bfd/
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for SPARC.
2
3 Copyright (C) 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "dis-asm.h"
25 #include "dwarf2-frame.h"
26 #include "floatformat.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "gdbcore.h"
31 #include "gdbtypes.h"
32 #include "inferior.h"
33 #include "symtab.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "target.h"
38 #include "value.h"
39
40 #include "gdb_assert.h"
41 #include "gdb_string.h"
42
43 #include "sparc-tdep.h"
44
45 struct regset;
46
47 /* This file implements the SPARC 32-bit ABI as defined by the section
48 "Low-Level System Information" of the SPARC Compliance Definition
49 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
50 lists changes with respect to the original 32-bit psABI as defined
51 in the "System V ABI, SPARC Processor Supplement".
52
53 Note that if we talk about SunOS, we mean SunOS 4.x, which was
54 BSD-based, which is sometimes (retroactively?) referred to as
55 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
56 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
57 suffering from severe version number inflation). Solaris 2.x is
58 also known as SunOS 5.x, since that's what uname(1) says. Solaris
59 2.x is SVR4-based. */
60
61 /* Please use the sparc32_-prefix for 32-bit specific code, the
62 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
63 code that can handle both. The 64-bit specific code lives in
64 sparc64-tdep.c; don't add any here. */
65
66 /* The SPARC Floating-Point Quad-Precision format is similar to
67 big-endian IA-64 Quad-recision format. */
68 #define floatformat_sparc_quad floatformat_ia64_quad_big
69
70 /* The stack pointer is offset from the stack frame by a BIAS of 2047
71 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
72 hosts, so undefine it first. */
73 #undef BIAS
74 #define BIAS 2047
75
76 /* Macros to extract fields from SPARC instructions. */
77 #define X_OP(i) (((i) >> 30) & 0x3)
78 #define X_RD(i) (((i) >> 25) & 0x1f)
79 #define X_A(i) (((i) >> 29) & 1)
80 #define X_COND(i) (((i) >> 25) & 0xf)
81 #define X_OP2(i) (((i) >> 22) & 0x7)
82 #define X_IMM22(i) ((i) & 0x3fffff)
83 #define X_OP3(i) (((i) >> 19) & 0x3f)
84 #define X_RS1(i) (((i) >> 14) & 0x1f)
85 #define X_I(i) (((i) >> 13) & 1)
86 /* Sign extension macros. */
87 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
88 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
89 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
90
91 /* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
93
94 unsigned long
95 sparc_fetch_instruction (CORE_ADDR pc)
96 {
97 gdb_byte buf[4];
98 unsigned long insn;
99 int i;
100
101 /* If we can't read the instruction at PC, return zero. */
102 if (read_memory_nobpt (pc, buf, sizeof (buf)))
103 return 0;
104
105 insn = 0;
106 for (i = 0; i < sizeof (buf); i++)
107 insn = (insn << 8) | buf[i];
108 return insn;
109 }
110 \f
111
112 /* Return non-zero if the instruction corresponding to PC is an "unimp"
113 instruction. */
114
115 static int
116 sparc_is_unimp_insn (CORE_ADDR pc)
117 {
118 const unsigned long insn = sparc_fetch_instruction (pc);
119
120 return ((insn & 0xc1c00000) == 0);
121 }
122
123 /* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
129
130 The same website provides the following description of how
131 StackGhost works:
132
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
142
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
145
146 More information on StackGuard can be found on in:
147
148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
149 Stack Protection." 2001. Published in USENIX Security Symposium
150 '01. */
151
152 /* Fetch StackGhost Per-Process XOR cookie. */
153
154 ULONGEST
155 sparc_fetch_wcookie (void)
156 {
157 struct target_ops *ops = &current_target;
158 gdb_byte buf[8];
159 int len;
160
161 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
162 if (len == -1)
163 return 0;
164
165 /* We should have either an 32-bit or an 64-bit cookie. */
166 gdb_assert (len == 4 || len == 8);
167
168 return extract_unsigned_integer (buf, len);
169 }
170 \f
171
172 /* Return the contents if register REGNUM as an address. */
173
174 CORE_ADDR
175 sparc_address_from_register (int regnum)
176 {
177 ULONGEST addr;
178
179 regcache_cooked_read_unsigned (current_regcache, regnum, &addr);
180 return addr;
181 }
182 \f
183
184 /* The functions on this page are intended to be used to classify
185 function arguments. */
186
187 /* Check whether TYPE is "Integral or Pointer". */
188
189 static int
190 sparc_integral_or_pointer_p (const struct type *type)
191 {
192 int len = TYPE_LENGTH (type);
193
194 switch (TYPE_CODE (type))
195 {
196 case TYPE_CODE_INT:
197 case TYPE_CODE_BOOL:
198 case TYPE_CODE_CHAR:
199 case TYPE_CODE_ENUM:
200 case TYPE_CODE_RANGE:
201 /* We have byte, half-word, word and extended-word/doubleword
202 integral types. The doubleword is an extension to the
203 original 32-bit ABI by the SCD 2.4.x. */
204 return (len == 1 || len == 2 || len == 4 || len == 8);
205 case TYPE_CODE_PTR:
206 case TYPE_CODE_REF:
207 /* Allow either 32-bit or 64-bit pointers. */
208 return (len == 4 || len == 8);
209 default:
210 break;
211 }
212
213 return 0;
214 }
215
216 /* Check whether TYPE is "Floating". */
217
218 static int
219 sparc_floating_p (const struct type *type)
220 {
221 switch (TYPE_CODE (type))
222 {
223 case TYPE_CODE_FLT:
224 {
225 int len = TYPE_LENGTH (type);
226 return (len == 4 || len == 8 || len == 16);
227 }
228 default:
229 break;
230 }
231
232 return 0;
233 }
234
235 /* Check whether TYPE is "Structure or Union". */
236
237 static int
238 sparc_structure_or_union_p (const struct type *type)
239 {
240 switch (TYPE_CODE (type))
241 {
242 case TYPE_CODE_STRUCT:
243 case TYPE_CODE_UNION:
244 return 1;
245 default:
246 break;
247 }
248
249 return 0;
250 }
251
252 /* Register information. */
253
254 static const char *sparc32_register_names[] =
255 {
256 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
257 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
258 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
259 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
260
261 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
262 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
263 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
264 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
265
266 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
267 };
268
269 /* Total number of registers. */
270 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
271
272 /* We provide the aliases %d0..%d30 for the floating registers as
273 "psuedo" registers. */
274
275 static const char *sparc32_pseudo_register_names[] =
276 {
277 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
278 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
279 };
280
281 /* Total number of pseudo registers. */
282 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
283
284 /* Return the name of register REGNUM. */
285
286 static const char *
287 sparc32_register_name (int regnum)
288 {
289 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
290 return sparc32_register_names[regnum];
291
292 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
293 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
294
295 return NULL;
296 }
297
298 /* Return the GDB type object for the "standard" data type of data in
299 register REGNUM. */
300
301 static struct type *
302 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
303 {
304 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
305 return builtin_type_float;
306
307 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
308 return builtin_type_double;
309
310 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
311 return builtin_type_void_data_ptr;
312
313 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
314 return builtin_type_void_func_ptr;
315
316 return builtin_type_int32;
317 }
318
319 static void
320 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
321 struct regcache *regcache,
322 int regnum, gdb_byte *buf)
323 {
324 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
325
326 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
327 regcache_raw_read (regcache, regnum, buf);
328 regcache_raw_read (regcache, regnum + 1, buf + 4);
329 }
330
331 static void
332 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
333 struct regcache *regcache,
334 int regnum, const gdb_byte *buf)
335 {
336 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
337
338 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
339 regcache_raw_write (regcache, regnum, buf);
340 regcache_raw_write (regcache, regnum + 1, buf + 4);
341 }
342 \f
343
344 static CORE_ADDR
345 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
346 CORE_ADDR funcaddr, int using_gcc,
347 struct value **args, int nargs,
348 struct type *value_type,
349 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
350 {
351 *bp_addr = sp - 4;
352 *real_pc = funcaddr;
353
354 if (using_struct_return (value_type, using_gcc))
355 {
356 gdb_byte buf[4];
357
358 /* This is an UNIMP instruction. */
359 store_unsigned_integer (buf, 4, TYPE_LENGTH (value_type) & 0x1fff);
360 write_memory (sp - 8, buf, 4);
361 return sp - 8;
362 }
363
364 return sp - 4;
365 }
366
367 static CORE_ADDR
368 sparc32_store_arguments (struct regcache *regcache, int nargs,
369 struct value **args, CORE_ADDR sp,
370 int struct_return, CORE_ADDR struct_addr)
371 {
372 /* Number of words in the "parameter array". */
373 int num_elements = 0;
374 int element = 0;
375 int i;
376
377 for (i = 0; i < nargs; i++)
378 {
379 struct type *type = value_type (args[i]);
380 int len = TYPE_LENGTH (type);
381
382 if (sparc_structure_or_union_p (type)
383 || (sparc_floating_p (type) && len == 16))
384 {
385 /* Structure, Union and Quad-Precision Arguments. */
386 sp -= len;
387
388 /* Use doubleword alignment for these values. That's always
389 correct, and wasting a few bytes shouldn't be a problem. */
390 sp &= ~0x7;
391
392 write_memory (sp, value_contents (args[i]), len);
393 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
394 num_elements++;
395 }
396 else if (sparc_floating_p (type))
397 {
398 /* Floating arguments. */
399 gdb_assert (len == 4 || len == 8);
400 num_elements += (len / 4);
401 }
402 else
403 {
404 /* Integral and pointer arguments. */
405 gdb_assert (sparc_integral_or_pointer_p (type));
406
407 if (len < 4)
408 args[i] = value_cast (builtin_type_int32, args[i]);
409 num_elements += ((len + 3) / 4);
410 }
411 }
412
413 /* Always allocate at least six words. */
414 sp -= max (6, num_elements) * 4;
415
416 /* The psABI says that "Software convention requires space for the
417 struct/union return value pointer, even if the word is unused." */
418 sp -= 4;
419
420 /* The psABI says that "Although software convention and the
421 operating system require every stack frame to be doubleword
422 aligned." */
423 sp &= ~0x7;
424
425 for (i = 0; i < nargs; i++)
426 {
427 const bfd_byte *valbuf = value_contents (args[i]);
428 struct type *type = value_type (args[i]);
429 int len = TYPE_LENGTH (type);
430
431 gdb_assert (len == 4 || len == 8);
432
433 if (element < 6)
434 {
435 int regnum = SPARC_O0_REGNUM + element;
436
437 regcache_cooked_write (regcache, regnum, valbuf);
438 if (len > 4 && element < 5)
439 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
440 }
441
442 /* Always store the argument in memory. */
443 write_memory (sp + 4 + element * 4, valbuf, len);
444 element += len / 4;
445 }
446
447 gdb_assert (element == num_elements);
448
449 if (struct_return)
450 {
451 gdb_byte buf[4];
452
453 store_unsigned_integer (buf, 4, struct_addr);
454 write_memory (sp, buf, 4);
455 }
456
457 return sp;
458 }
459
460 static CORE_ADDR
461 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
462 struct regcache *regcache, CORE_ADDR bp_addr,
463 int nargs, struct value **args, CORE_ADDR sp,
464 int struct_return, CORE_ADDR struct_addr)
465 {
466 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
467
468 /* Set return address. */
469 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
470
471 /* Set up function arguments. */
472 sp = sparc32_store_arguments (regcache, nargs, args, sp,
473 struct_return, struct_addr);
474
475 /* Allocate the 16-word window save area. */
476 sp -= 16 * 4;
477
478 /* Stack should be doubleword aligned at this point. */
479 gdb_assert (sp % 8 == 0);
480
481 /* Finally, update the stack pointer. */
482 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
483
484 return sp;
485 }
486 \f
487
488 /* Use the program counter to determine the contents and size of a
489 breakpoint instruction. Return a pointer to a string of bytes that
490 encode a breakpoint instruction, store the length of the string in
491 *LEN and optionally adjust *PC to point to the correct memory
492 location for inserting the breakpoint. */
493
494 static const gdb_byte *
495 sparc_breakpoint_from_pc (CORE_ADDR *pc, int *len)
496 {
497 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
498
499 *len = sizeof (break_insn);
500 return break_insn;
501 }
502 \f
503
504 /* Allocate and initialize a frame cache. */
505
506 static struct sparc_frame_cache *
507 sparc_alloc_frame_cache (void)
508 {
509 struct sparc_frame_cache *cache;
510 int i;
511
512 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
513
514 /* Base address. */
515 cache->base = 0;
516 cache->pc = 0;
517
518 /* Frameless until proven otherwise. */
519 cache->frameless_p = 1;
520
521 cache->struct_return_p = 0;
522
523 return cache;
524 }
525
526 CORE_ADDR
527 sparc_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
528 struct sparc_frame_cache *cache)
529 {
530 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
531 unsigned long insn;
532 int offset = 0;
533 int dest = -1;
534
535 if (current_pc <= pc)
536 return current_pc;
537
538 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
539 SPARC the linker usually defines a symbol (typically
540 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
541 This symbol makes us end up here with PC pointing at the start of
542 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
543 would do our normal prologue analysis, we would probably conclude
544 that we've got a frame when in reality we don't, since the
545 dynamic linker patches up the first PLT with some code that
546 starts with a SAVE instruction. Patch up PC such that it points
547 at the start of our PLT entry. */
548 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
549 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
550
551 insn = sparc_fetch_instruction (pc);
552
553 /* Recognize a SETHI insn and record its destination. */
554 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
555 {
556 dest = X_RD (insn);
557 offset += 4;
558
559 insn = sparc_fetch_instruction (pc + 4);
560 }
561
562 /* Allow for an arithmetic operation on DEST or %g1. */
563 if (X_OP (insn) == 2 && X_I (insn)
564 && (X_RD (insn) == 1 || X_RD (insn) == dest))
565 {
566 offset += 4;
567
568 insn = sparc_fetch_instruction (pc + 8);
569 }
570
571 /* Check for the SAVE instruction that sets up the frame. */
572 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
573 {
574 cache->frameless_p = 0;
575 return pc + offset + 4;
576 }
577
578 return pc;
579 }
580
581 static CORE_ADDR
582 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
583 {
584 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
585 return frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
586 }
587
588 /* Return PC of first real instruction of the function starting at
589 START_PC. */
590
591 static CORE_ADDR
592 sparc32_skip_prologue (CORE_ADDR start_pc)
593 {
594 struct symtab_and_line sal;
595 CORE_ADDR func_start, func_end;
596 struct sparc_frame_cache cache;
597
598 /* This is the preferred method, find the end of the prologue by
599 using the debugging information. */
600 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
601 {
602 sal = find_pc_line (func_start, 0);
603
604 if (sal.end < func_end
605 && start_pc <= sal.end)
606 return sal.end;
607 }
608
609 start_pc = sparc_analyze_prologue (start_pc, 0xffffffffUL, &cache);
610
611 /* The psABI says that "Although the first 6 words of arguments
612 reside in registers, the standard stack frame reserves space for
613 them.". It also suggests that a function may use that space to
614 "write incoming arguments 0 to 5" into that space, and that's
615 indeed what GCC seems to be doing. In that case GCC will
616 generate debug information that points to the stack slots instead
617 of the registers, so we should consider the instructions that
618 write out these incoming arguments onto the stack. Of course we
619 only need to do this if we have a stack frame. */
620
621 while (!cache.frameless_p)
622 {
623 unsigned long insn = sparc_fetch_instruction (start_pc);
624
625 /* Recognize instructions that store incoming arguments in
626 %i0...%i5 into the corresponding stack slot. */
627 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
628 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
629 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
630 {
631 start_pc += 4;
632 continue;
633 }
634
635 break;
636 }
637
638 return start_pc;
639 }
640
641 /* Normal frames. */
642
643 struct sparc_frame_cache *
644 sparc_frame_cache (struct frame_info *next_frame, void **this_cache)
645 {
646 struct sparc_frame_cache *cache;
647
648 if (*this_cache)
649 return *this_cache;
650
651 cache = sparc_alloc_frame_cache ();
652 *this_cache = cache;
653
654 cache->pc = frame_func_unwind (next_frame);
655 if (cache->pc != 0)
656 {
657 CORE_ADDR addr_in_block = frame_unwind_address_in_block (next_frame);
658 sparc_analyze_prologue (cache->pc, addr_in_block, cache);
659 }
660
661 if (cache->frameless_p)
662 {
663 /* This function is frameless, so %fp (%i6) holds the frame
664 pointer for our calling frame. Use %sp (%o6) as this frame's
665 base address. */
666 cache->base =
667 frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
668 }
669 else
670 {
671 /* For normal frames, %fp (%i6) holds the frame pointer, the
672 base address for the current stack frame. */
673 cache->base =
674 frame_unwind_register_unsigned (next_frame, SPARC_FP_REGNUM);
675 }
676
677 if (cache->base & 1)
678 cache->base += BIAS;
679
680 return cache;
681 }
682
683 static int
684 sparc32_struct_return_from_sym (struct symbol *sym)
685 {
686 struct type *type = check_typedef (SYMBOL_TYPE (sym));
687 enum type_code code = TYPE_CODE (type);
688
689 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
690 {
691 type = check_typedef (TYPE_TARGET_TYPE (type));
692 if (sparc_structure_or_union_p (type)
693 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
694 return 1;
695 }
696
697 return 0;
698 }
699
700 struct sparc_frame_cache *
701 sparc32_frame_cache (struct frame_info *next_frame, void **this_cache)
702 {
703 struct sparc_frame_cache *cache;
704 struct symbol *sym;
705
706 if (*this_cache)
707 return *this_cache;
708
709 cache = sparc_frame_cache (next_frame, this_cache);
710
711 sym = find_pc_function (cache->pc);
712 if (sym)
713 {
714 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
715 }
716 else
717 {
718 /* There is no debugging information for this function to
719 help us determine whether this function returns a struct
720 or not. So we rely on another heuristic which is to check
721 the instruction at the return address and see if this is
722 an "unimp" instruction. If it is, then it is a struct-return
723 function. */
724 CORE_ADDR pc;
725 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
726
727 pc = frame_unwind_register_unsigned (next_frame, regnum) + 8;
728 if (sparc_is_unimp_insn (pc))
729 cache->struct_return_p = 1;
730 }
731
732 return cache;
733 }
734
735 static void
736 sparc32_frame_this_id (struct frame_info *next_frame, void **this_cache,
737 struct frame_id *this_id)
738 {
739 struct sparc_frame_cache *cache =
740 sparc32_frame_cache (next_frame, this_cache);
741
742 /* This marks the outermost frame. */
743 if (cache->base == 0)
744 return;
745
746 (*this_id) = frame_id_build (cache->base, cache->pc);
747 }
748
749 static void
750 sparc32_frame_prev_register (struct frame_info *next_frame, void **this_cache,
751 int regnum, int *optimizedp,
752 enum lval_type *lvalp, CORE_ADDR *addrp,
753 int *realnump, gdb_byte *valuep)
754 {
755 struct sparc_frame_cache *cache =
756 sparc32_frame_cache (next_frame, this_cache);
757
758 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
759 {
760 *optimizedp = 0;
761 *lvalp = not_lval;
762 *addrp = 0;
763 *realnump = -1;
764 if (valuep)
765 {
766 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
767
768 /* If this functions has a Structure, Union or
769 Quad-Precision return value, we have to skip the UNIMP
770 instruction that encodes the size of the structure. */
771 if (cache->struct_return_p)
772 pc += 4;
773
774 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
775 pc += frame_unwind_register_unsigned (next_frame, regnum) + 8;
776 store_unsigned_integer (valuep, 4, pc);
777 }
778 return;
779 }
780
781 /* Handle StackGhost. */
782 {
783 ULONGEST wcookie = sparc_fetch_wcookie ();
784
785 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
786 {
787 *optimizedp = 0;
788 *lvalp = not_lval;
789 *addrp = 0;
790 *realnump = -1;
791 if (valuep)
792 {
793 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
794 ULONGEST i7;
795
796 /* Read the value in from memory. */
797 i7 = get_frame_memory_unsigned (next_frame, addr, 4);
798 store_unsigned_integer (valuep, 4, i7 ^ wcookie);
799 }
800 return;
801 }
802 }
803
804 /* The previous frame's `local' and `in' registers have been saved
805 in the register save area. */
806 if (!cache->frameless_p
807 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
808 {
809 *optimizedp = 0;
810 *lvalp = lval_memory;
811 *addrp = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
812 *realnump = -1;
813 if (valuep)
814 {
815 struct gdbarch *gdbarch = get_frame_arch (next_frame);
816
817 /* Read the value in from memory. */
818 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
819 }
820 return;
821 }
822
823 /* The previous frame's `out' registers are accessable as the
824 current frame's `in' registers. */
825 if (!cache->frameless_p
826 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
827 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
828
829 *optimizedp = 0;
830 *lvalp = lval_register;
831 *addrp = 0;
832 *realnump = regnum;
833 if (valuep)
834 frame_unwind_register (next_frame, (*realnump), valuep);
835 }
836
837 static const struct frame_unwind sparc32_frame_unwind =
838 {
839 NORMAL_FRAME,
840 sparc32_frame_this_id,
841 sparc32_frame_prev_register
842 };
843
844 static const struct frame_unwind *
845 sparc32_frame_sniffer (struct frame_info *next_frame)
846 {
847 return &sparc32_frame_unwind;
848 }
849 \f
850
851 static CORE_ADDR
852 sparc32_frame_base_address (struct frame_info *next_frame, void **this_cache)
853 {
854 struct sparc_frame_cache *cache =
855 sparc32_frame_cache (next_frame, this_cache);
856
857 return cache->base;
858 }
859
860 static const struct frame_base sparc32_frame_base =
861 {
862 &sparc32_frame_unwind,
863 sparc32_frame_base_address,
864 sparc32_frame_base_address,
865 sparc32_frame_base_address
866 };
867
868 static struct frame_id
869 sparc_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
870 {
871 CORE_ADDR sp;
872
873 sp = frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
874 if (sp & 1)
875 sp += BIAS;
876 return frame_id_build (sp, frame_pc_unwind (next_frame));
877 }
878 \f
879
880 /* Extract from an array REGBUF containing the (raw) register state, a
881 function return value of TYPE, and copy that into VALBUF. */
882
883 static void
884 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
885 gdb_byte *valbuf)
886 {
887 int len = TYPE_LENGTH (type);
888 gdb_byte buf[8];
889
890 gdb_assert (!sparc_structure_or_union_p (type));
891 gdb_assert (!(sparc_floating_p (type) && len == 16));
892
893 if (sparc_floating_p (type))
894 {
895 /* Floating return values. */
896 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
897 if (len > 4)
898 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
899 memcpy (valbuf, buf, len);
900 }
901 else
902 {
903 /* Integral and pointer return values. */
904 gdb_assert (sparc_integral_or_pointer_p (type));
905
906 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
907 if (len > 4)
908 {
909 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
910 gdb_assert (len == 8);
911 memcpy (valbuf, buf, 8);
912 }
913 else
914 {
915 /* Just stripping off any unused bytes should preserve the
916 signed-ness just fine. */
917 memcpy (valbuf, buf + 4 - len, len);
918 }
919 }
920 }
921
922 /* Write into the appropriate registers a function return value stored
923 in VALBUF of type TYPE. */
924
925 static void
926 sparc32_store_return_value (struct type *type, struct regcache *regcache,
927 const gdb_byte *valbuf)
928 {
929 int len = TYPE_LENGTH (type);
930 gdb_byte buf[8];
931
932 gdb_assert (!sparc_structure_or_union_p (type));
933 gdb_assert (!(sparc_floating_p (type) && len == 16));
934
935 if (sparc_floating_p (type))
936 {
937 /* Floating return values. */
938 memcpy (buf, valbuf, len);
939 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
940 if (len > 4)
941 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
942 }
943 else
944 {
945 /* Integral and pointer return values. */
946 gdb_assert (sparc_integral_or_pointer_p (type));
947
948 if (len > 4)
949 {
950 gdb_assert (len == 8);
951 memcpy (buf, valbuf, 8);
952 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
953 }
954 else
955 {
956 /* ??? Do we need to do any sign-extension here? */
957 memcpy (buf + 4 - len, valbuf, len);
958 }
959 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
960 }
961 }
962
963 static enum return_value_convention
964 sparc32_return_value (struct gdbarch *gdbarch, struct type *type,
965 struct regcache *regcache, gdb_byte *readbuf,
966 const gdb_byte *writebuf)
967 {
968 /* The psABI says that "...every stack frame reserves the word at
969 %fp+64. If a function returns a structure, union, or
970 quad-precision value, this word should hold the address of the
971 object into which the return value should be copied." This
972 guarantees that we can always find the return value, not just
973 before the function returns. */
974
975 if (sparc_structure_or_union_p (type)
976 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
977 {
978 if (readbuf)
979 {
980 ULONGEST sp;
981 CORE_ADDR addr;
982
983 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
984 addr = read_memory_unsigned_integer (sp + 64, 4);
985 read_memory (addr, readbuf, TYPE_LENGTH (type));
986 }
987
988 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
989 }
990
991 if (readbuf)
992 sparc32_extract_return_value (type, regcache, readbuf);
993 if (writebuf)
994 sparc32_store_return_value (type, regcache, writebuf);
995
996 return RETURN_VALUE_REGISTER_CONVENTION;
997 }
998
999 static int
1000 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1001 {
1002 return (sparc_structure_or_union_p (type)
1003 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1004 }
1005
1006 static int
1007 sparc32_dwarf2_struct_return_p (struct frame_info *next_frame)
1008 {
1009 CORE_ADDR pc = frame_unwind_address_in_block (next_frame);
1010 struct symbol *sym = find_pc_function (pc);
1011
1012 if (sym)
1013 return sparc32_struct_return_from_sym (sym);
1014 return 0;
1015 }
1016
1017 static void
1018 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1019 struct dwarf2_frame_state_reg *reg,
1020 struct frame_info *next_frame)
1021 {
1022 int off;
1023
1024 switch (regnum)
1025 {
1026 case SPARC_G0_REGNUM:
1027 /* Since %g0 is always zero, there is no point in saving it, and
1028 people will be inclined omit it from the CFI. Make sure we
1029 don't warn about that. */
1030 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1031 break;
1032 case SPARC_SP_REGNUM:
1033 reg->how = DWARF2_FRAME_REG_CFA;
1034 break;
1035 case SPARC32_PC_REGNUM:
1036 case SPARC32_NPC_REGNUM:
1037 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1038 off = 8;
1039 if (sparc32_dwarf2_struct_return_p (next_frame))
1040 off += 4;
1041 if (regnum == SPARC32_NPC_REGNUM)
1042 off += 4;
1043 reg->loc.offset = off;
1044 break;
1045 }
1046 }
1047
1048 \f
1049 /* The SPARC Architecture doesn't have hardware single-step support,
1050 and most operating systems don't implement it either, so we provide
1051 software single-step mechanism. */
1052
1053 static CORE_ADDR
1054 sparc_analyze_control_transfer (struct gdbarch *arch,
1055 CORE_ADDR pc, CORE_ADDR *npc)
1056 {
1057 unsigned long insn = sparc_fetch_instruction (pc);
1058 int conditional_p = X_COND (insn) & 0x7;
1059 int branch_p = 0;
1060 long offset = 0; /* Must be signed for sign-extend. */
1061
1062 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
1063 {
1064 /* Branch on Integer Register with Prediction (BPr). */
1065 branch_p = 1;
1066 conditional_p = 1;
1067 }
1068 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1069 {
1070 /* Branch on Floating-Point Condition Codes (FBfcc). */
1071 branch_p = 1;
1072 offset = 4 * X_DISP22 (insn);
1073 }
1074 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1075 {
1076 /* Branch on Floating-Point Condition Codes with Prediction
1077 (FBPfcc). */
1078 branch_p = 1;
1079 offset = 4 * X_DISP19 (insn);
1080 }
1081 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1082 {
1083 /* Branch on Integer Condition Codes (Bicc). */
1084 branch_p = 1;
1085 offset = 4 * X_DISP22 (insn);
1086 }
1087 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1088 {
1089 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1090 branch_p = 1;
1091 offset = 4 * X_DISP19 (insn);
1092 }
1093 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1094 {
1095 /* Trap instruction (TRAP). */
1096 return gdbarch_tdep (arch)->step_trap (insn);
1097 }
1098
1099 /* FIXME: Handle DONE and RETRY instructions. */
1100
1101 if (branch_p)
1102 {
1103 if (conditional_p)
1104 {
1105 /* For conditional branches, return nPC + 4 iff the annul
1106 bit is 1. */
1107 return (X_A (insn) ? *npc + 4 : 0);
1108 }
1109 else
1110 {
1111 /* For unconditional branches, return the target if its
1112 specified condition is "always" and return nPC + 4 if the
1113 condition is "never". If the annul bit is 1, set *NPC to
1114 zero. */
1115 if (X_COND (insn) == 0x0)
1116 pc = *npc, offset = 4;
1117 if (X_A (insn))
1118 *npc = 0;
1119
1120 gdb_assert (offset != 0);
1121 return pc + offset;
1122 }
1123 }
1124
1125 return 0;
1126 }
1127
1128 static CORE_ADDR
1129 sparc_step_trap (unsigned long insn)
1130 {
1131 return 0;
1132 }
1133
1134 void
1135 sparc_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1136 {
1137 struct gdbarch *arch = current_gdbarch;
1138 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1139 CORE_ADDR npc, nnpc;
1140
1141 if (insert_breakpoints_p)
1142 {
1143 CORE_ADDR pc, orig_npc;
1144
1145 pc = sparc_address_from_register (tdep->pc_regnum);
1146 orig_npc = npc = sparc_address_from_register (tdep->npc_regnum);
1147
1148 /* Analyze the instruction at PC. */
1149 nnpc = sparc_analyze_control_transfer (arch, pc, &npc);
1150 if (npc != 0)
1151 insert_single_step_breakpoint (npc);
1152
1153 if (nnpc != 0)
1154 insert_single_step_breakpoint (nnpc);
1155
1156 /* Assert that we have set at least one breakpoint, and that
1157 they're not set at the same spot - unless we're going
1158 from here straight to NULL, i.e. a call or jump to 0. */
1159 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1160 gdb_assert (nnpc != npc || orig_npc == 0);
1161 }
1162 else
1163 remove_single_step_breakpoints ();
1164 }
1165
1166 static void
1167 sparc_write_pc (CORE_ADDR pc, ptid_t ptid)
1168 {
1169 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1170
1171 write_register_pid (tdep->pc_regnum, pc, ptid);
1172 write_register_pid (tdep->npc_regnum, pc + 4, ptid);
1173 }
1174 \f
1175 /* Unglobalize NAME. */
1176
1177 char *
1178 sparc_stabs_unglobalize_name (char *name)
1179 {
1180 /* The Sun compilers (Sun ONE Studio, Forte Developer, Sun WorkShop,
1181 SunPRO) convert file static variables into global values, a
1182 process known as globalization. In order to do this, the
1183 compiler will create a unique prefix and prepend it to each file
1184 static variable. For static variables within a function, this
1185 globalization prefix is followed by the function name (nested
1186 static variables within a function are supposed to generate a
1187 warning message, and are left alone). The procedure is
1188 documented in the Stabs Interface Manual, which is distrubuted
1189 with the compilers, although version 4.0 of the manual seems to
1190 be incorrect in some places, at least for SPARC. The
1191 globalization prefix is encoded into an N_OPT stab, with the form
1192 "G=<prefix>". The globalization prefix always seems to start
1193 with a dollar sign '$'; a dot '.' is used as a seperator. So we
1194 simply strip everything up until the last dot. */
1195
1196 if (name[0] == '$')
1197 {
1198 char *p = strrchr (name, '.');
1199 if (p)
1200 return p + 1;
1201 }
1202
1203 return name;
1204 }
1205 \f
1206
1207 /* Return the appropriate register set for the core section identified
1208 by SECT_NAME and SECT_SIZE. */
1209
1210 const struct regset *
1211 sparc_regset_from_core_section (struct gdbarch *gdbarch,
1212 const char *sect_name, size_t sect_size)
1213 {
1214 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1215
1216 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
1217 return tdep->gregset;
1218
1219 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
1220 return tdep->fpregset;
1221
1222 return NULL;
1223 }
1224 \f
1225
1226 static struct gdbarch *
1227 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1228 {
1229 struct gdbarch_tdep *tdep;
1230 struct gdbarch *gdbarch;
1231
1232 /* If there is already a candidate, use it. */
1233 arches = gdbarch_list_lookup_by_info (arches, &info);
1234 if (arches != NULL)
1235 return arches->gdbarch;
1236
1237 /* Allocate space for the new architecture. */
1238 tdep = XMALLOC (struct gdbarch_tdep);
1239 gdbarch = gdbarch_alloc (&info, tdep);
1240
1241 tdep->pc_regnum = SPARC32_PC_REGNUM;
1242 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1243 tdep->gregset = NULL;
1244 tdep->sizeof_gregset = 0;
1245 tdep->fpregset = NULL;
1246 tdep->sizeof_fpregset = 0;
1247 tdep->plt_entry_size = 0;
1248 tdep->step_trap = sparc_step_trap;
1249
1250 set_gdbarch_long_double_bit (gdbarch, 128);
1251 set_gdbarch_long_double_format (gdbarch, &floatformat_sparc_quad);
1252
1253 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1254 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1255 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1256 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1257 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1258 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1259
1260 /* Register numbers of various important registers. */
1261 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1262 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1263 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1264
1265 /* Call dummy code. */
1266 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1267 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1268 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1269
1270 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1271 set_gdbarch_stabs_argument_has_addr
1272 (gdbarch, sparc32_stabs_argument_has_addr);
1273
1274 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1275
1276 /* Stack grows downward. */
1277 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1278
1279 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
1280
1281 set_gdbarch_frame_args_skip (gdbarch, 8);
1282
1283 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
1284
1285 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1286 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1287
1288 set_gdbarch_unwind_dummy_id (gdbarch, sparc_unwind_dummy_id);
1289
1290 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1291
1292 frame_base_set_default (gdbarch, &sparc32_frame_base);
1293
1294 /* Hook in the DWARF CFI frame unwinder. */
1295 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1296 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1297 StackGhost issues have been resolved. */
1298
1299 /* Hook in ABI-specific overrides, if they have been registered. */
1300 gdbarch_init_osabi (info, gdbarch);
1301
1302 frame_unwind_append_sniffer (gdbarch, sparc32_frame_sniffer);
1303
1304 /* If we have register sets, enable the generic core file support. */
1305 if (tdep->gregset)
1306 set_gdbarch_regset_from_core_section (gdbarch,
1307 sparc_regset_from_core_section);
1308
1309 return gdbarch;
1310 }
1311 \f
1312 /* Helper functions for dealing with register windows. */
1313
1314 void
1315 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1316 {
1317 int offset = 0;
1318 gdb_byte buf[8];
1319 int i;
1320
1321 if (sp & 1)
1322 {
1323 /* Registers are 64-bit. */
1324 sp += BIAS;
1325
1326 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1327 {
1328 if (regnum == i || regnum == -1)
1329 {
1330 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1331
1332 /* Handle StackGhost. */
1333 if (i == SPARC_I7_REGNUM)
1334 {
1335 ULONGEST wcookie = sparc_fetch_wcookie ();
1336 ULONGEST i7 = extract_unsigned_integer (buf + offset, 8);
1337
1338 store_unsigned_integer (buf + offset, 8, i7 ^ wcookie);
1339 }
1340
1341 regcache_raw_supply (regcache, i, buf);
1342 }
1343 }
1344 }
1345 else
1346 {
1347 /* Registers are 32-bit. Toss any sign-extension of the stack
1348 pointer. */
1349 sp &= 0xffffffffUL;
1350
1351 /* Clear out the top half of the temporary buffer, and put the
1352 register value in the bottom half if we're in 64-bit mode. */
1353 if (gdbarch_ptr_bit (current_gdbarch) == 64)
1354 {
1355 memset (buf, 0, 4);
1356 offset = 4;
1357 }
1358
1359 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1360 {
1361 if (regnum == i || regnum == -1)
1362 {
1363 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1364 buf + offset, 4);
1365
1366 /* Handle StackGhost. */
1367 if (i == SPARC_I7_REGNUM)
1368 {
1369 ULONGEST wcookie = sparc_fetch_wcookie ();
1370 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
1371
1372 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
1373 }
1374
1375 regcache_raw_supply (regcache, i, buf);
1376 }
1377 }
1378 }
1379 }
1380
1381 void
1382 sparc_collect_rwindow (const struct regcache *regcache,
1383 CORE_ADDR sp, int regnum)
1384 {
1385 int offset = 0;
1386 gdb_byte buf[8];
1387 int i;
1388
1389 if (sp & 1)
1390 {
1391 /* Registers are 64-bit. */
1392 sp += BIAS;
1393
1394 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1395 {
1396 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1397 {
1398 regcache_raw_collect (regcache, i, buf);
1399
1400 /* Handle StackGhost. */
1401 if (i == SPARC_I7_REGNUM)
1402 {
1403 ULONGEST wcookie = sparc_fetch_wcookie ();
1404 ULONGEST i7 = extract_unsigned_integer (buf + offset, 8);
1405
1406 store_unsigned_integer (buf, 8, i7 ^ wcookie);
1407 }
1408
1409 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1410 }
1411 }
1412 }
1413 else
1414 {
1415 /* Registers are 32-bit. Toss any sign-extension of the stack
1416 pointer. */
1417 sp &= 0xffffffffUL;
1418
1419 /* Only use the bottom half if we're in 64-bit mode. */
1420 if (gdbarch_ptr_bit (current_gdbarch) == 64)
1421 offset = 4;
1422
1423 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1424 {
1425 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1426 {
1427 regcache_raw_collect (regcache, i, buf);
1428
1429 /* Handle StackGhost. */
1430 if (i == SPARC_I7_REGNUM)
1431 {
1432 ULONGEST wcookie = sparc_fetch_wcookie ();
1433 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
1434
1435 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
1436 }
1437
1438 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1439 buf + offset, 4);
1440 }
1441 }
1442 }
1443 }
1444
1445 /* Helper functions for dealing with register sets. */
1446
1447 void
1448 sparc32_supply_gregset (const struct sparc_gregset *gregset,
1449 struct regcache *regcache,
1450 int regnum, const void *gregs)
1451 {
1452 const gdb_byte *regs = gregs;
1453 int i;
1454
1455 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1456 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1457 regs + gregset->r_psr_offset);
1458
1459 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1460 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1461 regs + gregset->r_pc_offset);
1462
1463 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1464 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1465 regs + gregset->r_npc_offset);
1466
1467 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1468 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1469 regs + gregset->r_y_offset);
1470
1471 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1472 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
1473
1474 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1475 {
1476 int offset = gregset->r_g1_offset;
1477
1478 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1479 {
1480 if (regnum == i || regnum == -1)
1481 regcache_raw_supply (regcache, i, regs + offset);
1482 offset += 4;
1483 }
1484 }
1485
1486 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1487 {
1488 /* Not all of the register set variants include Locals and
1489 Inputs. For those that don't, we read them off the stack. */
1490 if (gregset->r_l0_offset == -1)
1491 {
1492 ULONGEST sp;
1493
1494 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1495 sparc_supply_rwindow (regcache, sp, regnum);
1496 }
1497 else
1498 {
1499 int offset = gregset->r_l0_offset;
1500
1501 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1502 {
1503 if (regnum == i || regnum == -1)
1504 regcache_raw_supply (regcache, i, regs + offset);
1505 offset += 4;
1506 }
1507 }
1508 }
1509 }
1510
1511 void
1512 sparc32_collect_gregset (const struct sparc_gregset *gregset,
1513 const struct regcache *regcache,
1514 int regnum, void *gregs)
1515 {
1516 gdb_byte *regs = gregs;
1517 int i;
1518
1519 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1520 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1521 regs + gregset->r_psr_offset);
1522
1523 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1524 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1525 regs + gregset->r_pc_offset);
1526
1527 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1528 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1529 regs + gregset->r_npc_offset);
1530
1531 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1532 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1533 regs + gregset->r_y_offset);
1534
1535 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1536 {
1537 int offset = gregset->r_g1_offset;
1538
1539 /* %g0 is always zero. */
1540 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1541 {
1542 if (regnum == i || regnum == -1)
1543 regcache_raw_collect (regcache, i, regs + offset);
1544 offset += 4;
1545 }
1546 }
1547
1548 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1549 {
1550 /* Not all of the register set variants include Locals and
1551 Inputs. For those that don't, we read them off the stack. */
1552 if (gregset->r_l0_offset != -1)
1553 {
1554 int offset = gregset->r_l0_offset;
1555
1556 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1557 {
1558 if (regnum == i || regnum == -1)
1559 regcache_raw_collect (regcache, i, regs + offset);
1560 offset += 4;
1561 }
1562 }
1563 }
1564 }
1565
1566 void
1567 sparc32_supply_fpregset (struct regcache *regcache,
1568 int regnum, const void *fpregs)
1569 {
1570 const gdb_byte *regs = fpregs;
1571 int i;
1572
1573 for (i = 0; i < 32; i++)
1574 {
1575 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1576 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1577 }
1578
1579 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1580 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1581 }
1582
1583 void
1584 sparc32_collect_fpregset (const struct regcache *regcache,
1585 int regnum, void *fpregs)
1586 {
1587 gdb_byte *regs = fpregs;
1588 int i;
1589
1590 for (i = 0; i < 32; i++)
1591 {
1592 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1593 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1594 }
1595
1596 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1597 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1598 }
1599 \f
1600
1601 /* SunOS 4. */
1602
1603 /* From <machine/reg.h>. */
1604 const struct sparc_gregset sparc32_sunos4_gregset =
1605 {
1606 0 * 4, /* %psr */
1607 1 * 4, /* %pc */
1608 2 * 4, /* %npc */
1609 3 * 4, /* %y */
1610 -1, /* %wim */
1611 -1, /* %tbr */
1612 4 * 4, /* %g1 */
1613 -1 /* %l0 */
1614 };
1615 \f
1616
1617 /* Provide a prototype to silence -Wmissing-prototypes. */
1618 void _initialize_sparc_tdep (void);
1619
1620 void
1621 _initialize_sparc_tdep (void)
1622 {
1623 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
1624 }
This page took 0.060887 seconds and 5 git commands to generate.