* dwarf2-frame.c (dwarf2_frame_cache, dwarf2_frame_this_id)
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for SPARC.
2
3 Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "dis-asm.h"
25 #include "dwarf2-frame.h"
26 #include "floatformat.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "gdbcore.h"
31 #include "gdbtypes.h"
32 #include "inferior.h"
33 #include "symtab.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "target.h"
38 #include "value.h"
39
40 #include "gdb_assert.h"
41 #include "gdb_string.h"
42
43 #include "sparc-tdep.h"
44
45 struct regset;
46
47 /* This file implements the SPARC 32-bit ABI as defined by the section
48 "Low-Level System Information" of the SPARC Compliance Definition
49 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
50 lists changes with respect to the original 32-bit psABI as defined
51 in the "System V ABI, SPARC Processor Supplement".
52
53 Note that if we talk about SunOS, we mean SunOS 4.x, which was
54 BSD-based, which is sometimes (retroactively?) referred to as
55 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
56 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
57 suffering from severe version number inflation). Solaris 2.x is
58 also known as SunOS 5.x, since that's what uname(1) says. Solaris
59 2.x is SVR4-based. */
60
61 /* Please use the sparc32_-prefix for 32-bit specific code, the
62 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
63 code that can handle both. The 64-bit specific code lives in
64 sparc64-tdep.c; don't add any here. */
65
66 /* The SPARC Floating-Point Quad-Precision format is similar to
67 big-endian IA-64 Quad-recision format. */
68 #define floatformats_sparc_quad floatformats_ia64_quad
69
70 /* The stack pointer is offset from the stack frame by a BIAS of 2047
71 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
72 hosts, so undefine it first. */
73 #undef BIAS
74 #define BIAS 2047
75
76 /* Macros to extract fields from SPARC instructions. */
77 #define X_OP(i) (((i) >> 30) & 0x3)
78 #define X_RD(i) (((i) >> 25) & 0x1f)
79 #define X_A(i) (((i) >> 29) & 1)
80 #define X_COND(i) (((i) >> 25) & 0xf)
81 #define X_OP2(i) (((i) >> 22) & 0x7)
82 #define X_IMM22(i) ((i) & 0x3fffff)
83 #define X_OP3(i) (((i) >> 19) & 0x3f)
84 #define X_RS1(i) (((i) >> 14) & 0x1f)
85 #define X_I(i) (((i) >> 13) & 1)
86 /* Sign extension macros. */
87 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
88 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
89 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
90
91 /* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
93
94 unsigned long
95 sparc_fetch_instruction (CORE_ADDR pc)
96 {
97 gdb_byte buf[4];
98 unsigned long insn;
99 int i;
100
101 /* If we can't read the instruction at PC, return zero. */
102 if (read_memory_nobpt (pc, buf, sizeof (buf)))
103 return 0;
104
105 insn = 0;
106 for (i = 0; i < sizeof (buf); i++)
107 insn = (insn << 8) | buf[i];
108 return insn;
109 }
110 \f
111
112 /* Return non-zero if the instruction corresponding to PC is an "unimp"
113 instruction. */
114
115 static int
116 sparc_is_unimp_insn (CORE_ADDR pc)
117 {
118 const unsigned long insn = sparc_fetch_instruction (pc);
119
120 return ((insn & 0xc1c00000) == 0);
121 }
122
123 /* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
129
130 The same website provides the following description of how
131 StackGhost works:
132
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
142
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
145
146 More information on StackGuard can be found on in:
147
148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
149 Stack Protection." 2001. Published in USENIX Security Symposium
150 '01. */
151
152 /* Fetch StackGhost Per-Process XOR cookie. */
153
154 ULONGEST
155 sparc_fetch_wcookie (void)
156 {
157 struct target_ops *ops = &current_target;
158 gdb_byte buf[8];
159 int len;
160
161 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
162 if (len == -1)
163 return 0;
164
165 /* We should have either an 32-bit or an 64-bit cookie. */
166 gdb_assert (len == 4 || len == 8);
167
168 return extract_unsigned_integer (buf, len);
169 }
170 \f
171
172 /* Return the contents if register REGNUM as an address. */
173
174 CORE_ADDR
175 sparc_address_from_register (int regnum)
176 {
177 ULONGEST addr;
178
179 regcache_cooked_read_unsigned (current_regcache, regnum, &addr);
180 return addr;
181 }
182 \f
183
184 /* The functions on this page are intended to be used to classify
185 function arguments. */
186
187 /* Check whether TYPE is "Integral or Pointer". */
188
189 static int
190 sparc_integral_or_pointer_p (const struct type *type)
191 {
192 int len = TYPE_LENGTH (type);
193
194 switch (TYPE_CODE (type))
195 {
196 case TYPE_CODE_INT:
197 case TYPE_CODE_BOOL:
198 case TYPE_CODE_CHAR:
199 case TYPE_CODE_ENUM:
200 case TYPE_CODE_RANGE:
201 /* We have byte, half-word, word and extended-word/doubleword
202 integral types. The doubleword is an extension to the
203 original 32-bit ABI by the SCD 2.4.x. */
204 return (len == 1 || len == 2 || len == 4 || len == 8);
205 case TYPE_CODE_PTR:
206 case TYPE_CODE_REF:
207 /* Allow either 32-bit or 64-bit pointers. */
208 return (len == 4 || len == 8);
209 default:
210 break;
211 }
212
213 return 0;
214 }
215
216 /* Check whether TYPE is "Floating". */
217
218 static int
219 sparc_floating_p (const struct type *type)
220 {
221 switch (TYPE_CODE (type))
222 {
223 case TYPE_CODE_FLT:
224 {
225 int len = TYPE_LENGTH (type);
226 return (len == 4 || len == 8 || len == 16);
227 }
228 default:
229 break;
230 }
231
232 return 0;
233 }
234
235 /* Check whether TYPE is "Structure or Union". */
236
237 static int
238 sparc_structure_or_union_p (const struct type *type)
239 {
240 switch (TYPE_CODE (type))
241 {
242 case TYPE_CODE_STRUCT:
243 case TYPE_CODE_UNION:
244 return 1;
245 default:
246 break;
247 }
248
249 return 0;
250 }
251
252 /* Register information. */
253
254 static const char *sparc32_register_names[] =
255 {
256 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
257 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
258 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
259 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
260
261 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
262 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
263 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
264 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
265
266 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
267 };
268
269 /* Total number of registers. */
270 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
271
272 /* We provide the aliases %d0..%d30 for the floating registers as
273 "psuedo" registers. */
274
275 static const char *sparc32_pseudo_register_names[] =
276 {
277 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
278 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
279 };
280
281 /* Total number of pseudo registers. */
282 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
283
284 /* Return the name of register REGNUM. */
285
286 static const char *
287 sparc32_register_name (int regnum)
288 {
289 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
290 return sparc32_register_names[regnum];
291
292 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
293 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
294
295 return NULL;
296 }
297 \f
298
299 /* Type for %psr. */
300 struct type *sparc_psr_type;
301
302 /* Type for %fsr. */
303 struct type *sparc_fsr_type;
304
305 /* Construct types for ISA-specific registers. */
306
307 static void
308 sparc_init_types (void)
309 {
310 struct type *type;
311
312 type = init_flags_type ("builtin_type_sparc_psr", 4);
313 append_flags_type_flag (type, 5, "ET");
314 append_flags_type_flag (type, 6, "PS");
315 append_flags_type_flag (type, 7, "S");
316 append_flags_type_flag (type, 12, "EF");
317 append_flags_type_flag (type, 13, "EC");
318 sparc_psr_type = type;
319
320 type = init_flags_type ("builtin_type_sparc_fsr", 4);
321 append_flags_type_flag (type, 0, "NXA");
322 append_flags_type_flag (type, 1, "DZA");
323 append_flags_type_flag (type, 2, "UFA");
324 append_flags_type_flag (type, 3, "OFA");
325 append_flags_type_flag (type, 4, "NVA");
326 append_flags_type_flag (type, 5, "NXC");
327 append_flags_type_flag (type, 6, "DZC");
328 append_flags_type_flag (type, 7, "UFC");
329 append_flags_type_flag (type, 8, "OFC");
330 append_flags_type_flag (type, 9, "NVC");
331 append_flags_type_flag (type, 22, "NS");
332 append_flags_type_flag (type, 23, "NXM");
333 append_flags_type_flag (type, 24, "DZM");
334 append_flags_type_flag (type, 25, "UFM");
335 append_flags_type_flag (type, 26, "OFM");
336 append_flags_type_flag (type, 27, "NVM");
337 sparc_fsr_type = type;
338 }
339
340 /* Return the GDB type object for the "standard" data type of data in
341 register REGNUM. */
342
343 static struct type *
344 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
345 {
346 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
347 return builtin_type_float;
348
349 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
350 return builtin_type_double;
351
352 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
353 return builtin_type_void_data_ptr;
354
355 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
356 return builtin_type_void_func_ptr;
357
358 if (regnum == SPARC32_PSR_REGNUM)
359 return sparc_psr_type;
360
361 if (regnum == SPARC32_FSR_REGNUM)
362 return sparc_fsr_type;
363
364 return builtin_type_int32;
365 }
366
367 static void
368 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
369 struct regcache *regcache,
370 int regnum, gdb_byte *buf)
371 {
372 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
373
374 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
375 regcache_raw_read (regcache, regnum, buf);
376 regcache_raw_read (regcache, regnum + 1, buf + 4);
377 }
378
379 static void
380 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
381 struct regcache *regcache,
382 int regnum, const gdb_byte *buf)
383 {
384 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
385
386 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
387 regcache_raw_write (regcache, regnum, buf);
388 regcache_raw_write (regcache, regnum + 1, buf + 4);
389 }
390 \f
391
392 static CORE_ADDR
393 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
394 CORE_ADDR funcaddr, int using_gcc,
395 struct value **args, int nargs,
396 struct type *value_type,
397 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
398 {
399 *bp_addr = sp - 4;
400 *real_pc = funcaddr;
401
402 if (using_struct_return (value_type, using_gcc))
403 {
404 gdb_byte buf[4];
405
406 /* This is an UNIMP instruction. */
407 store_unsigned_integer (buf, 4, TYPE_LENGTH (value_type) & 0x1fff);
408 write_memory (sp - 8, buf, 4);
409 return sp - 8;
410 }
411
412 return sp - 4;
413 }
414
415 static CORE_ADDR
416 sparc32_store_arguments (struct regcache *regcache, int nargs,
417 struct value **args, CORE_ADDR sp,
418 int struct_return, CORE_ADDR struct_addr)
419 {
420 /* Number of words in the "parameter array". */
421 int num_elements = 0;
422 int element = 0;
423 int i;
424
425 for (i = 0; i < nargs; i++)
426 {
427 struct type *type = value_type (args[i]);
428 int len = TYPE_LENGTH (type);
429
430 if (sparc_structure_or_union_p (type)
431 || (sparc_floating_p (type) && len == 16))
432 {
433 /* Structure, Union and Quad-Precision Arguments. */
434 sp -= len;
435
436 /* Use doubleword alignment for these values. That's always
437 correct, and wasting a few bytes shouldn't be a problem. */
438 sp &= ~0x7;
439
440 write_memory (sp, value_contents (args[i]), len);
441 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
442 num_elements++;
443 }
444 else if (sparc_floating_p (type))
445 {
446 /* Floating arguments. */
447 gdb_assert (len == 4 || len == 8);
448 num_elements += (len / 4);
449 }
450 else
451 {
452 /* Integral and pointer arguments. */
453 gdb_assert (sparc_integral_or_pointer_p (type));
454
455 if (len < 4)
456 args[i] = value_cast (builtin_type_int32, args[i]);
457 num_elements += ((len + 3) / 4);
458 }
459 }
460
461 /* Always allocate at least six words. */
462 sp -= max (6, num_elements) * 4;
463
464 /* The psABI says that "Software convention requires space for the
465 struct/union return value pointer, even if the word is unused." */
466 sp -= 4;
467
468 /* The psABI says that "Although software convention and the
469 operating system require every stack frame to be doubleword
470 aligned." */
471 sp &= ~0x7;
472
473 for (i = 0; i < nargs; i++)
474 {
475 const bfd_byte *valbuf = value_contents (args[i]);
476 struct type *type = value_type (args[i]);
477 int len = TYPE_LENGTH (type);
478
479 gdb_assert (len == 4 || len == 8);
480
481 if (element < 6)
482 {
483 int regnum = SPARC_O0_REGNUM + element;
484
485 regcache_cooked_write (regcache, regnum, valbuf);
486 if (len > 4 && element < 5)
487 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
488 }
489
490 /* Always store the argument in memory. */
491 write_memory (sp + 4 + element * 4, valbuf, len);
492 element += len / 4;
493 }
494
495 gdb_assert (element == num_elements);
496
497 if (struct_return)
498 {
499 gdb_byte buf[4];
500
501 store_unsigned_integer (buf, 4, struct_addr);
502 write_memory (sp, buf, 4);
503 }
504
505 return sp;
506 }
507
508 static CORE_ADDR
509 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
510 struct regcache *regcache, CORE_ADDR bp_addr,
511 int nargs, struct value **args, CORE_ADDR sp,
512 int struct_return, CORE_ADDR struct_addr)
513 {
514 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
515
516 /* Set return address. */
517 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
518
519 /* Set up function arguments. */
520 sp = sparc32_store_arguments (regcache, nargs, args, sp,
521 struct_return, struct_addr);
522
523 /* Allocate the 16-word window save area. */
524 sp -= 16 * 4;
525
526 /* Stack should be doubleword aligned at this point. */
527 gdb_assert (sp % 8 == 0);
528
529 /* Finally, update the stack pointer. */
530 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
531
532 return sp;
533 }
534 \f
535
536 /* Use the program counter to determine the contents and size of a
537 breakpoint instruction. Return a pointer to a string of bytes that
538 encode a breakpoint instruction, store the length of the string in
539 *LEN and optionally adjust *PC to point to the correct memory
540 location for inserting the breakpoint. */
541
542 static const gdb_byte *
543 sparc_breakpoint_from_pc (CORE_ADDR *pc, int *len)
544 {
545 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
546
547 *len = sizeof (break_insn);
548 return break_insn;
549 }
550 \f
551
552 /* Allocate and initialize a frame cache. */
553
554 static struct sparc_frame_cache *
555 sparc_alloc_frame_cache (void)
556 {
557 struct sparc_frame_cache *cache;
558 int i;
559
560 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
561
562 /* Base address. */
563 cache->base = 0;
564 cache->pc = 0;
565
566 /* Frameless until proven otherwise. */
567 cache->frameless_p = 1;
568
569 cache->struct_return_p = 0;
570
571 return cache;
572 }
573
574 CORE_ADDR
575 sparc_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
576 struct sparc_frame_cache *cache)
577 {
578 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
579 unsigned long insn;
580 int offset = 0;
581 int dest = -1;
582
583 if (current_pc <= pc)
584 return current_pc;
585
586 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
587 SPARC the linker usually defines a symbol (typically
588 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
589 This symbol makes us end up here with PC pointing at the start of
590 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
591 would do our normal prologue analysis, we would probably conclude
592 that we've got a frame when in reality we don't, since the
593 dynamic linker patches up the first PLT with some code that
594 starts with a SAVE instruction. Patch up PC such that it points
595 at the start of our PLT entry. */
596 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
597 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
598
599 insn = sparc_fetch_instruction (pc);
600
601 /* Recognize a SETHI insn and record its destination. */
602 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
603 {
604 dest = X_RD (insn);
605 offset += 4;
606
607 insn = sparc_fetch_instruction (pc + 4);
608 }
609
610 /* Allow for an arithmetic operation on DEST or %g1. */
611 if (X_OP (insn) == 2 && X_I (insn)
612 && (X_RD (insn) == 1 || X_RD (insn) == dest))
613 {
614 offset += 4;
615
616 insn = sparc_fetch_instruction (pc + 8);
617 }
618
619 /* Check for the SAVE instruction that sets up the frame. */
620 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
621 {
622 cache->frameless_p = 0;
623 return pc + offset + 4;
624 }
625
626 return pc;
627 }
628
629 static CORE_ADDR
630 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
631 {
632 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
633 return frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
634 }
635
636 /* Return PC of first real instruction of the function starting at
637 START_PC. */
638
639 static CORE_ADDR
640 sparc32_skip_prologue (CORE_ADDR start_pc)
641 {
642 struct symtab_and_line sal;
643 CORE_ADDR func_start, func_end;
644 struct sparc_frame_cache cache;
645
646 /* This is the preferred method, find the end of the prologue by
647 using the debugging information. */
648 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
649 {
650 sal = find_pc_line (func_start, 0);
651
652 if (sal.end < func_end
653 && start_pc <= sal.end)
654 return sal.end;
655 }
656
657 start_pc = sparc_analyze_prologue (start_pc, 0xffffffffUL, &cache);
658
659 /* The psABI says that "Although the first 6 words of arguments
660 reside in registers, the standard stack frame reserves space for
661 them.". It also suggests that a function may use that space to
662 "write incoming arguments 0 to 5" into that space, and that's
663 indeed what GCC seems to be doing. In that case GCC will
664 generate debug information that points to the stack slots instead
665 of the registers, so we should consider the instructions that
666 write out these incoming arguments onto the stack. Of course we
667 only need to do this if we have a stack frame. */
668
669 while (!cache.frameless_p)
670 {
671 unsigned long insn = sparc_fetch_instruction (start_pc);
672
673 /* Recognize instructions that store incoming arguments in
674 %i0...%i5 into the corresponding stack slot. */
675 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
676 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
677 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
678 {
679 start_pc += 4;
680 continue;
681 }
682
683 break;
684 }
685
686 return start_pc;
687 }
688
689 /* Normal frames. */
690
691 struct sparc_frame_cache *
692 sparc_frame_cache (struct frame_info *next_frame, void **this_cache)
693 {
694 struct sparc_frame_cache *cache;
695
696 if (*this_cache)
697 return *this_cache;
698
699 cache = sparc_alloc_frame_cache ();
700 *this_cache = cache;
701
702 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
703 if (cache->pc != 0)
704 sparc_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
705
706 if (cache->frameless_p)
707 {
708 /* This function is frameless, so %fp (%i6) holds the frame
709 pointer for our calling frame. Use %sp (%o6) as this frame's
710 base address. */
711 cache->base =
712 frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
713 }
714 else
715 {
716 /* For normal frames, %fp (%i6) holds the frame pointer, the
717 base address for the current stack frame. */
718 cache->base =
719 frame_unwind_register_unsigned (next_frame, SPARC_FP_REGNUM);
720 }
721
722 if (cache->base & 1)
723 cache->base += BIAS;
724
725 return cache;
726 }
727
728 static int
729 sparc32_struct_return_from_sym (struct symbol *sym)
730 {
731 struct type *type = check_typedef (SYMBOL_TYPE (sym));
732 enum type_code code = TYPE_CODE (type);
733
734 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
735 {
736 type = check_typedef (TYPE_TARGET_TYPE (type));
737 if (sparc_structure_or_union_p (type)
738 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
739 return 1;
740 }
741
742 return 0;
743 }
744
745 struct sparc_frame_cache *
746 sparc32_frame_cache (struct frame_info *next_frame, void **this_cache)
747 {
748 struct sparc_frame_cache *cache;
749 struct symbol *sym;
750
751 if (*this_cache)
752 return *this_cache;
753
754 cache = sparc_frame_cache (next_frame, this_cache);
755
756 sym = find_pc_function (cache->pc);
757 if (sym)
758 {
759 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
760 }
761 else
762 {
763 /* There is no debugging information for this function to
764 help us determine whether this function returns a struct
765 or not. So we rely on another heuristic which is to check
766 the instruction at the return address and see if this is
767 an "unimp" instruction. If it is, then it is a struct-return
768 function. */
769 CORE_ADDR pc;
770 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
771
772 pc = frame_unwind_register_unsigned (next_frame, regnum) + 8;
773 if (sparc_is_unimp_insn (pc))
774 cache->struct_return_p = 1;
775 }
776
777 return cache;
778 }
779
780 static void
781 sparc32_frame_this_id (struct frame_info *next_frame, void **this_cache,
782 struct frame_id *this_id)
783 {
784 struct sparc_frame_cache *cache =
785 sparc32_frame_cache (next_frame, this_cache);
786
787 /* This marks the outermost frame. */
788 if (cache->base == 0)
789 return;
790
791 (*this_id) = frame_id_build (cache->base, cache->pc);
792 }
793
794 static void
795 sparc32_frame_prev_register (struct frame_info *next_frame, void **this_cache,
796 int regnum, int *optimizedp,
797 enum lval_type *lvalp, CORE_ADDR *addrp,
798 int *realnump, gdb_byte *valuep)
799 {
800 struct sparc_frame_cache *cache =
801 sparc32_frame_cache (next_frame, this_cache);
802
803 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
804 {
805 *optimizedp = 0;
806 *lvalp = not_lval;
807 *addrp = 0;
808 *realnump = -1;
809 if (valuep)
810 {
811 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
812
813 /* If this functions has a Structure, Union or
814 Quad-Precision return value, we have to skip the UNIMP
815 instruction that encodes the size of the structure. */
816 if (cache->struct_return_p)
817 pc += 4;
818
819 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
820 pc += frame_unwind_register_unsigned (next_frame, regnum) + 8;
821 store_unsigned_integer (valuep, 4, pc);
822 }
823 return;
824 }
825
826 /* Handle StackGhost. */
827 {
828 ULONGEST wcookie = sparc_fetch_wcookie ();
829
830 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
831 {
832 *optimizedp = 0;
833 *lvalp = not_lval;
834 *addrp = 0;
835 *realnump = -1;
836 if (valuep)
837 {
838 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
839 ULONGEST i7;
840
841 /* Read the value in from memory. */
842 i7 = get_frame_memory_unsigned (next_frame, addr, 4);
843 store_unsigned_integer (valuep, 4, i7 ^ wcookie);
844 }
845 return;
846 }
847 }
848
849 /* The previous frame's `local' and `in' registers have been saved
850 in the register save area. */
851 if (!cache->frameless_p
852 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
853 {
854 *optimizedp = 0;
855 *lvalp = lval_memory;
856 *addrp = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
857 *realnump = -1;
858 if (valuep)
859 {
860 struct gdbarch *gdbarch = get_frame_arch (next_frame);
861
862 /* Read the value in from memory. */
863 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
864 }
865 return;
866 }
867
868 /* The previous frame's `out' registers are accessable as the
869 current frame's `in' registers. */
870 if (!cache->frameless_p
871 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
872 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
873
874 *optimizedp = 0;
875 *lvalp = lval_register;
876 *addrp = 0;
877 *realnump = regnum;
878 if (valuep)
879 frame_unwind_register (next_frame, (*realnump), valuep);
880 }
881
882 static const struct frame_unwind sparc32_frame_unwind =
883 {
884 NORMAL_FRAME,
885 sparc32_frame_this_id,
886 sparc32_frame_prev_register
887 };
888
889 static const struct frame_unwind *
890 sparc32_frame_sniffer (struct frame_info *next_frame)
891 {
892 return &sparc32_frame_unwind;
893 }
894 \f
895
896 static CORE_ADDR
897 sparc32_frame_base_address (struct frame_info *next_frame, void **this_cache)
898 {
899 struct sparc_frame_cache *cache =
900 sparc32_frame_cache (next_frame, this_cache);
901
902 return cache->base;
903 }
904
905 static const struct frame_base sparc32_frame_base =
906 {
907 &sparc32_frame_unwind,
908 sparc32_frame_base_address,
909 sparc32_frame_base_address,
910 sparc32_frame_base_address
911 };
912
913 static struct frame_id
914 sparc_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
915 {
916 CORE_ADDR sp;
917
918 sp = frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
919 if (sp & 1)
920 sp += BIAS;
921 return frame_id_build (sp, frame_pc_unwind (next_frame));
922 }
923 \f
924
925 /* Extract from an array REGBUF containing the (raw) register state, a
926 function return value of TYPE, and copy that into VALBUF. */
927
928 static void
929 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
930 gdb_byte *valbuf)
931 {
932 int len = TYPE_LENGTH (type);
933 gdb_byte buf[8];
934
935 gdb_assert (!sparc_structure_or_union_p (type));
936 gdb_assert (!(sparc_floating_p (type) && len == 16));
937
938 if (sparc_floating_p (type))
939 {
940 /* Floating return values. */
941 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
942 if (len > 4)
943 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
944 memcpy (valbuf, buf, len);
945 }
946 else
947 {
948 /* Integral and pointer return values. */
949 gdb_assert (sparc_integral_or_pointer_p (type));
950
951 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
952 if (len > 4)
953 {
954 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
955 gdb_assert (len == 8);
956 memcpy (valbuf, buf, 8);
957 }
958 else
959 {
960 /* Just stripping off any unused bytes should preserve the
961 signed-ness just fine. */
962 memcpy (valbuf, buf + 4 - len, len);
963 }
964 }
965 }
966
967 /* Write into the appropriate registers a function return value stored
968 in VALBUF of type TYPE. */
969
970 static void
971 sparc32_store_return_value (struct type *type, struct regcache *regcache,
972 const gdb_byte *valbuf)
973 {
974 int len = TYPE_LENGTH (type);
975 gdb_byte buf[8];
976
977 gdb_assert (!sparc_structure_or_union_p (type));
978 gdb_assert (!(sparc_floating_p (type) && len == 16));
979
980 if (sparc_floating_p (type))
981 {
982 /* Floating return values. */
983 memcpy (buf, valbuf, len);
984 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
985 if (len > 4)
986 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
987 }
988 else
989 {
990 /* Integral and pointer return values. */
991 gdb_assert (sparc_integral_or_pointer_p (type));
992
993 if (len > 4)
994 {
995 gdb_assert (len == 8);
996 memcpy (buf, valbuf, 8);
997 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
998 }
999 else
1000 {
1001 /* ??? Do we need to do any sign-extension here? */
1002 memcpy (buf + 4 - len, valbuf, len);
1003 }
1004 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
1005 }
1006 }
1007
1008 static enum return_value_convention
1009 sparc32_return_value (struct gdbarch *gdbarch, struct type *type,
1010 struct regcache *regcache, gdb_byte *readbuf,
1011 const gdb_byte *writebuf)
1012 {
1013 /* The psABI says that "...every stack frame reserves the word at
1014 %fp+64. If a function returns a structure, union, or
1015 quad-precision value, this word should hold the address of the
1016 object into which the return value should be copied." This
1017 guarantees that we can always find the return value, not just
1018 before the function returns. */
1019
1020 if (sparc_structure_or_union_p (type)
1021 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1022 {
1023 if (readbuf)
1024 {
1025 ULONGEST sp;
1026 CORE_ADDR addr;
1027
1028 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1029 addr = read_memory_unsigned_integer (sp + 64, 4);
1030 read_memory (addr, readbuf, TYPE_LENGTH (type));
1031 }
1032
1033 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1034 }
1035
1036 if (readbuf)
1037 sparc32_extract_return_value (type, regcache, readbuf);
1038 if (writebuf)
1039 sparc32_store_return_value (type, regcache, writebuf);
1040
1041 return RETURN_VALUE_REGISTER_CONVENTION;
1042 }
1043
1044 static int
1045 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1046 {
1047 return (sparc_structure_or_union_p (type)
1048 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1049 }
1050
1051 static int
1052 sparc32_dwarf2_struct_return_p (struct frame_info *next_frame)
1053 {
1054 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1055 struct symbol *sym = find_pc_function (pc);
1056
1057 if (sym)
1058 return sparc32_struct_return_from_sym (sym);
1059 return 0;
1060 }
1061
1062 static void
1063 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1064 struct dwarf2_frame_state_reg *reg,
1065 struct frame_info *next_frame)
1066 {
1067 int off;
1068
1069 switch (regnum)
1070 {
1071 case SPARC_G0_REGNUM:
1072 /* Since %g0 is always zero, there is no point in saving it, and
1073 people will be inclined omit it from the CFI. Make sure we
1074 don't warn about that. */
1075 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1076 break;
1077 case SPARC_SP_REGNUM:
1078 reg->how = DWARF2_FRAME_REG_CFA;
1079 break;
1080 case SPARC32_PC_REGNUM:
1081 case SPARC32_NPC_REGNUM:
1082 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1083 off = 8;
1084 if (sparc32_dwarf2_struct_return_p (next_frame))
1085 off += 4;
1086 if (regnum == SPARC32_NPC_REGNUM)
1087 off += 4;
1088 reg->loc.offset = off;
1089 break;
1090 }
1091 }
1092
1093 \f
1094 /* The SPARC Architecture doesn't have hardware single-step support,
1095 and most operating systems don't implement it either, so we provide
1096 software single-step mechanism. */
1097
1098 static CORE_ADDR
1099 sparc_analyze_control_transfer (struct gdbarch *arch,
1100 CORE_ADDR pc, CORE_ADDR *npc)
1101 {
1102 unsigned long insn = sparc_fetch_instruction (pc);
1103 int conditional_p = X_COND (insn) & 0x7;
1104 int branch_p = 0;
1105 long offset = 0; /* Must be signed for sign-extend. */
1106
1107 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
1108 {
1109 /* Branch on Integer Register with Prediction (BPr). */
1110 branch_p = 1;
1111 conditional_p = 1;
1112 }
1113 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1114 {
1115 /* Branch on Floating-Point Condition Codes (FBfcc). */
1116 branch_p = 1;
1117 offset = 4 * X_DISP22 (insn);
1118 }
1119 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1120 {
1121 /* Branch on Floating-Point Condition Codes with Prediction
1122 (FBPfcc). */
1123 branch_p = 1;
1124 offset = 4 * X_DISP19 (insn);
1125 }
1126 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1127 {
1128 /* Branch on Integer Condition Codes (Bicc). */
1129 branch_p = 1;
1130 offset = 4 * X_DISP22 (insn);
1131 }
1132 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1133 {
1134 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1135 branch_p = 1;
1136 offset = 4 * X_DISP19 (insn);
1137 }
1138 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1139 {
1140 /* Trap instruction (TRAP). */
1141 return gdbarch_tdep (arch)->step_trap (insn);
1142 }
1143
1144 /* FIXME: Handle DONE and RETRY instructions. */
1145
1146 if (branch_p)
1147 {
1148 if (conditional_p)
1149 {
1150 /* For conditional branches, return nPC + 4 iff the annul
1151 bit is 1. */
1152 return (X_A (insn) ? *npc + 4 : 0);
1153 }
1154 else
1155 {
1156 /* For unconditional branches, return the target if its
1157 specified condition is "always" and return nPC + 4 if the
1158 condition is "never". If the annul bit is 1, set *NPC to
1159 zero. */
1160 if (X_COND (insn) == 0x0)
1161 pc = *npc, offset = 4;
1162 if (X_A (insn))
1163 *npc = 0;
1164
1165 gdb_assert (offset != 0);
1166 return pc + offset;
1167 }
1168 }
1169
1170 return 0;
1171 }
1172
1173 static CORE_ADDR
1174 sparc_step_trap (unsigned long insn)
1175 {
1176 return 0;
1177 }
1178
1179 void
1180 sparc_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1181 {
1182 struct gdbarch *arch = current_gdbarch;
1183 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1184 CORE_ADDR npc, nnpc;
1185
1186 if (insert_breakpoints_p)
1187 {
1188 CORE_ADDR pc, orig_npc;
1189
1190 pc = sparc_address_from_register (tdep->pc_regnum);
1191 orig_npc = npc = sparc_address_from_register (tdep->npc_regnum);
1192
1193 /* Analyze the instruction at PC. */
1194 nnpc = sparc_analyze_control_transfer (arch, pc, &npc);
1195 if (npc != 0)
1196 insert_single_step_breakpoint (npc);
1197
1198 if (nnpc != 0)
1199 insert_single_step_breakpoint (nnpc);
1200
1201 /* Assert that we have set at least one breakpoint, and that
1202 they're not set at the same spot - unless we're going
1203 from here straight to NULL, i.e. a call or jump to 0. */
1204 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1205 gdb_assert (nnpc != npc || orig_npc == 0);
1206 }
1207 else
1208 remove_single_step_breakpoints ();
1209 }
1210
1211 static void
1212 sparc_write_pc (CORE_ADDR pc, ptid_t ptid)
1213 {
1214 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1215
1216 write_register_pid (tdep->pc_regnum, pc, ptid);
1217 write_register_pid (tdep->npc_regnum, pc + 4, ptid);
1218 }
1219 \f
1220 /* Unglobalize NAME. */
1221
1222 char *
1223 sparc_stabs_unglobalize_name (char *name)
1224 {
1225 /* The Sun compilers (Sun ONE Studio, Forte Developer, Sun WorkShop,
1226 SunPRO) convert file static variables into global values, a
1227 process known as globalization. In order to do this, the
1228 compiler will create a unique prefix and prepend it to each file
1229 static variable. For static variables within a function, this
1230 globalization prefix is followed by the function name (nested
1231 static variables within a function are supposed to generate a
1232 warning message, and are left alone). The procedure is
1233 documented in the Stabs Interface Manual, which is distrubuted
1234 with the compilers, although version 4.0 of the manual seems to
1235 be incorrect in some places, at least for SPARC. The
1236 globalization prefix is encoded into an N_OPT stab, with the form
1237 "G=<prefix>". The globalization prefix always seems to start
1238 with a dollar sign '$'; a dot '.' is used as a seperator. So we
1239 simply strip everything up until the last dot. */
1240
1241 if (name[0] == '$')
1242 {
1243 char *p = strrchr (name, '.');
1244 if (p)
1245 return p + 1;
1246 }
1247
1248 return name;
1249 }
1250 \f
1251
1252 /* Return the appropriate register set for the core section identified
1253 by SECT_NAME and SECT_SIZE. */
1254
1255 const struct regset *
1256 sparc_regset_from_core_section (struct gdbarch *gdbarch,
1257 const char *sect_name, size_t sect_size)
1258 {
1259 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1260
1261 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
1262 return tdep->gregset;
1263
1264 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
1265 return tdep->fpregset;
1266
1267 return NULL;
1268 }
1269 \f
1270
1271 static struct gdbarch *
1272 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1273 {
1274 struct gdbarch_tdep *tdep;
1275 struct gdbarch *gdbarch;
1276
1277 /* If there is already a candidate, use it. */
1278 arches = gdbarch_list_lookup_by_info (arches, &info);
1279 if (arches != NULL)
1280 return arches->gdbarch;
1281
1282 /* Allocate space for the new architecture. */
1283 tdep = XMALLOC (struct gdbarch_tdep);
1284 gdbarch = gdbarch_alloc (&info, tdep);
1285
1286 tdep->pc_regnum = SPARC32_PC_REGNUM;
1287 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1288 tdep->gregset = NULL;
1289 tdep->sizeof_gregset = 0;
1290 tdep->fpregset = NULL;
1291 tdep->sizeof_fpregset = 0;
1292 tdep->plt_entry_size = 0;
1293 tdep->step_trap = sparc_step_trap;
1294
1295 set_gdbarch_long_double_bit (gdbarch, 128);
1296 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
1297
1298 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1299 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1300 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1301 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1302 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1303 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1304
1305 /* Register numbers of various important registers. */
1306 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1307 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1308 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1309
1310 /* Call dummy code. */
1311 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1312 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1313 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1314
1315 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1316 set_gdbarch_stabs_argument_has_addr
1317 (gdbarch, sparc32_stabs_argument_has_addr);
1318
1319 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1320
1321 /* Stack grows downward. */
1322 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1323
1324 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
1325
1326 set_gdbarch_frame_args_skip (gdbarch, 8);
1327
1328 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
1329
1330 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1331 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1332
1333 set_gdbarch_unwind_dummy_id (gdbarch, sparc_unwind_dummy_id);
1334
1335 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1336
1337 frame_base_set_default (gdbarch, &sparc32_frame_base);
1338
1339 /* Hook in the DWARF CFI frame unwinder. */
1340 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1341 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1342 StackGhost issues have been resolved. */
1343
1344 /* Hook in ABI-specific overrides, if they have been registered. */
1345 gdbarch_init_osabi (info, gdbarch);
1346
1347 frame_unwind_append_sniffer (gdbarch, sparc32_frame_sniffer);
1348
1349 /* If we have register sets, enable the generic core file support. */
1350 if (tdep->gregset)
1351 set_gdbarch_regset_from_core_section (gdbarch,
1352 sparc_regset_from_core_section);
1353
1354 return gdbarch;
1355 }
1356 \f
1357 /* Helper functions for dealing with register windows. */
1358
1359 void
1360 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1361 {
1362 int offset = 0;
1363 gdb_byte buf[8];
1364 int i;
1365
1366 if (sp & 1)
1367 {
1368 /* Registers are 64-bit. */
1369 sp += BIAS;
1370
1371 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1372 {
1373 if (regnum == i || regnum == -1)
1374 {
1375 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1376
1377 /* Handle StackGhost. */
1378 if (i == SPARC_I7_REGNUM)
1379 {
1380 ULONGEST wcookie = sparc_fetch_wcookie ();
1381 ULONGEST i7 = extract_unsigned_integer (buf + offset, 8);
1382
1383 store_unsigned_integer (buf + offset, 8, i7 ^ wcookie);
1384 }
1385
1386 regcache_raw_supply (regcache, i, buf);
1387 }
1388 }
1389 }
1390 else
1391 {
1392 /* Registers are 32-bit. Toss any sign-extension of the stack
1393 pointer. */
1394 sp &= 0xffffffffUL;
1395
1396 /* Clear out the top half of the temporary buffer, and put the
1397 register value in the bottom half if we're in 64-bit mode. */
1398 if (gdbarch_ptr_bit (current_gdbarch) == 64)
1399 {
1400 memset (buf, 0, 4);
1401 offset = 4;
1402 }
1403
1404 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1405 {
1406 if (regnum == i || regnum == -1)
1407 {
1408 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1409 buf + offset, 4);
1410
1411 /* Handle StackGhost. */
1412 if (i == SPARC_I7_REGNUM)
1413 {
1414 ULONGEST wcookie = sparc_fetch_wcookie ();
1415 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
1416
1417 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
1418 }
1419
1420 regcache_raw_supply (regcache, i, buf);
1421 }
1422 }
1423 }
1424 }
1425
1426 void
1427 sparc_collect_rwindow (const struct regcache *regcache,
1428 CORE_ADDR sp, int regnum)
1429 {
1430 int offset = 0;
1431 gdb_byte buf[8];
1432 int i;
1433
1434 if (sp & 1)
1435 {
1436 /* Registers are 64-bit. */
1437 sp += BIAS;
1438
1439 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1440 {
1441 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1442 {
1443 regcache_raw_collect (regcache, i, buf);
1444
1445 /* Handle StackGhost. */
1446 if (i == SPARC_I7_REGNUM)
1447 {
1448 ULONGEST wcookie = sparc_fetch_wcookie ();
1449 ULONGEST i7 = extract_unsigned_integer (buf + offset, 8);
1450
1451 store_unsigned_integer (buf, 8, i7 ^ wcookie);
1452 }
1453
1454 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1455 }
1456 }
1457 }
1458 else
1459 {
1460 /* Registers are 32-bit. Toss any sign-extension of the stack
1461 pointer. */
1462 sp &= 0xffffffffUL;
1463
1464 /* Only use the bottom half if we're in 64-bit mode. */
1465 if (gdbarch_ptr_bit (current_gdbarch) == 64)
1466 offset = 4;
1467
1468 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1469 {
1470 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1471 {
1472 regcache_raw_collect (regcache, i, buf);
1473
1474 /* Handle StackGhost. */
1475 if (i == SPARC_I7_REGNUM)
1476 {
1477 ULONGEST wcookie = sparc_fetch_wcookie ();
1478 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
1479
1480 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
1481 }
1482
1483 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1484 buf + offset, 4);
1485 }
1486 }
1487 }
1488 }
1489
1490 /* Helper functions for dealing with register sets. */
1491
1492 void
1493 sparc32_supply_gregset (const struct sparc_gregset *gregset,
1494 struct regcache *regcache,
1495 int regnum, const void *gregs)
1496 {
1497 const gdb_byte *regs = gregs;
1498 int i;
1499
1500 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1501 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1502 regs + gregset->r_psr_offset);
1503
1504 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1505 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1506 regs + gregset->r_pc_offset);
1507
1508 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1509 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1510 regs + gregset->r_npc_offset);
1511
1512 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1513 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1514 regs + gregset->r_y_offset);
1515
1516 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1517 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
1518
1519 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1520 {
1521 int offset = gregset->r_g1_offset;
1522
1523 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1524 {
1525 if (regnum == i || regnum == -1)
1526 regcache_raw_supply (regcache, i, regs + offset);
1527 offset += 4;
1528 }
1529 }
1530
1531 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1532 {
1533 /* Not all of the register set variants include Locals and
1534 Inputs. For those that don't, we read them off the stack. */
1535 if (gregset->r_l0_offset == -1)
1536 {
1537 ULONGEST sp;
1538
1539 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1540 sparc_supply_rwindow (regcache, sp, regnum);
1541 }
1542 else
1543 {
1544 int offset = gregset->r_l0_offset;
1545
1546 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1547 {
1548 if (regnum == i || regnum == -1)
1549 regcache_raw_supply (regcache, i, regs + offset);
1550 offset += 4;
1551 }
1552 }
1553 }
1554 }
1555
1556 void
1557 sparc32_collect_gregset (const struct sparc_gregset *gregset,
1558 const struct regcache *regcache,
1559 int regnum, void *gregs)
1560 {
1561 gdb_byte *regs = gregs;
1562 int i;
1563
1564 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1565 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1566 regs + gregset->r_psr_offset);
1567
1568 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1569 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1570 regs + gregset->r_pc_offset);
1571
1572 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1573 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1574 regs + gregset->r_npc_offset);
1575
1576 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1577 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1578 regs + gregset->r_y_offset);
1579
1580 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1581 {
1582 int offset = gregset->r_g1_offset;
1583
1584 /* %g0 is always zero. */
1585 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1586 {
1587 if (regnum == i || regnum == -1)
1588 regcache_raw_collect (regcache, i, regs + offset);
1589 offset += 4;
1590 }
1591 }
1592
1593 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1594 {
1595 /* Not all of the register set variants include Locals and
1596 Inputs. For those that don't, we read them off the stack. */
1597 if (gregset->r_l0_offset != -1)
1598 {
1599 int offset = gregset->r_l0_offset;
1600
1601 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1602 {
1603 if (regnum == i || regnum == -1)
1604 regcache_raw_collect (regcache, i, regs + offset);
1605 offset += 4;
1606 }
1607 }
1608 }
1609 }
1610
1611 void
1612 sparc32_supply_fpregset (struct regcache *regcache,
1613 int regnum, const void *fpregs)
1614 {
1615 const gdb_byte *regs = fpregs;
1616 int i;
1617
1618 for (i = 0; i < 32; i++)
1619 {
1620 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1621 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1622 }
1623
1624 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1625 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1626 }
1627
1628 void
1629 sparc32_collect_fpregset (const struct regcache *regcache,
1630 int regnum, void *fpregs)
1631 {
1632 gdb_byte *regs = fpregs;
1633 int i;
1634
1635 for (i = 0; i < 32; i++)
1636 {
1637 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1638 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1639 }
1640
1641 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1642 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1643 }
1644 \f
1645
1646 /* SunOS 4. */
1647
1648 /* From <machine/reg.h>. */
1649 const struct sparc_gregset sparc32_sunos4_gregset =
1650 {
1651 0 * 4, /* %psr */
1652 1 * 4, /* %pc */
1653 2 * 4, /* %npc */
1654 3 * 4, /* %y */
1655 -1, /* %wim */
1656 -1, /* %tbr */
1657 4 * 4, /* %g1 */
1658 -1 /* %l0 */
1659 };
1660 \f
1661
1662 /* Provide a prototype to silence -Wmissing-prototypes. */
1663 void _initialize_sparc_tdep (void);
1664
1665 void
1666 _initialize_sparc_tdep (void)
1667 {
1668 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
1669
1670 /* Initialize the SPARC-specific register types. */
1671 sparc_init_types();
1672 }
This page took 0.088054 seconds and 4 git commands to generate.