2003-05-15 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for the SPARC for GDB, the GNU debugger.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation,
5 Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* ??? Support for calling functions from gdb in sparc64 is unfinished. */
25
26 #include "defs.h"
27 #include "arch-utils.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "target.h"
31 #include "value.h"
32 #include "bfd.h"
33 #include "gdb_string.h"
34 #include "regcache.h"
35 #include "osabi.h"
36
37 #ifdef USE_PROC_FS
38 #include <sys/procfs.h>
39 /* Prototypes for supply_gregset etc. */
40 #include "gregset.h"
41 #endif
42
43 #include "gdbcore.h"
44 #include "gdb_assert.h"
45
46 #include "symfile.h" /* for 'entry_point_address' */
47
48 /*
49 * Some local macros that have multi-arch and non-multi-arch versions:
50 */
51
52 #if (GDB_MULTI_ARCH > 0)
53
54 #if 0
55 // OBSOLETE /* Does the target have Floating Point registers? */
56 // OBSOLETE #define SPARC_HAS_FPU (gdbarch_tdep (current_gdbarch)->has_fpu)
57 #endif
58 #define SPARC_HAS_FPU 1
59 /* Number of bytes devoted to Floating Point registers: */
60 #define FP_REGISTER_BYTES (gdbarch_tdep (current_gdbarch)->fp_register_bytes)
61 /* Highest numbered Floating Point register. */
62 #define FP_MAX_REGNUM (gdbarch_tdep (current_gdbarch)->fp_max_regnum)
63 /* Size of a general (integer) register: */
64 #define SPARC_INTREG_SIZE (gdbarch_tdep (current_gdbarch)->intreg_size)
65 /* Offset within the call dummy stack of the saved registers. */
66 #define DUMMY_REG_SAVE_OFFSET (gdbarch_tdep (current_gdbarch)->reg_save_offset)
67
68 #else /* non-multi-arch */
69
70
71 /* Does the target have Floating Point registers? */
72 #if 0
73 // OBSOLETE #if defined(TARGET_SPARCLET) || defined(TARGET_SPARCLITE)
74 // OBSOLETE #define SPARC_HAS_FPU 0
75 // OBSOLETE #else
76 // OBSOLETE #define SPARC_HAS_FPU 1
77 // OBSOLETE #endif
78 #endif
79 #define SPARC_HAS_FPU 1
80
81 /* Number of bytes devoted to Floating Point registers: */
82 #if (GDB_TARGET_IS_SPARC64)
83 #define FP_REGISTER_BYTES (64 * 4)
84 #else
85 #if (SPARC_HAS_FPU)
86 #define FP_REGISTER_BYTES (32 * 4)
87 #else
88 #define FP_REGISTER_BYTES 0
89 #endif
90 #endif
91
92 /* Highest numbered Floating Point register. */
93 #if (GDB_TARGET_IS_SPARC64)
94 #define FP_MAX_REGNUM (FP0_REGNUM + 48)
95 #else
96 #define FP_MAX_REGNUM (FP0_REGNUM + 32)
97 #endif
98
99 /* Size of a general (integer) register: */
100 #define SPARC_INTREG_SIZE (REGISTER_RAW_SIZE (G0_REGNUM))
101
102 /* Offset within the call dummy stack of the saved registers. */
103 #if (GDB_TARGET_IS_SPARC64)
104 #define DUMMY_REG_SAVE_OFFSET (128 + 16)
105 #else
106 #define DUMMY_REG_SAVE_OFFSET 0x60
107 #endif
108
109 #endif /* GDB_MULTI_ARCH */
110
111 struct gdbarch_tdep
112 {
113 #if 0
114 // OBSOLETE int has_fpu;
115 #endif
116 int fp_register_bytes;
117 int y_regnum;
118 int fp_max_regnum;
119 int intreg_size;
120 int reg_save_offset;
121 int call_dummy_call_offset;
122 int print_insn_mach;
123 };
124
125 /* Now make GDB_TARGET_IS_SPARC64 a runtime test. */
126 /* FIXME MVS: or try testing bfd_arch_info.arch and bfd_arch_info.mach ...
127 * define GDB_TARGET_IS_SPARC64 \
128 * (TARGET_ARCHITECTURE->arch == bfd_arch_sparc && \
129 * (TARGET_ARCHITECTURE->mach == bfd_mach_sparc_v9 || \
130 * TARGET_ARCHITECTURE->mach == bfd_mach_sparc_v9a))
131 */
132
133 /* From infrun.c */
134 extern int stop_after_trap;
135
136 /* We don't store all registers immediately when requested, since they
137 get sent over in large chunks anyway. Instead, we accumulate most
138 of the changes and send them over once. "deferred_stores" keeps
139 track of which sets of registers we have locally-changed copies of,
140 so we only need send the groups that have changed. */
141
142 int deferred_stores = 0; /* Accumulated stores we want to do eventually. */
143
144
145 #if 0
146 // OBSOLETE /* Some machines, such as Fujitsu SPARClite 86x, have a bi-endian mode
147 // OBSOLETE where instructions are big-endian and data are little-endian.
148 // OBSOLETE This flag is set when we detect that the target is of this type. */
149 // OBSOLETE
150 // OBSOLETE int bi_endian = 0;
151 #endif
152
153
154 const unsigned char *
155 sparc_breakpoint_from_pc (CORE_ADDR *pc, int *len)
156 {
157 static const char breakpoint[] = {0x91, 0xd0, 0x20, 0x01};
158 (*len) = sizeof (breakpoint);
159 return breakpoint;
160 }
161
162 /* Fetch a single instruction. Even on bi-endian machines
163 such as sparc86x, instructions are always big-endian. */
164
165 static unsigned long
166 fetch_instruction (CORE_ADDR pc)
167 {
168 unsigned long retval;
169 int i;
170 unsigned char buf[4];
171
172 read_memory (pc, buf, sizeof (buf));
173
174 /* Start at the most significant end of the integer, and work towards
175 the least significant. */
176 retval = 0;
177 for (i = 0; i < sizeof (buf); ++i)
178 retval = (retval << 8) | buf[i];
179 return retval;
180 }
181
182
183 /* Branches with prediction are treated like their non-predicting cousins. */
184 /* FIXME: What about floating point branches? */
185
186 /* Macros to extract fields from sparc instructions. */
187 #define X_OP(i) (((i) >> 30) & 0x3)
188 #define X_RD(i) (((i) >> 25) & 0x1f)
189 #define X_A(i) (((i) >> 29) & 1)
190 #define X_COND(i) (((i) >> 25) & 0xf)
191 #define X_OP2(i) (((i) >> 22) & 0x7)
192 #define X_IMM22(i) ((i) & 0x3fffff)
193 #define X_OP3(i) (((i) >> 19) & 0x3f)
194 #define X_RS1(i) (((i) >> 14) & 0x1f)
195 #define X_I(i) (((i) >> 13) & 1)
196 #define X_IMM13(i) ((i) & 0x1fff)
197 /* Sign extension macros. */
198 #define X_SIMM13(i) ((X_IMM13 (i) ^ 0x1000) - 0x1000)
199 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
200 #define X_CC(i) (((i) >> 20) & 3)
201 #define X_P(i) (((i) >> 19) & 1)
202 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
203 #define X_RCOND(i) (((i) >> 25) & 7)
204 #define X_DISP16(i) ((((((i) >> 6) && 0xc000) | ((i) & 0x3fff)) ^ 0x8000) - 0x8000)
205 #define X_FCN(i) (((i) >> 25) & 31)
206
207 typedef enum
208 {
209 Error, not_branch, bicc, bicca, ba, baa, ticc, ta, done_retry
210 } branch_type;
211
212 /* Simulate single-step ptrace call for sun4. Code written by Gary
213 Beihl (beihl@mcc.com). */
214
215 /* npc4 and next_pc describe the situation at the time that the
216 step-breakpoint was set, not necessary the current value of NPC_REGNUM. */
217 static CORE_ADDR next_pc, npc4, target;
218 static int brknpc4, brktrg;
219 typedef char binsn_quantum[BREAKPOINT_MAX];
220 static binsn_quantum break_mem[3];
221
222 static branch_type isbranch (long, CORE_ADDR, CORE_ADDR *);
223
224 /* single_step() is called just before we want to resume the inferior,
225 if we want to single-step it but there is no hardware or kernel single-step
226 support (as on all SPARCs). We find all the possible targets of the
227 coming instruction and breakpoint them.
228
229 single_step is also called just after the inferior stops. If we had
230 set up a simulated single-step, we undo our damage. */
231
232 void
233 sparc_software_single_step (enum target_signal ignore, /* pid, but we don't need it */
234 int insert_breakpoints_p)
235 {
236 branch_type br;
237 CORE_ADDR pc;
238 long pc_instruction;
239
240 if (insert_breakpoints_p)
241 {
242 /* Always set breakpoint for NPC. */
243 next_pc = read_register (NPC_REGNUM);
244 npc4 = next_pc + 4; /* branch not taken */
245
246 target_insert_breakpoint (next_pc, break_mem[0]);
247 /* printf_unfiltered ("set break at %x\n",next_pc); */
248
249 pc = read_register (PC_REGNUM);
250 pc_instruction = fetch_instruction (pc);
251 br = isbranch (pc_instruction, pc, &target);
252 brknpc4 = brktrg = 0;
253
254 if (br == bicca)
255 {
256 /* Conditional annulled branch will either end up at
257 npc (if taken) or at npc+4 (if not taken).
258 Trap npc+4. */
259 brknpc4 = 1;
260 target_insert_breakpoint (npc4, break_mem[1]);
261 }
262 else if (br == baa && target != next_pc)
263 {
264 /* Unconditional annulled branch will always end up at
265 the target. */
266 brktrg = 1;
267 target_insert_breakpoint (target, break_mem[2]);
268 }
269 else if (GDB_TARGET_IS_SPARC64 && br == done_retry)
270 {
271 brktrg = 1;
272 target_insert_breakpoint (target, break_mem[2]);
273 }
274 }
275 else
276 {
277 /* Remove breakpoints */
278 target_remove_breakpoint (next_pc, break_mem[0]);
279
280 if (brknpc4)
281 target_remove_breakpoint (npc4, break_mem[1]);
282
283 if (brktrg)
284 target_remove_breakpoint (target, break_mem[2]);
285 }
286 }
287 \f
288 struct frame_extra_info
289 {
290 CORE_ADDR bottom;
291 int in_prologue;
292 int flat;
293 /* Following fields only relevant for flat frames. */
294 CORE_ADDR pc_addr;
295 CORE_ADDR fp_addr;
296 /* Add this to ->frame to get the value of the stack pointer at the
297 time of the register saves. */
298 int sp_offset;
299 };
300
301 /* Call this for each newly created frame. For SPARC, we need to
302 calculate the bottom of the frame, and do some extra work if the
303 prologue has been generated via the -mflat option to GCC. In
304 particular, we need to know where the previous fp and the pc have
305 been stashed, since their exact position within the frame may vary. */
306
307 void
308 sparc_init_extra_frame_info (int fromleaf, struct frame_info *fi)
309 {
310 char *name;
311 CORE_ADDR prologue_start, prologue_end;
312 int insn;
313
314 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
315 frame_saved_regs_zalloc (fi);
316
317 get_frame_extra_info (fi)->bottom =
318 (get_next_frame (fi)
319 ? (get_frame_base (fi) == get_frame_base (get_next_frame (fi))
320 ? get_frame_extra_info (get_next_frame (fi))->bottom
321 : get_frame_base (get_next_frame (fi)))
322 : read_sp ());
323
324 /* If fi->next is NULL, then we already set ->frame by passing
325 deprecated_read_fp() to create_new_frame. */
326 if (get_next_frame (fi))
327 {
328 char buf[MAX_REGISTER_SIZE];
329
330 /* Compute ->frame as if not flat. If it is flat, we'll change
331 it later. */
332 if (get_next_frame (get_next_frame (fi)) != NULL
333 && ((get_frame_type (get_next_frame (get_next_frame (fi))) == SIGTRAMP_FRAME)
334 || deprecated_frame_in_dummy (get_next_frame (get_next_frame (fi))))
335 && frameless_look_for_prologue (get_next_frame (fi)))
336 {
337 /* A frameless function interrupted by a signal did not change
338 the frame pointer, fix up frame pointer accordingly. */
339 deprecated_update_frame_base_hack (fi, get_frame_base (get_next_frame (fi)));
340 get_frame_extra_info (fi)->bottom =
341 get_frame_extra_info (get_next_frame (fi))->bottom;
342 }
343 else
344 {
345 /* Should we adjust for stack bias here? */
346 ULONGEST tmp;
347 frame_read_unsigned_register (fi, DEPRECATED_FP_REGNUM, &tmp);
348 deprecated_update_frame_base_hack (fi, tmp);
349 if (GDB_TARGET_IS_SPARC64 && (get_frame_base (fi) & 1))
350 deprecated_update_frame_base_hack (fi, get_frame_base (fi) + 2047);
351 }
352 }
353
354 /* Decide whether this is a function with a ``flat register window''
355 frame. For such functions, the frame pointer is actually in %i7. */
356 get_frame_extra_info (fi)->flat = 0;
357 get_frame_extra_info (fi)->in_prologue = 0;
358 if (find_pc_partial_function (get_frame_pc (fi), &name, &prologue_start, &prologue_end))
359 {
360 /* See if the function starts with an add (which will be of a
361 negative number if a flat frame) to the sp. FIXME: Does not
362 handle large frames which will need more than one instruction
363 to adjust the sp. */
364 insn = fetch_instruction (prologue_start);
365 if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0
366 && X_I (insn) && X_SIMM13 (insn) < 0)
367 {
368 int offset = X_SIMM13 (insn);
369
370 /* Then look for a save of %i7 into the frame. */
371 insn = fetch_instruction (prologue_start + 4);
372 if (X_OP (insn) == 3
373 && X_RD (insn) == 31
374 && X_OP3 (insn) == 4
375 && X_RS1 (insn) == 14)
376 {
377 char buf[MAX_REGISTER_SIZE];
378
379 /* We definitely have a flat frame now. */
380 get_frame_extra_info (fi)->flat = 1;
381
382 get_frame_extra_info (fi)->sp_offset = offset;
383
384 /* Overwrite the frame's address with the value in %i7. */
385 {
386 ULONGEST tmp;
387 frame_read_unsigned_register (fi, I7_REGNUM, &tmp);
388 deprecated_update_frame_base_hack (fi, tmp);
389 }
390
391 if (GDB_TARGET_IS_SPARC64 && (get_frame_base (fi) & 1))
392 deprecated_update_frame_base_hack (fi, get_frame_base (fi) + 2047);
393
394 /* Record where the fp got saved. */
395 get_frame_extra_info (fi)->fp_addr =
396 get_frame_base (fi) + get_frame_extra_info (fi)->sp_offset + X_SIMM13 (insn);
397
398 /* Also try to collect where the pc got saved to. */
399 get_frame_extra_info (fi)->pc_addr = 0;
400 insn = fetch_instruction (prologue_start + 12);
401 if (X_OP (insn) == 3
402 && X_RD (insn) == 15
403 && X_OP3 (insn) == 4
404 && X_RS1 (insn) == 14)
405 get_frame_extra_info (fi)->pc_addr =
406 get_frame_base (fi) + get_frame_extra_info (fi)->sp_offset + X_SIMM13 (insn);
407 }
408 }
409 else
410 {
411 /* Check if the PC is in the function prologue before a SAVE
412 instruction has been executed yet. If so, set the frame
413 to the current value of the stack pointer and set
414 the in_prologue flag. */
415 CORE_ADDR addr;
416 struct symtab_and_line sal;
417
418 sal = find_pc_line (prologue_start, 0);
419 if (sal.line == 0) /* no line info, use PC */
420 prologue_end = get_frame_pc (fi);
421 else if (sal.end < prologue_end)
422 prologue_end = sal.end;
423 if (get_frame_pc (fi) < prologue_end)
424 {
425 for (addr = prologue_start; addr < get_frame_pc (fi); addr += 4)
426 {
427 insn = read_memory_integer (addr, 4);
428 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
429 break; /* SAVE seen, stop searching */
430 }
431 if (addr >= get_frame_pc (fi))
432 {
433 get_frame_extra_info (fi)->in_prologue = 1;
434 deprecated_update_frame_base_hack (fi, read_register (SP_REGNUM));
435 }
436 }
437 }
438 }
439 if (get_next_frame (fi) && get_frame_base (fi) == 0)
440 {
441 /* Kludge to cause init_prev_frame_info to destroy the new frame. */
442 deprecated_update_frame_base_hack (fi, get_frame_base (get_next_frame (fi)));
443 deprecated_update_frame_pc_hack (fi, get_frame_pc (get_next_frame (fi)));
444 }
445 }
446
447 CORE_ADDR
448 sparc_frame_chain (struct frame_info *frame)
449 {
450 /* Value that will cause DEPRECATED_FRAME_CHAIN_VALID to not worry
451 about the chain value. If it really is zero, we detect it later
452 in sparc_init_prev_frame.
453
454 Note: kevinb/2003-02-18: The constant 1 used to be returned here,
455 but, after some recent changes to legacy_frame_chain_valid(),
456 this value is no longer suitable for causing
457 legacy_frame_chain_valid() to "not worry about the chain value."
458 The constant ~0 (i.e, 0xfff...) causes the failing test in
459 legacy_frame_chain_valid() to succeed thus preserving the "not
460 worry" property. I had considered using something like
461 ``get_frame_base (frame) + 1''. However, I think a constant
462 value is better, because when debugging this problem, I knew that
463 something funny was going on as soon as I saw the constant 1
464 being used as the frame chain elsewhere in GDB. */
465
466 return ~ (CORE_ADDR) 0;
467 }
468
469 CORE_ADDR
470 sparc_extract_struct_value_address (char *regbuf)
471 {
472 return extract_address (regbuf + REGISTER_BYTE (O0_REGNUM),
473 REGISTER_RAW_SIZE (O0_REGNUM));
474 }
475
476 /* Find the pc saved in frame FRAME. */
477
478 CORE_ADDR
479 sparc_frame_saved_pc (struct frame_info *frame)
480 {
481 char buf[MAX_REGISTER_SIZE];
482 CORE_ADDR addr;
483
484 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
485 {
486 /* This is the signal trampoline frame.
487 Get the saved PC from the sigcontext structure. */
488
489 #ifndef SIGCONTEXT_PC_OFFSET
490 #define SIGCONTEXT_PC_OFFSET 12
491 #endif
492
493 CORE_ADDR sigcontext_addr;
494 char *scbuf;
495 int saved_pc_offset = SIGCONTEXT_PC_OFFSET;
496 char *name = NULL;
497
498 scbuf = alloca (TARGET_PTR_BIT / HOST_CHAR_BIT);
499
500 /* Solaris2 ucbsigvechandler passes a pointer to a sigcontext
501 as the third parameter. The offset to the saved pc is 12. */
502 find_pc_partial_function (get_frame_pc (frame), &name,
503 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
504 if (name && STREQ (name, "ucbsigvechandler"))
505 saved_pc_offset = 12;
506
507 /* The sigcontext address is contained in register O2. */
508 {
509 ULONGEST tmp;
510 frame_read_unsigned_register (frame, O0_REGNUM + 2, &tmp);
511 sigcontext_addr = tmp;
512 }
513
514 /* Don't cause a memory_error when accessing sigcontext in case the
515 stack layout has changed or the stack is corrupt. */
516 target_read_memory (sigcontext_addr + saved_pc_offset,
517 scbuf, sizeof (scbuf));
518 return extract_address (scbuf, sizeof (scbuf));
519 }
520 else if (get_frame_extra_info (frame)->in_prologue ||
521 (get_next_frame (frame) != NULL &&
522 ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME) ||
523 deprecated_frame_in_dummy (get_next_frame (frame))) &&
524 frameless_look_for_prologue (frame)))
525 {
526 /* A frameless function interrupted by a signal did not save
527 the PC, it is still in %o7. */
528 ULONGEST tmp;
529 frame_read_unsigned_register (frame, O7_REGNUM, &tmp);
530 return PC_ADJUST (tmp);
531 }
532 if (get_frame_extra_info (frame)->flat)
533 addr = get_frame_extra_info (frame)->pc_addr;
534 else
535 addr = get_frame_extra_info (frame)->bottom + FRAME_SAVED_I0 +
536 SPARC_INTREG_SIZE * (I7_REGNUM - I0_REGNUM);
537
538 if (addr == 0)
539 /* A flat frame leaf function might not save the PC anywhere,
540 just leave it in %o7. */
541 return PC_ADJUST (read_register (O7_REGNUM));
542
543 read_memory (addr, buf, SPARC_INTREG_SIZE);
544 return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE));
545 }
546
547 /* Since an individual frame in the frame cache is defined by two
548 arguments (a frame pointer and a stack pointer), we need two
549 arguments to get info for an arbitrary stack frame. This routine
550 takes two arguments and makes the cached frames look as if these
551 two arguments defined a frame on the cache. This allows the rest
552 of info frame to extract the important arguments without
553 difficulty. */
554
555 struct frame_info *
556 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
557 {
558 struct frame_info *frame;
559
560 if (argc != 2)
561 error ("Sparc frame specifications require two arguments: fp and sp");
562
563 frame = create_new_frame (argv[0], 0);
564
565 if (!frame)
566 internal_error (__FILE__, __LINE__,
567 "create_new_frame returned invalid frame");
568
569 get_frame_extra_info (frame)->bottom = argv[1];
570 deprecated_update_frame_pc_hack (frame, DEPRECATED_FRAME_SAVED_PC (frame));
571 return frame;
572 }
573
574 /* Given a pc value, skip it forward past the function prologue by
575 disassembling instructions that appear to be a prologue.
576
577 If FRAMELESS_P is set, we are only testing to see if the function
578 is frameless. This allows a quicker answer.
579
580 This routine should be more specific in its actions; making sure
581 that it uses the same register in the initial prologue section. */
582
583 static CORE_ADDR examine_prologue (CORE_ADDR, int, struct frame_info *,
584 CORE_ADDR *);
585
586 static CORE_ADDR
587 examine_prologue (CORE_ADDR start_pc, int frameless_p, struct frame_info *fi,
588 CORE_ADDR *saved_regs)
589 {
590 int insn;
591 int dest = -1;
592 CORE_ADDR pc = start_pc;
593 int is_flat = 0;
594
595 insn = fetch_instruction (pc);
596
597 /* Recognize the `sethi' insn and record its destination. */
598 if (X_OP (insn) == 0 && X_OP2 (insn) == 4)
599 {
600 dest = X_RD (insn);
601 pc += 4;
602 insn = fetch_instruction (pc);
603 }
604
605 /* Recognize an add immediate value to register to either %g1 or
606 the destination register recorded above. Actually, this might
607 well recognize several different arithmetic operations.
608 It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1"
609 followed by "save %sp, %g1, %sp" is a valid prologue (Not that
610 I imagine any compiler really does that, however). */
611 if (X_OP (insn) == 2
612 && X_I (insn)
613 && (X_RD (insn) == 1 || X_RD (insn) == dest))
614 {
615 pc += 4;
616 insn = fetch_instruction (pc);
617 }
618
619 /* Recognize any SAVE insn. */
620 if (X_OP (insn) == 2 && X_OP3 (insn) == 60)
621 {
622 pc += 4;
623 if (frameless_p) /* If the save is all we care about, */
624 return pc; /* return before doing more work */
625 insn = fetch_instruction (pc);
626 }
627 /* Recognize add to %sp. */
628 else if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0)
629 {
630 pc += 4;
631 if (frameless_p) /* If the add is all we care about, */
632 return pc; /* return before doing more work */
633 is_flat = 1;
634 insn = fetch_instruction (pc);
635 /* Recognize store of frame pointer (i7). */
636 if (X_OP (insn) == 3
637 && X_RD (insn) == 31
638 && X_OP3 (insn) == 4
639 && X_RS1 (insn) == 14)
640 {
641 pc += 4;
642 insn = fetch_instruction (pc);
643
644 /* Recognize sub %sp, <anything>, %i7. */
645 if (X_OP (insn) == 2
646 && X_OP3 (insn) == 4
647 && X_RS1 (insn) == 14
648 && X_RD (insn) == 31)
649 {
650 pc += 4;
651 insn = fetch_instruction (pc);
652 }
653 else
654 return pc;
655 }
656 else
657 return pc;
658 }
659 else
660 /* Without a save or add instruction, it's not a prologue. */
661 return start_pc;
662
663 while (1)
664 {
665 /* Recognize stores into the frame from the input registers.
666 This recognizes all non alternate stores of an input register,
667 into a location offset from the frame pointer between
668 +68 and +92. */
669
670 /* The above will fail for arguments that are promoted
671 (eg. shorts to ints or floats to doubles), because the compiler
672 will pass them in positive-offset frame space, but the prologue
673 will save them (after conversion) in negative frame space at an
674 unpredictable offset. Therefore I am going to remove the
675 restriction on the target-address of the save, on the theory
676 that any unbroken sequence of saves from input registers must
677 be part of the prologue. In un-optimized code (at least), I'm
678 fairly sure that the compiler would emit SOME other instruction
679 (eg. a move or add) before emitting another save that is actually
680 a part of the function body.
681
682 Besides, the reserved stack space is different for SPARC64 anyway.
683
684 MVS 4/23/2000 */
685
686 if (X_OP (insn) == 3
687 && (X_OP3 (insn) & 0x3c) == 4 /* Store, non-alternate. */
688 && (X_RD (insn) & 0x18) == 0x18 /* Input register. */
689 && X_I (insn) /* Immediate mode. */
690 && X_RS1 (insn) == 30) /* Off of frame pointer. */
691 ; /* empty statement -- fall thru to end of loop */
692 else if (GDB_TARGET_IS_SPARC64
693 && X_OP (insn) == 3
694 && (X_OP3 (insn) & 0x3c) == 12 /* store, extended (64-bit) */
695 && (X_RD (insn) & 0x18) == 0x18 /* input register */
696 && X_I (insn) /* immediate mode */
697 && X_RS1 (insn) == 30) /* off of frame pointer */
698 ; /* empty statement -- fall thru to end of loop */
699 else if (X_OP (insn) == 3
700 && (X_OP3 (insn) & 0x3c) == 36 /* store, floating-point */
701 && X_I (insn) /* immediate mode */
702 && X_RS1 (insn) == 30) /* off of frame pointer */
703 ; /* empty statement -- fall thru to end of loop */
704 else if (is_flat
705 && X_OP (insn) == 3
706 && X_OP3 (insn) == 4 /* store? */
707 && X_RS1 (insn) == 14) /* off of frame pointer */
708 {
709 if (saved_regs && X_I (insn))
710 saved_regs[X_RD (insn)] =
711 get_frame_base (fi) + get_frame_extra_info (fi)->sp_offset + X_SIMM13 (insn);
712 }
713 else
714 break;
715 pc += 4;
716 insn = fetch_instruction (pc);
717 }
718
719 return pc;
720 }
721
722 /* Advance PC across any function entry prologue instructions to reach
723 some "real" code. */
724
725 CORE_ADDR
726 sparc_skip_prologue (CORE_ADDR start_pc)
727 {
728 struct symtab_and_line sal;
729 CORE_ADDR func_start, func_end;
730
731 /* This is the preferred method, find the end of the prologue by
732 using the debugging information. */
733 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
734 {
735 sal = find_pc_line (func_start, 0);
736
737 if (sal.end < func_end
738 && start_pc <= sal.end)
739 return sal.end;
740 }
741
742 /* Oh well, examine the code by hand. */
743 return examine_prologue (start_pc, 0, NULL, NULL);
744 }
745
746 /* Is the prologue at IP frameless? */
747
748 int
749 sparc_prologue_frameless_p (CORE_ADDR ip)
750 {
751 return ip == examine_prologue (ip, 1, NULL, NULL);
752 }
753
754 /* Check instruction at ADDR to see if it is a branch.
755 All non-annulled instructions will go to NPC or will trap.
756 Set *TARGET if we find a candidate branch; set to zero if not.
757
758 This isn't static as it's used by remote-sa.sparc.c. */
759
760 static branch_type
761 isbranch (long instruction, CORE_ADDR addr, CORE_ADDR *target)
762 {
763 branch_type val = not_branch;
764 long int offset = 0; /* Must be signed for sign-extend. */
765
766 *target = 0;
767
768 if (X_OP (instruction) == 0
769 && (X_OP2 (instruction) == 2
770 || X_OP2 (instruction) == 6
771 || X_OP2 (instruction) == 1
772 || X_OP2 (instruction) == 3
773 || X_OP2 (instruction) == 5
774 || (GDB_TARGET_IS_SPARC64 && X_OP2 (instruction) == 7)))
775 {
776 if (X_COND (instruction) == 8)
777 val = X_A (instruction) ? baa : ba;
778 else
779 val = X_A (instruction) ? bicca : bicc;
780 switch (X_OP2 (instruction))
781 {
782 case 7:
783 if (!GDB_TARGET_IS_SPARC64)
784 break;
785 /* else fall thru */
786 case 2:
787 case 6:
788 offset = 4 * X_DISP22 (instruction);
789 break;
790 case 1:
791 case 5:
792 offset = 4 * X_DISP19 (instruction);
793 break;
794 case 3:
795 offset = 4 * X_DISP16 (instruction);
796 break;
797 }
798 *target = addr + offset;
799 }
800 else if (GDB_TARGET_IS_SPARC64
801 && X_OP (instruction) == 2
802 && X_OP3 (instruction) == 62)
803 {
804 if (X_FCN (instruction) == 0)
805 {
806 /* done */
807 *target = read_register (TNPC_REGNUM);
808 val = done_retry;
809 }
810 else if (X_FCN (instruction) == 1)
811 {
812 /* retry */
813 *target = read_register (TPC_REGNUM);
814 val = done_retry;
815 }
816 }
817
818 return val;
819 }
820 \f
821 /* Find register number REGNUM relative to FRAME and put its
822 (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
823 was optimized out (and thus can't be fetched). If the variable
824 was fetched from memory, set *ADDRP to where it was fetched from,
825 otherwise it was fetched from a register.
826
827 The argument RAW_BUFFER must point to aligned memory. */
828
829 void
830 sparc_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
831 struct frame_info *frame, int regnum,
832 enum lval_type *lval)
833 {
834 struct frame_info *frame1;
835 CORE_ADDR addr;
836
837 if (!target_has_registers)
838 error ("No registers.");
839
840 if (optimized)
841 *optimized = 0;
842
843 addr = 0;
844
845 /* FIXME This code extracted from infcmd.c; should put elsewhere! */
846 if (frame == NULL)
847 {
848 /* error ("No selected frame."); */
849 if (!target_has_registers)
850 error ("The program has no registers now.");
851 if (deprecated_selected_frame == NULL)
852 error ("No selected frame.");
853 /* Try to use selected frame */
854 frame = get_prev_frame (deprecated_selected_frame);
855 if (frame == 0)
856 error ("Cmd not meaningful in the outermost frame.");
857 }
858
859
860 frame1 = get_next_frame (frame);
861
862 /* Get saved PC from the frame info if not in innermost frame. */
863 if (regnum == PC_REGNUM && frame1 != NULL)
864 {
865 if (lval != NULL)
866 *lval = not_lval;
867 if (raw_buffer != NULL)
868 {
869 /* Put it back in target format. */
870 store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), get_frame_pc (frame));
871 }
872 if (addrp != NULL)
873 *addrp = 0;
874 return;
875 }
876
877 while (frame1 != NULL)
878 {
879 /* FIXME MVS: wrong test for dummy frame at entry. */
880
881 if (get_frame_pc (frame1) >= (get_frame_extra_info (frame1)->bottom
882 ? get_frame_extra_info (frame1)->bottom
883 : read_sp ())
884 && get_frame_pc (frame1) <= get_frame_base (frame1))
885 {
886 /* Dummy frame. All but the window regs are in there somewhere.
887 The window registers are saved on the stack, just like in a
888 normal frame. */
889 if (regnum >= G1_REGNUM && regnum < G1_REGNUM + 7)
890 addr = get_frame_base (frame1) + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
891 - (FP_REGISTER_BYTES + 8 * SPARC_INTREG_SIZE);
892 else if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
893 /* NOTE: cagney/2002-05-04: The call to get_prev_frame()
894 is safe/cheap - there will always be a prev frame.
895 This is because frame1 is initialized to frame->next
896 (frame1->prev == frame) and is then advanced towards
897 the innermost (next) frame. */
898 addr = (get_frame_extra_info (get_prev_frame (frame1))->bottom
899 + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
900 + FRAME_SAVED_I0);
901 else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
902 /* NOTE: cagney/2002-05-04: The call to get_prev_frame()
903 is safe/cheap - there will always be a prev frame.
904 This is because frame1 is initialized to frame->next
905 (frame1->prev == frame) and is then advanced towards
906 the innermost (next) frame. */
907 addr = (get_frame_extra_info (get_prev_frame (frame1))->bottom
908 + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
909 + FRAME_SAVED_L0);
910 else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
911 addr = get_frame_base (frame1) + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
912 - (FP_REGISTER_BYTES + 16 * SPARC_INTREG_SIZE);
913 else if (SPARC_HAS_FPU &&
914 regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32)
915 addr = get_frame_base (frame1) + (regnum - FP0_REGNUM) * 4
916 - (FP_REGISTER_BYTES);
917 else if (GDB_TARGET_IS_SPARC64 && SPARC_HAS_FPU &&
918 regnum >= FP0_REGNUM + 32 && regnum < FP_MAX_REGNUM)
919 addr = get_frame_base (frame1) + 32 * 4 + (regnum - FP0_REGNUM - 32) * 8
920 - (FP_REGISTER_BYTES);
921 else if (regnum >= Y_REGNUM && regnum < NUM_REGS)
922 addr = get_frame_base (frame1) + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE
923 - (FP_REGISTER_BYTES + 24 * SPARC_INTREG_SIZE);
924 }
925 else if (get_frame_extra_info (frame1)->flat)
926 {
927
928 if (regnum == RP_REGNUM)
929 addr = get_frame_extra_info (frame1)->pc_addr;
930 else if (regnum == I7_REGNUM)
931 addr = get_frame_extra_info (frame1)->fp_addr;
932 else
933 {
934 CORE_ADDR func_start;
935 CORE_ADDR *regs;
936
937 regs = alloca (NUM_REGS * sizeof (CORE_ADDR));
938 memset (regs, 0, NUM_REGS * sizeof (CORE_ADDR));
939
940 find_pc_partial_function (get_frame_pc (frame1), NULL, &func_start, NULL);
941 examine_prologue (func_start, 0, frame1, regs);
942 addr = regs[regnum];
943 }
944 }
945 else
946 {
947 /* Normal frame. Local and In registers are saved on stack. */
948 if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
949 addr = (get_frame_extra_info (get_prev_frame (frame1))->bottom
950 + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
951 + FRAME_SAVED_I0);
952 else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
953 addr = (get_frame_extra_info (get_prev_frame (frame1))->bottom
954 + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
955 + FRAME_SAVED_L0);
956 else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
957 {
958 /* Outs become ins. */
959 int realnum;
960 frame_register (frame1, (regnum - O0_REGNUM + I0_REGNUM),
961 optimized, lval, addrp, &realnum, raw_buffer);
962 return;
963 }
964 }
965 if (addr != 0)
966 break;
967 frame1 = get_next_frame (frame1);
968 }
969 if (addr != 0)
970 {
971 if (lval != NULL)
972 *lval = lval_memory;
973 if (regnum == SP_REGNUM)
974 {
975 if (raw_buffer != NULL)
976 {
977 /* Put it back in target format. */
978 store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), addr);
979 }
980 if (addrp != NULL)
981 *addrp = 0;
982 return;
983 }
984 if (raw_buffer != NULL)
985 read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
986 }
987 else
988 {
989 if (lval != NULL)
990 *lval = lval_register;
991 addr = REGISTER_BYTE (regnum);
992 if (raw_buffer != NULL)
993 deprecated_read_register_gen (regnum, raw_buffer);
994 }
995 if (addrp != NULL)
996 *addrp = addr;
997 }
998
999 /* Push an empty stack frame, and record in it the current PC, regs, etc.
1000
1001 We save the non-windowed registers and the ins. The locals and outs
1002 are new; they don't need to be saved. The i's and l's of
1003 the last frame were already saved on the stack. */
1004
1005 /* Definitely see tm-sparc.h for more doc of the frame format here. */
1006
1007 /* See tm-sparc.h for how this is calculated. */
1008
1009 #define DUMMY_STACK_REG_BUF_SIZE \
1010 (((8+8+8) * SPARC_INTREG_SIZE) + FP_REGISTER_BYTES)
1011 #define DUMMY_STACK_SIZE \
1012 (DUMMY_STACK_REG_BUF_SIZE + DUMMY_REG_SAVE_OFFSET)
1013
1014 void
1015 sparc_push_dummy_frame (void)
1016 {
1017 CORE_ADDR sp, old_sp;
1018 char *register_temp;
1019
1020 register_temp = alloca (DUMMY_STACK_SIZE);
1021
1022 old_sp = sp = read_sp ();
1023
1024 if (GDB_TARGET_IS_SPARC64)
1025 {
1026 /* PC, NPC, CCR, FSR, FPRS, Y, ASI */
1027 deprecated_read_register_bytes (REGISTER_BYTE (PC_REGNUM),
1028 &register_temp[0],
1029 REGISTER_RAW_SIZE (PC_REGNUM) * 7);
1030 deprecated_read_register_bytes (REGISTER_BYTE (PSTATE_REGNUM),
1031 &register_temp[7 * SPARC_INTREG_SIZE],
1032 REGISTER_RAW_SIZE (PSTATE_REGNUM));
1033 /* FIXME: not sure what needs to be saved here. */
1034 }
1035 else
1036 {
1037 /* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */
1038 deprecated_read_register_bytes (REGISTER_BYTE (Y_REGNUM),
1039 &register_temp[0],
1040 REGISTER_RAW_SIZE (Y_REGNUM) * 8);
1041 }
1042
1043 deprecated_read_register_bytes (REGISTER_BYTE (O0_REGNUM),
1044 &register_temp[8 * SPARC_INTREG_SIZE],
1045 SPARC_INTREG_SIZE * 8);
1046
1047 deprecated_read_register_bytes (REGISTER_BYTE (G0_REGNUM),
1048 &register_temp[16 * SPARC_INTREG_SIZE],
1049 SPARC_INTREG_SIZE * 8);
1050
1051 if (SPARC_HAS_FPU)
1052 deprecated_read_register_bytes (REGISTER_BYTE (FP0_REGNUM),
1053 &register_temp[24 * SPARC_INTREG_SIZE],
1054 FP_REGISTER_BYTES);
1055
1056 sp -= DUMMY_STACK_SIZE;
1057
1058 DEPRECATED_DUMMY_WRITE_SP (sp);
1059
1060 write_memory (sp + DUMMY_REG_SAVE_OFFSET, &register_temp[0],
1061 DUMMY_STACK_REG_BUF_SIZE);
1062
1063 if (strcmp (target_shortname, "sim") != 0)
1064 {
1065 /* NOTE: cagney/2002-04-04: The code below originally contained
1066 GDB's _only_ call to write_fp(). That call was eliminated by
1067 inlining the corresponding code. For the 64 bit case, the
1068 old function (sparc64_write_fp) did the below although I'm
1069 not clear why. The same goes for why this is only done when
1070 the underlying target is a simulator. */
1071 if (GDB_TARGET_IS_SPARC64)
1072 {
1073 /* Target is a 64 bit SPARC. */
1074 CORE_ADDR oldfp = read_register (DEPRECATED_FP_REGNUM);
1075 if (oldfp & 1)
1076 write_register (DEPRECATED_FP_REGNUM, old_sp - 2047);
1077 else
1078 write_register (DEPRECATED_FP_REGNUM, old_sp);
1079 }
1080 else
1081 {
1082 /* Target is a 32 bit SPARC. */
1083 write_register (DEPRECATED_FP_REGNUM, old_sp);
1084 }
1085 /* Set return address register for the call dummy to the current PC. */
1086 write_register (I7_REGNUM, read_pc () - 8);
1087 }
1088 else
1089 {
1090 /* The call dummy will write this value to FP before executing
1091 the 'save'. This ensures that register window flushes work
1092 correctly in the simulator. */
1093 write_register (G0_REGNUM + 1, read_register (DEPRECATED_FP_REGNUM));
1094
1095 /* The call dummy will write this value to FP after executing
1096 the 'save'. */
1097 write_register (G0_REGNUM + 2, old_sp);
1098
1099 /* The call dummy will write this value to the return address (%i7) after
1100 executing the 'save'. */
1101 write_register (G0_REGNUM + 3, read_pc () - 8);
1102
1103 /* Set the FP that the call dummy will be using after the 'save'.
1104 This makes backtraces from an inferior function call work properly. */
1105 write_register (DEPRECATED_FP_REGNUM, old_sp);
1106 }
1107 }
1108
1109 /* sparc_frame_find_saved_regs (). This function is here only because
1110 pop_frame uses it. Note there is an interesting corner case which
1111 I think few ports of GDB get right--if you are popping a frame
1112 which does not save some register that *is* saved by a more inner
1113 frame (such a frame will never be a dummy frame because dummy
1114 frames save all registers).
1115
1116 NOTE: cagney/2003-03-12: Since pop_frame has been rewritten to use
1117 frame_unwind_register() the need for this function is questionable.
1118
1119 Stores, into an array of CORE_ADDR,
1120 the addresses of the saved registers of frame described by FRAME_INFO.
1121 This includes special registers such as pc and fp saved in special
1122 ways in the stack frame. sp is even more special:
1123 the address we return for it IS the sp for the next frame.
1124
1125 Note that on register window machines, we are currently making the
1126 assumption that window registers are being saved somewhere in the
1127 frame in which they are being used. If they are stored in an
1128 inferior frame, find_saved_register will break.
1129
1130 On the Sun 4, the only time all registers are saved is when
1131 a dummy frame is involved. Otherwise, the only saved registers
1132 are the LOCAL and IN registers which are saved as a result
1133 of the "save/restore" opcodes. This condition is determined
1134 by address rather than by value.
1135
1136 The "pc" is not stored in a frame on the SPARC. (What is stored
1137 is a return address minus 8.) sparc_pop_frame knows how to
1138 deal with that. Other routines might or might not.
1139
1140 See tm-sparc.h (PUSH_DUMMY_FRAME and friends) for CRITICAL information
1141 about how this works. */
1142
1143 static void sparc_frame_find_saved_regs (struct frame_info *, CORE_ADDR *);
1144
1145 static void
1146 sparc_frame_find_saved_regs (struct frame_info *fi, CORE_ADDR *saved_regs_addr)
1147 {
1148 register int regnum;
1149 CORE_ADDR frame_addr = get_frame_base (fi);
1150
1151 gdb_assert (fi != NULL);
1152
1153 memset (saved_regs_addr, 0, NUM_REGS * sizeof (CORE_ADDR));
1154
1155 if (get_frame_pc (fi) >= (get_frame_extra_info (fi)->bottom
1156 ? get_frame_extra_info (fi)->bottom
1157 : read_sp ())
1158 && get_frame_pc (fi) <= get_frame_base (fi))
1159 {
1160 /* Dummy frame. All but the window regs are in there somewhere. */
1161 for (regnum = G1_REGNUM; regnum < G1_REGNUM + 7; regnum++)
1162 saved_regs_addr[regnum] =
1163 frame_addr + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
1164 - DUMMY_STACK_REG_BUF_SIZE + 16 * SPARC_INTREG_SIZE;
1165
1166 for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++)
1167 saved_regs_addr[regnum] =
1168 frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
1169 - DUMMY_STACK_REG_BUF_SIZE + 8 * SPARC_INTREG_SIZE;
1170
1171 if (SPARC_HAS_FPU)
1172 for (regnum = FP0_REGNUM; regnum < FP_MAX_REGNUM; regnum++)
1173 saved_regs_addr[regnum] = frame_addr + (regnum - FP0_REGNUM) * 4
1174 - DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE;
1175
1176 if (GDB_TARGET_IS_SPARC64)
1177 {
1178 for (regnum = PC_REGNUM; regnum < PC_REGNUM + 7; regnum++)
1179 {
1180 saved_regs_addr[regnum] =
1181 frame_addr + (regnum - PC_REGNUM) * SPARC_INTREG_SIZE
1182 - DUMMY_STACK_REG_BUF_SIZE;
1183 }
1184 saved_regs_addr[PSTATE_REGNUM] =
1185 frame_addr + 8 * SPARC_INTREG_SIZE - DUMMY_STACK_REG_BUF_SIZE;
1186 }
1187 else
1188 for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++)
1189 saved_regs_addr[regnum] =
1190 frame_addr + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE
1191 - DUMMY_STACK_REG_BUF_SIZE;
1192
1193 frame_addr = (get_frame_extra_info (fi)->bottom
1194 ? get_frame_extra_info (fi)->bottom
1195 : read_sp ());
1196 }
1197 else if (get_frame_extra_info (fi)->flat)
1198 {
1199 CORE_ADDR func_start;
1200 find_pc_partial_function (get_frame_pc (fi), NULL, &func_start, NULL);
1201 examine_prologue (func_start, 0, fi, saved_regs_addr);
1202
1203 /* Flat register window frame. */
1204 saved_regs_addr[RP_REGNUM] = get_frame_extra_info (fi)->pc_addr;
1205 saved_regs_addr[I7_REGNUM] = get_frame_extra_info (fi)->fp_addr;
1206 }
1207 else
1208 {
1209 /* Normal frame. Just Local and In registers */
1210 frame_addr = (get_frame_extra_info (fi)->bottom
1211 ? get_frame_extra_info (fi)->bottom
1212 : read_sp ());
1213 for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; regnum++)
1214 saved_regs_addr[regnum] =
1215 (frame_addr + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
1216 + FRAME_SAVED_L0);
1217 for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++)
1218 saved_regs_addr[regnum] =
1219 (frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
1220 + FRAME_SAVED_I0);
1221 }
1222 if (get_next_frame (fi))
1223 {
1224 if (get_frame_extra_info (fi)->flat)
1225 {
1226 saved_regs_addr[O7_REGNUM] = get_frame_extra_info (fi)->pc_addr;
1227 }
1228 else
1229 {
1230 /* Pull off either the next frame pointer or the stack pointer */
1231 CORE_ADDR next_next_frame_addr =
1232 (get_frame_extra_info (get_next_frame (fi))->bottom
1233 ? get_frame_extra_info (get_next_frame (fi))->bottom
1234 : read_sp ());
1235 for (regnum = O0_REGNUM; regnum < O0_REGNUM + 8; regnum++)
1236 saved_regs_addr[regnum] =
1237 (next_next_frame_addr
1238 + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
1239 + FRAME_SAVED_I0);
1240 }
1241 }
1242 /* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */
1243 /* FIXME -- should this adjust for the sparc64 offset? */
1244 saved_regs_addr[SP_REGNUM] = get_frame_base (fi);
1245 }
1246
1247 /* Discard from the stack the innermost frame, restoring all saved registers.
1248
1249 Note that the values stored in fsr by
1250 deprecated_get_frame_saved_regs are *in the context of the called
1251 frame*. What this means is that the i regs of fsr must be restored
1252 into the o regs of the (calling) frame that we pop into. We don't
1253 care about the output regs of the calling frame, since unless it's
1254 a dummy frame, it won't have any output regs in it.
1255
1256 We never have to bother with %l (local) regs, since the called routine's
1257 locals get tossed, and the calling routine's locals are already saved
1258 on its stack. */
1259
1260 /* Definitely see tm-sparc.h for more doc of the frame format here. */
1261
1262 void
1263 sparc_pop_frame (void)
1264 {
1265 register struct frame_info *frame = get_current_frame ();
1266 register CORE_ADDR pc;
1267 CORE_ADDR *fsr;
1268 char *raw_buffer;
1269 int regnum;
1270
1271 fsr = alloca (NUM_REGS * sizeof (CORE_ADDR));
1272 raw_buffer = alloca (REGISTER_BYTES);
1273 sparc_frame_find_saved_regs (frame, &fsr[0]);
1274 if (SPARC_HAS_FPU)
1275 {
1276 if (fsr[FP0_REGNUM])
1277 {
1278 read_memory (fsr[FP0_REGNUM], raw_buffer, FP_REGISTER_BYTES);
1279 deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM),
1280 raw_buffer, FP_REGISTER_BYTES);
1281 }
1282 if (!(GDB_TARGET_IS_SPARC64))
1283 {
1284 if (fsr[FPS_REGNUM])
1285 {
1286 read_memory (fsr[FPS_REGNUM], raw_buffer, SPARC_INTREG_SIZE);
1287 deprecated_write_register_gen (FPS_REGNUM, raw_buffer);
1288 }
1289 if (fsr[CPS_REGNUM])
1290 {
1291 read_memory (fsr[CPS_REGNUM], raw_buffer, SPARC_INTREG_SIZE);
1292 deprecated_write_register_gen (CPS_REGNUM, raw_buffer);
1293 }
1294 }
1295 }
1296 if (fsr[G1_REGNUM])
1297 {
1298 read_memory (fsr[G1_REGNUM], raw_buffer, 7 * SPARC_INTREG_SIZE);
1299 deprecated_write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer,
1300 7 * SPARC_INTREG_SIZE);
1301 }
1302
1303 if (get_frame_extra_info (frame)->flat)
1304 {
1305 /* Each register might or might not have been saved, need to test
1306 individually. */
1307 for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; ++regnum)
1308 if (fsr[regnum])
1309 write_register (regnum, read_memory_integer (fsr[regnum],
1310 SPARC_INTREG_SIZE));
1311 for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; ++regnum)
1312 if (fsr[regnum])
1313 write_register (regnum, read_memory_integer (fsr[regnum],
1314 SPARC_INTREG_SIZE));
1315
1316 /* Handle all outs except stack pointer (o0-o5; o7). */
1317 for (regnum = O0_REGNUM; regnum < O0_REGNUM + 6; ++regnum)
1318 if (fsr[regnum])
1319 write_register (regnum, read_memory_integer (fsr[regnum],
1320 SPARC_INTREG_SIZE));
1321 if (fsr[O0_REGNUM + 7])
1322 write_register (O0_REGNUM + 7,
1323 read_memory_integer (fsr[O0_REGNUM + 7],
1324 SPARC_INTREG_SIZE));
1325
1326 DEPRECATED_DUMMY_WRITE_SP (get_frame_base (frame));
1327 }
1328 else if (fsr[I0_REGNUM])
1329 {
1330 CORE_ADDR sp;
1331
1332 char *reg_temp;
1333
1334 reg_temp = alloca (SPARC_INTREG_SIZE * 16);
1335
1336 read_memory (fsr[I0_REGNUM], raw_buffer, 8 * SPARC_INTREG_SIZE);
1337
1338 /* Get the ins and locals which we are about to restore. Just
1339 moving the stack pointer is all that is really needed, except
1340 store_inferior_registers is then going to write the ins and
1341 locals from the registers array, so we need to muck with the
1342 registers array. */
1343 sp = fsr[SP_REGNUM];
1344
1345 if (GDB_TARGET_IS_SPARC64 && (sp & 1))
1346 sp += 2047;
1347
1348 read_memory (sp, reg_temp, SPARC_INTREG_SIZE * 16);
1349
1350 /* Restore the out registers.
1351 Among other things this writes the new stack pointer. */
1352 deprecated_write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer,
1353 SPARC_INTREG_SIZE * 8);
1354
1355 deprecated_write_register_bytes (REGISTER_BYTE (L0_REGNUM), reg_temp,
1356 SPARC_INTREG_SIZE * 16);
1357 }
1358
1359 if (!(GDB_TARGET_IS_SPARC64))
1360 if (fsr[PS_REGNUM])
1361 write_register (PS_REGNUM,
1362 read_memory_integer (fsr[PS_REGNUM],
1363 REGISTER_RAW_SIZE (PS_REGNUM)));
1364
1365 if (fsr[Y_REGNUM])
1366 write_register (Y_REGNUM,
1367 read_memory_integer (fsr[Y_REGNUM],
1368 REGISTER_RAW_SIZE (Y_REGNUM)));
1369 if (fsr[PC_REGNUM])
1370 {
1371 /* Explicitly specified PC (and maybe NPC) -- just restore them. */
1372 write_register (PC_REGNUM,
1373 read_memory_integer (fsr[PC_REGNUM],
1374 REGISTER_RAW_SIZE (PC_REGNUM)));
1375 if (fsr[NPC_REGNUM])
1376 write_register (NPC_REGNUM,
1377 read_memory_integer (fsr[NPC_REGNUM],
1378 REGISTER_RAW_SIZE (NPC_REGNUM)));
1379 }
1380 else if (get_frame_extra_info (frame)->flat)
1381 {
1382 if (get_frame_extra_info (frame)->pc_addr)
1383 pc = PC_ADJUST ((CORE_ADDR)
1384 read_memory_integer (get_frame_extra_info (frame)->pc_addr,
1385 REGISTER_RAW_SIZE (PC_REGNUM)));
1386 else
1387 {
1388 /* I think this happens only in the innermost frame, if so then
1389 it is a complicated way of saying
1390 "pc = read_register (O7_REGNUM);". */
1391 ULONGEST tmp;
1392 frame_read_unsigned_register (frame, O7_REGNUM, &tmp);
1393 pc = PC_ADJUST (tmp);
1394 }
1395
1396 write_register (PC_REGNUM, pc);
1397 write_register (NPC_REGNUM, pc + 4);
1398 }
1399 else if (fsr[I7_REGNUM])
1400 {
1401 /* Return address in %i7 -- adjust it, then restore PC and NPC from it */
1402 pc = PC_ADJUST ((CORE_ADDR) read_memory_integer (fsr[I7_REGNUM],
1403 SPARC_INTREG_SIZE));
1404 write_register (PC_REGNUM, pc);
1405 write_register (NPC_REGNUM, pc + 4);
1406 }
1407 flush_cached_frames ();
1408 }
1409
1410 /* On the Sun 4 under SunOS, the compile will leave a fake insn which
1411 encodes the structure size being returned. If we detect such
1412 a fake insn, step past it. */
1413
1414 CORE_ADDR
1415 sparc_pc_adjust (CORE_ADDR pc)
1416 {
1417 unsigned long insn;
1418 char buf[4];
1419 int err;
1420
1421 err = target_read_memory (pc + 8, buf, 4);
1422 insn = extract_unsigned_integer (buf, 4);
1423 if ((err == 0) && (insn & 0xffc00000) == 0)
1424 return pc + 12;
1425 else
1426 return pc + 8;
1427 }
1428
1429 /* If pc is in a shared library trampoline, return its target.
1430 The SunOs 4.x linker rewrites the jump table entries for PIC
1431 compiled modules in the main executable to bypass the dynamic linker
1432 with jumps of the form
1433 sethi %hi(addr),%g1
1434 jmp %g1+%lo(addr)
1435 and removes the corresponding jump table relocation entry in the
1436 dynamic relocations.
1437 find_solib_trampoline_target relies on the presence of the jump
1438 table relocation entry, so we have to detect these jump instructions
1439 by hand. */
1440
1441 CORE_ADDR
1442 sunos4_skip_trampoline_code (CORE_ADDR pc)
1443 {
1444 unsigned long insn1;
1445 char buf[4];
1446 int err;
1447
1448 err = target_read_memory (pc, buf, 4);
1449 insn1 = extract_unsigned_integer (buf, 4);
1450 if (err == 0 && (insn1 & 0xffc00000) == 0x03000000)
1451 {
1452 unsigned long insn2;
1453
1454 err = target_read_memory (pc + 4, buf, 4);
1455 insn2 = extract_unsigned_integer (buf, 4);
1456 if (err == 0 && (insn2 & 0xffffe000) == 0x81c06000)
1457 {
1458 CORE_ADDR target_pc = (insn1 & 0x3fffff) << 10;
1459 int delta = insn2 & 0x1fff;
1460
1461 /* Sign extend the displacement. */
1462 if (delta & 0x1000)
1463 delta |= ~0x1fff;
1464 return target_pc + delta;
1465 }
1466 }
1467 return find_solib_trampoline_target (pc);
1468 }
1469 \f
1470 #ifdef USE_PROC_FS /* Target dependent support for /proc */
1471 /* *INDENT-OFF* */
1472 /* The /proc interface divides the target machine's register set up into
1473 two different sets, the general register set (gregset) and the floating
1474 point register set (fpregset). For each set, there is an ioctl to get
1475 the current register set and another ioctl to set the current values.
1476
1477 The actual structure passed through the ioctl interface is, of course,
1478 naturally machine dependent, and is different for each set of registers.
1479 For the sparc for example, the general register set is typically defined
1480 by:
1481
1482 typedef int gregset_t[38];
1483
1484 #define R_G0 0
1485 ...
1486 #define R_TBR 37
1487
1488 and the floating point set by:
1489
1490 typedef struct prfpregset {
1491 union {
1492 u_long pr_regs[32];
1493 double pr_dregs[16];
1494 } pr_fr;
1495 void * pr_filler;
1496 u_long pr_fsr;
1497 u_char pr_qcnt;
1498 u_char pr_q_entrysize;
1499 u_char pr_en;
1500 u_long pr_q[64];
1501 } prfpregset_t;
1502
1503 These routines provide the packing and unpacking of gregset_t and
1504 fpregset_t formatted data.
1505
1506 */
1507 /* *INDENT-ON* */
1508
1509 /* Given a pointer to a general register set in /proc format (gregset_t *),
1510 unpack the register contents and supply them as gdb's idea of the current
1511 register values. */
1512
1513 void
1514 supply_gregset (gdb_gregset_t *gregsetp)
1515 {
1516 prgreg_t *regp = (prgreg_t *) gregsetp;
1517 int regi, offset = 0;
1518
1519 /* If the host is 64-bit sparc, but the target is 32-bit sparc,
1520 then the gregset may contain 64-bit ints while supply_register
1521 is expecting 32-bit ints. Compensate. */
1522 if (sizeof (regp[0]) == 8 && SPARC_INTREG_SIZE == 4)
1523 offset = 4;
1524
1525 /* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers. */
1526 /* FIXME MVS: assumes the order of the first 32 elements... */
1527 for (regi = G0_REGNUM; regi <= I7_REGNUM; regi++)
1528 {
1529 supply_register (regi, ((char *) (regp + regi)) + offset);
1530 }
1531
1532 /* These require a bit more care. */
1533 supply_register (PC_REGNUM, ((char *) (regp + R_PC)) + offset);
1534 supply_register (NPC_REGNUM, ((char *) (regp + R_nPC)) + offset);
1535 supply_register (Y_REGNUM, ((char *) (regp + R_Y)) + offset);
1536
1537 if (GDB_TARGET_IS_SPARC64)
1538 {
1539 #ifdef R_CCR
1540 supply_register (CCR_REGNUM, ((char *) (regp + R_CCR)) + offset);
1541 #else
1542 supply_register (CCR_REGNUM, NULL);
1543 #endif
1544 #ifdef R_FPRS
1545 supply_register (FPRS_REGNUM, ((char *) (regp + R_FPRS)) + offset);
1546 #else
1547 supply_register (FPRS_REGNUM, NULL);
1548 #endif
1549 #ifdef R_ASI
1550 supply_register (ASI_REGNUM, ((char *) (regp + R_ASI)) + offset);
1551 #else
1552 supply_register (ASI_REGNUM, NULL);
1553 #endif
1554 }
1555 else /* sparc32 */
1556 {
1557 #ifdef R_PS
1558 supply_register (PS_REGNUM, ((char *) (regp + R_PS)) + offset);
1559 #else
1560 supply_register (PS_REGNUM, NULL);
1561 #endif
1562
1563 /* For 64-bit hosts, R_WIM and R_TBR may not be defined.
1564 Steal R_ASI and R_FPRS, and hope for the best! */
1565
1566 #if !defined (R_WIM) && defined (R_ASI)
1567 #define R_WIM R_ASI
1568 #endif
1569
1570 #if !defined (R_TBR) && defined (R_FPRS)
1571 #define R_TBR R_FPRS
1572 #endif
1573
1574 #if defined (R_WIM)
1575 supply_register (WIM_REGNUM, ((char *) (regp + R_WIM)) + offset);
1576 #else
1577 supply_register (WIM_REGNUM, NULL);
1578 #endif
1579
1580 #if defined (R_TBR)
1581 supply_register (TBR_REGNUM, ((char *) (regp + R_TBR)) + offset);
1582 #else
1583 supply_register (TBR_REGNUM, NULL);
1584 #endif
1585 }
1586
1587 /* Fill inaccessible registers with zero. */
1588 if (GDB_TARGET_IS_SPARC64)
1589 {
1590 /*
1591 * don't know how to get value of any of the following:
1592 */
1593 supply_register (VER_REGNUM, NULL);
1594 supply_register (TICK_REGNUM, NULL);
1595 supply_register (PIL_REGNUM, NULL);
1596 supply_register (PSTATE_REGNUM, NULL);
1597 supply_register (TSTATE_REGNUM, NULL);
1598 supply_register (TBA_REGNUM, NULL);
1599 supply_register (TL_REGNUM, NULL);
1600 supply_register (TT_REGNUM, NULL);
1601 supply_register (TPC_REGNUM, NULL);
1602 supply_register (TNPC_REGNUM, NULL);
1603 supply_register (WSTATE_REGNUM, NULL);
1604 supply_register (CWP_REGNUM, NULL);
1605 supply_register (CANSAVE_REGNUM, NULL);
1606 supply_register (CANRESTORE_REGNUM, NULL);
1607 supply_register (CLEANWIN_REGNUM, NULL);
1608 supply_register (OTHERWIN_REGNUM, NULL);
1609 supply_register (ASR16_REGNUM, NULL);
1610 supply_register (ASR17_REGNUM, NULL);
1611 supply_register (ASR18_REGNUM, NULL);
1612 supply_register (ASR19_REGNUM, NULL);
1613 supply_register (ASR20_REGNUM, NULL);
1614 supply_register (ASR21_REGNUM, NULL);
1615 supply_register (ASR22_REGNUM, NULL);
1616 supply_register (ASR23_REGNUM, NULL);
1617 supply_register (ASR24_REGNUM, NULL);
1618 supply_register (ASR25_REGNUM, NULL);
1619 supply_register (ASR26_REGNUM, NULL);
1620 supply_register (ASR27_REGNUM, NULL);
1621 supply_register (ASR28_REGNUM, NULL);
1622 supply_register (ASR29_REGNUM, NULL);
1623 supply_register (ASR30_REGNUM, NULL);
1624 supply_register (ASR31_REGNUM, NULL);
1625 supply_register (ICC_REGNUM, NULL);
1626 supply_register (XCC_REGNUM, NULL);
1627 }
1628 else
1629 {
1630 supply_register (CPS_REGNUM, NULL);
1631 }
1632 }
1633
1634 void
1635 fill_gregset (gdb_gregset_t *gregsetp, int regno)
1636 {
1637 prgreg_t *regp = (prgreg_t *) gregsetp;
1638 int regi, offset = 0;
1639
1640 /* If the host is 64-bit sparc, but the target is 32-bit sparc,
1641 then the gregset may contain 64-bit ints while supply_register
1642 is expecting 32-bit ints. Compensate. */
1643 if (sizeof (regp[0]) == 8 && SPARC_INTREG_SIZE == 4)
1644 offset = 4;
1645
1646 for (regi = 0; regi <= R_I7; regi++)
1647 if ((regno == -1) || (regno == regi))
1648 deprecated_read_register_gen (regi, (char *) (regp + regi) + offset);
1649
1650 if ((regno == -1) || (regno == PC_REGNUM))
1651 deprecated_read_register_gen (PC_REGNUM, (char *) (regp + R_PC) + offset);
1652
1653 if ((regno == -1) || (regno == NPC_REGNUM))
1654 deprecated_read_register_gen (NPC_REGNUM, (char *) (regp + R_nPC) + offset);
1655
1656 if ((regno == -1) || (regno == Y_REGNUM))
1657 deprecated_read_register_gen (Y_REGNUM, (char *) (regp + R_Y) + offset);
1658
1659 if (GDB_TARGET_IS_SPARC64)
1660 {
1661 #ifdef R_CCR
1662 if (regno == -1 || regno == CCR_REGNUM)
1663 deprecated_read_register_gen (CCR_REGNUM, ((char *) (regp + R_CCR)) + offset);
1664 #endif
1665 #ifdef R_FPRS
1666 if (regno == -1 || regno == FPRS_REGNUM)
1667 deprecated_read_register_gen (FPRS_REGNUM, ((char *) (regp + R_FPRS)) + offset);
1668 #endif
1669 #ifdef R_ASI
1670 if (regno == -1 || regno == ASI_REGNUM)
1671 deprecated_read_register_gen (ASI_REGNUM, ((char *) (regp + R_ASI)) + offset);
1672 #endif
1673 }
1674 else /* sparc32 */
1675 {
1676 #ifdef R_PS
1677 if (regno == -1 || regno == PS_REGNUM)
1678 deprecated_read_register_gen (PS_REGNUM, ((char *) (regp + R_PS)) + offset);
1679 #endif
1680
1681 /* For 64-bit hosts, R_WIM and R_TBR may not be defined.
1682 Steal R_ASI and R_FPRS, and hope for the best! */
1683
1684 #if !defined (R_WIM) && defined (R_ASI)
1685 #define R_WIM R_ASI
1686 #endif
1687
1688 #if !defined (R_TBR) && defined (R_FPRS)
1689 #define R_TBR R_FPRS
1690 #endif
1691
1692 #if defined (R_WIM)
1693 if (regno == -1 || regno == WIM_REGNUM)
1694 deprecated_read_register_gen (WIM_REGNUM, ((char *) (regp + R_WIM)) + offset);
1695 #else
1696 if (regno == -1 || regno == WIM_REGNUM)
1697 deprecated_read_register_gen (WIM_REGNUM, NULL);
1698 #endif
1699
1700 #if defined (R_TBR)
1701 if (regno == -1 || regno == TBR_REGNUM)
1702 deprecated_read_register_gen (TBR_REGNUM, ((char *) (regp + R_TBR)) + offset);
1703 #else
1704 if (regno == -1 || regno == TBR_REGNUM)
1705 deprecated_read_register_gen (TBR_REGNUM, NULL);
1706 #endif
1707 }
1708 }
1709
1710 /* Given a pointer to a floating point register set in /proc format
1711 (fpregset_t *), unpack the register contents and supply them as gdb's
1712 idea of the current floating point register values. */
1713
1714 void
1715 supply_fpregset (gdb_fpregset_t *fpregsetp)
1716 {
1717 register int regi;
1718 char *from;
1719
1720 if (!SPARC_HAS_FPU)
1721 return;
1722
1723 for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++)
1724 {
1725 from = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM];
1726 supply_register (regi, from);
1727 }
1728
1729 if (GDB_TARGET_IS_SPARC64)
1730 {
1731 /*
1732 * don't know how to get value of the following.
1733 */
1734 supply_register (FSR_REGNUM, NULL); /* zero it out for now */
1735 supply_register (FCC0_REGNUM, NULL);
1736 supply_register (FCC1_REGNUM, NULL); /* don't know how to get value */
1737 supply_register (FCC2_REGNUM, NULL); /* don't know how to get value */
1738 supply_register (FCC3_REGNUM, NULL); /* don't know how to get value */
1739 }
1740 else
1741 {
1742 supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr));
1743 }
1744 }
1745
1746 /* Given a pointer to a floating point register set in /proc format
1747 (fpregset_t *), update the register specified by REGNO from gdb's idea
1748 of the current floating point register set. If REGNO is -1, update
1749 them all. */
1750 /* This will probably need some changes for sparc64. */
1751
1752 void
1753 fill_fpregset (gdb_fpregset_t *fpregsetp, int regno)
1754 {
1755 int regi;
1756 char *to;
1757 char *from;
1758
1759 if (!SPARC_HAS_FPU)
1760 return;
1761
1762 for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++)
1763 {
1764 if ((regno == -1) || (regno == regi))
1765 {
1766 from = (char *) &deprecated_registers[REGISTER_BYTE (regi)];
1767 to = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM];
1768 memcpy (to, from, REGISTER_RAW_SIZE (regi));
1769 }
1770 }
1771
1772 if (!(GDB_TARGET_IS_SPARC64)) /* FIXME: does Sparc64 have this register? */
1773 if ((regno == -1) || (regno == FPS_REGNUM))
1774 {
1775 from = (char *)&deprecated_registers[REGISTER_BYTE (FPS_REGNUM)];
1776 to = (char *) &fpregsetp->pr_fsr;
1777 memcpy (to, from, REGISTER_RAW_SIZE (FPS_REGNUM));
1778 }
1779 }
1780
1781 #endif /* USE_PROC_FS */
1782
1783 /* Because of Multi-arch, GET_LONGJMP_TARGET is always defined. So test
1784 for a definition of JB_PC. */
1785 #ifdef JB_PC
1786
1787 /* Figure out where the longjmp will land. We expect that we have just entered
1788 longjmp and haven't yet setup the stack frame, so the args are still in the
1789 output regs. %o0 (O0_REGNUM) points at the jmp_buf structure from which we
1790 extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
1791 This routine returns true on success */
1792
1793 int
1794 get_longjmp_target (CORE_ADDR *pc)
1795 {
1796 CORE_ADDR jb_addr;
1797 #define LONGJMP_TARGET_SIZE 4
1798 char buf[LONGJMP_TARGET_SIZE];
1799
1800 jb_addr = read_register (O0_REGNUM);
1801
1802 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
1803 LONGJMP_TARGET_SIZE))
1804 return 0;
1805
1806 *pc = extract_address (buf, LONGJMP_TARGET_SIZE);
1807
1808 return 1;
1809 }
1810 #endif /* GET_LONGJMP_TARGET */
1811 \f
1812 #ifdef STATIC_TRANSFORM_NAME
1813 /* SunPRO (3.0 at least), encodes the static variables. This is not
1814 related to C++ mangling, it is done for C too. */
1815
1816 char *
1817 sunpro_static_transform_name (char *name)
1818 {
1819 char *p;
1820 if (name[0] == '$')
1821 {
1822 /* For file-local statics there will be a dollar sign, a bunch
1823 of junk (the contents of which match a string given in the
1824 N_OPT), a period and the name. For function-local statics
1825 there will be a bunch of junk (which seems to change the
1826 second character from 'A' to 'B'), a period, the name of the
1827 function, and the name. So just skip everything before the
1828 last period. */
1829 p = strrchr (name, '.');
1830 if (p != NULL)
1831 name = p + 1;
1832 }
1833 return name;
1834 }
1835 #endif /* STATIC_TRANSFORM_NAME */
1836 \f
1837
1838 /* Utilities for printing registers.
1839 Page numbers refer to the SPARC Architecture Manual. */
1840
1841 static void dump_ccreg (char *, int);
1842
1843 static void
1844 dump_ccreg (char *reg, int val)
1845 {
1846 /* page 41 */
1847 printf_unfiltered ("%s:%s,%s,%s,%s", reg,
1848 val & 8 ? "N" : "NN",
1849 val & 4 ? "Z" : "NZ",
1850 val & 2 ? "O" : "NO",
1851 val & 1 ? "C" : "NC");
1852 }
1853
1854 static char *
1855 decode_asi (int val)
1856 {
1857 /* page 72 */
1858 switch (val)
1859 {
1860 case 4:
1861 return "ASI_NUCLEUS";
1862 case 0x0c:
1863 return "ASI_NUCLEUS_LITTLE";
1864 case 0x10:
1865 return "ASI_AS_IF_USER_PRIMARY";
1866 case 0x11:
1867 return "ASI_AS_IF_USER_SECONDARY";
1868 case 0x18:
1869 return "ASI_AS_IF_USER_PRIMARY_LITTLE";
1870 case 0x19:
1871 return "ASI_AS_IF_USER_SECONDARY_LITTLE";
1872 case 0x80:
1873 return "ASI_PRIMARY";
1874 case 0x81:
1875 return "ASI_SECONDARY";
1876 case 0x82:
1877 return "ASI_PRIMARY_NOFAULT";
1878 case 0x83:
1879 return "ASI_SECONDARY_NOFAULT";
1880 case 0x88:
1881 return "ASI_PRIMARY_LITTLE";
1882 case 0x89:
1883 return "ASI_SECONDARY_LITTLE";
1884 case 0x8a:
1885 return "ASI_PRIMARY_NOFAULT_LITTLE";
1886 case 0x8b:
1887 return "ASI_SECONDARY_NOFAULT_LITTLE";
1888 default:
1889 return NULL;
1890 }
1891 }
1892
1893 /* Pretty print various registers. */
1894 /* FIXME: Would be nice if this did some fancy things for 32 bit sparc. */
1895
1896 static void
1897 sparc_print_register_hook (int regno)
1898 {
1899 ULONGEST val;
1900
1901 /* Handle double/quad versions of lower 32 fp regs. */
1902 if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32
1903 && (regno & 1) == 0)
1904 {
1905 char value[16];
1906
1907 if (frame_register_read (deprecated_selected_frame, regno, value)
1908 && frame_register_read (deprecated_selected_frame, regno + 1, value + 4))
1909 {
1910 printf_unfiltered ("\t");
1911 print_floating (value, builtin_type_double, gdb_stdout);
1912 }
1913 #if 0 /* FIXME: gdb doesn't handle long doubles */
1914 if ((regno & 3) == 0)
1915 {
1916 if (frame_register_read (deprecated_selected_frame, regno + 2, value + 8)
1917 && frame_register_read (deprecated_selected_frame, regno + 3, value + 12))
1918 {
1919 printf_unfiltered ("\t");
1920 print_floating (value, builtin_type_long_double, gdb_stdout);
1921 }
1922 }
1923 #endif
1924 return;
1925 }
1926
1927 #if 0 /* FIXME: gdb doesn't handle long doubles */
1928 /* Print upper fp regs as long double if appropriate. */
1929 if (regno >= FP0_REGNUM + 32 && regno < FP_MAX_REGNUM
1930 /* We test for even numbered regs and not a multiple of 4 because
1931 the upper fp regs are recorded as doubles. */
1932 && (regno & 1) == 0)
1933 {
1934 char value[16];
1935
1936 if (frame_register_read (deprecated_selected_frame, regno, value)
1937 && frame_register_read (deprecated_selected_frame, regno + 1, value + 8))
1938 {
1939 printf_unfiltered ("\t");
1940 print_floating (value, builtin_type_long_double, gdb_stdout);
1941 }
1942 return;
1943 }
1944 #endif
1945
1946 /* FIXME: Some of these are priviledged registers.
1947 Not sure how they should be handled. */
1948
1949 #define BITS(n, mask) ((int) (((val) >> (n)) & (mask)))
1950
1951 val = read_register (regno);
1952
1953 /* pages 40 - 60 */
1954 if (GDB_TARGET_IS_SPARC64)
1955 switch (regno)
1956 {
1957 case CCR_REGNUM:
1958 printf_unfiltered ("\t");
1959 dump_ccreg ("xcc", val >> 4);
1960 printf_unfiltered (", ");
1961 dump_ccreg ("icc", val & 15);
1962 break;
1963 case FPRS_REGNUM:
1964 printf ("\tfef:%d, du:%d, dl:%d",
1965 BITS (2, 1), BITS (1, 1), BITS (0, 1));
1966 break;
1967 case FSR_REGNUM:
1968 {
1969 static char *fcc[4] =
1970 {"=", "<", ">", "?"};
1971 static char *rd[4] =
1972 {"N", "0", "+", "-"};
1973 /* Long, but I'd rather leave it as is and use a wide screen. */
1974 printf_filtered ("\t0:%s, 1:%s, 2:%s, 3:%s, rd:%s, tem:%d, ",
1975 fcc[BITS (10, 3)], fcc[BITS (32, 3)],
1976 fcc[BITS (34, 3)], fcc[BITS (36, 3)],
1977 rd[BITS (30, 3)], BITS (23, 31));
1978 printf_filtered ("ns:%d, ver:%d, ftt:%d, qne:%d, aexc:%d, cexc:%d",
1979 BITS (22, 1), BITS (17, 7), BITS (14, 7),
1980 BITS (13, 1), BITS (5, 31), BITS (0, 31));
1981 break;
1982 }
1983 case ASI_REGNUM:
1984 {
1985 char *asi = decode_asi (val);
1986 if (asi != NULL)
1987 printf ("\t%s", asi);
1988 break;
1989 }
1990 case VER_REGNUM:
1991 printf ("\tmanuf:%d, impl:%d, mask:%d, maxtl:%d, maxwin:%d",
1992 BITS (48, 0xffff), BITS (32, 0xffff),
1993 BITS (24, 0xff), BITS (8, 0xff), BITS (0, 31));
1994 break;
1995 case PSTATE_REGNUM:
1996 {
1997 static char *mm[4] =
1998 {"tso", "pso", "rso", "?"};
1999 printf_filtered ("\tcle:%d, tle:%d, mm:%s, red:%d, ",
2000 BITS (9, 1), BITS (8, 1),
2001 mm[BITS (6, 3)], BITS (5, 1));
2002 printf_filtered ("pef:%d, am:%d, priv:%d, ie:%d, ag:%d",
2003 BITS (4, 1), BITS (3, 1), BITS (2, 1),
2004 BITS (1, 1), BITS (0, 1));
2005 break;
2006 }
2007 case TSTATE_REGNUM:
2008 /* FIXME: print all 4? */
2009 break;
2010 case TT_REGNUM:
2011 /* FIXME: print all 4? */
2012 break;
2013 case TPC_REGNUM:
2014 /* FIXME: print all 4? */
2015 break;
2016 case TNPC_REGNUM:
2017 /* FIXME: print all 4? */
2018 break;
2019 case WSTATE_REGNUM:
2020 printf ("\tother:%d, normal:%d", BITS (3, 7), BITS (0, 7));
2021 break;
2022 case CWP_REGNUM:
2023 printf ("\t%d", BITS (0, 31));
2024 break;
2025 case CANSAVE_REGNUM:
2026 printf ("\t%-2d before spill", BITS (0, 31));
2027 break;
2028 case CANRESTORE_REGNUM:
2029 printf ("\t%-2d before fill", BITS (0, 31));
2030 break;
2031 case CLEANWIN_REGNUM:
2032 printf ("\t%-2d before clean", BITS (0, 31));
2033 break;
2034 case OTHERWIN_REGNUM:
2035 printf ("\t%d", BITS (0, 31));
2036 break;
2037 }
2038 else /* Sparc32 */
2039 switch (regno)
2040 {
2041 case PS_REGNUM:
2042 printf ("\ticc:%c%c%c%c, pil:%d, s:%d, ps:%d, et:%d, cwp:%d",
2043 BITS (23, 1) ? 'N' : '-', BITS (22, 1) ? 'Z' : '-',
2044 BITS (21, 1) ? 'V' : '-', BITS (20, 1) ? 'C' : '-',
2045 BITS (8, 15), BITS (7, 1), BITS (6, 1), BITS (5, 1),
2046 BITS (0, 31));
2047 break;
2048 case FPS_REGNUM:
2049 {
2050 static char *fcc[4] =
2051 {"=", "<", ">", "?"};
2052 static char *rd[4] =
2053 {"N", "0", "+", "-"};
2054 /* Long, but I'd rather leave it as is and use a wide screen. */
2055 printf ("\trd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, "
2056 "fcc:%s, aexc:%d, cexc:%d",
2057 rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7),
2058 BITS (14, 7), BITS (13, 1), fcc[BITS (10, 3)], BITS (5, 31),
2059 BITS (0, 31));
2060 break;
2061 }
2062 }
2063
2064 #undef BITS
2065 }
2066
2067 static void
2068 sparc_print_registers (struct gdbarch *gdbarch,
2069 struct ui_file *file,
2070 struct frame_info *frame,
2071 int regnum, int print_all,
2072 void (*print_register_hook) (int))
2073 {
2074 int i;
2075 const int numregs = NUM_REGS + NUM_PSEUDO_REGS;
2076 char raw_buffer[MAX_REGISTER_SIZE];
2077 char virtual_buffer[MAX_REGISTER_SIZE];
2078
2079 for (i = 0; i < numregs; i++)
2080 {
2081 /* Decide between printing all regs, non-float / vector regs, or
2082 specific reg. */
2083 if (regnum == -1)
2084 {
2085 if (!print_all)
2086 {
2087 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT)
2088 continue;
2089 if (TYPE_VECTOR (REGISTER_VIRTUAL_TYPE (i)))
2090 continue;
2091 }
2092 }
2093 else
2094 {
2095 if (i != regnum)
2096 continue;
2097 }
2098
2099 /* If the register name is empty, it is undefined for this
2100 processor, so don't display anything. */
2101 if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
2102 continue;
2103
2104 fputs_filtered (REGISTER_NAME (i), file);
2105 print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), file);
2106
2107 /* Get the data in raw format. */
2108 if (! frame_register_read (frame, i, raw_buffer))
2109 {
2110 fprintf_filtered (file, "*value not available*\n");
2111 continue;
2112 }
2113
2114 /* FIXME: cagney/2002-08-03: This code shouldn't be necessary.
2115 The function frame_register_read() should have returned the
2116 pre-cooked register so no conversion is necessary. */
2117 /* Convert raw data to virtual format if necessary. */
2118 if (REGISTER_CONVERTIBLE (i))
2119 {
2120 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
2121 raw_buffer, virtual_buffer);
2122 }
2123 else
2124 {
2125 memcpy (virtual_buffer, raw_buffer,
2126 REGISTER_VIRTUAL_SIZE (i));
2127 }
2128
2129 /* If virtual format is floating, print it that way, and in raw
2130 hex. */
2131 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT)
2132 {
2133 int j;
2134
2135 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
2136 file, 0, 1, 0, Val_pretty_default);
2137
2138 fprintf_filtered (file, "\t(raw 0x");
2139 for (j = 0; j < REGISTER_RAW_SIZE (i); j++)
2140 {
2141 int idx;
2142 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2143 idx = j;
2144 else
2145 idx = REGISTER_RAW_SIZE (i) - 1 - j;
2146 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[idx]);
2147 }
2148 fprintf_filtered (file, ")");
2149 }
2150 else
2151 {
2152 /* Print the register in hex. */
2153 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
2154 file, 'x', 1, 0, Val_pretty_default);
2155 /* If not a vector register, print it also according to its
2156 natural format. */
2157 if (TYPE_VECTOR (REGISTER_VIRTUAL_TYPE (i)) == 0)
2158 {
2159 fprintf_filtered (file, "\t");
2160 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
2161 file, 0, 1, 0, Val_pretty_default);
2162 }
2163 }
2164
2165 /* Some sparc specific info. */
2166 if (print_register_hook != NULL)
2167 print_register_hook (i);
2168
2169 fprintf_filtered (file, "\n");
2170 }
2171 }
2172
2173 static void
2174 sparc_print_registers_info (struct gdbarch *gdbarch,
2175 struct ui_file *file,
2176 struct frame_info *frame,
2177 int regnum, int print_all)
2178 {
2179 sparc_print_registers (gdbarch, file, frame, regnum, print_all,
2180 sparc_print_register_hook);
2181 }
2182
2183 void
2184 sparc_do_registers_info (int regnum, int all)
2185 {
2186 sparc_print_registers_info (current_gdbarch, gdb_stdout, deprecated_selected_frame,
2187 regnum, all);
2188 }
2189
2190 #if 0
2191 // OBSOLETE static void
2192 // OBSOLETE sparclet_print_registers_info (struct gdbarch *gdbarch,
2193 // OBSOLETE struct ui_file *file,
2194 // OBSOLETE struct frame_info *frame,
2195 // OBSOLETE int regnum, int print_all)
2196 // OBSOLETE {
2197 // OBSOLETE sparc_print_registers (gdbarch, file, frame, regnum, print_all, NULL);
2198 // OBSOLETE }
2199 // OBSOLETE
2200 // OBSOLETE void
2201 // OBSOLETE sparclet_do_registers_info (int regnum, int all)
2202 // OBSOLETE {
2203 // OBSOLETE sparclet_print_registers_info (current_gdbarch, gdb_stdout,
2204 // OBSOLETE deprecated_selected_frame, regnum, all);
2205 // OBSOLETE }
2206 #endif
2207
2208 \f
2209 int
2210 gdb_print_insn_sparc (bfd_vma memaddr, disassemble_info *info)
2211 {
2212 /* It's necessary to override mach again because print_insn messes it up. */
2213 info->mach = TARGET_ARCHITECTURE->mach;
2214 return print_insn_sparc (memaddr, info);
2215 }
2216 \f
2217 /* The SPARC passes the arguments on the stack; arguments smaller
2218 than an int are promoted to an int. The first 6 words worth of
2219 args are also passed in registers o0 - o5. */
2220
2221 CORE_ADDR
2222 sparc32_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
2223 int struct_return, CORE_ADDR struct_addr)
2224 {
2225 int i, j, oregnum;
2226 int accumulate_size = 0;
2227 struct sparc_arg
2228 {
2229 char *contents;
2230 int len;
2231 int offset;
2232 };
2233 struct sparc_arg *sparc_args =
2234 (struct sparc_arg *) alloca (nargs * sizeof (struct sparc_arg));
2235 struct sparc_arg *m_arg;
2236
2237 /* Promote arguments if necessary, and calculate their stack offsets
2238 and sizes. */
2239 for (i = 0, m_arg = sparc_args; i < nargs; i++, m_arg++)
2240 {
2241 struct value *arg = args[i];
2242 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2243 /* Cast argument to long if necessary as the compiler does it too. */
2244 switch (TYPE_CODE (arg_type))
2245 {
2246 case TYPE_CODE_INT:
2247 case TYPE_CODE_BOOL:
2248 case TYPE_CODE_CHAR:
2249 case TYPE_CODE_RANGE:
2250 case TYPE_CODE_ENUM:
2251 if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
2252 {
2253 arg_type = builtin_type_long;
2254 arg = value_cast (arg_type, arg);
2255 }
2256 break;
2257 default:
2258 break;
2259 }
2260 m_arg->len = TYPE_LENGTH (arg_type);
2261 m_arg->offset = accumulate_size;
2262 accumulate_size = (accumulate_size + m_arg->len + 3) & ~3;
2263 m_arg->contents = VALUE_CONTENTS (arg);
2264 }
2265
2266 /* Make room for the arguments on the stack. */
2267 accumulate_size += DEPRECATED_CALL_DUMMY_STACK_ADJUST;
2268 sp = ((sp - accumulate_size) & ~7) + DEPRECATED_CALL_DUMMY_STACK_ADJUST;
2269
2270 /* `Push' arguments on the stack. */
2271 for (i = 0, oregnum = 0, m_arg = sparc_args;
2272 i < nargs;
2273 i++, m_arg++)
2274 {
2275 write_memory (sp + m_arg->offset, m_arg->contents, m_arg->len);
2276 for (j = 0;
2277 j < m_arg->len && oregnum < 6;
2278 j += SPARC_INTREG_SIZE, oregnum++)
2279 deprecated_write_register_gen (O0_REGNUM + oregnum, m_arg->contents + j);
2280 }
2281
2282 return sp;
2283 }
2284
2285
2286 /* Extract from an array REGBUF containing the (raw) register state
2287 a function return value of type TYPE, and copy that, in virtual format,
2288 into VALBUF. */
2289
2290 void
2291 sparc32_extract_return_value (struct type *type, char *regbuf, char *valbuf)
2292 {
2293 int typelen = TYPE_LENGTH (type);
2294 int regsize = REGISTER_RAW_SIZE (O0_REGNUM);
2295
2296 if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
2297 memcpy (valbuf, &regbuf[REGISTER_BYTE (FP0_REGNUM)], typelen);
2298 else
2299 memcpy (valbuf,
2300 &regbuf[O0_REGNUM * regsize +
2301 (typelen >= regsize
2302 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE ? 0
2303 : regsize - typelen)],
2304 typelen);
2305 }
2306
2307
2308 /* Write into appropriate registers a function return value
2309 of type TYPE, given in virtual format. On SPARCs with FPUs,
2310 float values are returned in %f0 (and %f1). In all other cases,
2311 values are returned in register %o0. */
2312
2313 void
2314 sparc_store_return_value (struct type *type, char *valbuf)
2315 {
2316 int regno;
2317 char buffer[MAX_REGISTER_SIZE];
2318
2319 if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
2320 /* Floating-point values are returned in the register pair */
2321 /* formed by %f0 and %f1 (doubles are, anyway). */
2322 regno = FP0_REGNUM;
2323 else
2324 /* Other values are returned in register %o0. */
2325 regno = O0_REGNUM;
2326
2327 /* Add leading zeros to the value. */
2328 if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (regno))
2329 {
2330 memset (buffer, 0, REGISTER_RAW_SIZE (regno));
2331 memcpy (buffer + REGISTER_RAW_SIZE (regno) - TYPE_LENGTH (type), valbuf,
2332 TYPE_LENGTH (type));
2333 deprecated_write_register_gen (regno, buffer);
2334 }
2335 else
2336 deprecated_write_register_bytes (REGISTER_BYTE (regno), valbuf,
2337 TYPE_LENGTH (type));
2338 }
2339
2340 #if 0
2341 // OBSOLETE extern void
2342 // OBSOLETE sparclet_store_return_value (struct type *type, char *valbuf)
2343 // OBSOLETE {
2344 // OBSOLETE /* Other values are returned in register %o0. */
2345 // OBSOLETE deprecated_write_register_bytes (REGISTER_BYTE (O0_REGNUM), valbuf,
2346 // OBSOLETE TYPE_LENGTH (type));
2347 // OBSOLETE }
2348 #endif
2349
2350
2351 #ifndef CALL_DUMMY_CALL_OFFSET
2352 #define CALL_DUMMY_CALL_OFFSET \
2353 (gdbarch_tdep (current_gdbarch)->call_dummy_call_offset)
2354 #endif /* CALL_DUMMY_CALL_OFFSET */
2355
2356 /* Insert the function address into a call dummy instruction sequence
2357 stored at DUMMY.
2358
2359 For structs and unions, if the function was compiled with Sun cc,
2360 it expects 'unimp' after the call. But gcc doesn't use that
2361 (twisted) convention. So leave a nop there for gcc
2362 (DEPRECATED_FIX_CALL_DUMMY can assume it is operating on a pristine
2363 CALL_DUMMY, not one that has already been customized for a
2364 different function). */
2365
2366 void
2367 sparc_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
2368 struct type *value_type, int using_gcc)
2369 {
2370 int i;
2371
2372 /* Store the relative adddress of the target function into the
2373 'call' instruction. */
2374 store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET, 4,
2375 (0x40000000
2376 | (((fun - (pc + CALL_DUMMY_CALL_OFFSET)) >> 2)
2377 & 0x3fffffff)));
2378
2379 /* If the called function returns an aggregate value, fill in the UNIMP
2380 instruction containing the size of the returned aggregate return value,
2381 which follows the call instruction.
2382 For details see the SPARC Architecture Manual Version 8, Appendix D.3.
2383
2384 Adjust the call_dummy_breakpoint_offset for the bp_call_dummy breakpoint
2385 to the proper address in the call dummy, so that `finish' after a stop
2386 in a call dummy works.
2387
2388 Tweeking current_gdbarch is not an optimal solution, but the call
2389 to sparc_fix_call_dummy is immediately followed by a call to
2390 call_function_by_hand, which is the only function where
2391 dummy_breakpoint_offset is actually used, if it is non-zero. */
2392 if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
2393 || TYPE_CODE (value_type) == TYPE_CODE_UNION)
2394 {
2395 store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET + 8, 4,
2396 TYPE_LENGTH (value_type) & 0x1fff);
2397 set_gdbarch_deprecated_call_dummy_breakpoint_offset (current_gdbarch, 0x30);
2398 }
2399 else
2400 set_gdbarch_deprecated_call_dummy_breakpoint_offset (current_gdbarch, 0x2c);
2401
2402 if (!(GDB_TARGET_IS_SPARC64))
2403 {
2404 /* If this is not a simulator target, change the first four
2405 instructions of the call dummy to NOPs. Those instructions
2406 include a 'save' instruction and are designed to work around
2407 problems with register window flushing in the simulator. */
2408
2409 if (strcmp (target_shortname, "sim") != 0)
2410 {
2411 for (i = 0; i < 4; i++)
2412 store_unsigned_integer (dummy + (i * 4), 4, 0x01000000);
2413 }
2414 }
2415
2416 #if 0
2417 // OBSOLETE /* If this is a bi-endian target, GDB has written the call dummy
2418 // OBSOLETE in little-endian order. We must byte-swap it back to big-endian. */
2419 // OBSOLETE if (bi_endian)
2420 // OBSOLETE {
2421 // OBSOLETE for (i = 0; i < CALL_DUMMY_LENGTH; i += 4)
2422 // OBSOLETE {
2423 // OBSOLETE char tmp = dummy[i];
2424 // OBSOLETE dummy[i] = dummy[i + 3];
2425 // OBSOLETE dummy[i + 3] = tmp;
2426 // OBSOLETE tmp = dummy[i + 1];
2427 // OBSOLETE dummy[i + 1] = dummy[i + 2];
2428 // OBSOLETE dummy[i + 2] = tmp;
2429 // OBSOLETE }
2430 // OBSOLETE }
2431 #endif
2432 }
2433
2434
2435 #if 0
2436 // OBSOLETE /* Set target byte order based on machine type. */
2437 // OBSOLETE
2438 // OBSOLETE static int
2439 // OBSOLETE sparc_target_architecture_hook (const bfd_arch_info_type *ap)
2440 // OBSOLETE {
2441 // OBSOLETE int i, j;
2442 // OBSOLETE
2443 // OBSOLETE if (ap->mach == bfd_mach_sparc_sparclite_le)
2444 // OBSOLETE {
2445 // OBSOLETE target_byte_order = BFD_ENDIAN_LITTLE;
2446 // OBSOLETE bi_endian = 1;
2447 // OBSOLETE }
2448 // OBSOLETE else
2449 // OBSOLETE bi_endian = 0;
2450 // OBSOLETE return 1;
2451 // OBSOLETE }
2452 #endif
2453
2454 /*
2455 * Module "constructor" function.
2456 */
2457
2458 static struct gdbarch * sparc_gdbarch_init (struct gdbarch_info info,
2459 struct gdbarch_list *arches);
2460 static void sparc_dump_tdep (struct gdbarch *, struct ui_file *);
2461
2462 void
2463 _initialize_sparc_tdep (void)
2464 {
2465 /* Hook us into the gdbarch mechanism. */
2466 gdbarch_register (bfd_arch_sparc, sparc_gdbarch_init, sparc_dump_tdep);
2467
2468 deprecated_tm_print_insn = gdb_print_insn_sparc;
2469 deprecated_tm_print_insn_info.mach = TM_PRINT_INSN_MACH; /* Selects sparc/sparclite */
2470 /* OBSOLETE target_architecture_hook = sparc_target_architecture_hook; */
2471 }
2472
2473 /* Compensate for stack bias. Note that we currently don't handle
2474 mixed 32/64 bit code. */
2475
2476 CORE_ADDR
2477 sparc64_read_sp (void)
2478 {
2479 CORE_ADDR sp = read_register (SP_REGNUM);
2480
2481 if (sp & 1)
2482 sp += 2047;
2483 return sp;
2484 }
2485
2486 CORE_ADDR
2487 sparc64_read_fp (void)
2488 {
2489 CORE_ADDR fp = read_register (DEPRECATED_FP_REGNUM);
2490
2491 if (fp & 1)
2492 fp += 2047;
2493 return fp;
2494 }
2495
2496 void
2497 sparc64_write_sp (CORE_ADDR val)
2498 {
2499 CORE_ADDR oldsp = read_register (SP_REGNUM);
2500 if (oldsp & 1)
2501 write_register (SP_REGNUM, val - 2047);
2502 else
2503 write_register (SP_REGNUM, val);
2504 }
2505
2506 /* The SPARC 64 ABI passes floating-point arguments in FP0 to FP31,
2507 and all other arguments in O0 to O5. They are also copied onto
2508 the stack in the correct places. Apparently (empirically),
2509 structs of less than 16 bytes are passed member-by-member in
2510 separate registers, but I am unable to figure out the algorithm.
2511 Some members go in floating point regs, but I don't know which.
2512
2513 FIXME: Handle small structs (less than 16 bytes containing floats).
2514
2515 The counting regimen for using both integer and FP registers
2516 for argument passing is rather odd -- a single counter is used
2517 for both; this means that if the arguments alternate between
2518 int and float, we will waste every other register of both types. */
2519
2520 CORE_ADDR
2521 sparc64_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
2522 int struct_return, CORE_ADDR struct_retaddr)
2523 {
2524 int i, j, register_counter = 0;
2525 CORE_ADDR tempsp;
2526 struct type *sparc_intreg_type =
2527 TYPE_LENGTH (builtin_type_long) == SPARC_INTREG_SIZE ?
2528 builtin_type_long : builtin_type_long_long;
2529
2530 sp = (sp & ~(((unsigned long) SPARC_INTREG_SIZE) - 1UL));
2531
2532 /* Figure out how much space we'll need. */
2533 for (i = nargs - 1; i >= 0; i--)
2534 {
2535 int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[i])));
2536 struct value *copyarg = args[i];
2537 int copylen = len;
2538
2539 if (copylen < SPARC_INTREG_SIZE)
2540 {
2541 copyarg = value_cast (sparc_intreg_type, copyarg);
2542 copylen = SPARC_INTREG_SIZE;
2543 }
2544 sp -= copylen;
2545 }
2546
2547 /* Round down. */
2548 sp = sp & ~7;
2549 tempsp = sp;
2550
2551 /* if STRUCT_RETURN, then first argument is the struct return location. */
2552 if (struct_return)
2553 write_register (O0_REGNUM + register_counter++, struct_retaddr);
2554
2555 /* Now write the arguments onto the stack, while writing FP
2556 arguments into the FP registers, and other arguments into the
2557 first six 'O' registers. */
2558
2559 for (i = 0; i < nargs; i++)
2560 {
2561 int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[i])));
2562 struct value *copyarg = args[i];
2563 enum type_code typecode = TYPE_CODE (VALUE_TYPE (args[i]));
2564 int copylen = len;
2565
2566 if (typecode == TYPE_CODE_INT ||
2567 typecode == TYPE_CODE_BOOL ||
2568 typecode == TYPE_CODE_CHAR ||
2569 typecode == TYPE_CODE_RANGE ||
2570 typecode == TYPE_CODE_ENUM)
2571 if (len < SPARC_INTREG_SIZE)
2572 {
2573 /* Small ints will all take up the size of one intreg on
2574 the stack. */
2575 copyarg = value_cast (sparc_intreg_type, copyarg);
2576 copylen = SPARC_INTREG_SIZE;
2577 }
2578
2579 write_memory (tempsp, VALUE_CONTENTS (copyarg), copylen);
2580 tempsp += copylen;
2581
2582 /* Corner case: Structs consisting of a single float member are floats.
2583 * FIXME! I don't know about structs containing multiple floats!
2584 * Structs containing mixed floats and ints are even more weird.
2585 */
2586
2587
2588
2589 /* Separate float args from all other args. */
2590 if (typecode == TYPE_CODE_FLT && SPARC_HAS_FPU)
2591 {
2592 if (register_counter < 16)
2593 {
2594 /* This arg gets copied into a FP register. */
2595 int fpreg;
2596
2597 switch (len) {
2598 case 4: /* Single-precision (float) */
2599 fpreg = FP0_REGNUM + 2 * register_counter + 1;
2600 register_counter += 1;
2601 break;
2602 case 8: /* Double-precision (double) */
2603 fpreg = FP0_REGNUM + 2 * register_counter;
2604 register_counter += 1;
2605 break;
2606 case 16: /* Quad-precision (long double) */
2607 fpreg = FP0_REGNUM + 2 * register_counter;
2608 register_counter += 2;
2609 break;
2610 default:
2611 internal_error (__FILE__, __LINE__, "bad switch");
2612 }
2613 deprecated_write_register_bytes (REGISTER_BYTE (fpreg),
2614 VALUE_CONTENTS (args[i]),
2615 len);
2616 }
2617 }
2618 else /* all other args go into the first six 'o' registers */
2619 {
2620 for (j = 0;
2621 j < len && register_counter < 6;
2622 j += SPARC_INTREG_SIZE)
2623 {
2624 int oreg = O0_REGNUM + register_counter;
2625
2626 deprecated_write_register_gen (oreg, VALUE_CONTENTS (copyarg) + j);
2627 register_counter += 1;
2628 }
2629 }
2630 }
2631 return sp;
2632 }
2633
2634 /* Values <= 32 bytes are returned in o0-o3 (floating-point values are
2635 returned in f0-f3). */
2636
2637 void
2638 sp64_extract_return_value (struct type *type, char *regbuf, char *valbuf,
2639 int bitoffset)
2640 {
2641 int typelen = TYPE_LENGTH (type);
2642 int regsize = REGISTER_RAW_SIZE (O0_REGNUM);
2643
2644 if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
2645 {
2646 memcpy (valbuf, &regbuf[REGISTER_BYTE (FP0_REGNUM)], typelen);
2647 return;
2648 }
2649
2650 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
2651 || (TYPE_LENGTH (type) > 32))
2652 {
2653 memcpy (valbuf,
2654 &regbuf[O0_REGNUM * regsize +
2655 (typelen >= regsize ? 0 : regsize - typelen)],
2656 typelen);
2657 return;
2658 }
2659 else
2660 {
2661 char *o0 = &regbuf[O0_REGNUM * regsize];
2662 char *f0 = &regbuf[FP0_REGNUM * regsize];
2663 int x;
2664
2665 for (x = 0; x < TYPE_NFIELDS (type); x++)
2666 {
2667 struct field *f = &TYPE_FIELDS (type)[x];
2668 /* FIXME: We may need to handle static fields here. */
2669 int whichreg = (f->loc.bitpos + bitoffset) / 32;
2670 int remainder = ((f->loc.bitpos + bitoffset) % 32) / 8;
2671 int where = (f->loc.bitpos + bitoffset) / 8;
2672 int size = TYPE_LENGTH (f->type);
2673 int typecode = TYPE_CODE (f->type);
2674
2675 if (typecode == TYPE_CODE_STRUCT)
2676 {
2677 sp64_extract_return_value (f->type,
2678 regbuf,
2679 valbuf,
2680 bitoffset + f->loc.bitpos);
2681 }
2682 else if (typecode == TYPE_CODE_FLT && SPARC_HAS_FPU)
2683 {
2684 memcpy (valbuf + where, &f0[whichreg * 4] + remainder, size);
2685 }
2686 else
2687 {
2688 memcpy (valbuf + where, &o0[whichreg * 4] + remainder, size);
2689 }
2690 }
2691 }
2692 }
2693
2694 extern void
2695 sparc64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
2696 {
2697 sp64_extract_return_value (type, regbuf, valbuf, 0);
2698 }
2699
2700 #if 0
2701 // OBSOLETE extern void
2702 // OBSOLETE sparclet_extract_return_value (struct type *type,
2703 // OBSOLETE char *regbuf,
2704 // OBSOLETE char *valbuf)
2705 // OBSOLETE {
2706 // OBSOLETE regbuf += REGISTER_RAW_SIZE (O0_REGNUM) * 8;
2707 // OBSOLETE if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (O0_REGNUM))
2708 // OBSOLETE regbuf += REGISTER_RAW_SIZE (O0_REGNUM) - TYPE_LENGTH (type);
2709 // OBSOLETE
2710 // OBSOLETE memcpy ((void *) valbuf, regbuf, TYPE_LENGTH (type));
2711 // OBSOLETE }
2712 #endif
2713
2714 extern CORE_ADDR
2715 sparc32_stack_align (CORE_ADDR addr)
2716 {
2717 return ((addr + 7) & -8);
2718 }
2719
2720 extern CORE_ADDR
2721 sparc64_stack_align (CORE_ADDR addr)
2722 {
2723 return ((addr + 15) & -16);
2724 }
2725
2726 extern void
2727 sparc_print_extra_frame_info (struct frame_info *fi)
2728 {
2729 if (fi && get_frame_extra_info (fi) && get_frame_extra_info (fi)->flat)
2730 printf_filtered (" flat, pc saved at 0x%s, fp saved at 0x%s\n",
2731 paddr_nz (get_frame_extra_info (fi)->pc_addr),
2732 paddr_nz (get_frame_extra_info (fi)->fp_addr));
2733 }
2734
2735 /* MULTI_ARCH support */
2736
2737 static const char *
2738 sparc32_register_name (int regno)
2739 {
2740 static char *register_names[] =
2741 { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
2742 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
2743 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
2744 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
2745
2746 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
2747 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
2748 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
2749 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
2750
2751 "y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr"
2752 };
2753
2754 if (regno < 0 ||
2755 regno >= (sizeof (register_names) / sizeof (register_names[0])))
2756 return NULL;
2757 else
2758 return register_names[regno];
2759 }
2760
2761 static const char *
2762 sparc64_register_name (int regno)
2763 {
2764 static char *register_names[] =
2765 { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
2766 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
2767 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
2768 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
2769
2770 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
2771 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
2772 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
2773 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
2774 "f32", "f34", "f36", "f38", "f40", "f42", "f44", "f46",
2775 "f48", "f50", "f52", "f54", "f56", "f58", "f60", "f62",
2776
2777 "pc", "npc", "ccr", "fsr", "fprs", "y", "asi", "ver",
2778 "tick", "pil", "pstate", "tstate", "tba", "tl", "tt", "tpc",
2779 "tnpc", "wstate", "cwp", "cansave", "canrestore", "cleanwin", "otherwin",
2780 "asr16", "asr17", "asr18", "asr19", "asr20", "asr21", "asr22", "asr23",
2781 "asr24", "asr25", "asr26", "asr27", "asr28", "asr29", "asr30", "asr31",
2782 /* These are here at the end to simplify removing them if we have to. */
2783 "icc", "xcc", "fcc0", "fcc1", "fcc2", "fcc3"
2784 };
2785
2786 if (regno < 0 ||
2787 regno >= (sizeof (register_names) / sizeof (register_names[0])))
2788 return NULL;
2789 else
2790 return register_names[regno];
2791 }
2792
2793 #if 0
2794 // OBSOLETE static const char *
2795 // OBSOLETE sparclite_register_name (int regno)
2796 // OBSOLETE {
2797 // OBSOLETE static char *register_names[] =
2798 // OBSOLETE { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
2799 // OBSOLETE "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
2800 // OBSOLETE "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
2801 // OBSOLETE "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
2802 // OBSOLETE
2803 // OBSOLETE "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
2804 // OBSOLETE "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
2805 // OBSOLETE "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
2806 // OBSOLETE "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
2807 // OBSOLETE
2808 // OBSOLETE "y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr",
2809 // OBSOLETE "dia1", "dia2", "dda1", "dda2", "ddv1", "ddv2", "dcr", "dsr"
2810 // OBSOLETE };
2811 // OBSOLETE
2812 // OBSOLETE if (regno < 0 ||
2813 // OBSOLETE regno >= (sizeof (register_names) / sizeof (register_names[0])))
2814 // OBSOLETE return NULL;
2815 // OBSOLETE else
2816 // OBSOLETE return register_names[regno];
2817 // OBSOLETE }
2818 #endif
2819
2820 #if 0
2821 // OBSOLETE static const char *
2822 // OBSOLETE sparclet_register_name (int regno)
2823 // OBSOLETE {
2824 // OBSOLETE static char *register_names[] =
2825 // OBSOLETE { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
2826 // OBSOLETE "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
2827 // OBSOLETE "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
2828 // OBSOLETE "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
2829 // OBSOLETE
2830 // OBSOLETE "", "", "", "", "", "", "", "", /* no floating point registers */
2831 // OBSOLETE "", "", "", "", "", "", "", "",
2832 // OBSOLETE "", "", "", "", "", "", "", "",
2833 // OBSOLETE "", "", "", "", "", "", "", "",
2834 // OBSOLETE
2835 // OBSOLETE "y", "psr", "wim", "tbr", "pc", "npc", "", "", /* no FPSR or CPSR */
2836 // OBSOLETE "ccsr", "ccpr", "cccrcr", "ccor", "ccobr", "ccibr", "ccir", "",
2837 // OBSOLETE
2838 // OBSOLETE /* ASR15 ASR19 (don't display them) */
2839 // OBSOLETE "asr1", "", "asr17", "asr18", "", "asr20", "asr21", "asr22"
2840 // OBSOLETE /* None of the rest get displayed */
2841 // OBSOLETE #if 0
2842 // OBSOLETE "awr0", "awr1", "awr2", "awr3", "awr4", "awr5", "awr6", "awr7",
2843 // OBSOLETE "awr8", "awr9", "awr10", "awr11", "awr12", "awr13", "awr14", "awr15",
2844 // OBSOLETE "awr16", "awr17", "awr18", "awr19", "awr20", "awr21", "awr22", "awr23",
2845 // OBSOLETE "awr24", "awr25", "awr26", "awr27", "awr28", "awr29", "awr30", "awr31",
2846 // OBSOLETE "apsr"
2847 // OBSOLETE #endif /* 0 */
2848 // OBSOLETE };
2849 // OBSOLETE
2850 // OBSOLETE if (regno < 0 ||
2851 // OBSOLETE regno >= (sizeof (register_names) / sizeof (register_names[0])))
2852 // OBSOLETE return NULL;
2853 // OBSOLETE else
2854 // OBSOLETE return register_names[regno];
2855 // OBSOLETE }
2856 #endif
2857
2858 CORE_ADDR
2859 sparc_push_return_address (CORE_ADDR pc_unused, CORE_ADDR sp)
2860 {
2861 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
2862 {
2863 /* The return PC of the dummy_frame is the former 'current' PC
2864 (where we were before we made the target function call).
2865 This is saved in %i7 by push_dummy_frame.
2866
2867 We will save the 'call dummy location' (ie. the address
2868 to which the target function will return) in %o7.
2869 This address will actually be the program's entry point.
2870 There will be a special call_dummy breakpoint there. */
2871
2872 write_register (O7_REGNUM,
2873 CALL_DUMMY_ADDRESS () - 8);
2874 }
2875
2876 return sp;
2877 }
2878
2879 /* Should call_function allocate stack space for a struct return? */
2880
2881 static int
2882 sparc64_use_struct_convention (int gcc_p, struct type *type)
2883 {
2884 return (TYPE_LENGTH (type) > 32);
2885 }
2886
2887 /* Store the address of the place in which to copy the structure the
2888 subroutine will return. This is called from call_function_by_hand.
2889 The ultimate mystery is, tho, what is the value "16"?
2890
2891 MVS: That's the offset from where the sp is now, to where the
2892 subroutine is gonna expect to find the struct return address. */
2893
2894 static void
2895 sparc32_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2896 {
2897 char *val;
2898 CORE_ADDR o7;
2899
2900 val = alloca (SPARC_INTREG_SIZE);
2901 store_unsigned_integer (val, SPARC_INTREG_SIZE, addr);
2902 write_memory (sp + (16 * SPARC_INTREG_SIZE), val, SPARC_INTREG_SIZE);
2903
2904 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
2905 {
2906 /* Now adjust the value of the link register, which was previously
2907 stored by push_return_address. Functions that return structs are
2908 peculiar in that they return to link register + 12, rather than
2909 link register + 8. */
2910
2911 o7 = read_register (O7_REGNUM);
2912 write_register (O7_REGNUM, o7 - 4);
2913 }
2914 }
2915
2916 static void
2917 sparc64_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2918 {
2919 /* FIXME: V9 uses %o0 for this. */
2920 /* FIXME MVS: Only for small enough structs!!! */
2921
2922 target_write_memory (sp + (16 * SPARC_INTREG_SIZE),
2923 (char *) &addr, SPARC_INTREG_SIZE);
2924 #if 0
2925 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
2926 {
2927 /* Now adjust the value of the link register, which was previously
2928 stored by push_return_address. Functions that return structs are
2929 peculiar in that they return to link register + 12, rather than
2930 link register + 8. */
2931
2932 write_register (O7_REGNUM, read_register (O7_REGNUM) - 4);
2933 }
2934 #endif
2935 }
2936
2937 /* Default target data type for register REGNO. */
2938
2939 static struct type *
2940 sparc32_register_virtual_type (int regno)
2941 {
2942 if (regno == PC_REGNUM ||
2943 regno == DEPRECATED_FP_REGNUM ||
2944 regno == SP_REGNUM)
2945 return builtin_type_unsigned_int;
2946 if (regno < 32)
2947 return builtin_type_int;
2948 if (regno < 64)
2949 return builtin_type_float;
2950 return builtin_type_int;
2951 }
2952
2953 static struct type *
2954 sparc64_register_virtual_type (int regno)
2955 {
2956 if (regno == PC_REGNUM ||
2957 regno == DEPRECATED_FP_REGNUM ||
2958 regno == SP_REGNUM)
2959 return builtin_type_unsigned_long_long;
2960 if (regno < 32)
2961 return builtin_type_long_long;
2962 if (regno < 64)
2963 return builtin_type_float;
2964 if (regno < 80)
2965 return builtin_type_double;
2966 return builtin_type_long_long;
2967 }
2968
2969 /* Number of bytes of storage in the actual machine representation for
2970 register REGNO. */
2971
2972 static int
2973 sparc32_register_size (int regno)
2974 {
2975 return 4;
2976 }
2977
2978 static int
2979 sparc64_register_size (int regno)
2980 {
2981 return (regno < 32 ? 8 : regno < 64 ? 4 : 8);
2982 }
2983
2984 /* Index within the `registers' buffer of the first byte of the space
2985 for register REGNO. */
2986
2987 static int
2988 sparc32_register_byte (int regno)
2989 {
2990 return (regno * 4);
2991 }
2992
2993 static int
2994 sparc64_register_byte (int regno)
2995 {
2996 if (regno < 32)
2997 return regno * 8;
2998 else if (regno < 64)
2999 return 32 * 8 + (regno - 32) * 4;
3000 else if (regno < 80)
3001 return 32 * 8 + 32 * 4 + (regno - 64) * 8;
3002 else
3003 return 64 * 8 + (regno - 80) * 8;
3004 }
3005
3006 /* Immediately after a function call, return the saved pc.
3007 Can't go through the frames for this because on some machines
3008 the new frame is not set up until the new function executes
3009 some instructions. */
3010
3011 static CORE_ADDR
3012 sparc_saved_pc_after_call (struct frame_info *fi)
3013 {
3014 return sparc_pc_adjust (read_register (RP_REGNUM));
3015 }
3016
3017 /* Convert registers between 'raw' and 'virtual' formats.
3018 They are the same on sparc, so there's nothing to do. */
3019
3020 static void
3021 sparc_convert_to_virtual (int regnum, struct type *type, char *from, char *to)
3022 { /* do nothing (should never be called) */
3023 }
3024
3025 static void
3026 sparc_convert_to_raw (struct type *type, int regnum, char *from, char *to)
3027 { /* do nothing (should never be called) */
3028 }
3029
3030 /* Init saved regs: nothing to do, just a place-holder function. */
3031
3032 static void
3033 sparc_frame_init_saved_regs (struct frame_info *fi_ignored)
3034 { /* no-op */
3035 }
3036
3037 /* gdbarch fix call dummy:
3038 All this function does is rearrange the arguments before calling
3039 sparc_fix_call_dummy (which does the real work). */
3040
3041 static void
3042 sparc_gdbarch_fix_call_dummy (char *dummy,
3043 CORE_ADDR pc,
3044 CORE_ADDR fun,
3045 int nargs,
3046 struct value **args,
3047 struct type *type,
3048 int gcc_p)
3049 {
3050 if (CALL_DUMMY_LOCATION == ON_STACK)
3051 sparc_fix_call_dummy (dummy, pc, fun, type, gcc_p);
3052 }
3053
3054 /* CALL_DUMMY_ADDRESS: fetch the breakpoint address for a call dummy. */
3055
3056 static CORE_ADDR
3057 sparc_call_dummy_address (void)
3058 {
3059 return (DEPRECATED_CALL_DUMMY_START_OFFSET) + DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET;
3060 }
3061
3062 /* Supply the Y register number to those that need it. */
3063
3064 int
3065 sparc_y_regnum (void)
3066 {
3067 return gdbarch_tdep (current_gdbarch)->y_regnum;
3068 }
3069
3070 int
3071 sparc_reg_struct_has_addr (int gcc_p, struct type *type)
3072 {
3073 if (GDB_TARGET_IS_SPARC64)
3074 return (TYPE_LENGTH (type) > 32);
3075 else
3076 return (gcc_p != 1);
3077 }
3078
3079 int
3080 sparc_intreg_size (void)
3081 {
3082 return SPARC_INTREG_SIZE;
3083 }
3084
3085 static int
3086 sparc_return_value_on_stack (struct type *type)
3087 {
3088 if (TYPE_CODE (type) == TYPE_CODE_FLT &&
3089 TYPE_LENGTH (type) > 8)
3090 return 1;
3091 else
3092 return 0;
3093 }
3094
3095 /*
3096 * Gdbarch "constructor" function.
3097 */
3098
3099 #define SPARC32_CALL_DUMMY_ON_STACK
3100
3101 #define SPARC_SP_REGNUM 14
3102 #define SPARC_FP_REGNUM 30
3103 #define SPARC_FP0_REGNUM 32
3104 #define SPARC32_NPC_REGNUM 69
3105 #define SPARC32_PC_REGNUM 68
3106 #define SPARC32_Y_REGNUM 64
3107 #define SPARC64_PC_REGNUM 80
3108 #define SPARC64_NPC_REGNUM 81
3109 #define SPARC64_Y_REGNUM 85
3110
3111 static struct gdbarch *
3112 sparc_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3113 {
3114 struct gdbarch *gdbarch;
3115 struct gdbarch_tdep *tdep;
3116
3117 static LONGEST call_dummy_32[] =
3118 { 0xbc100001, 0x9de38000, 0xbc100002, 0xbe100003,
3119 0xda03a058, 0xd803a054, 0xd603a050, 0xd403a04c,
3120 0xd203a048, 0x40000000, 0xd003a044, 0x01000000,
3121 0x91d02001, 0x01000000
3122 };
3123 static LONGEST call_dummy_64[] =
3124 { 0x9de3bec0fd3fa7f7LL, 0xf93fa7eff53fa7e7LL,
3125 0xf13fa7dfed3fa7d7LL, 0xe93fa7cfe53fa7c7LL,
3126 0xe13fa7bfdd3fa7b7LL, 0xd93fa7afd53fa7a7LL,
3127 0xd13fa79fcd3fa797LL, 0xc93fa78fc53fa787LL,
3128 0xc13fa77fcc3fa777LL, 0xc83fa76fc43fa767LL,
3129 0xc03fa75ffc3fa757LL, 0xf83fa74ff43fa747LL,
3130 0xf03fa73f01000000LL, 0x0100000001000000LL,
3131 0x0100000091580000LL, 0xd027a72b93500000LL,
3132 0xd027a72791480000LL, 0xd027a72391400000LL,
3133 0xd027a71fda5ba8a7LL, 0xd85ba89fd65ba897LL,
3134 0xd45ba88fd25ba887LL, 0x9fc02000d05ba87fLL,
3135 0x0100000091d02001LL, 0x0100000001000000LL
3136 };
3137 static LONGEST call_dummy_nil[] = {0};
3138
3139 /* Try to determine the OS ABI of the object we are loading. */
3140
3141 if (info.abfd != NULL
3142 && info.osabi == GDB_OSABI_UNKNOWN)
3143 {
3144 /* If it's an ELF file, assume it's Solaris. */
3145 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
3146 info.osabi = GDB_OSABI_SOLARIS;
3147 }
3148
3149 /* First see if there is already a gdbarch that can satisfy the request. */
3150 arches = gdbarch_list_lookup_by_info (arches, &info);
3151 if (arches != NULL)
3152 return arches->gdbarch;
3153
3154 /* None found: is the request for a sparc architecture? */
3155 if (info.bfd_arch_info->arch != bfd_arch_sparc)
3156 return NULL; /* No; then it's not for us. */
3157
3158 /* Yes: create a new gdbarch for the specified machine type. */
3159 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
3160 gdbarch = gdbarch_alloc (&info, tdep);
3161
3162 /* First set settings that are common for all sparc architectures. */
3163 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3164 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
3165 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3166 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3167 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, sparc_extract_struct_value_address);
3168 set_gdbarch_deprecated_fix_call_dummy (gdbarch, sparc_gdbarch_fix_call_dummy);
3169 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3170 set_gdbarch_deprecated_fp_regnum (gdbarch, SPARC_FP_REGNUM);
3171 set_gdbarch_fp0_regnum (gdbarch, SPARC_FP0_REGNUM);
3172 set_gdbarch_deprecated_frame_chain (gdbarch, sparc_frame_chain);
3173 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, sparc_frame_init_saved_regs);
3174 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
3175 set_gdbarch_deprecated_frame_saved_pc (gdbarch, sparc_frame_saved_pc);
3176 set_gdbarch_frameless_function_invocation (gdbarch,
3177 frameless_look_for_prologue);
3178 set_gdbarch_deprecated_get_saved_register (gdbarch, sparc_get_saved_register);
3179 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, sparc_init_extra_frame_info);
3180 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3181 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3182 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3183 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3184 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 8);
3185 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
3186 set_gdbarch_deprecated_pop_frame (gdbarch, sparc_pop_frame);
3187 set_gdbarch_deprecated_push_return_address (gdbarch, sparc_push_return_address);
3188 set_gdbarch_deprecated_push_dummy_frame (gdbarch, sparc_push_dummy_frame);
3189 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
3190 set_gdbarch_register_convert_to_raw (gdbarch, sparc_convert_to_raw);
3191 set_gdbarch_register_convert_to_virtual (gdbarch,
3192 sparc_convert_to_virtual);
3193 set_gdbarch_register_convertible (gdbarch,
3194 generic_register_convertible_not);
3195 set_gdbarch_reg_struct_has_addr (gdbarch, sparc_reg_struct_has_addr);
3196 set_gdbarch_return_value_on_stack (gdbarch, sparc_return_value_on_stack);
3197 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, sparc_saved_pc_after_call);
3198 set_gdbarch_prologue_frameless_p (gdbarch, sparc_prologue_frameless_p);
3199 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3200 set_gdbarch_skip_prologue (gdbarch, sparc_skip_prologue);
3201 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM);
3202 set_gdbarch_deprecated_use_generic_dummy_frames (gdbarch, 0);
3203 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
3204
3205 /*
3206 * Settings that depend only on 32/64 bit word size
3207 */
3208
3209 switch (info.bfd_arch_info->mach)
3210 {
3211 case bfd_mach_sparc:
3212 #if 0
3213 // OBSOLETE case bfd_mach_sparc_sparclet:
3214 // OBSOLETE case bfd_mach_sparc_sparclite:
3215 #endif
3216 case bfd_mach_sparc_v8plus:
3217 case bfd_mach_sparc_v8plusa:
3218 #if 0
3219 // OBSOLETE case bfd_mach_sparc_sparclite_le:
3220 #endif
3221 /* 32-bit machine types: */
3222
3223 #ifdef SPARC32_CALL_DUMMY_ON_STACK
3224 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_on_stack);
3225 set_gdbarch_call_dummy_address (gdbarch, sparc_call_dummy_address);
3226 set_gdbarch_deprecated_call_dummy_breakpoint_offset (gdbarch, 0x30);
3227 set_gdbarch_deprecated_call_dummy_length (gdbarch, 0x38);
3228
3229 /* NOTE: cagney/2003-05-01: Using the just added push_dummy_code
3230 architecture method, it is now possible to implement a
3231 generic dummy frames based inferior function call that stores
3232 the breakpoint (and struct info) on the stack. Further, by
3233 treating a SIGSEG at a breakpoint as equivalent to a SIGTRAP
3234 it is even possible to make this work when the stack is
3235 no-execute.
3236
3237 NOTE: cagney/2002-04-26: Based from info posted by Peter
3238 Schauer around Oct '99. Briefly, due to aspects of the SPARC
3239 ABI, it isn't possible to use ON_STACK with a strictly
3240 compliant compiler.
3241
3242 Peter Schauer writes ...
3243
3244 No, any call from GDB to a user function returning a
3245 struct/union will fail miserably. Try this:
3246
3247 *NOINDENT*
3248 struct x
3249 {
3250 int a[4];
3251 };
3252
3253 struct x gx;
3254
3255 struct x
3256 sret ()
3257 {
3258 return gx;
3259 }
3260
3261 main ()
3262 {
3263 int i;
3264 for (i = 0; i < 4; i++)
3265 gx.a[i] = i + 1;
3266 gx = sret ();
3267 }
3268 *INDENT*
3269
3270 Set a breakpoint at the gx = sret () statement, run to it and
3271 issue a `print sret()'. It will not succed with your
3272 approach, and I doubt that continuing the program will work
3273 as well.
3274
3275 For details of the ABI see the Sparc Architecture Manual. I
3276 have Version 8 (Prentice Hall ISBN 0-13-825001-4) and the
3277 calling conventions for functions returning aggregate values
3278 are explained in Appendix D.3. */
3279
3280 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
3281 set_gdbarch_deprecated_call_dummy_words (gdbarch, call_dummy_32);
3282 #else
3283 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
3284 set_gdbarch_deprecated_call_dummy_words (gdbarch, call_dummy_nil);
3285 #endif
3286 set_gdbarch_deprecated_call_dummy_stack_adjust (gdbarch, 68);
3287 set_gdbarch_frame_args_skip (gdbarch, 68);
3288 set_gdbarch_function_start_offset (gdbarch, 0);
3289 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3290 set_gdbarch_npc_regnum (gdbarch, SPARC32_NPC_REGNUM);
3291 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM);
3292 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3293 set_gdbarch_deprecated_push_arguments (gdbarch, sparc32_push_arguments);
3294 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
3295
3296 set_gdbarch_register_byte (gdbarch, sparc32_register_byte);
3297 set_gdbarch_register_raw_size (gdbarch, sparc32_register_size);
3298 set_gdbarch_deprecated_register_size (gdbarch, 4);
3299 set_gdbarch_register_virtual_size (gdbarch, sparc32_register_size);
3300 set_gdbarch_register_virtual_type (gdbarch,
3301 sparc32_register_virtual_type);
3302 #ifdef SPARC32_CALL_DUMMY_ON_STACK
3303 set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_32));
3304 #else
3305 set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, 0);
3306 #endif
3307 set_gdbarch_stack_align (gdbarch, sparc32_stack_align);
3308 set_gdbarch_deprecated_extra_stack_alignment_needed (gdbarch, 1);
3309 set_gdbarch_deprecated_store_struct_return (gdbarch, sparc32_store_struct_return);
3310 set_gdbarch_use_struct_convention (gdbarch,
3311 generic_use_struct_convention);
3312 set_gdbarch_deprecated_dummy_write_sp (gdbarch, generic_target_write_sp);
3313 tdep->y_regnum = SPARC32_Y_REGNUM;
3314 tdep->fp_max_regnum = SPARC_FP0_REGNUM + 32;
3315 tdep->intreg_size = 4;
3316 tdep->reg_save_offset = 0x60;
3317 tdep->call_dummy_call_offset = 0x24;
3318 break;
3319
3320 case bfd_mach_sparc_v9:
3321 case bfd_mach_sparc_v9a:
3322 /* 64-bit machine types: */
3323 default: /* Any new machine type is likely to be 64-bit. */
3324
3325 #ifdef SPARC64_CALL_DUMMY_ON_STACK
3326 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_on_stack);
3327 set_gdbarch_call_dummy_address (gdbarch, sparc_call_dummy_address);
3328 set_gdbarch_deprecated_call_dummy_breakpoint_offset (gdbarch, 8 * 4);
3329 set_gdbarch_deprecated_call_dummy_length (gdbarch, 192);
3330 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
3331 set_gdbarch_deprecated_call_dummy_start_offset (gdbarch, 148);
3332 set_gdbarch_deprecated_call_dummy_words (gdbarch, call_dummy_64);
3333 #else
3334 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
3335 set_gdbarch_deprecated_call_dummy_words (gdbarch, call_dummy_nil);
3336 #endif
3337 set_gdbarch_deprecated_call_dummy_stack_adjust (gdbarch, 128);
3338 set_gdbarch_frame_args_skip (gdbarch, 136);
3339 set_gdbarch_function_start_offset (gdbarch, 0);
3340 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3341 set_gdbarch_npc_regnum (gdbarch, SPARC64_NPC_REGNUM);
3342 set_gdbarch_pc_regnum (gdbarch, SPARC64_PC_REGNUM);
3343 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3344 set_gdbarch_deprecated_push_arguments (gdbarch, sparc64_push_arguments);
3345 /* NOTE different for at_entry */
3346 set_gdbarch_deprecated_target_read_fp (gdbarch, sparc64_read_fp);
3347 set_gdbarch_read_sp (gdbarch, sparc64_read_sp);
3348 /* Some of the registers aren't 64 bits, but it's a lot simpler just
3349 to assume they all are (since most of them are). */
3350 set_gdbarch_register_byte (gdbarch, sparc64_register_byte);
3351 set_gdbarch_register_raw_size (gdbarch, sparc64_register_size);
3352 set_gdbarch_deprecated_register_size (gdbarch, 8);
3353 set_gdbarch_register_virtual_size (gdbarch, sparc64_register_size);
3354 set_gdbarch_register_virtual_type (gdbarch,
3355 sparc64_register_virtual_type);
3356 #ifdef SPARC64_CALL_DUMMY_ON_STACK
3357 set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_64));
3358 #else
3359 set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, 0);
3360 #endif
3361 set_gdbarch_stack_align (gdbarch, sparc64_stack_align);
3362 set_gdbarch_deprecated_extra_stack_alignment_needed (gdbarch, 1);
3363 set_gdbarch_deprecated_store_struct_return (gdbarch, sparc64_store_struct_return);
3364 set_gdbarch_use_struct_convention (gdbarch,
3365 sparc64_use_struct_convention);
3366 set_gdbarch_deprecated_dummy_write_sp (gdbarch, sparc64_write_sp);
3367 tdep->y_regnum = SPARC64_Y_REGNUM;
3368 tdep->fp_max_regnum = SPARC_FP0_REGNUM + 48;
3369 tdep->intreg_size = 8;
3370 tdep->reg_save_offset = 0x90;
3371 tdep->call_dummy_call_offset = 148 + 4 * 5;
3372 break;
3373 }
3374
3375 /*
3376 * Settings that vary per-architecture:
3377 */
3378
3379 switch (info.bfd_arch_info->mach)
3380 {
3381 case bfd_mach_sparc:
3382 set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
3383 set_gdbarch_num_regs (gdbarch, 72);
3384 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
3385 set_gdbarch_register_name (gdbarch, sparc32_register_name);
3386 set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
3387 #if 0
3388 // OBSOLETE tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3389 #endif
3390 tdep->fp_register_bytes = 32 * 4;
3391 tdep->print_insn_mach = bfd_mach_sparc;
3392 break;
3393 #if 0
3394 // OBSOLETE case bfd_mach_sparc_sparclet:
3395 // OBSOLETE set_gdbarch_deprecated_extract_return_value (gdbarch, sparclet_extract_return_value);
3396 // OBSOLETE set_gdbarch_num_regs (gdbarch, 32 + 32 + 8 + 8 + 8);
3397 // OBSOLETE set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4 + 8*4);
3398 // OBSOLETE set_gdbarch_register_name (gdbarch, sparclet_register_name);
3399 // OBSOLETE set_gdbarch_deprecated_store_return_value (gdbarch, sparclet_store_return_value);
3400 // OBSOLETE tdep->has_fpu = 0; /* (all but sparclet and sparclite) */
3401 // OBSOLETE tdep->fp_register_bytes = 0;
3402 // OBSOLETE tdep->print_insn_mach = bfd_mach_sparc_sparclet;
3403 // OBSOLETE break;
3404 #endif
3405 #if 0
3406 // OBSOLETE case bfd_mach_sparc_sparclite:
3407 // OBSOLETE set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
3408 // OBSOLETE set_gdbarch_num_regs (gdbarch, 80);
3409 // OBSOLETE set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4);
3410 // OBSOLETE set_gdbarch_register_name (gdbarch, sparclite_register_name);
3411 // OBSOLETE set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
3412 // OBSOLETE tdep->has_fpu = 0; /* (all but sparclet and sparclite) */
3413 // OBSOLETE tdep->fp_register_bytes = 0;
3414 // OBSOLETE tdep->print_insn_mach = bfd_mach_sparc_sparclite;
3415 // OBSOLETE break;
3416 #endif
3417 case bfd_mach_sparc_v8plus:
3418 set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
3419 set_gdbarch_num_regs (gdbarch, 72);
3420 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
3421 set_gdbarch_register_name (gdbarch, sparc32_register_name);
3422 set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
3423 tdep->print_insn_mach = bfd_mach_sparc;
3424 tdep->fp_register_bytes = 32 * 4;
3425 #if 0
3426 // OBSOLETE tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3427 #endif
3428 break;
3429 case bfd_mach_sparc_v8plusa:
3430 set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
3431 set_gdbarch_num_regs (gdbarch, 72);
3432 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
3433 set_gdbarch_register_name (gdbarch, sparc32_register_name);
3434 set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
3435 #if 0
3436 // OBSOLETE tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3437 #endif
3438 tdep->fp_register_bytes = 32 * 4;
3439 tdep->print_insn_mach = bfd_mach_sparc;
3440 break;
3441 #if 0
3442 // OBSOLETE case bfd_mach_sparc_sparclite_le:
3443 // OBSOLETE set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
3444 // OBSOLETE set_gdbarch_num_regs (gdbarch, 80);
3445 // OBSOLETE set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4);
3446 // OBSOLETE set_gdbarch_register_name (gdbarch, sparclite_register_name);
3447 // OBSOLETE set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
3448 // OBSOLETE tdep->has_fpu = 0; /* (all but sparclet and sparclite) */
3449 // OBSOLETE tdep->fp_register_bytes = 0;
3450 // OBSOLETE tdep->print_insn_mach = bfd_mach_sparc_sparclite;
3451 // OBSOLETE break;
3452 #endif
3453 case bfd_mach_sparc_v9:
3454 set_gdbarch_deprecated_extract_return_value (gdbarch, sparc64_extract_return_value);
3455 set_gdbarch_num_regs (gdbarch, 125);
3456 set_gdbarch_register_bytes (gdbarch, 32*8 + 32*8 + 45*8);
3457 set_gdbarch_register_name (gdbarch, sparc64_register_name);
3458 set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
3459 #if 0
3460 // OBSOLETE tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3461 #endif
3462 tdep->fp_register_bytes = 64 * 4;
3463 tdep->print_insn_mach = bfd_mach_sparc_v9a;
3464 break;
3465 case bfd_mach_sparc_v9a:
3466 set_gdbarch_deprecated_extract_return_value (gdbarch, sparc64_extract_return_value);
3467 set_gdbarch_num_regs (gdbarch, 125);
3468 set_gdbarch_register_bytes (gdbarch, 32*8 + 32*8 + 45*8);
3469 set_gdbarch_register_name (gdbarch, sparc64_register_name);
3470 set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
3471 #if 0
3472 // OBSOLETE tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3473 #endif
3474 tdep->fp_register_bytes = 64 * 4;
3475 tdep->print_insn_mach = bfd_mach_sparc_v9a;
3476 break;
3477 }
3478
3479 /* Hook in OS ABI-specific overrides, if they have been registered. */
3480 gdbarch_init_osabi (info, gdbarch);
3481
3482 return gdbarch;
3483 }
3484
3485 static void
3486 sparc_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3487 {
3488 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3489
3490 if (tdep == NULL)
3491 return;
3492
3493 #if 0
3494 // OBSOLETE fprintf_unfiltered (file, "sparc_dump_tdep: has_fpu = %d\n",
3495 // OBSOLETE tdep->has_fpu);
3496 #endif
3497 fprintf_unfiltered (file, "sparc_dump_tdep: fp_register_bytes = %d\n",
3498 tdep->fp_register_bytes);
3499 fprintf_unfiltered (file, "sparc_dump_tdep: y_regnum = %d\n",
3500 tdep->y_regnum);
3501 fprintf_unfiltered (file, "sparc_dump_tdep: fp_max_regnum = %d\n",
3502 tdep->fp_max_regnum);
3503 fprintf_unfiltered (file, "sparc_dump_tdep: intreg_size = %d\n",
3504 tdep->intreg_size);
3505 fprintf_unfiltered (file, "sparc_dump_tdep: reg_save_offset = %d\n",
3506 tdep->reg_save_offset);
3507 fprintf_unfiltered (file, "sparc_dump_tdep: call_dummy_call_offset = %d\n",
3508 tdep->call_dummy_call_offset);
3509 fprintf_unfiltered (file, "sparc_dump_tdep: print_insn_match = %d\n",
3510 tdep->print_insn_mach);
3511 }
This page took 0.10791 seconds and 4 git commands to generate.