330 {
1331 struct gdbarch *arch = get_frame_arch (frame);
1332 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1333 struct address_space *aspace = get_frame_address_space (frame);
1334 CORE_ADDR npc, nnpc;
1335
1336 CORE_ADDR pc, orig_npc;
1337
1338 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1339 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
1340
1341 /* Analyze the instruction at PC. */
1342 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
1343 if (npc != 0)
1344 insert_single_step_breakpoint (arch, aspace, npc);
1345
1346 if (nnpc != 0)
1347 insert_single_step_breakpoint (arch, aspace, nnpc);
1348
1349 /* Assert that we have set at least one breakpoint, and that
1350 they're not set at the same spot - unless we're going
1351 from here straight to NULL, i.e. a call or jump to 0. */
1352 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1353 gdb_assert (nnpc != npc || orig_npc == 0);
1354
1355 return 1;
1356 }
1357
1358 static void
1359 sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
1360 {
1361 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1362
1363 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1364 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
1365 }
1366 \f
1367
1368 /* Return the appropriate register set for the core section identified
1369 by SECT_NAME and SECT_SIZE. */
1370
1371 static const struct regset *
1372 sparc_regset_from_core_section (struct gdbarch *gdbarch,
1373 const char *sect_name, size_t sect_size)
1374 {
1375 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1376
1377 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
1378 return tdep->gregset;
1379
1380 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
1381 return tdep->fpregset;
1382
1383 return NULL;
1384 }
1385 \f
1386
1387 static struct gdbarch *
1388 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1389 {
1390 struct gdbarch_tdep *tdep;
1391 struct gdbarch *gdbarch;
1392
1393 /* If there is already a candidate, use it. */
1394 arches = gdbarch_list_lookup_by_info (arches, &info);
1395 if (arches != NULL)
1396 return arches->gdbarch;
1397
1398 /* Allocate space for the new architecture. */
1399 tdep = XZALLOC (struct gdbarch_tdep);
1400 gdbarch = gdbarch_alloc (&info, tdep);
1401
1402 tdep->pc_regnum = SPARC32_PC_REGNUM;
1403 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1404 tdep->step_trap = sparc_step_trap;
1405
1406 set_gdbarch_long_double_bit (gdbarch, 128);
1407 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
1408
1409 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1410 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1411 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1412 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1413 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1414 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1415
1416 /* Register numbers of various important registers. */
1417 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1418 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1419 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1420
1421 /* Call dummy code. */
1422 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
1423 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1424 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1425 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1426
1427 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1428 set_gdbarch_stabs_argument_has_addr
1429 (gdbarch, sparc32_stabs_argument_has_addr);
1430
1431 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1432
1433 /* Stack grows downward. */
1434 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1435
1436 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
1437
1438 set_gdbarch_frame_args_skip (gdbarch, 8);
1439
1440 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
1441
1442 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1443 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1444
1445 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
1446
1447 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1448
1449 frame_base_set_default (gdbarch, &sparc32_frame_base);
1450
1451 /* Hook in the DWARF CFI frame unwinder. */
1452 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1453 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1454 StackGhost issues have been resolved. */
1455
1456 /* Hook in ABI-specific overrides, if they have been registered. */
1457 gdbarch_init_osabi (info, gdbarch);
1458
1459 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
1460
1461 /* If we have register sets, enable the generic core file support. */
1462 if (tdep->gregset)
1463 set_gdbarch_regset_from_core_section (gdbarch,
1464 sparc_regset_from_core_section);
1465
1466 return gdbarch;
1467 }
1468 \f
1469 /* Helper functions for dealing with register windows. */
1470
1471 void
1472 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1473 {
1474 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1475 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1476 int offset = 0;
1477 gdb_byte buf[8];
1478 int i;
1479
1480 if (sp & 1)
1481 {
1482 /* Registers are 64-bit. */
1483 sp += BIAS;
1484
1485 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1486 {
1487 if (regnum == i || regnum == -1)
1488 {
1489 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1490
1491 /* Handle StackGhost. */
1492 if (i == SPARC_I7_REGNUM)
1493 {
1494 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1495 ULONGEST i7;
1496
1497 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1498 store_unsigned_integer (buf + offset, 8, byte_order,
1499 i7 ^ wcookie);
1500 }
1501
1502 regcache_raw_supply (regcache, i, buf);
1503 }
1504 }
1505 }
1506 else
1507 {
1508 /* Registers are 32-bit. Toss any sign-extension of the stack
1509 pointer. */
1510 sp &= 0xffffffffUL;
1511
1512 /* Clear out the top half of the temporary buffer, and put the
1513 register value in the bottom half if we're in 64-bit mode. */
1514 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1515 {
1516 memset (buf, 0, 4);
1517 offset = 4;
1518 }
1519
1520 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1521 {
1522 if (regnum == i || regnum == -1)
1523 {
1524 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1525 buf + offset, 4);
1526
1527 /* Handle StackGhost. */
1528 if (i == SPARC_I7_REGNUM)
1529 {
1530 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1531 ULONGEST i7;
1532
1533 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1534 store_unsigned_integer (buf + offset, 4, byte_order,
1535 i7 ^ wcookie);
1536 }
1537
1538 regcache_raw_supply (regcache, i, buf);
1539 }
1540 }
1541 }
1542 }
1543
1544 void
1545 sparc_collect_rwindow (const struct regcache *regcache,
1546 CORE_ADDR sp, int regnum)
1547 {
1548 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1549 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1550 int offset = 0;
1551 gdb_byte buf[8];
1552 int i;
1553
1554 if (sp & 1)
1555 {
1556 /* Registers are 64-bit. */
1557 sp += BIAS;
1558
1559 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1560 {
1561 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1562 {
1563 regcache_raw_collect (regcache, i, buf);
1564
1565 /* Handle StackGhost. */
1566 if (i == SPARC_I7_REGNUM)
1567 {
1568 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1569 ULONGEST i7;
1570
1571 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1572 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
1573 }
1574
1575 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1576 }
1577 }
1578 }
1579 else
1580 {
1581 /* Registers are 32-bit. Toss any sign-extension of the stack
1582 pointer. */
1583 sp &= 0xffffffffUL;
1584
1585 /* Only use the bottom half if we're in 64-bit mode. */
1586 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1587 offset = 4;
1588
1589 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1590 {
1591 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1592 {
1593 regcache_raw_collect (regcache, i, buf);
1594
1595 /* Handle StackGhost. */
1596 if (i == SPARC_I7_REGNUM)
1597 {
1598 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1599 ULONGEST i7;
1600
1601 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1602 store_unsigned_integer (buf + offset, 4, byte_order,
1603 i7 ^ wcookie);
1604 }
1605
1606 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1607 buf + offset, 4);
1608 }
1609 }
1610 }
1611 }
1612
1613 /* Helper functions for dealing with register sets. */
1614
1615 void
1616 sparc32_supply_gregset (const struct sparc_gregset *gregset,
1617 struct regcache *regcache,
1618 int regnum, const void *gregs)
1619 {
1620 const gdb_byte *regs = gregs;
1621 gdb_byte zero[4] = { 0 };
1622 int i;
1623
1624 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1625 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1626 regs + gregset->r_psr_offset);
1627
1628 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1629 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1630 regs + gregset->r_pc_offset);
1631
1632 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1633 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1634 regs + gregset->r_npc_offset);
1635
1636 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1637 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1638 regs + gregset->r_y_offset);
1639
1640 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1641 regcache_raw_supply (regcache, SPARC_G0_REGNUM, &zero);
1642
1643 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1644 {
1645 int offset = gregset->r_g1_offset;
1646
1647 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1648 {
1649 if (regnum == i || regnum == -1)
1650 regcache_raw_supply (regcache, i, regs + offset);
1651 offset += 4;
1652 }
1653 }
1654
1655 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1656 {
1657 /* Not all of the register set variants include Locals and
1658 Inputs. For those that don't, we read them off the stack. */
1659 if (gregset->r_l0_offset == -1)
1660 {
1661 ULONGEST sp;
1662
1663 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1664 sparc_supply_rwindow (regcache, sp, regnum);
1665 }
1666 else
1667 {
1668 int offset = gregset->r_l0_offset;
1669
1670 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1671 {
1672 if (regnum == i || regnum == -1)
1673 regcache_raw_supply (regcache, i, regs + offset);
1674 offset += 4;
1675 }
1676 }
1677 }
1678 }
1679
1680 void
1681 sparc32_collect_gregset (const struct sparc_gregset *gregset,
1682 const struct regcache *regcache,
1683 int regnum, void *gregs)
1684 {
1685 gdb_byte *regs = gregs;
1686 int i;
1687
1688 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1689 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1690 regs + gregset->r_psr_offset);
1691
1692 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1693 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1694 regs + gregset->r_pc_offset);
1695
1696 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1697 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1698 regs + gregset->r_npc_offset);
1699
1700 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1701 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1702 regs + gregset->r_y_offset);
1703
1704 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1705 {
1706 int offset = gregset->r_g1_offset;
1707
1708 /* %g0 is always zero. */
1709 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1710 {
1711 if (regnum == i || regnum == -1)
1712 regcache_raw_collect (regcache, i, regs + offset);
1713 offset += 4;
1714 }
1715 }
1716
1717 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1718 {
1719 /* Not all of the register set variants include Locals and
1720 Inputs. For those that don't, we read them off the stack. */
1721 if (gregset->r_l0_offset != -1)
1722 {
1723 int offset = gregset->r_l0_offset;
1724
1725 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1726 {
1727 if (regnum == i || regnum == -1)
1728 regcache_raw_collect (regcache, i, regs + offset);
1729 offset += 4;
1730 }
1731 }
1732 }
1733 }
1734
1735 void
1736 sparc32_supply_fpregset (struct regcache *regcache,
1737 int regnum, const void *fpregs)
1738 {
1739 const gdb_byte *regs = fpregs;
1740 int i;
1741
1742 for (i = 0; i < 32; i++)
1743 {
1744 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1745 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1746 }
1747
1748 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1749 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1750 }
1751
1752 void
1753 sparc32_collect_fpregset (const struct regcache *regcache,
1754 int regnum, void *fpregs)
1755 {
1756 gdb_byte *regs = fpregs;
1757 int i;
1758
1759 for (i = 0; i < 32; i++)
1760 {
1761 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1762 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1763 }
1764
1765 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1766 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1767 }
1768 \f
1769
1770 /* SunOS 4. */
1771
1772 /* From <machine/reg.h>. */
1773 const struct sparc_gregset sparc32_sunos4_gregset =
1774 {
1775 0 * 4, /* %psr */
1776 1 * 4, /* %pc */
1777 2 * 4, /* %npc */
1778 3 * 4, /* %y */
1779 -1, /* %wim */
1780 -1, /* %tbr */
1781 4 * 4, /* %g1 */
1782 -1 /* %l0 */
1783 };
1784 \f
1785
1786 /* Provide a prototype to silence -Wmissing-prototypes. */
1787 void _initialize_sparc_tdep (void);
1788
1789 void
1790 _initialize_sparc_tdep (void)
1791 {
1792 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
1793 }
This page took 0.094119 seconds and 4 git commands to generate.