a53c464be5fafa4791a9c6e7ebcd39431e611295
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for SPARC.
2
3 Copyright (C) 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "dis-asm.h"
25 #include "dwarf2-frame.h"
26 #include "floatformat.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "gdbcore.h"
31 #include "gdbtypes.h"
32 #include "inferior.h"
33 #include "symtab.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "target.h"
38 #include "value.h"
39
40 #include "gdb_assert.h"
41 #include "gdb_string.h"
42
43 #include "sparc-tdep.h"
44
45 struct regset;
46
47 /* This file implements the SPARC 32-bit ABI as defined by the section
48 "Low-Level System Information" of the SPARC Compliance Definition
49 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
50 lists changes with respect to the original 32-bit psABI as defined
51 in the "System V ABI, SPARC Processor Supplement".
52
53 Note that if we talk about SunOS, we mean SunOS 4.x, which was
54 BSD-based, which is sometimes (retroactively?) referred to as
55 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
56 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
57 suffering from severe version number inflation). Solaris 2.x is
58 also known as SunOS 5.x, since that's what uname(1) says. Solaris
59 2.x is SVR4-based. */
60
61 /* Please use the sparc32_-prefix for 32-bit specific code, the
62 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
63 code that can handle both. The 64-bit specific code lives in
64 sparc64-tdep.c; don't add any here. */
65
66 /* The SPARC Floating-Point Quad-Precision format is similar to
67 big-endian IA-64 Quad-recision format. */
68 #define floatformat_sparc_quad floatformat_ia64_quad_big
69
70 /* The stack pointer is offset from the stack frame by a BIAS of 2047
71 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
72 hosts, so undefine it first. */
73 #undef BIAS
74 #define BIAS 2047
75
76 /* Macros to extract fields from SPARC instructions. */
77 #define X_OP(i) (((i) >> 30) & 0x3)
78 #define X_RD(i) (((i) >> 25) & 0x1f)
79 #define X_A(i) (((i) >> 29) & 1)
80 #define X_COND(i) (((i) >> 25) & 0xf)
81 #define X_OP2(i) (((i) >> 22) & 0x7)
82 #define X_IMM22(i) ((i) & 0x3fffff)
83 #define X_OP3(i) (((i) >> 19) & 0x3f)
84 #define X_RS1(i) (((i) >> 14) & 0x1f)
85 #define X_I(i) (((i) >> 13) & 1)
86 /* Sign extension macros. */
87 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
88 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
89 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
90
91 /* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
93
94 unsigned long
95 sparc_fetch_instruction (CORE_ADDR pc)
96 {
97 gdb_byte buf[4];
98 unsigned long insn;
99 int i;
100
101 /* If we can't read the instruction at PC, return zero. */
102 if (read_memory_nobpt (pc, buf, sizeof (buf)))
103 return 0;
104
105 insn = 0;
106 for (i = 0; i < sizeof (buf); i++)
107 insn = (insn << 8) | buf[i];
108 return insn;
109 }
110 \f
111
112 /* Return non-zero if the instruction corresponding to PC is an "unimp"
113 instruction. */
114
115 static int
116 sparc_is_unimp_insn (CORE_ADDR pc)
117 {
118 const unsigned long insn = sparc_fetch_instruction (pc);
119
120 return ((insn & 0xc1c00000) == 0);
121 }
122
123 /* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
129
130 The same website provides the following description of how
131 StackGhost works:
132
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
142
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
145
146 More information on StackGuard can be found on in:
147
148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
149 Stack Protection." 2001. Published in USENIX Security Symposium
150 '01. */
151
152 /* Fetch StackGhost Per-Process XOR cookie. */
153
154 ULONGEST
155 sparc_fetch_wcookie (void)
156 {
157 struct target_ops *ops = &current_target;
158 gdb_byte buf[8];
159 int len;
160
161 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
162 if (len == -1)
163 return 0;
164
165 /* We should have either an 32-bit or an 64-bit cookie. */
166 gdb_assert (len == 4 || len == 8);
167
168 return extract_unsigned_integer (buf, len);
169 }
170 \f
171
172 /* Return the contents if register REGNUM as an address. */
173
174 CORE_ADDR
175 sparc_address_from_register (int regnum)
176 {
177 ULONGEST addr;
178
179 regcache_cooked_read_unsigned (current_regcache, regnum, &addr);
180 return addr;
181 }
182 \f
183
184 /* The functions on this page are intended to be used to classify
185 function arguments. */
186
187 /* Check whether TYPE is "Integral or Pointer". */
188
189 static int
190 sparc_integral_or_pointer_p (const struct type *type)
191 {
192 int len = TYPE_LENGTH (type);
193
194 switch (TYPE_CODE (type))
195 {
196 case TYPE_CODE_INT:
197 case TYPE_CODE_BOOL:
198 case TYPE_CODE_CHAR:
199 case TYPE_CODE_ENUM:
200 case TYPE_CODE_RANGE:
201 /* We have byte, half-word, word and extended-word/doubleword
202 integral types. The doubleword is an extension to the
203 original 32-bit ABI by the SCD 2.4.x. */
204 return (len == 1 || len == 2 || len == 4 || len == 8);
205 case TYPE_CODE_PTR:
206 case TYPE_CODE_REF:
207 /* Allow either 32-bit or 64-bit pointers. */
208 return (len == 4 || len == 8);
209 default:
210 break;
211 }
212
213 return 0;
214 }
215
216 /* Check whether TYPE is "Floating". */
217
218 static int
219 sparc_floating_p (const struct type *type)
220 {
221 switch (TYPE_CODE (type))
222 {
223 case TYPE_CODE_FLT:
224 {
225 int len = TYPE_LENGTH (type);
226 return (len == 4 || len == 8 || len == 16);
227 }
228 default:
229 break;
230 }
231
232 return 0;
233 }
234
235 /* Check whether TYPE is "Structure or Union". */
236
237 static int
238 sparc_structure_or_union_p (const struct type *type)
239 {
240 switch (TYPE_CODE (type))
241 {
242 case TYPE_CODE_STRUCT:
243 case TYPE_CODE_UNION:
244 return 1;
245 default:
246 break;
247 }
248
249 return 0;
250 }
251
252 /* Register information. */
253
254 static const char *sparc32_register_names[] =
255 {
256 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
257 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
258 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
259 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
260
261 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
262 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
263 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
264 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
265
266 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
267 };
268
269 /* Total number of registers. */
270 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
271
272 /* We provide the aliases %d0..%d30 for the floating registers as
273 "psuedo" registers. */
274
275 static const char *sparc32_pseudo_register_names[] =
276 {
277 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
278 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
279 };
280
281 /* Total number of pseudo registers. */
282 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
283
284 /* Return the name of register REGNUM. */
285
286 static const char *
287 sparc32_register_name (int regnum)
288 {
289 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
290 return sparc32_register_names[regnum];
291
292 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
293 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
294
295 return NULL;
296 }
297 \f
298
299 /* Type for %psr. */
300 struct type *sparc_psr_type;
301
302 /* Type for %fsr. */
303 struct type *sparc_fsr_type;
304
305 /* Construct types for ISA-specific registers. */
306
307 static void
308 sparc_init_types (void)
309 {
310 struct type *type;
311
312 type = init_flags_type ("builtin_type_sparc_psr", 4);
313 append_flags_type_flag (type, 5, "ET");
314 append_flags_type_flag (type, 6, "PS");
315 append_flags_type_flag (type, 7, "S");
316 append_flags_type_flag (type, 12, "EF");
317 append_flags_type_flag (type, 13, "EC");
318 sparc_psr_type = type;
319
320 type = init_flags_type ("builtin_type_sparc_fsr", 4);
321 append_flags_type_flag (type, 0, "NXA");
322 append_flags_type_flag (type, 1, "DZA");
323 append_flags_type_flag (type, 2, "UFA");
324 append_flags_type_flag (type, 3, "OFA");
325 append_flags_type_flag (type, 4, "NVA");
326 append_flags_type_flag (type, 5, "NXC");
327 append_flags_type_flag (type, 6, "DZC");
328 append_flags_type_flag (type, 7, "UFC");
329 append_flags_type_flag (type, 8, "OFC");
330 append_flags_type_flag (type, 9, "NVC");
331 append_flags_type_flag (type, 22, "NS");
332 append_flags_type_flag (type, 23, "NXM");
333 append_flags_type_flag (type, 24, "DZM");
334 append_flags_type_flag (type, 25, "UFM");
335 append_flags_type_flag (type, 26, "OFM");
336 append_flags_type_flag (type, 27, "NVM");
337 sparc_fsr_type = type;
338 }
339
340 /* Return the GDB type object for the "standard" data type of data in
341 register REGNUM. */
342
343 static struct type *
344 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
345 {
346 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
347 return builtin_type_float;
348
349 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
350 return builtin_type_double;
351
352 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
353 return builtin_type_void_data_ptr;
354
355 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
356 return builtin_type_void_func_ptr;
357
358 if (regnum == SPARC32_PSR_REGNUM)
359 return sparc_psr_type;
360
361 if (regnum == SPARC32_FSR_REGNUM)
362 return sparc_fsr_type;
363
364 return builtin_type_int32;
365 }
366
367 static void
368 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
369 struct regcache *regcache,
370 int regnum, gdb_byte *buf)
371 {
372 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
373
374 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
375 regcache_raw_read (regcache, regnum, buf);
376 regcache_raw_read (regcache, regnum + 1, buf + 4);
377 }
378
379 static void
380 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
381 struct regcache *regcache,
382 int regnum, const gdb_byte *buf)
383 {
384 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
385
386 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
387 regcache_raw_write (regcache, regnum, buf);
388 regcache_raw_write (regcache, regnum + 1, buf + 4);
389 }
390 \f
391
392 static CORE_ADDR
393 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
394 CORE_ADDR funcaddr, int using_gcc,
395 struct value **args, int nargs,
396 struct type *value_type,
397 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
398 {
399 *bp_addr = sp - 4;
400 *real_pc = funcaddr;
401
402 if (using_struct_return (value_type, using_gcc))
403 {
404 gdb_byte buf[4];
405
406 /* This is an UNIMP instruction. */
407 store_unsigned_integer (buf, 4, TYPE_LENGTH (value_type) & 0x1fff);
408 write_memory (sp - 8, buf, 4);
409 return sp - 8;
410 }
411
412 return sp - 4;
413 }
414
415 static CORE_ADDR
416 sparc32_store_arguments (struct regcache *regcache, int nargs,
417 struct value **args, CORE_ADDR sp,
418 int struct_return, CORE_ADDR struct_addr)
419 {
420 /* Number of words in the "parameter array". */
421 int num_elements = 0;
422 int element = 0;
423 int i;
424
425 for (i = 0; i < nargs; i++)
426 {
427 struct type *type = value_type (args[i]);
428 int len = TYPE_LENGTH (type);
429
430 if (sparc_structure_or_union_p (type)
431 || (sparc_floating_p (type) && len == 16))
432 {
433 /* Structure, Union and Quad-Precision Arguments. */
434 sp -= len;
435
436 /* Use doubleword alignment for these values. That's always
437 correct, and wasting a few bytes shouldn't be a problem. */
438 sp &= ~0x7;
439
440 write_memory (sp, value_contents (args[i]), len);
441 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
442 num_elements++;
443 }
444 else if (sparc_floating_p (type))
445 {
446 /* Floating arguments. */
447 gdb_assert (len == 4 || len == 8);
448 num_elements += (len / 4);
449 }
450 else
451 {
452 /* Integral and pointer arguments. */
453 gdb_assert (sparc_integral_or_pointer_p (type));
454
455 if (len < 4)
456 args[i] = value_cast (builtin_type_int32, args[i]);
457 num_elements += ((len + 3) / 4);
458 }
459 }
460
461 /* Always allocate at least six words. */
462 sp -= max (6, num_elements) * 4;
463
464 /* The psABI says that "Software convention requires space for the
465 struct/union return value pointer, even if the word is unused." */
466 sp -= 4;
467
468 /* The psABI says that "Although software convention and the
469 operating system require every stack frame to be doubleword
470 aligned." */
471 sp &= ~0x7;
472
473 for (i = 0; i < nargs; i++)
474 {
475 const bfd_byte *valbuf = value_contents (args[i]);
476 struct type *type = value_type (args[i]);
477 int len = TYPE_LENGTH (type);
478
479 gdb_assert (len == 4 || len == 8);
480
481 if (element < 6)
482 {
483 int regnum = SPARC_O0_REGNUM + element;
484
485 regcache_cooked_write (regcache, regnum, valbuf);
486 if (len > 4 && element < 5)
487 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
488 }
489
490 /* Always store the argument in memory. */
491 write_memory (sp + 4 + element * 4, valbuf, len);
492 element += len / 4;
493 }
494
495 gdb_assert (element == num_elements);
496
497 if (struct_return)
498 {
499 gdb_byte buf[4];
500
501 store_unsigned_integer (buf, 4, struct_addr);
502 write_memory (sp, buf, 4);
503 }
504
505 return sp;
506 }
507
508 static CORE_ADDR
509 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
510 struct regcache *regcache, CORE_ADDR bp_addr,
511 int nargs, struct value **args, CORE_ADDR sp,
512 int struct_return, CORE_ADDR struct_addr)
513 {
514 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
515
516 /* Set return address. */
517 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
518
519 /* Set up function arguments. */
520 sp = sparc32_store_arguments (regcache, nargs, args, sp,
521 struct_return, struct_addr);
522
523 /* Allocate the 16-word window save area. */
524 sp -= 16 * 4;
525
526 /* Stack should be doubleword aligned at this point. */
527 gdb_assert (sp % 8 == 0);
528
529 /* Finally, update the stack pointer. */
530 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
531
532 return sp;
533 }
534 \f
535
536 /* Use the program counter to determine the contents and size of a
537 breakpoint instruction. Return a pointer to a string of bytes that
538 encode a breakpoint instruction, store the length of the string in
539 *LEN and optionally adjust *PC to point to the correct memory
540 location for inserting the breakpoint. */
541
542 static const gdb_byte *
543 sparc_breakpoint_from_pc (CORE_ADDR *pc, int *len)
544 {
545 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
546
547 *len = sizeof (break_insn);
548 return break_insn;
549 }
550 \f
551
552 /* Allocate and initialize a frame cache. */
553
554 static struct sparc_frame_cache *
555 sparc_alloc_frame_cache (void)
556 {
557 struct sparc_frame_cache *cache;
558 int i;
559
560 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
561
562 /* Base address. */
563 cache->base = 0;
564 cache->pc = 0;
565
566 /* Frameless until proven otherwise. */
567 cache->frameless_p = 1;
568
569 cache->struct_return_p = 0;
570
571 return cache;
572 }
573
574 CORE_ADDR
575 sparc_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
576 struct sparc_frame_cache *cache)
577 {
578 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
579 unsigned long insn;
580 int offset = 0;
581 int dest = -1;
582
583 if (current_pc <= pc)
584 return current_pc;
585
586 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
587 SPARC the linker usually defines a symbol (typically
588 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
589 This symbol makes us end up here with PC pointing at the start of
590 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
591 would do our normal prologue analysis, we would probably conclude
592 that we've got a frame when in reality we don't, since the
593 dynamic linker patches up the first PLT with some code that
594 starts with a SAVE instruction. Patch up PC such that it points
595 at the start of our PLT entry. */
596 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
597 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
598
599 insn = sparc_fetch_instruction (pc);
600
601 /* Recognize a SETHI insn and record its destination. */
602 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
603 {
604 dest = X_RD (insn);
605 offset += 4;
606
607 insn = sparc_fetch_instruction (pc + 4);
608 }
609
610 /* Allow for an arithmetic operation on DEST or %g1. */
611 if (X_OP (insn) == 2 && X_I (insn)
612 && (X_RD (insn) == 1 || X_RD (insn) == dest))
613 {
614 offset += 4;
615
616 insn = sparc_fetch_instruction (pc + 8);
617 }
618
619 /* Check for the SAVE instruction that sets up the frame. */
620 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
621 {
622 cache->frameless_p = 0;
623 return pc + offset + 4;
624 }
625
626 return pc;
627 }
628
629 static CORE_ADDR
630 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
631 {
632 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
633 return frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
634 }
635
636 /* Return PC of first real instruction of the function starting at
637 START_PC. */
638
639 static CORE_ADDR
640 sparc32_skip_prologue (CORE_ADDR start_pc)
641 {
642 struct symtab_and_line sal;
643 CORE_ADDR func_start, func_end;
644 struct sparc_frame_cache cache;
645
646 /* This is the preferred method, find the end of the prologue by
647 using the debugging information. */
648 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
649 {
650 sal = find_pc_line (func_start, 0);
651
652 if (sal.end < func_end
653 && start_pc <= sal.end)
654 return sal.end;
655 }
656
657 start_pc = sparc_analyze_prologue (start_pc, 0xffffffffUL, &cache);
658
659 /* The psABI says that "Although the first 6 words of arguments
660 reside in registers, the standard stack frame reserves space for
661 them.". It also suggests that a function may use that space to
662 "write incoming arguments 0 to 5" into that space, and that's
663 indeed what GCC seems to be doing. In that case GCC will
664 generate debug information that points to the stack slots instead
665 of the registers, so we should consider the instructions that
666 write out these incoming arguments onto the stack. Of course we
667 only need to do this if we have a stack frame. */
668
669 while (!cache.frameless_p)
670 {
671 unsigned long insn = sparc_fetch_instruction (start_pc);
672
673 /* Recognize instructions that store incoming arguments in
674 %i0...%i5 into the corresponding stack slot. */
675 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
676 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
677 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
678 {
679 start_pc += 4;
680 continue;
681 }
682
683 break;
684 }
685
686 return start_pc;
687 }
688
689 /* Normal frames. */
690
691 struct sparc_frame_cache *
692 sparc_frame_cache (struct frame_info *next_frame, void **this_cache)
693 {
694 struct sparc_frame_cache *cache;
695
696 if (*this_cache)
697 return *this_cache;
698
699 cache = sparc_alloc_frame_cache ();
700 *this_cache = cache;
701
702 cache->pc = frame_func_unwind (next_frame);
703 if (cache->pc != 0)
704 {
705 CORE_ADDR addr_in_block = frame_unwind_address_in_block (next_frame);
706 sparc_analyze_prologue (cache->pc, addr_in_block, cache);
707 }
708
709 if (cache->frameless_p)
710 {
711 /* This function is frameless, so %fp (%i6) holds the frame
712 pointer for our calling frame. Use %sp (%o6) as this frame's
713 base address. */
714 cache->base =
715 frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
716 }
717 else
718 {
719 /* For normal frames, %fp (%i6) holds the frame pointer, the
720 base address for the current stack frame. */
721 cache->base =
722 frame_unwind_register_unsigned (next_frame, SPARC_FP_REGNUM);
723 }
724
725 if (cache->base & 1)
726 cache->base += BIAS;
727
728 return cache;
729 }
730
731 static int
732 sparc32_struct_return_from_sym (struct symbol *sym)
733 {
734 struct type *type = check_typedef (SYMBOL_TYPE (sym));
735 enum type_code code = TYPE_CODE (type);
736
737 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
738 {
739 type = check_typedef (TYPE_TARGET_TYPE (type));
740 if (sparc_structure_or_union_p (type)
741 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
742 return 1;
743 }
744
745 return 0;
746 }
747
748 struct sparc_frame_cache *
749 sparc32_frame_cache (struct frame_info *next_frame, void **this_cache)
750 {
751 struct sparc_frame_cache *cache;
752 struct symbol *sym;
753
754 if (*this_cache)
755 return *this_cache;
756
757 cache = sparc_frame_cache (next_frame, this_cache);
758
759 sym = find_pc_function (cache->pc);
760 if (sym)
761 {
762 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
763 }
764 else
765 {
766 /* There is no debugging information for this function to
767 help us determine whether this function returns a struct
768 or not. So we rely on another heuristic which is to check
769 the instruction at the return address and see if this is
770 an "unimp" instruction. If it is, then it is a struct-return
771 function. */
772 CORE_ADDR pc;
773 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
774
775 pc = frame_unwind_register_unsigned (next_frame, regnum) + 8;
776 if (sparc_is_unimp_insn (pc))
777 cache->struct_return_p = 1;
778 }
779
780 return cache;
781 }
782
783 static void
784 sparc32_frame_this_id (struct frame_info *next_frame, void **this_cache,
785 struct frame_id *this_id)
786 {
787 struct sparc_frame_cache *cache =
788 sparc32_frame_cache (next_frame, this_cache);
789
790 /* This marks the outermost frame. */
791 if (cache->base == 0)
792 return;
793
794 (*this_id) = frame_id_build (cache->base, cache->pc);
795 }
796
797 static void
798 sparc32_frame_prev_register (struct frame_info *next_frame, void **this_cache,
799 int regnum, int *optimizedp,
800 enum lval_type *lvalp, CORE_ADDR *addrp,
801 int *realnump, gdb_byte *valuep)
802 {
803 struct sparc_frame_cache *cache =
804 sparc32_frame_cache (next_frame, this_cache);
805
806 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
807 {
808 *optimizedp = 0;
809 *lvalp = not_lval;
810 *addrp = 0;
811 *realnump = -1;
812 if (valuep)
813 {
814 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
815
816 /* If this functions has a Structure, Union or
817 Quad-Precision return value, we have to skip the UNIMP
818 instruction that encodes the size of the structure. */
819 if (cache->struct_return_p)
820 pc += 4;
821
822 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
823 pc += frame_unwind_register_unsigned (next_frame, regnum) + 8;
824 store_unsigned_integer (valuep, 4, pc);
825 }
826 return;
827 }
828
829 /* Handle StackGhost. */
830 {
831 ULONGEST wcookie = sparc_fetch_wcookie ();
832
833 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
834 {
835 *optimizedp = 0;
836 *lvalp = not_lval;
837 *addrp = 0;
838 *realnump = -1;
839 if (valuep)
840 {
841 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
842 ULONGEST i7;
843
844 /* Read the value in from memory. */
845 i7 = get_frame_memory_unsigned (next_frame, addr, 4);
846 store_unsigned_integer (valuep, 4, i7 ^ wcookie);
847 }
848 return;
849 }
850 }
851
852 /* The previous frame's `local' and `in' registers have been saved
853 in the register save area. */
854 if (!cache->frameless_p
855 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
856 {
857 *optimizedp = 0;
858 *lvalp = lval_memory;
859 *addrp = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
860 *realnump = -1;
861 if (valuep)
862 {
863 struct gdbarch *gdbarch = get_frame_arch (next_frame);
864
865 /* Read the value in from memory. */
866 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
867 }
868 return;
869 }
870
871 /* The previous frame's `out' registers are accessable as the
872 current frame's `in' registers. */
873 if (!cache->frameless_p
874 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
875 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
876
877 *optimizedp = 0;
878 *lvalp = lval_register;
879 *addrp = 0;
880 *realnump = regnum;
881 if (valuep)
882 frame_unwind_register (next_frame, (*realnump), valuep);
883 }
884
885 static const struct frame_unwind sparc32_frame_unwind =
886 {
887 NORMAL_FRAME,
888 sparc32_frame_this_id,
889 sparc32_frame_prev_register
890 };
891
892 static const struct frame_unwind *
893 sparc32_frame_sniffer (struct frame_info *next_frame)
894 {
895 return &sparc32_frame_unwind;
896 }
897 \f
898
899 static CORE_ADDR
900 sparc32_frame_base_address (struct frame_info *next_frame, void **this_cache)
901 {
902 struct sparc_frame_cache *cache =
903 sparc32_frame_cache (next_frame, this_cache);
904
905 return cache->base;
906 }
907
908 static const struct frame_base sparc32_frame_base =
909 {
910 &sparc32_frame_unwind,
911 sparc32_frame_base_address,
912 sparc32_frame_base_address,
913 sparc32_frame_base_address
914 };
915
916 static struct frame_id
917 sparc_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
918 {
919 CORE_ADDR sp;
920
921 sp = frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
922 if (sp & 1)
923 sp += BIAS;
924 return frame_id_build (sp, frame_pc_unwind (next_frame));
925 }
926 \f
927
928 /* Extract from an array REGBUF containing the (raw) register state, a
929 function return value of TYPE, and copy that into VALBUF. */
930
931 static void
932 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
933 gdb_byte *valbuf)
934 {
935 int len = TYPE_LENGTH (type);
936 gdb_byte buf[8];
937
938 gdb_assert (!sparc_structure_or_union_p (type));
939 gdb_assert (!(sparc_floating_p (type) && len == 16));
940
941 if (sparc_floating_p (type))
942 {
943 /* Floating return values. */
944 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
945 if (len > 4)
946 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
947 memcpy (valbuf, buf, len);
948 }
949 else
950 {
951 /* Integral and pointer return values. */
952 gdb_assert (sparc_integral_or_pointer_p (type));
953
954 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
955 if (len > 4)
956 {
957 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
958 gdb_assert (len == 8);
959 memcpy (valbuf, buf, 8);
960 }
961 else
962 {
963 /* Just stripping off any unused bytes should preserve the
964 signed-ness just fine. */
965 memcpy (valbuf, buf + 4 - len, len);
966 }
967 }
968 }
969
970 /* Write into the appropriate registers a function return value stored
971 in VALBUF of type TYPE. */
972
973 static void
974 sparc32_store_return_value (struct type *type, struct regcache *regcache,
975 const gdb_byte *valbuf)
976 {
977 int len = TYPE_LENGTH (type);
978 gdb_byte buf[8];
979
980 gdb_assert (!sparc_structure_or_union_p (type));
981 gdb_assert (!(sparc_floating_p (type) && len == 16));
982
983 if (sparc_floating_p (type))
984 {
985 /* Floating return values. */
986 memcpy (buf, valbuf, len);
987 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
988 if (len > 4)
989 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
990 }
991 else
992 {
993 /* Integral and pointer return values. */
994 gdb_assert (sparc_integral_or_pointer_p (type));
995
996 if (len > 4)
997 {
998 gdb_assert (len == 8);
999 memcpy (buf, valbuf, 8);
1000 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
1001 }
1002 else
1003 {
1004 /* ??? Do we need to do any sign-extension here? */
1005 memcpy (buf + 4 - len, valbuf, len);
1006 }
1007 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
1008 }
1009 }
1010
1011 static enum return_value_convention
1012 sparc32_return_value (struct gdbarch *gdbarch, struct type *type,
1013 struct regcache *regcache, gdb_byte *readbuf,
1014 const gdb_byte *writebuf)
1015 {
1016 /* The psABI says that "...every stack frame reserves the word at
1017 %fp+64. If a function returns a structure, union, or
1018 quad-precision value, this word should hold the address of the
1019 object into which the return value should be copied." This
1020 guarantees that we can always find the return value, not just
1021 before the function returns. */
1022
1023 if (sparc_structure_or_union_p (type)
1024 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1025 {
1026 if (readbuf)
1027 {
1028 ULONGEST sp;
1029 CORE_ADDR addr;
1030
1031 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1032 addr = read_memory_unsigned_integer (sp + 64, 4);
1033 read_memory (addr, readbuf, TYPE_LENGTH (type));
1034 }
1035
1036 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1037 }
1038
1039 if (readbuf)
1040 sparc32_extract_return_value (type, regcache, readbuf);
1041 if (writebuf)
1042 sparc32_store_return_value (type, regcache, writebuf);
1043
1044 return RETURN_VALUE_REGISTER_CONVENTION;
1045 }
1046
1047 static int
1048 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1049 {
1050 return (sparc_structure_or_union_p (type)
1051 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1052 }
1053
1054 static int
1055 sparc32_dwarf2_struct_return_p (struct frame_info *next_frame)
1056 {
1057 CORE_ADDR pc = frame_unwind_address_in_block (next_frame);
1058 struct symbol *sym = find_pc_function (pc);
1059
1060 if (sym)
1061 return sparc32_struct_return_from_sym (sym);
1062 return 0;
1063 }
1064
1065 static void
1066 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1067 struct dwarf2_frame_state_reg *reg,
1068 struct frame_info *next_frame)
1069 {
1070 int off;
1071
1072 switch (regnum)
1073 {
1074 case SPARC_G0_REGNUM:
1075 /* Since %g0 is always zero, there is no point in saving it, and
1076 people will be inclined omit it from the CFI. Make sure we
1077 don't warn about that. */
1078 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1079 break;
1080 case SPARC_SP_REGNUM:
1081 reg->how = DWARF2_FRAME_REG_CFA;
1082 break;
1083 case SPARC32_PC_REGNUM:
1084 case SPARC32_NPC_REGNUM:
1085 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1086 off = 8;
1087 if (sparc32_dwarf2_struct_return_p (next_frame))
1088 off += 4;
1089 if (regnum == SPARC32_NPC_REGNUM)
1090 off += 4;
1091 reg->loc.offset = off;
1092 break;
1093 }
1094 }
1095
1096 \f
1097 /* The SPARC Architecture doesn't have hardware single-step support,
1098 and most operating systems don't implement it either, so we provide
1099 software single-step mechanism. */
1100
1101 static CORE_ADDR
1102 sparc_analyze_control_transfer (struct gdbarch *arch,
1103 CORE_ADDR pc, CORE_ADDR *npc)
1104 {
1105 unsigned long insn = sparc_fetch_instruction (pc);
1106 int conditional_p = X_COND (insn) & 0x7;
1107 int branch_p = 0;
1108 long offset = 0; /* Must be signed for sign-extend. */
1109
1110 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
1111 {
1112 /* Branch on Integer Register with Prediction (BPr). */
1113 branch_p = 1;
1114 conditional_p = 1;
1115 }
1116 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1117 {
1118 /* Branch on Floating-Point Condition Codes (FBfcc). */
1119 branch_p = 1;
1120 offset = 4 * X_DISP22 (insn);
1121 }
1122 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1123 {
1124 /* Branch on Floating-Point Condition Codes with Prediction
1125 (FBPfcc). */
1126 branch_p = 1;
1127 offset = 4 * X_DISP19 (insn);
1128 }
1129 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1130 {
1131 /* Branch on Integer Condition Codes (Bicc). */
1132 branch_p = 1;
1133 offset = 4 * X_DISP22 (insn);
1134 }
1135 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1136 {
1137 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1138 branch_p = 1;
1139 offset = 4 * X_DISP19 (insn);
1140 }
1141 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1142 {
1143 /* Trap instruction (TRAP). */
1144 return gdbarch_tdep (arch)->step_trap (insn);
1145 }
1146
1147 /* FIXME: Handle DONE and RETRY instructions. */
1148
1149 if (branch_p)
1150 {
1151 if (conditional_p)
1152 {
1153 /* For conditional branches, return nPC + 4 iff the annul
1154 bit is 1. */
1155 return (X_A (insn) ? *npc + 4 : 0);
1156 }
1157 else
1158 {
1159 /* For unconditional branches, return the target if its
1160 specified condition is "always" and return nPC + 4 if the
1161 condition is "never". If the annul bit is 1, set *NPC to
1162 zero. */
1163 if (X_COND (insn) == 0x0)
1164 pc = *npc, offset = 4;
1165 if (X_A (insn))
1166 *npc = 0;
1167
1168 gdb_assert (offset != 0);
1169 return pc + offset;
1170 }
1171 }
1172
1173 return 0;
1174 }
1175
1176 static CORE_ADDR
1177 sparc_step_trap (unsigned long insn)
1178 {
1179 return 0;
1180 }
1181
1182 void
1183 sparc_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1184 {
1185 struct gdbarch *arch = current_gdbarch;
1186 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1187 CORE_ADDR npc, nnpc;
1188
1189 if (insert_breakpoints_p)
1190 {
1191 CORE_ADDR pc, orig_npc;
1192
1193 pc = sparc_address_from_register (tdep->pc_regnum);
1194 orig_npc = npc = sparc_address_from_register (tdep->npc_regnum);
1195
1196 /* Analyze the instruction at PC. */
1197 nnpc = sparc_analyze_control_transfer (arch, pc, &npc);
1198 if (npc != 0)
1199 insert_single_step_breakpoint (npc);
1200
1201 if (nnpc != 0)
1202 insert_single_step_breakpoint (nnpc);
1203
1204 /* Assert that we have set at least one breakpoint, and that
1205 they're not set at the same spot - unless we're going
1206 from here straight to NULL, i.e. a call or jump to 0. */
1207 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1208 gdb_assert (nnpc != npc || orig_npc == 0);
1209 }
1210 else
1211 remove_single_step_breakpoints ();
1212 }
1213
1214 static void
1215 sparc_write_pc (CORE_ADDR pc, ptid_t ptid)
1216 {
1217 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1218
1219 write_register_pid (tdep->pc_regnum, pc, ptid);
1220 write_register_pid (tdep->npc_regnum, pc + 4, ptid);
1221 }
1222 \f
1223 /* Unglobalize NAME. */
1224
1225 char *
1226 sparc_stabs_unglobalize_name (char *name)
1227 {
1228 /* The Sun compilers (Sun ONE Studio, Forte Developer, Sun WorkShop,
1229 SunPRO) convert file static variables into global values, a
1230 process known as globalization. In order to do this, the
1231 compiler will create a unique prefix and prepend it to each file
1232 static variable. For static variables within a function, this
1233 globalization prefix is followed by the function name (nested
1234 static variables within a function are supposed to generate a
1235 warning message, and are left alone). The procedure is
1236 documented in the Stabs Interface Manual, which is distrubuted
1237 with the compilers, although version 4.0 of the manual seems to
1238 be incorrect in some places, at least for SPARC. The
1239 globalization prefix is encoded into an N_OPT stab, with the form
1240 "G=<prefix>". The globalization prefix always seems to start
1241 with a dollar sign '$'; a dot '.' is used as a seperator. So we
1242 simply strip everything up until the last dot. */
1243
1244 if (name[0] == '$')
1245 {
1246 char *p = strrchr (name, '.');
1247 if (p)
1248 return p + 1;
1249 }
1250
1251 return name;
1252 }
1253 \f
1254
1255 /* Return the appropriate register set for the core section identified
1256 by SECT_NAME and SECT_SIZE. */
1257
1258 const struct regset *
1259 sparc_regset_from_core_section (struct gdbarch *gdbarch,
1260 const char *sect_name, size_t sect_size)
1261 {
1262 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1263
1264 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
1265 return tdep->gregset;
1266
1267 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
1268 return tdep->fpregset;
1269
1270 return NULL;
1271 }
1272 \f
1273
1274 static struct gdbarch *
1275 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1276 {
1277 struct gdbarch_tdep *tdep;
1278 struct gdbarch *gdbarch;
1279
1280 /* If there is already a candidate, use it. */
1281 arches = gdbarch_list_lookup_by_info (arches, &info);
1282 if (arches != NULL)
1283 return arches->gdbarch;
1284
1285 /* Allocate space for the new architecture. */
1286 tdep = XMALLOC (struct gdbarch_tdep);
1287 gdbarch = gdbarch_alloc (&info, tdep);
1288
1289 tdep->pc_regnum = SPARC32_PC_REGNUM;
1290 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1291 tdep->gregset = NULL;
1292 tdep->sizeof_gregset = 0;
1293 tdep->fpregset = NULL;
1294 tdep->sizeof_fpregset = 0;
1295 tdep->plt_entry_size = 0;
1296 tdep->step_trap = sparc_step_trap;
1297
1298 set_gdbarch_long_double_bit (gdbarch, 128);
1299 set_gdbarch_long_double_format (gdbarch, &floatformat_sparc_quad);
1300
1301 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1302 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1303 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1304 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1305 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1306 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1307
1308 /* Register numbers of various important registers. */
1309 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1310 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1311 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1312
1313 /* Call dummy code. */
1314 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1315 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1316 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1317
1318 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1319 set_gdbarch_stabs_argument_has_addr
1320 (gdbarch, sparc32_stabs_argument_has_addr);
1321
1322 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1323
1324 /* Stack grows downward. */
1325 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1326
1327 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
1328
1329 set_gdbarch_frame_args_skip (gdbarch, 8);
1330
1331 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
1332
1333 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1334 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1335
1336 set_gdbarch_unwind_dummy_id (gdbarch, sparc_unwind_dummy_id);
1337
1338 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1339
1340 frame_base_set_default (gdbarch, &sparc32_frame_base);
1341
1342 /* Hook in the DWARF CFI frame unwinder. */
1343 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1344 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1345 StackGhost issues have been resolved. */
1346
1347 /* Hook in ABI-specific overrides, if they have been registered. */
1348 gdbarch_init_osabi (info, gdbarch);
1349
1350 frame_unwind_append_sniffer (gdbarch, sparc32_frame_sniffer);
1351
1352 /* If we have register sets, enable the generic core file support. */
1353 if (tdep->gregset)
1354 set_gdbarch_regset_from_core_section (gdbarch,
1355 sparc_regset_from_core_section);
1356
1357 return gdbarch;
1358 }
1359 \f
1360 /* Helper functions for dealing with register windows. */
1361
1362 void
1363 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1364 {
1365 int offset = 0;
1366 gdb_byte buf[8];
1367 int i;
1368
1369 if (sp & 1)
1370 {
1371 /* Registers are 64-bit. */
1372 sp += BIAS;
1373
1374 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1375 {
1376 if (regnum == i || regnum == -1)
1377 {
1378 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1379
1380 /* Handle StackGhost. */
1381 if (i == SPARC_I7_REGNUM)
1382 {
1383 ULONGEST wcookie = sparc_fetch_wcookie ();
1384 ULONGEST i7 = extract_unsigned_integer (buf + offset, 8);
1385
1386 store_unsigned_integer (buf + offset, 8, i7 ^ wcookie);
1387 }
1388
1389 regcache_raw_supply (regcache, i, buf);
1390 }
1391 }
1392 }
1393 else
1394 {
1395 /* Registers are 32-bit. Toss any sign-extension of the stack
1396 pointer. */
1397 sp &= 0xffffffffUL;
1398
1399 /* Clear out the top half of the temporary buffer, and put the
1400 register value in the bottom half if we're in 64-bit mode. */
1401 if (gdbarch_ptr_bit (current_gdbarch) == 64)
1402 {
1403 memset (buf, 0, 4);
1404 offset = 4;
1405 }
1406
1407 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1408 {
1409 if (regnum == i || regnum == -1)
1410 {
1411 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1412 buf + offset, 4);
1413
1414 /* Handle StackGhost. */
1415 if (i == SPARC_I7_REGNUM)
1416 {
1417 ULONGEST wcookie = sparc_fetch_wcookie ();
1418 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
1419
1420 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
1421 }
1422
1423 regcache_raw_supply (regcache, i, buf);
1424 }
1425 }
1426 }
1427 }
1428
1429 void
1430 sparc_collect_rwindow (const struct regcache *regcache,
1431 CORE_ADDR sp, int regnum)
1432 {
1433 int offset = 0;
1434 gdb_byte buf[8];
1435 int i;
1436
1437 if (sp & 1)
1438 {
1439 /* Registers are 64-bit. */
1440 sp += BIAS;
1441
1442 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1443 {
1444 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1445 {
1446 regcache_raw_collect (regcache, i, buf);
1447
1448 /* Handle StackGhost. */
1449 if (i == SPARC_I7_REGNUM)
1450 {
1451 ULONGEST wcookie = sparc_fetch_wcookie ();
1452 ULONGEST i7 = extract_unsigned_integer (buf + offset, 8);
1453
1454 store_unsigned_integer (buf, 8, i7 ^ wcookie);
1455 }
1456
1457 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1458 }
1459 }
1460 }
1461 else
1462 {
1463 /* Registers are 32-bit. Toss any sign-extension of the stack
1464 pointer. */
1465 sp &= 0xffffffffUL;
1466
1467 /* Only use the bottom half if we're in 64-bit mode. */
1468 if (gdbarch_ptr_bit (current_gdbarch) == 64)
1469 offset = 4;
1470
1471 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1472 {
1473 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1474 {
1475 regcache_raw_collect (regcache, i, buf);
1476
1477 /* Handle StackGhost. */
1478 if (i == SPARC_I7_REGNUM)
1479 {
1480 ULONGEST wcookie = sparc_fetch_wcookie ();
1481 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
1482
1483 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
1484 }
1485
1486 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1487 buf + offset, 4);
1488 }
1489 }
1490 }
1491 }
1492
1493 /* Helper functions for dealing with register sets. */
1494
1495 void
1496 sparc32_supply_gregset (const struct sparc_gregset *gregset,
1497 struct regcache *regcache,
1498 int regnum, const void *gregs)
1499 {
1500 const gdb_byte *regs = gregs;
1501 int i;
1502
1503 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1504 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1505 regs + gregset->r_psr_offset);
1506
1507 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1508 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1509 regs + gregset->r_pc_offset);
1510
1511 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1512 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1513 regs + gregset->r_npc_offset);
1514
1515 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1516 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1517 regs + gregset->r_y_offset);
1518
1519 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1520 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
1521
1522 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1523 {
1524 int offset = gregset->r_g1_offset;
1525
1526 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1527 {
1528 if (regnum == i || regnum == -1)
1529 regcache_raw_supply (regcache, i, regs + offset);
1530 offset += 4;
1531 }
1532 }
1533
1534 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1535 {
1536 /* Not all of the register set variants include Locals and
1537 Inputs. For those that don't, we read them off the stack. */
1538 if (gregset->r_l0_offset == -1)
1539 {
1540 ULONGEST sp;
1541
1542 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1543 sparc_supply_rwindow (regcache, sp, regnum);
1544 }
1545 else
1546 {
1547 int offset = gregset->r_l0_offset;
1548
1549 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1550 {
1551 if (regnum == i || regnum == -1)
1552 regcache_raw_supply (regcache, i, regs + offset);
1553 offset += 4;
1554 }
1555 }
1556 }
1557 }
1558
1559 void
1560 sparc32_collect_gregset (const struct sparc_gregset *gregset,
1561 const struct regcache *regcache,
1562 int regnum, void *gregs)
1563 {
1564 gdb_byte *regs = gregs;
1565 int i;
1566
1567 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1568 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1569 regs + gregset->r_psr_offset);
1570
1571 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1572 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1573 regs + gregset->r_pc_offset);
1574
1575 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1576 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1577 regs + gregset->r_npc_offset);
1578
1579 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1580 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1581 regs + gregset->r_y_offset);
1582
1583 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1584 {
1585 int offset = gregset->r_g1_offset;
1586
1587 /* %g0 is always zero. */
1588 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1589 {
1590 if (regnum == i || regnum == -1)
1591 regcache_raw_collect (regcache, i, regs + offset);
1592 offset += 4;
1593 }
1594 }
1595
1596 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1597 {
1598 /* Not all of the register set variants include Locals and
1599 Inputs. For those that don't, we read them off the stack. */
1600 if (gregset->r_l0_offset != -1)
1601 {
1602 int offset = gregset->r_l0_offset;
1603
1604 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1605 {
1606 if (regnum == i || regnum == -1)
1607 regcache_raw_collect (regcache, i, regs + offset);
1608 offset += 4;
1609 }
1610 }
1611 }
1612 }
1613
1614 void
1615 sparc32_supply_fpregset (struct regcache *regcache,
1616 int regnum, const void *fpregs)
1617 {
1618 const gdb_byte *regs = fpregs;
1619 int i;
1620
1621 for (i = 0; i < 32; i++)
1622 {
1623 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1624 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1625 }
1626
1627 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1628 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1629 }
1630
1631 void
1632 sparc32_collect_fpregset (const struct regcache *regcache,
1633 int regnum, void *fpregs)
1634 {
1635 gdb_byte *regs = fpregs;
1636 int i;
1637
1638 for (i = 0; i < 32; i++)
1639 {
1640 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1641 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1642 }
1643
1644 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1645 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1646 }
1647 \f
1648
1649 /* SunOS 4. */
1650
1651 /* From <machine/reg.h>. */
1652 const struct sparc_gregset sparc32_sunos4_gregset =
1653 {
1654 0 * 4, /* %psr */
1655 1 * 4, /* %pc */
1656 2 * 4, /* %npc */
1657 3 * 4, /* %y */
1658 -1, /* %wim */
1659 -1, /* %tbr */
1660 4 * 4, /* %g1 */
1661 -1 /* %l0 */
1662 };
1663 \f
1664
1665 /* Provide a prototype to silence -Wmissing-prototypes. */
1666 void _initialize_sparc_tdep (void);
1667
1668 void
1669 _initialize_sparc_tdep (void)
1670 {
1671 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
1672
1673 /* Initialize the SPARC-specific register types. */
1674 sparc_init_types();
1675 }
This page took 0.088313 seconds and 4 git commands to generate.