Updated copyright notices for most files.
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for SPARC.
2
3 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "arch-utils.h"
23 #include "dis-asm.h"
24 #include "dwarf2-frame.h"
25 #include "floatformat.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "gdbcore.h"
30 #include "gdbtypes.h"
31 #include "inferior.h"
32 #include "symtab.h"
33 #include "objfiles.h"
34 #include "osabi.h"
35 #include "regcache.h"
36 #include "target.h"
37 #include "value.h"
38
39 #include "gdb_assert.h"
40 #include "gdb_string.h"
41
42 #include "sparc-tdep.h"
43
44 struct regset;
45
46 /* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
49 lists changes with respect to the original 32-bit psABI as defined
50 in the "System V ABI, SPARC Processor Supplement".
51
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
58 2.x is SVR4-based. */
59
60 /* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
64
65 /* The SPARC Floating-Point Quad-Precision format is similar to
66 big-endian IA-64 Quad-recision format. */
67 #define floatformats_sparc_quad floatformats_ia64_quad
68
69 /* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
72 #undef BIAS
73 #define BIAS 2047
74
75 /* Macros to extract fields from SPARC instructions. */
76 #define X_OP(i) (((i) >> 30) & 0x3)
77 #define X_RD(i) (((i) >> 25) & 0x1f)
78 #define X_A(i) (((i) >> 29) & 1)
79 #define X_COND(i) (((i) >> 25) & 0xf)
80 #define X_OP2(i) (((i) >> 22) & 0x7)
81 #define X_IMM22(i) ((i) & 0x3fffff)
82 #define X_OP3(i) (((i) >> 19) & 0x3f)
83 #define X_RS1(i) (((i) >> 14) & 0x1f)
84 #define X_RS2(i) ((i) & 0x1f)
85 #define X_I(i) (((i) >> 13) & 1)
86 /* Sign extension macros. */
87 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
88 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
89 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
90
91 /* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
93
94 unsigned long
95 sparc_fetch_instruction (CORE_ADDR pc)
96 {
97 gdb_byte buf[4];
98 unsigned long insn;
99 int i;
100
101 /* If we can't read the instruction at PC, return zero. */
102 if (read_memory_nobpt (pc, buf, sizeof (buf)))
103 return 0;
104
105 insn = 0;
106 for (i = 0; i < sizeof (buf); i++)
107 insn = (insn << 8) | buf[i];
108 return insn;
109 }
110 \f
111
112 /* Return non-zero if the instruction corresponding to PC is an "unimp"
113 instruction. */
114
115 static int
116 sparc_is_unimp_insn (CORE_ADDR pc)
117 {
118 const unsigned long insn = sparc_fetch_instruction (pc);
119
120 return ((insn & 0xc1c00000) == 0);
121 }
122
123 /* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
129
130 The same website provides the following description of how
131 StackGhost works:
132
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
142
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
145
146 More information on StackGuard can be found on in:
147
148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
149 Stack Protection." 2001. Published in USENIX Security Symposium
150 '01. */
151
152 /* Fetch StackGhost Per-Process XOR cookie. */
153
154 ULONGEST
155 sparc_fetch_wcookie (void)
156 {
157 struct target_ops *ops = &current_target;
158 gdb_byte buf[8];
159 int len;
160
161 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
162 if (len == -1)
163 return 0;
164
165 /* We should have either an 32-bit or an 64-bit cookie. */
166 gdb_assert (len == 4 || len == 8);
167
168 return extract_unsigned_integer (buf, len);
169 }
170 \f
171
172 /* The functions on this page are intended to be used to classify
173 function arguments. */
174
175 /* Check whether TYPE is "Integral or Pointer". */
176
177 static int
178 sparc_integral_or_pointer_p (const struct type *type)
179 {
180 int len = TYPE_LENGTH (type);
181
182 switch (TYPE_CODE (type))
183 {
184 case TYPE_CODE_INT:
185 case TYPE_CODE_BOOL:
186 case TYPE_CODE_CHAR:
187 case TYPE_CODE_ENUM:
188 case TYPE_CODE_RANGE:
189 /* We have byte, half-word, word and extended-word/doubleword
190 integral types. The doubleword is an extension to the
191 original 32-bit ABI by the SCD 2.4.x. */
192 return (len == 1 || len == 2 || len == 4 || len == 8);
193 case TYPE_CODE_PTR:
194 case TYPE_CODE_REF:
195 /* Allow either 32-bit or 64-bit pointers. */
196 return (len == 4 || len == 8);
197 default:
198 break;
199 }
200
201 return 0;
202 }
203
204 /* Check whether TYPE is "Floating". */
205
206 static int
207 sparc_floating_p (const struct type *type)
208 {
209 switch (TYPE_CODE (type))
210 {
211 case TYPE_CODE_FLT:
212 {
213 int len = TYPE_LENGTH (type);
214 return (len == 4 || len == 8 || len == 16);
215 }
216 default:
217 break;
218 }
219
220 return 0;
221 }
222
223 /* Check whether TYPE is "Structure or Union". */
224
225 static int
226 sparc_structure_or_union_p (const struct type *type)
227 {
228 switch (TYPE_CODE (type))
229 {
230 case TYPE_CODE_STRUCT:
231 case TYPE_CODE_UNION:
232 return 1;
233 default:
234 break;
235 }
236
237 return 0;
238 }
239
240 /* Register information. */
241
242 static const char *sparc32_register_names[] =
243 {
244 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
245 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
246 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
247 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
248
249 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
250 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
251 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
252 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
253
254 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
255 };
256
257 /* Total number of registers. */
258 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
259
260 /* We provide the aliases %d0..%d30 for the floating registers as
261 "psuedo" registers. */
262
263 static const char *sparc32_pseudo_register_names[] =
264 {
265 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
266 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
267 };
268
269 /* Total number of pseudo registers. */
270 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
271
272 /* Return the name of register REGNUM. */
273
274 static const char *
275 sparc32_register_name (struct gdbarch *gdbarch, int regnum)
276 {
277 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
278 return sparc32_register_names[regnum];
279
280 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
281 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
282
283 return NULL;
284 }
285 \f
286
287 /* Type for %psr. */
288 struct type *sparc_psr_type;
289
290 /* Type for %fsr. */
291 struct type *sparc_fsr_type;
292
293 /* Construct types for ISA-specific registers. */
294
295 static void
296 sparc_init_types (void)
297 {
298 struct type *type;
299
300 type = init_flags_type ("builtin_type_sparc_psr", 4);
301 append_flags_type_flag (type, 5, "ET");
302 append_flags_type_flag (type, 6, "PS");
303 append_flags_type_flag (type, 7, "S");
304 append_flags_type_flag (type, 12, "EF");
305 append_flags_type_flag (type, 13, "EC");
306 sparc_psr_type = type;
307
308 type = init_flags_type ("builtin_type_sparc_fsr", 4);
309 append_flags_type_flag (type, 0, "NXA");
310 append_flags_type_flag (type, 1, "DZA");
311 append_flags_type_flag (type, 2, "UFA");
312 append_flags_type_flag (type, 3, "OFA");
313 append_flags_type_flag (type, 4, "NVA");
314 append_flags_type_flag (type, 5, "NXC");
315 append_flags_type_flag (type, 6, "DZC");
316 append_flags_type_flag (type, 7, "UFC");
317 append_flags_type_flag (type, 8, "OFC");
318 append_flags_type_flag (type, 9, "NVC");
319 append_flags_type_flag (type, 22, "NS");
320 append_flags_type_flag (type, 23, "NXM");
321 append_flags_type_flag (type, 24, "DZM");
322 append_flags_type_flag (type, 25, "UFM");
323 append_flags_type_flag (type, 26, "OFM");
324 append_flags_type_flag (type, 27, "NVM");
325 sparc_fsr_type = type;
326 }
327
328 /* Return the GDB type object for the "standard" data type of data in
329 register REGNUM. */
330
331 static struct type *
332 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
333 {
334 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
335 return builtin_type_float;
336
337 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
338 return builtin_type_double;
339
340 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
341 return builtin_type_void_data_ptr;
342
343 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
344 return builtin_type_void_func_ptr;
345
346 if (regnum == SPARC32_PSR_REGNUM)
347 return sparc_psr_type;
348
349 if (regnum == SPARC32_FSR_REGNUM)
350 return sparc_fsr_type;
351
352 return builtin_type_int32;
353 }
354
355 static void
356 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
357 struct regcache *regcache,
358 int regnum, gdb_byte *buf)
359 {
360 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
361
362 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
363 regcache_raw_read (regcache, regnum, buf);
364 regcache_raw_read (regcache, regnum + 1, buf + 4);
365 }
366
367 static void
368 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
369 struct regcache *regcache,
370 int regnum, const gdb_byte *buf)
371 {
372 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
373
374 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
375 regcache_raw_write (regcache, regnum, buf);
376 regcache_raw_write (regcache, regnum + 1, buf + 4);
377 }
378 \f
379
380 static CORE_ADDR
381 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
382 CORE_ADDR funcaddr,
383 struct value **args, int nargs,
384 struct type *value_type,
385 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
386 struct regcache *regcache)
387 {
388 *bp_addr = sp - 4;
389 *real_pc = funcaddr;
390
391 if (using_struct_return (value_type))
392 {
393 gdb_byte buf[4];
394
395 /* This is an UNIMP instruction. */
396 store_unsigned_integer (buf, 4, TYPE_LENGTH (value_type) & 0x1fff);
397 write_memory (sp - 8, buf, 4);
398 return sp - 8;
399 }
400
401 return sp - 4;
402 }
403
404 static CORE_ADDR
405 sparc32_store_arguments (struct regcache *regcache, int nargs,
406 struct value **args, CORE_ADDR sp,
407 int struct_return, CORE_ADDR struct_addr)
408 {
409 /* Number of words in the "parameter array". */
410 int num_elements = 0;
411 int element = 0;
412 int i;
413
414 for (i = 0; i < nargs; i++)
415 {
416 struct type *type = value_type (args[i]);
417 int len = TYPE_LENGTH (type);
418
419 if (sparc_structure_or_union_p (type)
420 || (sparc_floating_p (type) && len == 16))
421 {
422 /* Structure, Union and Quad-Precision Arguments. */
423 sp -= len;
424
425 /* Use doubleword alignment for these values. That's always
426 correct, and wasting a few bytes shouldn't be a problem. */
427 sp &= ~0x7;
428
429 write_memory (sp, value_contents (args[i]), len);
430 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
431 num_elements++;
432 }
433 else if (sparc_floating_p (type))
434 {
435 /* Floating arguments. */
436 gdb_assert (len == 4 || len == 8);
437 num_elements += (len / 4);
438 }
439 else
440 {
441 /* Integral and pointer arguments. */
442 gdb_assert (sparc_integral_or_pointer_p (type));
443
444 if (len < 4)
445 args[i] = value_cast (builtin_type_int32, args[i]);
446 num_elements += ((len + 3) / 4);
447 }
448 }
449
450 /* Always allocate at least six words. */
451 sp -= max (6, num_elements) * 4;
452
453 /* The psABI says that "Software convention requires space for the
454 struct/union return value pointer, even if the word is unused." */
455 sp -= 4;
456
457 /* The psABI says that "Although software convention and the
458 operating system require every stack frame to be doubleword
459 aligned." */
460 sp &= ~0x7;
461
462 for (i = 0; i < nargs; i++)
463 {
464 const bfd_byte *valbuf = value_contents (args[i]);
465 struct type *type = value_type (args[i]);
466 int len = TYPE_LENGTH (type);
467
468 gdb_assert (len == 4 || len == 8);
469
470 if (element < 6)
471 {
472 int regnum = SPARC_O0_REGNUM + element;
473
474 regcache_cooked_write (regcache, regnum, valbuf);
475 if (len > 4 && element < 5)
476 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
477 }
478
479 /* Always store the argument in memory. */
480 write_memory (sp + 4 + element * 4, valbuf, len);
481 element += len / 4;
482 }
483
484 gdb_assert (element == num_elements);
485
486 if (struct_return)
487 {
488 gdb_byte buf[4];
489
490 store_unsigned_integer (buf, 4, struct_addr);
491 write_memory (sp, buf, 4);
492 }
493
494 return sp;
495 }
496
497 static CORE_ADDR
498 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
499 struct regcache *regcache, CORE_ADDR bp_addr,
500 int nargs, struct value **args, CORE_ADDR sp,
501 int struct_return, CORE_ADDR struct_addr)
502 {
503 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
504
505 /* Set return address. */
506 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
507
508 /* Set up function arguments. */
509 sp = sparc32_store_arguments (regcache, nargs, args, sp,
510 struct_return, struct_addr);
511
512 /* Allocate the 16-word window save area. */
513 sp -= 16 * 4;
514
515 /* Stack should be doubleword aligned at this point. */
516 gdb_assert (sp % 8 == 0);
517
518 /* Finally, update the stack pointer. */
519 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
520
521 return sp;
522 }
523 \f
524
525 /* Use the program counter to determine the contents and size of a
526 breakpoint instruction. Return a pointer to a string of bytes that
527 encode a breakpoint instruction, store the length of the string in
528 *LEN and optionally adjust *PC to point to the correct memory
529 location for inserting the breakpoint. */
530
531 static const gdb_byte *
532 sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
533 {
534 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
535
536 *len = sizeof (break_insn);
537 return break_insn;
538 }
539 \f
540
541 /* Allocate and initialize a frame cache. */
542
543 static struct sparc_frame_cache *
544 sparc_alloc_frame_cache (void)
545 {
546 struct sparc_frame_cache *cache;
547 int i;
548
549 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
550
551 /* Base address. */
552 cache->base = 0;
553 cache->pc = 0;
554
555 /* Frameless until proven otherwise. */
556 cache->frameless_p = 1;
557
558 cache->struct_return_p = 0;
559
560 return cache;
561 }
562
563 /* GCC generates several well-known sequences of instructions at the begining
564 of each function prologue when compiling with -fstack-check. If one of
565 such sequences starts at START_PC, then return the address of the
566 instruction immediately past this sequence. Otherwise, return START_PC. */
567
568 static CORE_ADDR
569 sparc_skip_stack_check (const CORE_ADDR start_pc)
570 {
571 CORE_ADDR pc = start_pc;
572 unsigned long insn;
573 int offset_stack_checking_sequence = 0;
574
575 /* With GCC, all stack checking sequences begin with the same two
576 instructions. */
577
578 /* sethi <some immediate>,%g1 */
579 insn = sparc_fetch_instruction (pc);
580 pc = pc + 4;
581 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
582 return start_pc;
583
584 /* sub %sp, %g1, %g1 */
585 insn = sparc_fetch_instruction (pc);
586 pc = pc + 4;
587 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
588 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
589 return start_pc;
590
591 insn = sparc_fetch_instruction (pc);
592 pc = pc + 4;
593
594 /* First possible sequence:
595 [first two instructions above]
596 clr [%g1 - some immediate] */
597
598 /* clr [%g1 - some immediate] */
599 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
600 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
601 {
602 /* Valid stack-check sequence, return the new PC. */
603 return pc;
604 }
605
606 /* Second possible sequence: A small number of probes.
607 [first two instructions above]
608 clr [%g1]
609 add %g1, -<some immediate>, %g1
610 clr [%g1]
611 [repeat the two instructions above any (small) number of times]
612 clr [%g1 - some immediate] */
613
614 /* clr [%g1] */
615 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
616 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
617 {
618 while (1)
619 {
620 /* add %g1, -<some immediate>, %g1 */
621 insn = sparc_fetch_instruction (pc);
622 pc = pc + 4;
623 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
624 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
625 break;
626
627 /* clr [%g1] */
628 insn = sparc_fetch_instruction (pc);
629 pc = pc + 4;
630 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
631 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
632 return start_pc;
633 }
634
635 /* clr [%g1 - some immediate] */
636 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
637 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
638 return start_pc;
639
640 /* We found a valid stack-check sequence, return the new PC. */
641 return pc;
642 }
643
644 /* Third sequence: A probing loop.
645 [first two instructions above]
646 sethi <some immediate>, %g4
647 sub %g1, %g4, %g4
648 cmp %g1, %g4
649 be <disp>
650 add %g1, -<some immediate>, %g1
651 ba <disp>
652 clr [%g1]
653 clr [%g4 - some immediate] */
654
655 /* sethi <some immediate>, %g4 */
656 else if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
657 {
658 /* sub %g1, %g4, %g4 */
659 insn = sparc_fetch_instruction (pc);
660 pc = pc + 4;
661 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
662 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
663 return start_pc;
664
665 /* cmp %g1, %g4 */
666 insn = sparc_fetch_instruction (pc);
667 pc = pc + 4;
668 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
669 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
670 return start_pc;
671
672 /* be <disp> */
673 insn = sparc_fetch_instruction (pc);
674 pc = pc + 4;
675 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
676 return start_pc;
677
678 /* add %g1, -<some immediate>, %g1 */
679 insn = sparc_fetch_instruction (pc);
680 pc = pc + 4;
681 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
682 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
683 return start_pc;
684
685 /* ba <disp> */
686 insn = sparc_fetch_instruction (pc);
687 pc = pc + 4;
688 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
689 return start_pc;
690
691 /* clr [%g1] */
692 insn = sparc_fetch_instruction (pc);
693 pc = pc + 4;
694 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
695 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
696 return start_pc;
697
698 /* clr [%g4 - some immediate] */
699 insn = sparc_fetch_instruction (pc);
700 pc = pc + 4;
701 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
702 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
703 return start_pc;
704
705 /* We found a valid stack-check sequence, return the new PC. */
706 return pc;
707 }
708
709 /* No stack check code in our prologue, return the start_pc. */
710 return start_pc;
711 }
712
713 CORE_ADDR
714 sparc_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
715 struct sparc_frame_cache *cache)
716 {
717 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
718 unsigned long insn;
719 int offset = 0;
720 int dest = -1;
721
722 pc = sparc_skip_stack_check (pc);
723
724 if (current_pc <= pc)
725 return current_pc;
726
727 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
728 SPARC the linker usually defines a symbol (typically
729 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
730 This symbol makes us end up here with PC pointing at the start of
731 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
732 would do our normal prologue analysis, we would probably conclude
733 that we've got a frame when in reality we don't, since the
734 dynamic linker patches up the first PLT with some code that
735 starts with a SAVE instruction. Patch up PC such that it points
736 at the start of our PLT entry. */
737 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
738 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
739
740 insn = sparc_fetch_instruction (pc);
741
742 /* Recognize a SETHI insn and record its destination. */
743 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
744 {
745 dest = X_RD (insn);
746 offset += 4;
747
748 insn = sparc_fetch_instruction (pc + 4);
749 }
750
751 /* Allow for an arithmetic operation on DEST or %g1. */
752 if (X_OP (insn) == 2 && X_I (insn)
753 && (X_RD (insn) == 1 || X_RD (insn) == dest))
754 {
755 offset += 4;
756
757 insn = sparc_fetch_instruction (pc + 8);
758 }
759
760 /* Check for the SAVE instruction that sets up the frame. */
761 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
762 {
763 cache->frameless_p = 0;
764 return pc + offset + 4;
765 }
766
767 return pc;
768 }
769
770 static CORE_ADDR
771 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
772 {
773 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
774 return frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
775 }
776
777 /* Return PC of first real instruction of the function starting at
778 START_PC. */
779
780 static CORE_ADDR
781 sparc32_skip_prologue (CORE_ADDR start_pc)
782 {
783 struct symtab_and_line sal;
784 CORE_ADDR func_start, func_end;
785 struct sparc_frame_cache cache;
786
787 /* This is the preferred method, find the end of the prologue by
788 using the debugging information. */
789 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
790 {
791 sal = find_pc_line (func_start, 0);
792
793 if (sal.end < func_end
794 && start_pc <= sal.end)
795 return sal.end;
796 }
797
798 start_pc = sparc_analyze_prologue (start_pc, 0xffffffffUL, &cache);
799
800 /* The psABI says that "Although the first 6 words of arguments
801 reside in registers, the standard stack frame reserves space for
802 them.". It also suggests that a function may use that space to
803 "write incoming arguments 0 to 5" into that space, and that's
804 indeed what GCC seems to be doing. In that case GCC will
805 generate debug information that points to the stack slots instead
806 of the registers, so we should consider the instructions that
807 write out these incoming arguments onto the stack. Of course we
808 only need to do this if we have a stack frame. */
809
810 while (!cache.frameless_p)
811 {
812 unsigned long insn = sparc_fetch_instruction (start_pc);
813
814 /* Recognize instructions that store incoming arguments in
815 %i0...%i5 into the corresponding stack slot. */
816 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
817 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
818 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
819 {
820 start_pc += 4;
821 continue;
822 }
823
824 break;
825 }
826
827 return start_pc;
828 }
829
830 /* Normal frames. */
831
832 struct sparc_frame_cache *
833 sparc_frame_cache (struct frame_info *next_frame, void **this_cache)
834 {
835 struct sparc_frame_cache *cache;
836
837 if (*this_cache)
838 return *this_cache;
839
840 cache = sparc_alloc_frame_cache ();
841 *this_cache = cache;
842
843 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
844 if (cache->pc != 0)
845 sparc_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
846
847 if (cache->frameless_p)
848 {
849 /* This function is frameless, so %fp (%i6) holds the frame
850 pointer for our calling frame. Use %sp (%o6) as this frame's
851 base address. */
852 cache->base =
853 frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
854 }
855 else
856 {
857 /* For normal frames, %fp (%i6) holds the frame pointer, the
858 base address for the current stack frame. */
859 cache->base =
860 frame_unwind_register_unsigned (next_frame, SPARC_FP_REGNUM);
861 }
862
863 if (cache->base & 1)
864 cache->base += BIAS;
865
866 return cache;
867 }
868
869 static int
870 sparc32_struct_return_from_sym (struct symbol *sym)
871 {
872 struct type *type = check_typedef (SYMBOL_TYPE (sym));
873 enum type_code code = TYPE_CODE (type);
874
875 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
876 {
877 type = check_typedef (TYPE_TARGET_TYPE (type));
878 if (sparc_structure_or_union_p (type)
879 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
880 return 1;
881 }
882
883 return 0;
884 }
885
886 struct sparc_frame_cache *
887 sparc32_frame_cache (struct frame_info *next_frame, void **this_cache)
888 {
889 struct sparc_frame_cache *cache;
890 struct symbol *sym;
891
892 if (*this_cache)
893 return *this_cache;
894
895 cache = sparc_frame_cache (next_frame, this_cache);
896
897 sym = find_pc_function (cache->pc);
898 if (sym)
899 {
900 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
901 }
902 else
903 {
904 /* There is no debugging information for this function to
905 help us determine whether this function returns a struct
906 or not. So we rely on another heuristic which is to check
907 the instruction at the return address and see if this is
908 an "unimp" instruction. If it is, then it is a struct-return
909 function. */
910 CORE_ADDR pc;
911 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
912
913 pc = frame_unwind_register_unsigned (next_frame, regnum) + 8;
914 if (sparc_is_unimp_insn (pc))
915 cache->struct_return_p = 1;
916 }
917
918 return cache;
919 }
920
921 static void
922 sparc32_frame_this_id (struct frame_info *next_frame, void **this_cache,
923 struct frame_id *this_id)
924 {
925 struct sparc_frame_cache *cache =
926 sparc32_frame_cache (next_frame, this_cache);
927
928 /* This marks the outermost frame. */
929 if (cache->base == 0)
930 return;
931
932 (*this_id) = frame_id_build (cache->base, cache->pc);
933 }
934
935 static void
936 sparc32_frame_prev_register (struct frame_info *next_frame, void **this_cache,
937 int regnum, int *optimizedp,
938 enum lval_type *lvalp, CORE_ADDR *addrp,
939 int *realnump, gdb_byte *valuep)
940 {
941 struct sparc_frame_cache *cache =
942 sparc32_frame_cache (next_frame, this_cache);
943
944 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
945 {
946 *optimizedp = 0;
947 *lvalp = not_lval;
948 *addrp = 0;
949 *realnump = -1;
950 if (valuep)
951 {
952 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
953
954 /* If this functions has a Structure, Union or
955 Quad-Precision return value, we have to skip the UNIMP
956 instruction that encodes the size of the structure. */
957 if (cache->struct_return_p)
958 pc += 4;
959
960 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
961 pc += frame_unwind_register_unsigned (next_frame, regnum) + 8;
962 store_unsigned_integer (valuep, 4, pc);
963 }
964 return;
965 }
966
967 /* Handle StackGhost. */
968 {
969 ULONGEST wcookie = sparc_fetch_wcookie ();
970
971 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
972 {
973 *optimizedp = 0;
974 *lvalp = not_lval;
975 *addrp = 0;
976 *realnump = -1;
977 if (valuep)
978 {
979 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
980 ULONGEST i7;
981
982 /* Read the value in from memory. */
983 i7 = get_frame_memory_unsigned (next_frame, addr, 4);
984 store_unsigned_integer (valuep, 4, i7 ^ wcookie);
985 }
986 return;
987 }
988 }
989
990 /* The previous frame's `local' and `in' registers have been saved
991 in the register save area. */
992 if (!cache->frameless_p
993 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
994 {
995 *optimizedp = 0;
996 *lvalp = lval_memory;
997 *addrp = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
998 *realnump = -1;
999 if (valuep)
1000 {
1001 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1002
1003 /* Read the value in from memory. */
1004 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
1005 }
1006 return;
1007 }
1008
1009 /* The previous frame's `out' registers are accessable as the
1010 current frame's `in' registers. */
1011 if (!cache->frameless_p
1012 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
1013 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1014
1015 *optimizedp = 0;
1016 *lvalp = lval_register;
1017 *addrp = 0;
1018 *realnump = regnum;
1019 if (valuep)
1020 frame_unwind_register (next_frame, (*realnump), valuep);
1021 }
1022
1023 static const struct frame_unwind sparc32_frame_unwind =
1024 {
1025 NORMAL_FRAME,
1026 sparc32_frame_this_id,
1027 sparc32_frame_prev_register
1028 };
1029
1030 static const struct frame_unwind *
1031 sparc32_frame_sniffer (struct frame_info *next_frame)
1032 {
1033 return &sparc32_frame_unwind;
1034 }
1035 \f
1036
1037 static CORE_ADDR
1038 sparc32_frame_base_address (struct frame_info *next_frame, void **this_cache)
1039 {
1040 struct sparc_frame_cache *cache =
1041 sparc32_frame_cache (next_frame, this_cache);
1042
1043 return cache->base;
1044 }
1045
1046 static const struct frame_base sparc32_frame_base =
1047 {
1048 &sparc32_frame_unwind,
1049 sparc32_frame_base_address,
1050 sparc32_frame_base_address,
1051 sparc32_frame_base_address
1052 };
1053
1054 static struct frame_id
1055 sparc_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1056 {
1057 CORE_ADDR sp;
1058
1059 sp = frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
1060 if (sp & 1)
1061 sp += BIAS;
1062 return frame_id_build (sp, frame_pc_unwind (next_frame));
1063 }
1064 \f
1065
1066 /* Extract from an array REGBUF containing the (raw) register state, a
1067 function return value of TYPE, and copy that into VALBUF. */
1068
1069 static void
1070 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
1071 gdb_byte *valbuf)
1072 {
1073 int len = TYPE_LENGTH (type);
1074 gdb_byte buf[8];
1075
1076 gdb_assert (!sparc_structure_or_union_p (type));
1077 gdb_assert (!(sparc_floating_p (type) && len == 16));
1078
1079 if (sparc_floating_p (type))
1080 {
1081 /* Floating return values. */
1082 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1083 if (len > 4)
1084 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1085 memcpy (valbuf, buf, len);
1086 }
1087 else
1088 {
1089 /* Integral and pointer return values. */
1090 gdb_assert (sparc_integral_or_pointer_p (type));
1091
1092 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1093 if (len > 4)
1094 {
1095 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1096 gdb_assert (len == 8);
1097 memcpy (valbuf, buf, 8);
1098 }
1099 else
1100 {
1101 /* Just stripping off any unused bytes should preserve the
1102 signed-ness just fine. */
1103 memcpy (valbuf, buf + 4 - len, len);
1104 }
1105 }
1106 }
1107
1108 /* Write into the appropriate registers a function return value stored
1109 in VALBUF of type TYPE. */
1110
1111 static void
1112 sparc32_store_return_value (struct type *type, struct regcache *regcache,
1113 const gdb_byte *valbuf)
1114 {
1115 int len = TYPE_LENGTH (type);
1116 gdb_byte buf[8];
1117
1118 gdb_assert (!sparc_structure_or_union_p (type));
1119 gdb_assert (!(sparc_floating_p (type) && len == 16));
1120
1121 if (sparc_floating_p (type))
1122 {
1123 /* Floating return values. */
1124 memcpy (buf, valbuf, len);
1125 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1126 if (len > 4)
1127 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1128 }
1129 else
1130 {
1131 /* Integral and pointer return values. */
1132 gdb_assert (sparc_integral_or_pointer_p (type));
1133
1134 if (len > 4)
1135 {
1136 gdb_assert (len == 8);
1137 memcpy (buf, valbuf, 8);
1138 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
1139 }
1140 else
1141 {
1142 /* ??? Do we need to do any sign-extension here? */
1143 memcpy (buf + 4 - len, valbuf, len);
1144 }
1145 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
1146 }
1147 }
1148
1149 static enum return_value_convention
1150 sparc32_return_value (struct gdbarch *gdbarch, struct type *type,
1151 struct regcache *regcache, gdb_byte *readbuf,
1152 const gdb_byte *writebuf)
1153 {
1154 /* The psABI says that "...every stack frame reserves the word at
1155 %fp+64. If a function returns a structure, union, or
1156 quad-precision value, this word should hold the address of the
1157 object into which the return value should be copied." This
1158 guarantees that we can always find the return value, not just
1159 before the function returns. */
1160
1161 if (sparc_structure_or_union_p (type)
1162 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1163 {
1164 if (readbuf)
1165 {
1166 ULONGEST sp;
1167 CORE_ADDR addr;
1168
1169 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1170 addr = read_memory_unsigned_integer (sp + 64, 4);
1171 read_memory (addr, readbuf, TYPE_LENGTH (type));
1172 }
1173
1174 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1175 }
1176
1177 if (readbuf)
1178 sparc32_extract_return_value (type, regcache, readbuf);
1179 if (writebuf)
1180 sparc32_store_return_value (type, regcache, writebuf);
1181
1182 return RETURN_VALUE_REGISTER_CONVENTION;
1183 }
1184
1185 static int
1186 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1187 {
1188 return (sparc_structure_or_union_p (type)
1189 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1190 }
1191
1192 static int
1193 sparc32_dwarf2_struct_return_p (struct frame_info *next_frame)
1194 {
1195 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1196 struct symbol *sym = find_pc_function (pc);
1197
1198 if (sym)
1199 return sparc32_struct_return_from_sym (sym);
1200 return 0;
1201 }
1202
1203 static void
1204 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1205 struct dwarf2_frame_state_reg *reg,
1206 struct frame_info *next_frame)
1207 {
1208 int off;
1209
1210 switch (regnum)
1211 {
1212 case SPARC_G0_REGNUM:
1213 /* Since %g0 is always zero, there is no point in saving it, and
1214 people will be inclined omit it from the CFI. Make sure we
1215 don't warn about that. */
1216 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1217 break;
1218 case SPARC_SP_REGNUM:
1219 reg->how = DWARF2_FRAME_REG_CFA;
1220 break;
1221 case SPARC32_PC_REGNUM:
1222 case SPARC32_NPC_REGNUM:
1223 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1224 off = 8;
1225 if (sparc32_dwarf2_struct_return_p (next_frame))
1226 off += 4;
1227 if (regnum == SPARC32_NPC_REGNUM)
1228 off += 4;
1229 reg->loc.offset = off;
1230 break;
1231 }
1232 }
1233
1234 \f
1235 /* The SPARC Architecture doesn't have hardware single-step support,
1236 and most operating systems don't implement it either, so we provide
1237 software single-step mechanism. */
1238
1239 static CORE_ADDR
1240 sparc_analyze_control_transfer (struct frame_info *frame,
1241 CORE_ADDR pc, CORE_ADDR *npc)
1242 {
1243 unsigned long insn = sparc_fetch_instruction (pc);
1244 int conditional_p = X_COND (insn) & 0x7;
1245 int branch_p = 0;
1246 long offset = 0; /* Must be signed for sign-extend. */
1247
1248 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
1249 {
1250 /* Branch on Integer Register with Prediction (BPr). */
1251 branch_p = 1;
1252 conditional_p = 1;
1253 }
1254 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1255 {
1256 /* Branch on Floating-Point Condition Codes (FBfcc). */
1257 branch_p = 1;
1258 offset = 4 * X_DISP22 (insn);
1259 }
1260 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1261 {
1262 /* Branch on Floating-Point Condition Codes with Prediction
1263 (FBPfcc). */
1264 branch_p = 1;
1265 offset = 4 * X_DISP19 (insn);
1266 }
1267 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1268 {
1269 /* Branch on Integer Condition Codes (Bicc). */
1270 branch_p = 1;
1271 offset = 4 * X_DISP22 (insn);
1272 }
1273 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1274 {
1275 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1276 branch_p = 1;
1277 offset = 4 * X_DISP19 (insn);
1278 }
1279 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1280 {
1281 /* Trap instruction (TRAP). */
1282 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
1283 }
1284
1285 /* FIXME: Handle DONE and RETRY instructions. */
1286
1287 if (branch_p)
1288 {
1289 if (conditional_p)
1290 {
1291 /* For conditional branches, return nPC + 4 iff the annul
1292 bit is 1. */
1293 return (X_A (insn) ? *npc + 4 : 0);
1294 }
1295 else
1296 {
1297 /* For unconditional branches, return the target if its
1298 specified condition is "always" and return nPC + 4 if the
1299 condition is "never". If the annul bit is 1, set *NPC to
1300 zero. */
1301 if (X_COND (insn) == 0x0)
1302 pc = *npc, offset = 4;
1303 if (X_A (insn))
1304 *npc = 0;
1305
1306 gdb_assert (offset != 0);
1307 return pc + offset;
1308 }
1309 }
1310
1311 return 0;
1312 }
1313
1314 static CORE_ADDR
1315 sparc_step_trap (struct frame_info *frame, unsigned long insn)
1316 {
1317 return 0;
1318 }
1319
1320 int
1321 sparc_software_single_step (struct frame_info *frame)
1322 {
1323 struct gdbarch *arch = get_frame_arch (frame);
1324 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1325 CORE_ADDR npc, nnpc;
1326
1327 CORE_ADDR pc, orig_npc;
1328
1329 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1330 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
1331
1332 /* Analyze the instruction at PC. */
1333 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
1334 if (npc != 0)
1335 insert_single_step_breakpoint (npc);
1336
1337 if (nnpc != 0)
1338 insert_single_step_breakpoint (nnpc);
1339
1340 /* Assert that we have set at least one breakpoint, and that
1341 they're not set at the same spot - unless we're going
1342 from here straight to NULL, i.e. a call or jump to 0. */
1343 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1344 gdb_assert (nnpc != npc || orig_npc == 0);
1345
1346 return 1;
1347 }
1348
1349 static void
1350 sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
1351 {
1352 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1353
1354 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1355 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
1356 }
1357 \f
1358
1359 /* Return the appropriate register set for the core section identified
1360 by SECT_NAME and SECT_SIZE. */
1361
1362 const struct regset *
1363 sparc_regset_from_core_section (struct gdbarch *gdbarch,
1364 const char *sect_name, size_t sect_size)
1365 {
1366 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1367
1368 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
1369 return tdep->gregset;
1370
1371 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
1372 return tdep->fpregset;
1373
1374 return NULL;
1375 }
1376 \f
1377
1378 static struct gdbarch *
1379 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1380 {
1381 struct gdbarch_tdep *tdep;
1382 struct gdbarch *gdbarch;
1383
1384 /* If there is already a candidate, use it. */
1385 arches = gdbarch_list_lookup_by_info (arches, &info);
1386 if (arches != NULL)
1387 return arches->gdbarch;
1388
1389 /* Allocate space for the new architecture. */
1390 tdep = XMALLOC (struct gdbarch_tdep);
1391 gdbarch = gdbarch_alloc (&info, tdep);
1392
1393 tdep->pc_regnum = SPARC32_PC_REGNUM;
1394 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1395 tdep->gregset = NULL;
1396 tdep->sizeof_gregset = 0;
1397 tdep->fpregset = NULL;
1398 tdep->sizeof_fpregset = 0;
1399 tdep->plt_entry_size = 0;
1400 tdep->step_trap = sparc_step_trap;
1401
1402 set_gdbarch_long_double_bit (gdbarch, 128);
1403 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
1404
1405 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1406 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1407 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1408 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1409 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1410 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1411
1412 /* Register numbers of various important registers. */
1413 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1414 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1415 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1416
1417 /* Call dummy code. */
1418 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1419 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1420 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1421
1422 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1423 set_gdbarch_stabs_argument_has_addr
1424 (gdbarch, sparc32_stabs_argument_has_addr);
1425
1426 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1427
1428 /* Stack grows downward. */
1429 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1430
1431 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
1432
1433 set_gdbarch_frame_args_skip (gdbarch, 8);
1434
1435 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
1436
1437 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1438 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1439
1440 set_gdbarch_unwind_dummy_id (gdbarch, sparc_unwind_dummy_id);
1441
1442 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1443
1444 frame_base_set_default (gdbarch, &sparc32_frame_base);
1445
1446 /* Hook in the DWARF CFI frame unwinder. */
1447 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1448 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1449 StackGhost issues have been resolved. */
1450
1451 /* Hook in ABI-specific overrides, if they have been registered. */
1452 gdbarch_init_osabi (info, gdbarch);
1453
1454 frame_unwind_append_sniffer (gdbarch, sparc32_frame_sniffer);
1455
1456 /* If we have register sets, enable the generic core file support. */
1457 if (tdep->gregset)
1458 set_gdbarch_regset_from_core_section (gdbarch,
1459 sparc_regset_from_core_section);
1460
1461 return gdbarch;
1462 }
1463 \f
1464 /* Helper functions for dealing with register windows. */
1465
1466 void
1467 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1468 {
1469 int offset = 0;
1470 gdb_byte buf[8];
1471 int i;
1472
1473 if (sp & 1)
1474 {
1475 /* Registers are 64-bit. */
1476 sp += BIAS;
1477
1478 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1479 {
1480 if (regnum == i || regnum == -1)
1481 {
1482 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1483
1484 /* Handle StackGhost. */
1485 if (i == SPARC_I7_REGNUM)
1486 {
1487 ULONGEST wcookie = sparc_fetch_wcookie ();
1488 ULONGEST i7 = extract_unsigned_integer (buf + offset, 8);
1489
1490 store_unsigned_integer (buf + offset, 8, i7 ^ wcookie);
1491 }
1492
1493 regcache_raw_supply (regcache, i, buf);
1494 }
1495 }
1496 }
1497 else
1498 {
1499 /* Registers are 32-bit. Toss any sign-extension of the stack
1500 pointer. */
1501 sp &= 0xffffffffUL;
1502
1503 /* Clear out the top half of the temporary buffer, and put the
1504 register value in the bottom half if we're in 64-bit mode. */
1505 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1506 {
1507 memset (buf, 0, 4);
1508 offset = 4;
1509 }
1510
1511 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1512 {
1513 if (regnum == i || regnum == -1)
1514 {
1515 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1516 buf + offset, 4);
1517
1518 /* Handle StackGhost. */
1519 if (i == SPARC_I7_REGNUM)
1520 {
1521 ULONGEST wcookie = sparc_fetch_wcookie ();
1522 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
1523
1524 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
1525 }
1526
1527 regcache_raw_supply (regcache, i, buf);
1528 }
1529 }
1530 }
1531 }
1532
1533 void
1534 sparc_collect_rwindow (const struct regcache *regcache,
1535 CORE_ADDR sp, int regnum)
1536 {
1537 int offset = 0;
1538 gdb_byte buf[8];
1539 int i;
1540
1541 if (sp & 1)
1542 {
1543 /* Registers are 64-bit. */
1544 sp += BIAS;
1545
1546 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1547 {
1548 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1549 {
1550 regcache_raw_collect (regcache, i, buf);
1551
1552 /* Handle StackGhost. */
1553 if (i == SPARC_I7_REGNUM)
1554 {
1555 ULONGEST wcookie = sparc_fetch_wcookie ();
1556 ULONGEST i7 = extract_unsigned_integer (buf + offset, 8);
1557
1558 store_unsigned_integer (buf, 8, i7 ^ wcookie);
1559 }
1560
1561 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1562 }
1563 }
1564 }
1565 else
1566 {
1567 /* Registers are 32-bit. Toss any sign-extension of the stack
1568 pointer. */
1569 sp &= 0xffffffffUL;
1570
1571 /* Only use the bottom half if we're in 64-bit mode. */
1572 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1573 offset = 4;
1574
1575 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1576 {
1577 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1578 {
1579 regcache_raw_collect (regcache, i, buf);
1580
1581 /* Handle StackGhost. */
1582 if (i == SPARC_I7_REGNUM)
1583 {
1584 ULONGEST wcookie = sparc_fetch_wcookie ();
1585 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
1586
1587 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
1588 }
1589
1590 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1591 buf + offset, 4);
1592 }
1593 }
1594 }
1595 }
1596
1597 /* Helper functions for dealing with register sets. */
1598
1599 void
1600 sparc32_supply_gregset (const struct sparc_gregset *gregset,
1601 struct regcache *regcache,
1602 int regnum, const void *gregs)
1603 {
1604 const gdb_byte *regs = gregs;
1605 int i;
1606
1607 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1608 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1609 regs + gregset->r_psr_offset);
1610
1611 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1612 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1613 regs + gregset->r_pc_offset);
1614
1615 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1616 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1617 regs + gregset->r_npc_offset);
1618
1619 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1620 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1621 regs + gregset->r_y_offset);
1622
1623 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1624 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
1625
1626 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1627 {
1628 int offset = gregset->r_g1_offset;
1629
1630 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1631 {
1632 if (regnum == i || regnum == -1)
1633 regcache_raw_supply (regcache, i, regs + offset);
1634 offset += 4;
1635 }
1636 }
1637
1638 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1639 {
1640 /* Not all of the register set variants include Locals and
1641 Inputs. For those that don't, we read them off the stack. */
1642 if (gregset->r_l0_offset == -1)
1643 {
1644 ULONGEST sp;
1645
1646 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1647 sparc_supply_rwindow (regcache, sp, regnum);
1648 }
1649 else
1650 {
1651 int offset = gregset->r_l0_offset;
1652
1653 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1654 {
1655 if (regnum == i || regnum == -1)
1656 regcache_raw_supply (regcache, i, regs + offset);
1657 offset += 4;
1658 }
1659 }
1660 }
1661 }
1662
1663 void
1664 sparc32_collect_gregset (const struct sparc_gregset *gregset,
1665 const struct regcache *regcache,
1666 int regnum, void *gregs)
1667 {
1668 gdb_byte *regs = gregs;
1669 int i;
1670
1671 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1672 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1673 regs + gregset->r_psr_offset);
1674
1675 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1676 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1677 regs + gregset->r_pc_offset);
1678
1679 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1680 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1681 regs + gregset->r_npc_offset);
1682
1683 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1684 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1685 regs + gregset->r_y_offset);
1686
1687 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1688 {
1689 int offset = gregset->r_g1_offset;
1690
1691 /* %g0 is always zero. */
1692 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1693 {
1694 if (regnum == i || regnum == -1)
1695 regcache_raw_collect (regcache, i, regs + offset);
1696 offset += 4;
1697 }
1698 }
1699
1700 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1701 {
1702 /* Not all of the register set variants include Locals and
1703 Inputs. For those that don't, we read them off the stack. */
1704 if (gregset->r_l0_offset != -1)
1705 {
1706 int offset = gregset->r_l0_offset;
1707
1708 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1709 {
1710 if (regnum == i || regnum == -1)
1711 regcache_raw_collect (regcache, i, regs + offset);
1712 offset += 4;
1713 }
1714 }
1715 }
1716 }
1717
1718 void
1719 sparc32_supply_fpregset (struct regcache *regcache,
1720 int regnum, const void *fpregs)
1721 {
1722 const gdb_byte *regs = fpregs;
1723 int i;
1724
1725 for (i = 0; i < 32; i++)
1726 {
1727 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1728 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1729 }
1730
1731 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1732 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1733 }
1734
1735 void
1736 sparc32_collect_fpregset (const struct regcache *regcache,
1737 int regnum, void *fpregs)
1738 {
1739 gdb_byte *regs = fpregs;
1740 int i;
1741
1742 for (i = 0; i < 32; i++)
1743 {
1744 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1745 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1746 }
1747
1748 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1749 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1750 }
1751 \f
1752
1753 /* SunOS 4. */
1754
1755 /* From <machine/reg.h>. */
1756 const struct sparc_gregset sparc32_sunos4_gregset =
1757 {
1758 0 * 4, /* %psr */
1759 1 * 4, /* %pc */
1760 2 * 4, /* %npc */
1761 3 * 4, /* %y */
1762 -1, /* %wim */
1763 -1, /* %tbr */
1764 4 * 4, /* %g1 */
1765 -1 /* %l0 */
1766 };
1767 \f
1768
1769 /* Provide a prototype to silence -Wmissing-prototypes. */
1770 void _initialize_sparc_tdep (void);
1771
1772 void
1773 _initialize_sparc_tdep (void)
1774 {
1775 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
1776
1777 /* Initialize the SPARC-specific register types. */
1778 sparc_init_types();
1779 }
This page took 0.084398 seconds and 5 git commands to generate.