* vax-tdep.h (vax_regnum): Add VAX_R0_REGNUM and VAX_R1_REGNUM.
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for SPARC.
2
3 Copyright 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "dis-asm.h"
25 #include "floatformat.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "gdbcore.h"
30 #include "gdbtypes.h"
31 #include "inferior.h"
32 #include "symtab.h"
33 #include "objfiles.h"
34 #include "osabi.h"
35 #include "regcache.h"
36 #include "target.h"
37 #include "value.h"
38
39 #include "gdb_assert.h"
40 #include "gdb_string.h"
41
42 #include "sparc-tdep.h"
43
44 struct regset;
45
46 /* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
49 lists changes with respect to the original 32-bit psABI as defined
50 in the "System V ABI, SPARC Processor Supplement".
51
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
58 2.x is SVR4-based. */
59
60 /* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
64
65 /* The SPARC Floating-Point Quad-Precision format is similar to
66 big-endian IA-64 Quad-recision format. */
67 #define floatformat_sparc_quad floatformat_ia64_quad_big
68
69 /* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
72 #undef BIAS
73 #define BIAS 2047
74
75 /* Macros to extract fields from SPARC instructions. */
76 #define X_OP(i) (((i) >> 30) & 0x3)
77 #define X_RD(i) (((i) >> 25) & 0x1f)
78 #define X_A(i) (((i) >> 29) & 1)
79 #define X_COND(i) (((i) >> 25) & 0xf)
80 #define X_OP2(i) (((i) >> 22) & 0x7)
81 #define X_IMM22(i) ((i) & 0x3fffff)
82 #define X_OP3(i) (((i) >> 19) & 0x3f)
83 #define X_I(i) (((i) >> 13) & 1)
84 /* Sign extension macros. */
85 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
86 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
87
88 /* Fetch the instruction at PC. Instructions are always big-endian
89 even if the processor operates in little-endian mode. */
90
91 unsigned long
92 sparc_fetch_instruction (CORE_ADDR pc)
93 {
94 unsigned char buf[4];
95 unsigned long insn;
96 int i;
97
98 /* If we can't read the instruction at PC, return zero. */
99 if (target_read_memory (pc, buf, sizeof (buf)))
100 return 0;
101
102 insn = 0;
103 for (i = 0; i < sizeof (buf); i++)
104 insn = (insn << 8) | buf[i];
105 return insn;
106 }
107 \f
108
109 /* OpenBSD/sparc includes StackGhost, which according to the author's
110 website http://stackghost.cerias.purdue.edu "... transparently and
111 automatically protects applications' stack frames; more
112 specifically, it guards the return pointers. The protection
113 mechanisms require no application source or binary modification and
114 imposes only a negligible performance penalty."
115
116 The same website provides the following description of how
117 StackGhost works:
118
119 "StackGhost interfaces with the kernel trap handler that would
120 normally write out registers to the stack and the handler that
121 would read them back in. By XORing a cookie into the
122 return-address saved in the user stack when it is actually written
123 to the stack, and then XOR it out when the return-address is pulled
124 from the stack, StackGhost can cause attacker corrupted return
125 pointers to behave in a manner the attacker cannot predict.
126 StackGhost can also use several unused bits in the return pointer
127 to detect a smashed return pointer and abort the process."
128
129 For GDB this means that whenever we're reading %i7 from a stack
130 frame's window save area, we'll have to XOR the cookie.
131
132 More information on StackGuard can be found on in:
133
134 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
135 Stack Protection." 2001. Published in USENIX Security Symposium
136 '01. */
137
138 /* Fetch StackGhost Per-Process XOR cookie. */
139
140 ULONGEST
141 sparc_fetch_wcookie (void)
142 {
143 struct target_ops *ops = &current_target;
144 char buf[8];
145 int len;
146
147 len = target_read_partial (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
148 if (len == -1)
149 return 0;
150
151 /* We should have either an 32-bit or an 64-bit cookie. */
152 gdb_assert (len == 4 || len == 8);
153
154 return extract_unsigned_integer (buf, len);
155 }
156 \f
157
158 /* Return the contents if register REGNUM as an address. */
159
160 static CORE_ADDR
161 sparc_address_from_register (int regnum)
162 {
163 ULONGEST addr;
164
165 regcache_cooked_read_unsigned (current_regcache, regnum, &addr);
166 return addr;
167 }
168 \f
169
170 /* The functions on this page are intended to be used to classify
171 function arguments. */
172
173 /* Check whether TYPE is "Integral or Pointer". */
174
175 static int
176 sparc_integral_or_pointer_p (const struct type *type)
177 {
178 switch (TYPE_CODE (type))
179 {
180 case TYPE_CODE_INT:
181 case TYPE_CODE_BOOL:
182 case TYPE_CODE_CHAR:
183 case TYPE_CODE_ENUM:
184 case TYPE_CODE_RANGE:
185 {
186 /* We have byte, half-word, word and extended-word/doubleword
187 integral types. The doubleword is an extension to the
188 original 32-bit ABI by the SCD 2.4.x. */
189 int len = TYPE_LENGTH (type);
190 return (len == 1 || len == 2 || len == 4 || len == 8);
191 }
192 return 1;
193 case TYPE_CODE_PTR:
194 case TYPE_CODE_REF:
195 {
196 /* Allow either 32-bit or 64-bit pointers. */
197 int len = TYPE_LENGTH (type);
198 return (len == 4 || len == 8);
199 }
200 return 1;
201 default:
202 break;
203 }
204
205 return 0;
206 }
207
208 /* Check whether TYPE is "Floating". */
209
210 static int
211 sparc_floating_p (const struct type *type)
212 {
213 switch (TYPE_CODE (type))
214 {
215 case TYPE_CODE_FLT:
216 {
217 int len = TYPE_LENGTH (type);
218 return (len == 4 || len == 8 || len == 16);
219 }
220 default:
221 break;
222 }
223
224 return 0;
225 }
226
227 /* Check whether TYPE is "Structure or Union". */
228
229 static int
230 sparc_structure_or_union_p (const struct type *type)
231 {
232 switch (TYPE_CODE (type))
233 {
234 case TYPE_CODE_STRUCT:
235 case TYPE_CODE_UNION:
236 return 1;
237 default:
238 break;
239 }
240
241 return 0;
242 }
243
244 /* Register information. */
245
246 static const char *sparc32_register_names[] =
247 {
248 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
249 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
250 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
251 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
252
253 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
254 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
255 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
256 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
257
258 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
259 };
260
261 /* Total number of registers. */
262 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
263
264 /* We provide the aliases %d0..%d30 for the floating registers as
265 "psuedo" registers. */
266
267 static const char *sparc32_pseudo_register_names[] =
268 {
269 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
270 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
271 };
272
273 /* Total number of pseudo registers. */
274 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
275
276 /* Return the name of register REGNUM. */
277
278 static const char *
279 sparc32_register_name (int regnum)
280 {
281 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
282 return sparc32_register_names[regnum];
283
284 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
285 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
286
287 return NULL;
288 }
289
290 /* Return the GDB type object for the "standard" data type of data in
291 register REGNUM. */
292
293 static struct type *
294 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
295 {
296 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
297 return builtin_type_float;
298
299 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
300 return builtin_type_double;
301
302 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
303 return builtin_type_void_data_ptr;
304
305 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
306 return builtin_type_void_func_ptr;
307
308 return builtin_type_int32;
309 }
310
311 static void
312 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
313 struct regcache *regcache,
314 int regnum, void *buf)
315 {
316 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
317
318 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
319 regcache_raw_read (regcache, regnum, buf);
320 regcache_raw_read (regcache, regnum + 1, ((char *)buf) + 4);
321 }
322
323 static void
324 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
325 struct regcache *regcache,
326 int regnum, const void *buf)
327 {
328 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
329
330 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
331 regcache_raw_write (regcache, regnum, buf);
332 regcache_raw_write (regcache, regnum + 1, ((const char *)buf) + 4);
333 }
334 \f
335
336 static CORE_ADDR
337 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
338 CORE_ADDR funcaddr, int using_gcc,
339 struct value **args, int nargs,
340 struct type *value_type,
341 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
342 {
343 *bp_addr = sp - 4;
344 *real_pc = funcaddr;
345
346 if (using_struct_return (value_type, using_gcc))
347 {
348 char buf[4];
349
350 /* This is an UNIMP instruction. */
351 store_unsigned_integer (buf, 4, TYPE_LENGTH (value_type) & 0x1fff);
352 write_memory (sp - 8, buf, 4);
353 return sp - 8;
354 }
355
356 return sp - 4;
357 }
358
359 static CORE_ADDR
360 sparc32_store_arguments (struct regcache *regcache, int nargs,
361 struct value **args, CORE_ADDR sp,
362 int struct_return, CORE_ADDR struct_addr)
363 {
364 /* Number of words in the "parameter array". */
365 int num_elements = 0;
366 int element = 0;
367 int i;
368
369 for (i = 0; i < nargs; i++)
370 {
371 struct type *type = VALUE_TYPE (args[i]);
372 int len = TYPE_LENGTH (type);
373
374 if (sparc_structure_or_union_p (type)
375 || (sparc_floating_p (type) && len == 16))
376 {
377 /* Structure, Union and Quad-Precision Arguments. */
378 sp -= len;
379
380 /* Use doubleword alignment for these values. That's always
381 correct, and wasting a few bytes shouldn't be a problem. */
382 sp &= ~0x7;
383
384 write_memory (sp, VALUE_CONTENTS (args[i]), len);
385 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
386 num_elements++;
387 }
388 else if (sparc_floating_p (type))
389 {
390 /* Floating arguments. */
391 gdb_assert (len == 4 || len == 8);
392 num_elements += (len / 4);
393 }
394 else
395 {
396 /* Integral and pointer arguments. */
397 gdb_assert (sparc_integral_or_pointer_p (type));
398
399 if (len < 4)
400 args[i] = value_cast (builtin_type_int32, args[i]);
401 num_elements += ((len + 3) / 4);
402 }
403 }
404
405 /* Always allocate at least six words. */
406 sp -= max (6, num_elements) * 4;
407
408 /* The psABI says that "Software convention requires space for the
409 struct/union return value pointer, even if the word is unused." */
410 sp -= 4;
411
412 /* The psABI says that "Although software convention and the
413 operating system require every stack frame to be doubleword
414 aligned." */
415 sp &= ~0x7;
416
417 for (i = 0; i < nargs; i++)
418 {
419 char *valbuf = VALUE_CONTENTS (args[i]);
420 struct type *type = VALUE_TYPE (args[i]);
421 int len = TYPE_LENGTH (type);
422
423 gdb_assert (len == 4 || len == 8);
424
425 if (element < 6)
426 {
427 int regnum = SPARC_O0_REGNUM + element;
428
429 regcache_cooked_write (regcache, regnum, valbuf);
430 if (len > 4 && element < 5)
431 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
432 }
433
434 /* Always store the argument in memory. */
435 write_memory (sp + 4 + element * 4, valbuf, len);
436 element += len / 4;
437 }
438
439 gdb_assert (element == num_elements);
440
441 if (struct_return)
442 {
443 char buf[4];
444
445 store_unsigned_integer (buf, 4, struct_addr);
446 write_memory (sp, buf, 4);
447 }
448
449 return sp;
450 }
451
452 static CORE_ADDR
453 sparc32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
454 struct regcache *regcache, CORE_ADDR bp_addr,
455 int nargs, struct value **args, CORE_ADDR sp,
456 int struct_return, CORE_ADDR struct_addr)
457 {
458 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
459
460 /* Set return address. */
461 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
462
463 /* Set up function arguments. */
464 sp = sparc32_store_arguments (regcache, nargs, args, sp,
465 struct_return, struct_addr);
466
467 /* Allocate the 16-word window save area. */
468 sp -= 16 * 4;
469
470 /* Stack should be doubleword aligned at this point. */
471 gdb_assert (sp % 8 == 0);
472
473 /* Finally, update the stack pointer. */
474 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
475
476 return sp;
477 }
478 \f
479
480 /* Use the program counter to determine the contents and size of a
481 breakpoint instruction. Return a pointer to a string of bytes that
482 encode a breakpoint instruction, store the length of the string in
483 *LEN and optionally adjust *PC to point to the correct memory
484 location for inserting the breakpoint. */
485
486 static const unsigned char *
487 sparc_breakpoint_from_pc (CORE_ADDR *pc, int *len)
488 {
489 static unsigned char break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
490
491 *len = sizeof (break_insn);
492 return break_insn;
493 }
494 \f
495
496 /* Allocate and initialize a frame cache. */
497
498 static struct sparc_frame_cache *
499 sparc_alloc_frame_cache (void)
500 {
501 struct sparc_frame_cache *cache;
502 int i;
503
504 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
505
506 /* Base address. */
507 cache->base = 0;
508 cache->pc = 0;
509
510 /* Frameless until proven otherwise. */
511 cache->frameless_p = 1;
512
513 cache->struct_return_p = 0;
514
515 return cache;
516 }
517
518 CORE_ADDR
519 sparc_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
520 struct sparc_frame_cache *cache)
521 {
522 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
523 unsigned long insn;
524 int offset = 0;
525 int dest = -1;
526
527 if (current_pc <= pc)
528 return current_pc;
529
530 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
531 SPARC the linker usually defines a symbol (typically
532 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
533 This symbol makes us end up here with PC pointing at the start of
534 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
535 would do our normal prologue analysis, we would probably conclude
536 that we've got a frame when in reality we don't, since the
537 dynamic linker patches up the first PLT with some code that
538 starts with a SAVE instruction. Patch up PC such that it points
539 at the start of our PLT entry. */
540 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
541 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
542
543 insn = sparc_fetch_instruction (pc);
544
545 /* Recognize a SETHI insn and record its destination. */
546 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
547 {
548 dest = X_RD (insn);
549 offset += 4;
550
551 insn = sparc_fetch_instruction (pc + 4);
552 }
553
554 /* Allow for an arithmetic operation on DEST or %g1. */
555 if (X_OP (insn) == 2 && X_I (insn)
556 && (X_RD (insn) == 1 || X_RD (insn) == dest))
557 {
558 offset += 4;
559
560 insn = sparc_fetch_instruction (pc + 8);
561 }
562
563 /* Check for the SAVE instruction that sets up the frame. */
564 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
565 {
566 cache->frameless_p = 0;
567 return pc + offset + 4;
568 }
569
570 return pc;
571 }
572
573 static CORE_ADDR
574 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
575 {
576 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
577 return frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
578 }
579
580 /* Return PC of first real instruction of the function starting at
581 START_PC. */
582
583 static CORE_ADDR
584 sparc32_skip_prologue (CORE_ADDR start_pc)
585 {
586 struct symtab_and_line sal;
587 CORE_ADDR func_start, func_end;
588 struct sparc_frame_cache cache;
589
590 /* This is the preferred method, find the end of the prologue by
591 using the debugging information. */
592 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
593 {
594 sal = find_pc_line (func_start, 0);
595
596 if (sal.end < func_end
597 && start_pc <= sal.end)
598 return sal.end;
599 }
600
601 return sparc_analyze_prologue (start_pc, 0xffffffffUL, &cache);
602 }
603
604 /* Normal frames. */
605
606 struct sparc_frame_cache *
607 sparc_frame_cache (struct frame_info *next_frame, void **this_cache)
608 {
609 struct sparc_frame_cache *cache;
610
611 if (*this_cache)
612 return *this_cache;
613
614 cache = sparc_alloc_frame_cache ();
615 *this_cache = cache;
616
617 cache->pc = frame_func_unwind (next_frame);
618 if (cache->pc != 0)
619 {
620 CORE_ADDR addr_in_block = frame_unwind_address_in_block (next_frame);
621 sparc_analyze_prologue (cache->pc, addr_in_block, cache);
622 }
623
624 if (cache->frameless_p)
625 {
626 /* This function is frameless, so %fp (%i6) holds the frame
627 pointer for our calling frame. Use %sp (%o6) as this frame's
628 base address. */
629 cache->base =
630 frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
631 }
632 else
633 {
634 /* For normal frames, %fp (%i6) holds the frame pointer, the
635 base address for the current stack frame. */
636 cache->base =
637 frame_unwind_register_unsigned (next_frame, SPARC_FP_REGNUM);
638 }
639
640 return cache;
641 }
642
643 struct sparc_frame_cache *
644 sparc32_frame_cache (struct frame_info *next_frame, void **this_cache)
645 {
646 struct sparc_frame_cache *cache;
647 struct symbol *sym;
648
649 if (*this_cache)
650 return *this_cache;
651
652 cache = sparc_frame_cache (next_frame, this_cache);
653
654 sym = find_pc_function (cache->pc);
655 if (sym)
656 {
657 struct type *type = check_typedef (SYMBOL_TYPE (sym));
658 enum type_code code = TYPE_CODE (type);
659
660 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
661 {
662 type = check_typedef (TYPE_TARGET_TYPE (type));
663 if (sparc_structure_or_union_p (type)
664 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
665 cache->struct_return_p = 1;
666 }
667 }
668
669 return cache;
670 }
671
672 static void
673 sparc32_frame_this_id (struct frame_info *next_frame, void **this_cache,
674 struct frame_id *this_id)
675 {
676 struct sparc_frame_cache *cache =
677 sparc32_frame_cache (next_frame, this_cache);
678
679 /* This marks the outermost frame. */
680 if (cache->base == 0)
681 return;
682
683 (*this_id) = frame_id_build (cache->base, cache->pc);
684 }
685
686 static void
687 sparc32_frame_prev_register (struct frame_info *next_frame, void **this_cache,
688 int regnum, int *optimizedp,
689 enum lval_type *lvalp, CORE_ADDR *addrp,
690 int *realnump, void *valuep)
691 {
692 struct sparc_frame_cache *cache =
693 sparc32_frame_cache (next_frame, this_cache);
694
695 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
696 {
697 *optimizedp = 0;
698 *lvalp = not_lval;
699 *addrp = 0;
700 *realnump = -1;
701 if (valuep)
702 {
703 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
704
705 /* If this functions has a Structure, Union or
706 Quad-Precision return value, we have to skip the UNIMP
707 instruction that encodes the size of the structure. */
708 if (cache->struct_return_p)
709 pc += 4;
710
711 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
712 pc += frame_unwind_register_unsigned (next_frame, regnum) + 8;
713 store_unsigned_integer (valuep, 4, pc);
714 }
715 return;
716 }
717
718 /* Handle StackGhost. */
719 {
720 ULONGEST wcookie = sparc_fetch_wcookie ();
721
722 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
723 {
724 *optimizedp = 0;
725 *lvalp = not_lval;
726 *addrp = 0;
727 *realnump = -1;
728 if (valuep)
729 {
730 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
731 ULONGEST i7;
732
733 /* Read the value in from memory. */
734 i7 = get_frame_memory_unsigned (next_frame, addr, 4);
735 store_unsigned_integer (valuep, 4, i7 ^ wcookie);
736 }
737 return;
738 }
739 }
740
741 /* The previous frame's `local' and `in' registers have been saved
742 in the register save area. */
743 if (!cache->frameless_p
744 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
745 {
746 *optimizedp = 0;
747 *lvalp = lval_memory;
748 *addrp = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
749 *realnump = -1;
750 if (valuep)
751 {
752 struct gdbarch *gdbarch = get_frame_arch (next_frame);
753
754 /* Read the value in from memory. */
755 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
756 }
757 return;
758 }
759
760 /* The previous frame's `out' registers are accessable as the
761 current frame's `in' registers. */
762 if (!cache->frameless_p
763 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
764 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
765
766 frame_register_unwind (next_frame, regnum,
767 optimizedp, lvalp, addrp, realnump, valuep);
768 }
769
770 static const struct frame_unwind sparc32_frame_unwind =
771 {
772 NORMAL_FRAME,
773 sparc32_frame_this_id,
774 sparc32_frame_prev_register
775 };
776
777 static const struct frame_unwind *
778 sparc32_frame_sniffer (struct frame_info *next_frame)
779 {
780 return &sparc32_frame_unwind;
781 }
782 \f
783
784 static CORE_ADDR
785 sparc32_frame_base_address (struct frame_info *next_frame, void **this_cache)
786 {
787 struct sparc_frame_cache *cache =
788 sparc32_frame_cache (next_frame, this_cache);
789
790 return cache->base;
791 }
792
793 static const struct frame_base sparc32_frame_base =
794 {
795 &sparc32_frame_unwind,
796 sparc32_frame_base_address,
797 sparc32_frame_base_address,
798 sparc32_frame_base_address
799 };
800
801 static struct frame_id
802 sparc_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
803 {
804 CORE_ADDR sp;
805
806 sp = frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
807 return frame_id_build (sp, frame_pc_unwind (next_frame));
808 }
809 \f
810
811 /* Extract from an array REGBUF containing the (raw) register state, a
812 function return value of TYPE, and copy that into VALBUF. */
813
814 static void
815 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
816 void *valbuf)
817 {
818 int len = TYPE_LENGTH (type);
819 char buf[8];
820
821 gdb_assert (!sparc_structure_or_union_p (type));
822 gdb_assert (!(sparc_floating_p (type) && len == 16));
823
824 if (sparc_floating_p (type))
825 {
826 /* Floating return values. */
827 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
828 if (len > 4)
829 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
830 memcpy (valbuf, buf, len);
831 }
832 else
833 {
834 /* Integral and pointer return values. */
835 gdb_assert (sparc_integral_or_pointer_p (type));
836
837 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
838 if (len > 4)
839 {
840 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
841 gdb_assert (len == 8);
842 memcpy (valbuf, buf, 8);
843 }
844 else
845 {
846 /* Just stripping off any unused bytes should preserve the
847 signed-ness just fine. */
848 memcpy (valbuf, buf + 4 - len, len);
849 }
850 }
851 }
852
853 /* Write into the appropriate registers a function return value stored
854 in VALBUF of type TYPE. */
855
856 static void
857 sparc32_store_return_value (struct type *type, struct regcache *regcache,
858 const void *valbuf)
859 {
860 int len = TYPE_LENGTH (type);
861 char buf[8];
862
863 gdb_assert (!sparc_structure_or_union_p (type));
864 gdb_assert (!(sparc_floating_p (type) && len == 16));
865
866 if (sparc_floating_p (type))
867 {
868 /* Floating return values. */
869 memcpy (buf, valbuf, len);
870 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
871 if (len > 4)
872 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
873 }
874 else
875 {
876 /* Integral and pointer return values. */
877 gdb_assert (sparc_integral_or_pointer_p (type));
878
879 if (len > 4)
880 {
881 gdb_assert (len == 8);
882 memcpy (buf, valbuf, 8);
883 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
884 }
885 else
886 {
887 /* ??? Do we need to do any sign-extension here? */
888 memcpy (buf + 4 - len, valbuf, len);
889 }
890 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
891 }
892 }
893
894 static enum return_value_convention
895 sparc32_return_value (struct gdbarch *gdbarch, struct type *type,
896 struct regcache *regcache, void *readbuf,
897 const void *writebuf)
898 {
899 if (sparc_structure_or_union_p (type)
900 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
901 return RETURN_VALUE_STRUCT_CONVENTION;
902
903 if (readbuf)
904 sparc32_extract_return_value (type, regcache, readbuf);
905 if (writebuf)
906 sparc32_store_return_value (type, regcache, writebuf);
907
908 return RETURN_VALUE_REGISTER_CONVENTION;
909 }
910
911 #if 0
912 /* NOTE: cagney/2004-01-17: For the moment disable this method. The
913 architecture and CORE-gdb will need new code (and a replacement for
914 DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS) before this can be made to
915 work robustly. Here is a possible function signature: */
916 /* NOTE: cagney/2004-01-17: So far only the 32-bit SPARC ABI has been
917 identifed as having a way to robustly recover the address of a
918 struct-convention return-value (after the function has returned).
919 For all other ABIs so far examined, the calling convention makes no
920 guarenteed that the register containing the return-value will be
921 preserved and hence that the return-value's address can be
922 recovered. */
923 /* Extract from REGCACHE, which contains the (raw) register state, the
924 address in which a function should return its structure value, as a
925 CORE_ADDR. */
926
927 static CORE_ADDR
928 sparc32_extract_struct_value_address (struct regcache *regcache)
929 {
930 ULONGEST sp;
931
932 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
933 return read_memory_unsigned_integer (sp + 64, 4);
934 }
935 #endif
936
937 static int
938 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
939 {
940 return (sparc_structure_or_union_p (type)
941 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
942 }
943
944 \f
945 /* The SPARC Architecture doesn't have hardware single-step support,
946 and most operating systems don't implement it either, so we provide
947 software single-step mechanism. */
948
949 static CORE_ADDR
950 sparc_analyze_control_transfer (CORE_ADDR pc, CORE_ADDR *npc)
951 {
952 unsigned long insn = sparc_fetch_instruction (pc);
953 int conditional_p = X_COND (insn) & 0x7;
954 int branch_p = 0;
955 long offset = 0; /* Must be signed for sign-extend. */
956
957 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
958 {
959 /* Branch on Integer Register with Prediction (BPr). */
960 branch_p = 1;
961 conditional_p = 1;
962 }
963 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
964 {
965 /* Branch on Floating-Point Condition Codes (FBfcc). */
966 branch_p = 1;
967 offset = 4 * X_DISP22 (insn);
968 }
969 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
970 {
971 /* Branch on Floating-Point Condition Codes with Prediction
972 (FBPfcc). */
973 branch_p = 1;
974 offset = 4 * X_DISP19 (insn);
975 }
976 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
977 {
978 /* Branch on Integer Condition Codes (Bicc). */
979 branch_p = 1;
980 offset = 4 * X_DISP22 (insn);
981 }
982 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
983 {
984 /* Branch on Integer Condition Codes with Prediction (BPcc). */
985 branch_p = 1;
986 offset = 4 * X_DISP19 (insn);
987 }
988
989 /* FIXME: Handle DONE and RETRY instructions. */
990
991 /* FIXME: Handle the Trap instruction. */
992
993 if (branch_p)
994 {
995 if (conditional_p)
996 {
997 /* For conditional branches, return nPC + 4 iff the annul
998 bit is 1. */
999 return (X_A (insn) ? *npc + 4 : 0);
1000 }
1001 else
1002 {
1003 /* For unconditional branches, return the target if its
1004 specified condition is "always" and return nPC + 4 if the
1005 condition is "never". If the annul bit is 1, set *NPC to
1006 zero. */
1007 if (X_COND (insn) == 0x0)
1008 pc = *npc, offset = 4;
1009 if (X_A (insn))
1010 *npc = 0;
1011
1012 gdb_assert (offset != 0);
1013 return pc + offset;
1014 }
1015 }
1016
1017 return 0;
1018 }
1019
1020 void
1021 sparc_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1022 {
1023 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1024 static CORE_ADDR npc, nnpc;
1025 static char npc_save[4], nnpc_save[4];
1026
1027 if (insert_breakpoints_p)
1028 {
1029 CORE_ADDR pc;
1030
1031 pc = sparc_address_from_register (tdep->pc_regnum);
1032 npc = sparc_address_from_register (tdep->npc_regnum);
1033
1034 /* Analyze the instruction at PC. */
1035 nnpc = sparc_analyze_control_transfer (pc, &npc);
1036 if (npc != 0)
1037 target_insert_breakpoint (npc, npc_save);
1038 if (nnpc != 0)
1039 target_insert_breakpoint (nnpc, nnpc_save);
1040
1041 /* Assert that we have set at least one breakpoint, and that
1042 they're not set at the same spot. */
1043 gdb_assert (npc != 0 || nnpc != 0);
1044 gdb_assert (nnpc != npc);
1045 }
1046 else
1047 {
1048 if (npc != 0)
1049 target_remove_breakpoint (npc, npc_save);
1050 if (nnpc != 0)
1051 target_remove_breakpoint (nnpc, nnpc_save);
1052 }
1053 }
1054
1055 static void
1056 sparc_write_pc (CORE_ADDR pc, ptid_t ptid)
1057 {
1058 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1059
1060 write_register_pid (tdep->pc_regnum, pc, ptid);
1061 write_register_pid (tdep->npc_regnum, pc + 4, ptid);
1062 }
1063 \f
1064 /* Unglobalize NAME. */
1065
1066 char *
1067 sparc_stabs_unglobalize_name (char *name)
1068 {
1069 /* The Sun compilers (Sun ONE Studio, Forte Developer, Sun WorkShop,
1070 SunPRO) convert file static variables into global values, a
1071 process known as globalization. In order to do this, the
1072 compiler will create a unique prefix and prepend it to each file
1073 static variable. For static variables within a function, this
1074 globalization prefix is followed by the function name (nested
1075 static variables within a function are supposed to generate a
1076 warning message, and are left alone). The procedure is
1077 documented in the Stabs Interface Manual, which is distrubuted
1078 with the compilers, although version 4.0 of the manual seems to
1079 be incorrect in some places, at least for SPARC. The
1080 globalization prefix is encoded into an N_OPT stab, with the form
1081 "G=<prefix>". The globalization prefix always seems to start
1082 with a dollar sign '$'; a dot '.' is used as a seperator. So we
1083 simply strip everything up until the last dot. */
1084
1085 if (name[0] == '$')
1086 {
1087 char *p = strrchr (name, '.');
1088 if (p)
1089 return p + 1;
1090 }
1091
1092 return name;
1093 }
1094 \f
1095
1096 /* Return the appropriate register set for the core section identified
1097 by SECT_NAME and SECT_SIZE. */
1098
1099 const struct regset *
1100 sparc_regset_from_core_section (struct gdbarch *gdbarch,
1101 const char *sect_name, size_t sect_size)
1102 {
1103 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1104
1105 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
1106 return tdep->gregset;
1107
1108 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
1109 return tdep->fpregset;
1110
1111 return NULL;
1112 }
1113 \f
1114
1115 static struct gdbarch *
1116 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1117 {
1118 struct gdbarch_tdep *tdep;
1119 struct gdbarch *gdbarch;
1120
1121 /* If there is already a candidate, use it. */
1122 arches = gdbarch_list_lookup_by_info (arches, &info);
1123 if (arches != NULL)
1124 return arches->gdbarch;
1125
1126 /* Allocate space for the new architecture. */
1127 tdep = XMALLOC (struct gdbarch_tdep);
1128 gdbarch = gdbarch_alloc (&info, tdep);
1129
1130 tdep->pc_regnum = SPARC32_PC_REGNUM;
1131 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1132 tdep->gregset = NULL;
1133 tdep->sizeof_gregset = 0;
1134 tdep->fpregset = NULL;
1135 tdep->sizeof_fpregset = 0;
1136 tdep->plt_entry_size = 0;
1137
1138 set_gdbarch_long_double_bit (gdbarch, 128);
1139 set_gdbarch_long_double_format (gdbarch, &floatformat_sparc_quad);
1140
1141 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1142 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1143 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1144 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1145 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1146 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1147
1148 /* Register numbers of various important registers. */
1149 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1150 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1151 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1152
1153 /* Call dummy code. */
1154 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1155 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1156 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1157
1158 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1159 set_gdbarch_stabs_argument_has_addr
1160 (gdbarch, sparc32_stabs_argument_has_addr);
1161
1162 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1163
1164 /* Stack grows downward. */
1165 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1166
1167 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
1168
1169 set_gdbarch_frame_args_skip (gdbarch, 8);
1170
1171 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
1172
1173 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1174 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1175
1176 set_gdbarch_unwind_dummy_id (gdbarch, sparc_unwind_dummy_id);
1177
1178 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1179
1180 frame_base_set_default (gdbarch, &sparc32_frame_base);
1181
1182 /* Hook in ABI-specific overrides, if they have been registered. */
1183 gdbarch_init_osabi (info, gdbarch);
1184
1185 frame_unwind_append_sniffer (gdbarch, sparc32_frame_sniffer);
1186
1187 /* If we have register sets, enable the generic core file support. */
1188 if (tdep->gregset)
1189 set_gdbarch_regset_from_core_section (gdbarch,
1190 sparc_regset_from_core_section);
1191
1192 return gdbarch;
1193 }
1194 \f
1195 /* Helper functions for dealing with register windows. */
1196
1197 void
1198 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1199 {
1200 int offset = 0;
1201 char buf[8];
1202 int i;
1203
1204 if (sp & 1)
1205 {
1206 /* Registers are 64-bit. */
1207 sp += BIAS;
1208
1209 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1210 {
1211 if (regnum == i || regnum == -1)
1212 {
1213 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1214 regcache_raw_supply (regcache, i, buf);
1215 }
1216 }
1217 }
1218 else
1219 {
1220 /* Registers are 32-bit. Toss any sign-extension of the stack
1221 pointer. */
1222 sp &= 0xffffffffUL;
1223
1224 /* Clear out the top half of the temporary buffer, and put the
1225 register value in the bottom half if we're in 64-bit mode. */
1226 if (gdbarch_ptr_bit (current_gdbarch) == 64)
1227 {
1228 memset (buf, 0, 4);
1229 offset = 4;
1230 }
1231
1232 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1233 {
1234 if (regnum == i || regnum == -1)
1235 {
1236 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1237 buf + offset, 4);
1238
1239 /* Handle StackGhost. */
1240 if (i == SPARC_I7_REGNUM)
1241 {
1242 ULONGEST wcookie = sparc_fetch_wcookie ();
1243 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
1244
1245 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
1246 }
1247
1248 regcache_raw_supply (regcache, i, buf);
1249 }
1250 }
1251 }
1252 }
1253
1254 void
1255 sparc_collect_rwindow (const struct regcache *regcache,
1256 CORE_ADDR sp, int regnum)
1257 {
1258 int offset = 0;
1259 char buf[8];
1260 int i;
1261
1262 if (sp & 1)
1263 {
1264 /* Registers are 64-bit. */
1265 sp += BIAS;
1266
1267 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1268 {
1269 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1270 {
1271 regcache_raw_collect (regcache, i, buf);
1272 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1273 }
1274 }
1275 }
1276 else
1277 {
1278 /* Registers are 32-bit. Toss any sign-extension of the stack
1279 pointer. */
1280 sp &= 0xffffffffUL;
1281
1282 /* Only use the bottom half if we're in 64-bit mode. */
1283 if (gdbarch_ptr_bit (current_gdbarch) == 64)
1284 offset = 4;
1285
1286 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1287 {
1288 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1289 {
1290 regcache_raw_collect (regcache, i, buf);
1291
1292 /* Handle StackGhost. */
1293 if (i == SPARC_I7_REGNUM)
1294 {
1295 ULONGEST wcookie = sparc_fetch_wcookie ();
1296 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
1297
1298 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
1299 }
1300
1301 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1302 buf + offset, 4);
1303 }
1304 }
1305 }
1306 }
1307
1308 /* Helper functions for dealing with register sets. */
1309
1310 void
1311 sparc32_supply_gregset (const struct sparc_gregset *gregset,
1312 struct regcache *regcache,
1313 int regnum, const void *gregs)
1314 {
1315 const char *regs = gregs;
1316 int i;
1317
1318 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1319 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1320 regs + gregset->r_psr_offset);
1321
1322 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1323 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1324 regs + gregset->r_pc_offset);
1325
1326 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1327 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1328 regs + gregset->r_npc_offset);
1329
1330 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1331 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1332 regs + gregset->r_y_offset);
1333
1334 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1335 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
1336
1337 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1338 {
1339 int offset = gregset->r_g1_offset;
1340
1341 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1342 {
1343 if (regnum == i || regnum == -1)
1344 regcache_raw_supply (regcache, i, regs + offset);
1345 offset += 4;
1346 }
1347 }
1348
1349 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1350 {
1351 /* Not all of the register set variants include Locals and
1352 Inputs. For those that don't, we read them off the stack. */
1353 if (gregset->r_l0_offset == -1)
1354 {
1355 ULONGEST sp;
1356
1357 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1358 sparc_supply_rwindow (regcache, sp, regnum);
1359 }
1360 else
1361 {
1362 int offset = gregset->r_l0_offset;
1363
1364 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1365 {
1366 if (regnum == i || regnum == -1)
1367 regcache_raw_supply (regcache, i, regs + offset);
1368 offset += 4;
1369 }
1370 }
1371 }
1372 }
1373
1374 void
1375 sparc32_collect_gregset (const struct sparc_gregset *gregset,
1376 const struct regcache *regcache,
1377 int regnum, void *gregs)
1378 {
1379 char *regs = gregs;
1380 int i;
1381
1382 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1383 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1384 regs + gregset->r_psr_offset);
1385
1386 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1387 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1388 regs + gregset->r_pc_offset);
1389
1390 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1391 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1392 regs + gregset->r_npc_offset);
1393
1394 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1395 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1396 regs + gregset->r_y_offset);
1397
1398 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1399 {
1400 int offset = gregset->r_g1_offset;
1401
1402 /* %g0 is always zero. */
1403 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1404 {
1405 if (regnum == i || regnum == -1)
1406 regcache_raw_collect (regcache, i, regs + offset);
1407 offset += 4;
1408 }
1409 }
1410
1411 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1412 {
1413 /* Not all of the register set variants include Locals and
1414 Inputs. For those that don't, we read them off the stack. */
1415 if (gregset->r_l0_offset != -1)
1416 {
1417 int offset = gregset->r_l0_offset;
1418
1419 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1420 {
1421 if (regnum == i || regnum == -1)
1422 regcache_raw_collect (regcache, i, regs + offset);
1423 offset += 4;
1424 }
1425 }
1426 }
1427 }
1428
1429 void
1430 sparc32_supply_fpregset (struct regcache *regcache,
1431 int regnum, const void *fpregs)
1432 {
1433 const char *regs = fpregs;
1434 int i;
1435
1436 for (i = 0; i < 32; i++)
1437 {
1438 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1439 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1440 }
1441
1442 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1443 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1444 }
1445
1446 void
1447 sparc32_collect_fpregset (const struct regcache *regcache,
1448 int regnum, void *fpregs)
1449 {
1450 char *regs = fpregs;
1451 int i;
1452
1453 for (i = 0; i < 32; i++)
1454 {
1455 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1456 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1457 }
1458
1459 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1460 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1461 }
1462 \f
1463
1464 /* SunOS 4. */
1465
1466 /* From <machine/reg.h>. */
1467 const struct sparc_gregset sparc32_sunos4_gregset =
1468 {
1469 0 * 4, /* %psr */
1470 1 * 4, /* %pc */
1471 2 * 4, /* %npc */
1472 3 * 4, /* %y */
1473 -1, /* %wim */
1474 -1, /* %tbr */
1475 4 * 4, /* %g1 */
1476 -1 /* %l0 */
1477 };
1478 \f
1479
1480 /* Provide a prototype to silence -Wmissing-prototypes. */
1481 void _initialize_sparc_tdep (void);
1482
1483 void
1484 _initialize_sparc_tdep (void)
1485 {
1486 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
1487 }
This page took 0.060492 seconds and 4 git commands to generate.