dc7b1910ba92dc19bba2c90a60f3c45925cb027e
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for the SPARC for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "obstack.h"
24 #include "target.h"
25 #include "ieee-float.h"
26
27 #include "symfile.h" /* for objfiles.h */
28 #include "objfiles.h" /* for find_pc_section */
29
30 #ifdef USE_PROC_FS
31 #include <sys/procfs.h>
32 #endif
33
34 #include "gdbcore.h"
35
36 /* From infrun.c */
37 extern int stop_after_trap;
38
39 /* We don't store all registers immediately when requested, since they
40 get sent over in large chunks anyway. Instead, we accumulate most
41 of the changes and send them over once. "deferred_stores" keeps
42 track of which sets of registers we have locally-changed copies of,
43 so we only need send the groups that have changed. */
44
45 int deferred_stores = 0; /* Cumulates stores we want to do eventually. */
46
47 typedef enum
48 {
49 Error, not_branch, bicc, bicca, ba, baa, ticc, ta
50 } branch_type;
51
52 /* Simulate single-step ptrace call for sun4. Code written by Gary
53 Beihl (beihl@mcc.com). */
54
55 /* npc4 and next_pc describe the situation at the time that the
56 step-breakpoint was set, not necessary the current value of NPC_REGNUM. */
57 static CORE_ADDR next_pc, npc4, target;
58 static int brknpc4, brktrg;
59 typedef char binsn_quantum[BREAKPOINT_MAX];
60 static binsn_quantum break_mem[3];
61
62 /* Non-zero if we just simulated a single-step ptrace call. This is
63 needed because we cannot remove the breakpoints in the inferior
64 process until after the `wait' in `wait_for_inferior'. Used for
65 sun4. */
66
67 int one_stepped;
68
69 /* single_step() is called just before we want to resume the inferior,
70 if we want to single-step it but there is no hardware or kernel single-step
71 support (as on all SPARCs). We find all the possible targets of the
72 coming instruction and breakpoint them.
73
74 single_step is also called just after the inferior stops. If we had
75 set up a simulated single-step, we undo our damage. */
76
77 void
78 single_step (ignore)
79 int ignore; /* pid, but we don't need it */
80 {
81 branch_type br, isannulled();
82 CORE_ADDR pc;
83 long pc_instruction;
84
85 if (!one_stepped)
86 {
87 /* Always set breakpoint for NPC. */
88 next_pc = read_register (NPC_REGNUM);
89 npc4 = next_pc + 4; /* branch not taken */
90
91 target_insert_breakpoint (next_pc, break_mem[0]);
92 /* printf_unfiltered ("set break at %x\n",next_pc); */
93
94 pc = read_register (PC_REGNUM);
95 pc_instruction = read_memory_integer (pc, sizeof(pc_instruction));
96 br = isannulled (pc_instruction, pc, &target);
97 brknpc4 = brktrg = 0;
98
99 if (br == bicca)
100 {
101 /* Conditional annulled branch will either end up at
102 npc (if taken) or at npc+4 (if not taken).
103 Trap npc+4. */
104 brknpc4 = 1;
105 target_insert_breakpoint (npc4, break_mem[1]);
106 }
107 else if (br == baa && target != next_pc)
108 {
109 /* Unconditional annulled branch will always end up at
110 the target. */
111 brktrg = 1;
112 target_insert_breakpoint (target, break_mem[2]);
113 }
114
115 /* We are ready to let it go */
116 one_stepped = 1;
117 return;
118 }
119 else
120 {
121 /* Remove breakpoints */
122 target_remove_breakpoint (next_pc, break_mem[0]);
123
124 if (brknpc4)
125 target_remove_breakpoint (npc4, break_mem[1]);
126
127 if (brktrg)
128 target_remove_breakpoint (target, break_mem[2]);
129
130 one_stepped = 0;
131 }
132 }
133 \f
134 #define FRAME_SAVED_L0 0 /* Byte offset from SP */
135 #define FRAME_SAVED_I0 (8 * REGISTER_RAW_SIZE (0)) /* Byte offset from SP */
136
137 CORE_ADDR
138 sparc_frame_chain (thisframe)
139 FRAME thisframe;
140 {
141 char buf[MAX_REGISTER_RAW_SIZE];
142 int err;
143 CORE_ADDR addr;
144
145 addr = thisframe->frame + FRAME_SAVED_I0 +
146 REGISTER_RAW_SIZE (FP_REGNUM) * (FP_REGNUM - I0_REGNUM);
147 err = target_read_memory (addr, buf, REGISTER_RAW_SIZE (FP_REGNUM));
148 if (err)
149 return 0;
150 return extract_address (buf, REGISTER_RAW_SIZE (FP_REGNUM));
151 }
152
153 CORE_ADDR
154 sparc_extract_struct_value_address (regbuf)
155 char regbuf[REGISTER_BYTES];
156 {
157 return read_memory_integer (((int *)(regbuf))[SP_REGNUM]+(16*4),
158 TARGET_PTR_BIT / TARGET_CHAR_BIT);
159 }
160
161 /* Find the pc saved in frame FRAME. */
162
163 CORE_ADDR
164 frame_saved_pc (frame)
165 FRAME frame;
166 {
167 char buf[MAX_REGISTER_RAW_SIZE];
168 CORE_ADDR addr;
169
170 addr = (frame->bottom + FRAME_SAVED_I0 +
171 REGISTER_RAW_SIZE (I7_REGNUM) * (I7_REGNUM - I0_REGNUM));
172 read_memory (addr, buf, REGISTER_RAW_SIZE (I7_REGNUM));
173 return PC_ADJUST (extract_address (buf, REGISTER_RAW_SIZE (I7_REGNUM)));
174 }
175
176 /*
177 * Since an individual frame in the frame cache is defined by two
178 * arguments (a frame pointer and a stack pointer), we need two
179 * arguments to get info for an arbitrary stack frame. This routine
180 * takes two arguments and makes the cached frames look as if these
181 * two arguments defined a frame on the cache. This allows the rest
182 * of info frame to extract the important arguments without
183 * difficulty.
184 */
185 FRAME
186 setup_arbitrary_frame (argc, argv)
187 int argc;
188 FRAME_ADDR *argv;
189 {
190 FRAME fid;
191
192 if (argc != 2)
193 error ("Sparc frame specifications require two arguments: fp and sp");
194
195 fid = create_new_frame (argv[0], 0);
196
197 if (!fid)
198 fatal ("internal: create_new_frame returned invalid frame id");
199
200 fid->bottom = argv[1];
201 fid->pc = FRAME_SAVED_PC (fid);
202 return fid;
203 }
204
205 /* Given a pc value, skip it forward past the function prologue by
206 disassembling instructions that appear to be a prologue.
207
208 If FRAMELESS_P is set, we are only testing to see if the function
209 is frameless. This allows a quicker answer.
210
211 This routine should be more specific in its actions; making sure
212 that it uses the same register in the initial prologue section. */
213 CORE_ADDR
214 skip_prologue (start_pc, frameless_p)
215 CORE_ADDR start_pc;
216 int frameless_p;
217 {
218 union
219 {
220 unsigned long int code;
221 struct
222 {
223 unsigned int op:2;
224 unsigned int rd:5;
225 unsigned int op2:3;
226 unsigned int imm22:22;
227 } sethi;
228 struct
229 {
230 unsigned int op:2;
231 unsigned int rd:5;
232 unsigned int op3:6;
233 unsigned int rs1:5;
234 unsigned int i:1;
235 unsigned int simm13:13;
236 } add;
237 int i;
238 } x;
239 int dest = -1;
240 CORE_ADDR pc = start_pc;
241
242 x.i = read_memory_integer (pc, 4);
243
244 /* Recognize the `sethi' insn and record its destination. */
245 if (x.sethi.op == 0 && x.sethi.op2 == 4)
246 {
247 dest = x.sethi.rd;
248 pc += 4;
249 x.i = read_memory_integer (pc, 4);
250 }
251
252 /* Recognize an add immediate value to register to either %g1 or
253 the destination register recorded above. Actually, this might
254 well recognize several different arithmetic operations.
255 It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1"
256 followed by "save %sp, %g1, %sp" is a valid prologue (Not that
257 I imagine any compiler really does that, however). */
258 if (x.add.op == 2 && x.add.i && (x.add.rd == 1 || x.add.rd == dest))
259 {
260 pc += 4;
261 x.i = read_memory_integer (pc, 4);
262 }
263
264 /* This recognizes any SAVE insn. But why do the XOR and then
265 the compare? That's identical to comparing against 60 (as long
266 as there isn't any sign extension). */
267 if (x.add.op == 2 && (x.add.op3 ^ 32) == 28)
268 {
269 pc += 4;
270 if (frameless_p) /* If the save is all we care about, */
271 return pc; /* return before doing more work */
272 x.i = read_memory_integer (pc, 4);
273 }
274 else
275 {
276 /* Without a save instruction, it's not a prologue. */
277 return start_pc;
278 }
279
280 /* Now we need to recognize stores into the frame from the input
281 registers. This recognizes all non alternate stores of input
282 register, into a location offset from the frame pointer. */
283 while (x.add.op == 3
284 && (x.add.op3 & 0x3c) == 4 /* Store, non-alternate. */
285 && (x.add.rd & 0x18) == 0x18 /* Input register. */
286 && x.add.i /* Immediate mode. */
287 && x.add.rs1 == 30 /* Off of frame pointer. */
288 /* Into reserved stack space. */
289 && x.add.simm13 >= 0x44
290 && x.add.simm13 < 0x5b)
291 {
292 pc += 4;
293 x.i = read_memory_integer (pc, 4);
294 }
295 return pc;
296 }
297
298 /* Check instruction at ADDR to see if it is an annulled branch.
299 All other instructions will go to NPC or will trap.
300 Set *TARGET if we find a canidate branch; set to zero if not. */
301
302 branch_type
303 isannulled (instruction, addr, target)
304 long instruction;
305 CORE_ADDR addr, *target;
306 {
307 branch_type val = not_branch;
308 long int offset; /* Must be signed for sign-extend. */
309 union
310 {
311 unsigned long int code;
312 struct
313 {
314 unsigned int op:2;
315 unsigned int a:1;
316 unsigned int cond:4;
317 unsigned int op2:3;
318 unsigned int disp22:22;
319 } b;
320 } insn;
321
322 *target = 0;
323 insn.code = instruction;
324
325 if (insn.b.op == 0
326 && (insn.b.op2 == 2 || insn.b.op2 == 6 || insn.b.op2 == 7))
327 {
328 if (insn.b.cond == 8)
329 val = insn.b.a ? baa : ba;
330 else
331 val = insn.b.a ? bicca : bicc;
332 offset = 4 * ((int) (insn.b.disp22 << 10) >> 10);
333 *target = addr + offset;
334 }
335
336 return val;
337 }
338
339 /* sparc_frame_find_saved_regs ()
340
341 Stores, into a struct frame_saved_regs,
342 the addresses of the saved registers of frame described by FRAME_INFO.
343 This includes special registers such as pc and fp saved in special
344 ways in the stack frame. sp is even more special:
345 the address we return for it IS the sp for the next frame.
346
347 Note that on register window machines, we are currently making the
348 assumption that window registers are being saved somewhere in the
349 frame in which they are being used. If they are stored in an
350 inferior frame, find_saved_register will break.
351
352 On the Sun 4, the only time all registers are saved is when
353 a dummy frame is involved. Otherwise, the only saved registers
354 are the LOCAL and IN registers which are saved as a result
355 of the "save/restore" opcodes. This condition is determined
356 by address rather than by value.
357
358 The "pc" is not stored in a frame on the SPARC. (What is stored
359 is a return address minus 8.) sparc_pop_frame knows how to
360 deal with that. Other routines might or might not.
361
362 See tm-sparc.h (PUSH_FRAME and friends) for CRITICAL information
363 about how this works. */
364
365 void
366 sparc_frame_find_saved_regs (fi, saved_regs_addr)
367 struct frame_info *fi;
368 struct frame_saved_regs *saved_regs_addr;
369 {
370 register int regnum;
371 FRAME_ADDR frame = FRAME_FP(fi);
372 FRAME fid = FRAME_INFO_ID (fi);
373
374 if (!fid)
375 fatal ("Bad frame info struct in FRAME_FIND_SAVED_REGS");
376
377 memset (saved_regs_addr, 0, sizeof (*saved_regs_addr));
378
379 if (fi->pc >= (fi->bottom ? fi->bottom :
380 read_register (SP_REGNUM))
381 && fi->pc <= FRAME_FP(fi))
382 {
383 /* Dummy frame. All but the window regs are in there somewhere. */
384 for (regnum = G1_REGNUM; regnum < G1_REGNUM+7; regnum++)
385 saved_regs_addr->regs[regnum] =
386 frame + (regnum - G0_REGNUM) * 4 - 0xa0;
387 for (regnum = I0_REGNUM; regnum < I0_REGNUM+8; regnum++)
388 saved_regs_addr->regs[regnum] =
389 frame + (regnum - I0_REGNUM) * 4 - 0xc0;
390 for (regnum = FP0_REGNUM; regnum < FP0_REGNUM + 32; regnum++)
391 saved_regs_addr->regs[regnum] =
392 frame + (regnum - FP0_REGNUM) * 4 - 0x80;
393 for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++)
394 saved_regs_addr->regs[regnum] =
395 frame + (regnum - Y_REGNUM) * 4 - 0xe0;
396 frame = fi->bottom ?
397 fi->bottom : read_register (SP_REGNUM);
398 }
399 else
400 {
401 /* Normal frame. Just Local and In registers */
402 frame = fi->bottom ?
403 fi->bottom : read_register (SP_REGNUM);
404 for (regnum = L0_REGNUM; regnum < L0_REGNUM+16; regnum++)
405 saved_regs_addr->regs[regnum] = frame + (regnum-L0_REGNUM) * 4;
406 }
407 if (fi->next)
408 {
409 /* Pull off either the next frame pointer or the stack pointer */
410 FRAME_ADDR next_next_frame =
411 (fi->next->bottom ?
412 fi->next->bottom :
413 read_register (SP_REGNUM));
414 for (regnum = O0_REGNUM; regnum < O0_REGNUM+8; regnum++)
415 saved_regs_addr->regs[regnum] = next_next_frame + regnum * 4;
416 }
417 /* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */
418 saved_regs_addr->regs[SP_REGNUM] = FRAME_FP (fi);
419 }
420
421 /* Push an empty stack frame, and record in it the current PC, regs, etc.
422
423 We save the non-windowed registers and the ins. The locals and outs
424 are new; they don't need to be saved. The i's and l's of
425 the last frame were already saved on the stack. */
426
427 /* Definitely see tm-sparc.h for more doc of the frame format here. */
428
429 void
430 sparc_push_dummy_frame ()
431 {
432 CORE_ADDR sp, old_sp;
433 char register_temp[0x140];
434
435 old_sp = sp = read_register (SP_REGNUM);
436
437 /* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */
438 read_register_bytes (REGISTER_BYTE (Y_REGNUM), &register_temp[0],
439 REGISTER_RAW_SIZE (Y_REGNUM) * 8);
440
441 read_register_bytes (REGISTER_BYTE (O0_REGNUM), &register_temp[8 * 4],
442 REGISTER_RAW_SIZE (O0_REGNUM) * 8);
443
444 read_register_bytes (REGISTER_BYTE (G0_REGNUM), &register_temp[16 * 4],
445 REGISTER_RAW_SIZE (G0_REGNUM) * 8);
446
447 read_register_bytes (REGISTER_BYTE (FP0_REGNUM), &register_temp[24 * 4],
448 REGISTER_RAW_SIZE (FP0_REGNUM) * 32);
449
450 sp -= 0x140;
451
452 write_register (SP_REGNUM, sp);
453
454 write_memory (sp + 0x60, &register_temp[0], (8 + 8 + 8 + 32) * 4);
455
456 write_register (FP_REGNUM, old_sp);
457
458 /* Set return address register for the call dummy to the current PC. */
459 write_register (I7_REGNUM, read_pc() - 8);
460 }
461
462 /* Discard from the stack the innermost frame, restoring all saved registers.
463
464 Note that the values stored in fsr by get_frame_saved_regs are *in
465 the context of the called frame*. What this means is that the i
466 regs of fsr must be restored into the o regs of the (calling) frame that
467 we pop into. We don't care about the output regs of the calling frame,
468 since unless it's a dummy frame, it won't have any output regs in it.
469
470 We never have to bother with %l (local) regs, since the called routine's
471 locals get tossed, and the calling routine's locals are already saved
472 on its stack. */
473
474 /* Definitely see tm-sparc.h for more doc of the frame format here. */
475
476 void
477 sparc_pop_frame ()
478 {
479 register FRAME frame = get_current_frame ();
480 register CORE_ADDR pc;
481 struct frame_saved_regs fsr;
482 struct frame_info *fi;
483 char raw_buffer[REGISTER_BYTES];
484
485 fi = get_frame_info (frame);
486 get_frame_saved_regs (fi, &fsr);
487 if (fsr.regs[FP0_REGNUM])
488 {
489 read_memory (fsr.regs[FP0_REGNUM], raw_buffer, 32 * 4);
490 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), raw_buffer, 32 * 4);
491 }
492 if (fsr.regs[FPS_REGNUM])
493 {
494 read_memory (fsr.regs[FPS_REGNUM], raw_buffer, 4);
495 write_register_bytes (REGISTER_BYTE (FPS_REGNUM), raw_buffer, 4);
496 }
497 if (fsr.regs[CPS_REGNUM])
498 {
499 read_memory (fsr.regs[CPS_REGNUM], raw_buffer, 4);
500 write_register_bytes (REGISTER_BYTE (CPS_REGNUM), raw_buffer, 4);
501 }
502 if (fsr.regs[G1_REGNUM])
503 {
504 read_memory (fsr.regs[G1_REGNUM], raw_buffer, 7 * 4);
505 write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer, 7 * 4);
506 }
507 if (fsr.regs[I0_REGNUM])
508 {
509 CORE_ADDR sp;
510
511 char reg_temp[REGISTER_BYTES];
512
513 read_memory (fsr.regs[I0_REGNUM], raw_buffer, 8 * 4);
514
515 /* Get the ins and locals which we are about to restore. Just
516 moving the stack pointer is all that is really needed, except
517 store_inferior_registers is then going to write the ins and
518 locals from the registers array, so we need to muck with the
519 registers array. */
520 sp = fsr.regs[SP_REGNUM];
521 read_memory (sp, reg_temp, REGISTER_RAW_SIZE (L0_REGNUM) * 16);
522
523 /* Restore the out registers.
524 Among other things this writes the new stack pointer. */
525 write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer,
526 REGISTER_RAW_SIZE (O0_REGNUM) * 8);
527
528 write_register_bytes (REGISTER_BYTE (L0_REGNUM), reg_temp,
529 REGISTER_RAW_SIZE (L0_REGNUM) * 16);
530 }
531 if (fsr.regs[PS_REGNUM])
532 write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4));
533 if (fsr.regs[Y_REGNUM])
534 write_register (Y_REGNUM, read_memory_integer (fsr.regs[Y_REGNUM], 4));
535 if (fsr.regs[PC_REGNUM])
536 {
537 /* Explicitly specified PC (and maybe NPC) -- just restore them. */
538 write_register (PC_REGNUM, read_memory_integer (fsr.regs[PC_REGNUM], 4));
539 if (fsr.regs[NPC_REGNUM])
540 write_register (NPC_REGNUM,
541 read_memory_integer (fsr.regs[NPC_REGNUM], 4));
542 }
543 else if (fsr.regs[I7_REGNUM])
544 {
545 /* Return address in %i7 -- adjust it, then restore PC and NPC from it */
546 pc = PC_ADJUST (read_memory_integer (fsr.regs[I7_REGNUM], 4));
547 write_register (PC_REGNUM, pc);
548 write_register (NPC_REGNUM, pc + 4);
549 }
550 flush_cached_frames ();
551 set_current_frame ( create_new_frame (read_register (FP_REGNUM),
552 read_pc ()));
553 }
554
555 /* On the Sun 4 under SunOS, the compile will leave a fake insn which
556 encodes the structure size being returned. If we detect such
557 a fake insn, step past it. */
558
559 CORE_ADDR
560 sparc_pc_adjust(pc)
561 CORE_ADDR pc;
562 {
563 unsigned long insn;
564 char buf[4];
565 int err;
566
567 err = target_read_memory (pc + 8, buf, sizeof(long));
568 insn = extract_unsigned_integer (buf, 4);
569 if ((err == 0) && (insn & 0xfffffe00) == 0)
570 return pc+12;
571 else
572 return pc+8;
573 }
574
575
576 /* Structure of SPARC extended floating point numbers.
577 This information is not currently used by GDB, since no current SPARC
578 implementations support extended float. */
579
580 const struct ext_format ext_format_sparc = {
581 /* tot sbyte smask expbyte manbyte */
582 16, 0, 0x80, 0,1, 4,8, /* sparc */
583 };
584 \f
585 #ifdef USE_PROC_FS /* Target dependent support for /proc */
586
587 /* The /proc interface divides the target machine's register set up into
588 two different sets, the general register set (gregset) and the floating
589 point register set (fpregset). For each set, there is an ioctl to get
590 the current register set and another ioctl to set the current values.
591
592 The actual structure passed through the ioctl interface is, of course,
593 naturally machine dependent, and is different for each set of registers.
594 For the sparc for example, the general register set is typically defined
595 by:
596
597 typedef int gregset_t[38];
598
599 #define R_G0 0
600 ...
601 #define R_TBR 37
602
603 and the floating point set by:
604
605 typedef struct prfpregset {
606 union {
607 u_long pr_regs[32];
608 double pr_dregs[16];
609 } pr_fr;
610 void * pr_filler;
611 u_long pr_fsr;
612 u_char pr_qcnt;
613 u_char pr_q_entrysize;
614 u_char pr_en;
615 u_long pr_q[64];
616 } prfpregset_t;
617
618 These routines provide the packing and unpacking of gregset_t and
619 fpregset_t formatted data.
620
621 */
622
623
624 /* Given a pointer to a general register set in /proc format (gregset_t *),
625 unpack the register contents and supply them as gdb's idea of the current
626 register values. */
627
628 void
629 supply_gregset (gregsetp)
630 prgregset_t *gregsetp;
631 {
632 register int regi;
633 register prgreg_t *regp = (prgreg_t *) gregsetp;
634
635 /* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers. */
636 for (regi = G0_REGNUM ; regi <= I7_REGNUM ; regi++)
637 {
638 supply_register (regi, (char *) (regp + regi));
639 }
640
641 /* These require a bit more care. */
642 supply_register (PS_REGNUM, (char *) (regp + R_PS));
643 supply_register (PC_REGNUM, (char *) (regp + R_PC));
644 supply_register (NPC_REGNUM,(char *) (regp + R_nPC));
645 supply_register (Y_REGNUM, (char *) (regp + R_Y));
646 }
647
648 void
649 fill_gregset (gregsetp, regno)
650 prgregset_t *gregsetp;
651 int regno;
652 {
653 int regi;
654 register prgreg_t *regp = (prgreg_t *) gregsetp;
655 extern char registers[];
656
657 for (regi = 0 ; regi <= R_I7 ; regi++)
658 {
659 if ((regno == -1) || (regno == regi))
660 {
661 *(regp + regi) = *(int *) &registers[REGISTER_BYTE (regi)];
662 }
663 }
664 if ((regno == -1) || (regno == PS_REGNUM))
665 {
666 *(regp + R_PS) = *(int *) &registers[REGISTER_BYTE (PS_REGNUM)];
667 }
668 if ((regno == -1) || (regno == PC_REGNUM))
669 {
670 *(regp + R_PC) = *(int *) &registers[REGISTER_BYTE (PC_REGNUM)];
671 }
672 if ((regno == -1) || (regno == NPC_REGNUM))
673 {
674 *(regp + R_nPC) = *(int *) &registers[REGISTER_BYTE (NPC_REGNUM)];
675 }
676 if ((regno == -1) || (regno == Y_REGNUM))
677 {
678 *(regp + R_Y) = *(int *) &registers[REGISTER_BYTE (Y_REGNUM)];
679 }
680 }
681
682 #if defined (FP0_REGNUM)
683
684 /* Given a pointer to a floating point register set in /proc format
685 (fpregset_t *), unpack the register contents and supply them as gdb's
686 idea of the current floating point register values. */
687
688 void
689 supply_fpregset (fpregsetp)
690 prfpregset_t *fpregsetp;
691 {
692 register int regi;
693 char *from;
694
695 for (regi = FP0_REGNUM ; regi < FP0_REGNUM+32 ; regi++)
696 {
697 from = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM];
698 supply_register (regi, from);
699 }
700 supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr));
701 }
702
703 /* Given a pointer to a floating point register set in /proc format
704 (fpregset_t *), update the register specified by REGNO from gdb's idea
705 of the current floating point register set. If REGNO is -1, update
706 them all. */
707
708 void
709 fill_fpregset (fpregsetp, regno)
710 prfpregset_t *fpregsetp;
711 int regno;
712 {
713 int regi;
714 char *to;
715 char *from;
716 extern char registers[];
717
718 for (regi = FP0_REGNUM ; regi < FP0_REGNUM+32 ; regi++)
719 {
720 if ((regno == -1) || (regno == regi))
721 {
722 from = (char *) &registers[REGISTER_BYTE (regi)];
723 to = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM];
724 memcpy (to, from, REGISTER_RAW_SIZE (regi));
725 }
726 }
727 if ((regno == -1) || (regno == FPS_REGNUM))
728 {
729 fpregsetp->pr_fsr = *(int *) &registers[REGISTER_BYTE (FPS_REGNUM)];
730 }
731 }
732
733 #endif /* defined (FP0_REGNUM) */
734
735 #endif /* USE_PROC_FS */
736
737
738 #ifdef GET_LONGJMP_TARGET
739
740 /* Figure out where the longjmp will land. We expect that we have just entered
741 longjmp and haven't yet setup the stack frame, so the args are still in the
742 output regs. %o0 (O0_REGNUM) points at the jmp_buf structure from which we
743 extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
744 This routine returns true on success */
745
746 int
747 get_longjmp_target(pc)
748 CORE_ADDR *pc;
749 {
750 CORE_ADDR jb_addr;
751 #define LONGJMP_TARGET_SIZE 4
752 char buf[LONGJMP_TARGET_SIZE];
753
754 jb_addr = read_register(O0_REGNUM);
755
756 if (target_read_memory(jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
757 LONGJMP_TARGET_SIZE))
758 return 0;
759
760 *pc = extract_address (buf, LONGJMP_TARGET_SIZE);
761
762 return 1;
763 }
764 #endif /* GET_LONGJMP_TARGET */
765
766 /* So far used only for sparc solaris. In sparc solaris, we recognize
767 a trampoline by it's section name. That is, if the pc is in a
768 section named ".plt" then we are in a trampline. */
769
770 int
771 in_solib_trampoline(pc, name)
772 CORE_ADDR pc;
773 char *name;
774 {
775 struct obj_section *s;
776 int retval = 0;
777
778 s = find_pc_section(pc);
779
780 retval = (s != NULL
781 && s->sec_ptr->name != NULL
782 && STREQ (s->sec_ptr->name, ".plt"));
783 return(retval);
784 }
785
This page took 0.076249 seconds and 4 git commands to generate.