gdb: workaround sparc memcpy fortify error
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for SPARC.
2
3 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "arch-utils.h"
23 #include "dis-asm.h"
24 #include "dwarf2-frame.h"
25 #include "floatformat.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "gdbcore.h"
30 #include "gdbtypes.h"
31 #include "inferior.h"
32 #include "symtab.h"
33 #include "objfiles.h"
34 #include "osabi.h"
35 #include "regcache.h"
36 #include "target.h"
37 #include "value.h"
38
39 #include "gdb_assert.h"
40 #include "gdb_string.h"
41
42 #include "sparc-tdep.h"
43
44 struct regset;
45
46 /* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
49 lists changes with respect to the original 32-bit psABI as defined
50 in the "System V ABI, SPARC Processor Supplement".
51
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
58 2.x is SVR4-based. */
59
60 /* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
64
65 /* The SPARC Floating-Point Quad-Precision format is similar to
66 big-endian IA-64 Quad-recision format. */
67 #define floatformats_sparc_quad floatformats_ia64_quad
68
69 /* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
72 #undef BIAS
73 #define BIAS 2047
74
75 /* Macros to extract fields from SPARC instructions. */
76 #define X_OP(i) (((i) >> 30) & 0x3)
77 #define X_RD(i) (((i) >> 25) & 0x1f)
78 #define X_A(i) (((i) >> 29) & 1)
79 #define X_COND(i) (((i) >> 25) & 0xf)
80 #define X_OP2(i) (((i) >> 22) & 0x7)
81 #define X_IMM22(i) ((i) & 0x3fffff)
82 #define X_OP3(i) (((i) >> 19) & 0x3f)
83 #define X_RS1(i) (((i) >> 14) & 0x1f)
84 #define X_RS2(i) ((i) & 0x1f)
85 #define X_I(i) (((i) >> 13) & 1)
86 /* Sign extension macros. */
87 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
88 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
89 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
90
91 /* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
93
94 unsigned long
95 sparc_fetch_instruction (CORE_ADDR pc)
96 {
97 gdb_byte buf[4];
98 unsigned long insn;
99 int i;
100
101 /* If we can't read the instruction at PC, return zero. */
102 if (target_read_memory (pc, buf, sizeof (buf)))
103 return 0;
104
105 insn = 0;
106 for (i = 0; i < sizeof (buf); i++)
107 insn = (insn << 8) | buf[i];
108 return insn;
109 }
110 \f
111
112 /* Return non-zero if the instruction corresponding to PC is an "unimp"
113 instruction. */
114
115 static int
116 sparc_is_unimp_insn (CORE_ADDR pc)
117 {
118 const unsigned long insn = sparc_fetch_instruction (pc);
119
120 return ((insn & 0xc1c00000) == 0);
121 }
122
123 /* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
129
130 The same website provides the following description of how
131 StackGhost works:
132
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
142
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
145
146 More information on StackGuard can be found on in:
147
148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
149 Stack Protection." 2001. Published in USENIX Security Symposium
150 '01. */
151
152 /* Fetch StackGhost Per-Process XOR cookie. */
153
154 ULONGEST
155 sparc_fetch_wcookie (struct gdbarch *gdbarch)
156 {
157 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
158 struct target_ops *ops = &current_target;
159 gdb_byte buf[8];
160 int len;
161
162 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
163 if (len == -1)
164 return 0;
165
166 /* We should have either an 32-bit or an 64-bit cookie. */
167 gdb_assert (len == 4 || len == 8);
168
169 return extract_unsigned_integer (buf, len, byte_order);
170 }
171 \f
172
173 /* The functions on this page are intended to be used to classify
174 function arguments. */
175
176 /* Check whether TYPE is "Integral or Pointer". */
177
178 static int
179 sparc_integral_or_pointer_p (const struct type *type)
180 {
181 int len = TYPE_LENGTH (type);
182
183 switch (TYPE_CODE (type))
184 {
185 case TYPE_CODE_INT:
186 case TYPE_CODE_BOOL:
187 case TYPE_CODE_CHAR:
188 case TYPE_CODE_ENUM:
189 case TYPE_CODE_RANGE:
190 /* We have byte, half-word, word and extended-word/doubleword
191 integral types. The doubleword is an extension to the
192 original 32-bit ABI by the SCD 2.4.x. */
193 return (len == 1 || len == 2 || len == 4 || len == 8);
194 case TYPE_CODE_PTR:
195 case TYPE_CODE_REF:
196 /* Allow either 32-bit or 64-bit pointers. */
197 return (len == 4 || len == 8);
198 default:
199 break;
200 }
201
202 return 0;
203 }
204
205 /* Check whether TYPE is "Floating". */
206
207 static int
208 sparc_floating_p (const struct type *type)
209 {
210 switch (TYPE_CODE (type))
211 {
212 case TYPE_CODE_FLT:
213 {
214 int len = TYPE_LENGTH (type);
215 return (len == 4 || len == 8 || len == 16);
216 }
217 default:
218 break;
219 }
220
221 return 0;
222 }
223
224 /* Check whether TYPE is "Structure or Union". */
225
226 static int
227 sparc_structure_or_union_p (const struct type *type)
228 {
229 switch (TYPE_CODE (type))
230 {
231 case TYPE_CODE_STRUCT:
232 case TYPE_CODE_UNION:
233 return 1;
234 default:
235 break;
236 }
237
238 return 0;
239 }
240
241 /* Register information. */
242
243 static const char *sparc32_register_names[] =
244 {
245 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
246 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
247 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
248 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
249
250 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
251 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
252 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
253 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
254
255 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
256 };
257
258 /* Total number of registers. */
259 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
260
261 /* We provide the aliases %d0..%d30 for the floating registers as
262 "psuedo" registers. */
263
264 static const char *sparc32_pseudo_register_names[] =
265 {
266 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
267 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
268 };
269
270 /* Total number of pseudo registers. */
271 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
272
273 /* Return the name of register REGNUM. */
274
275 static const char *
276 sparc32_register_name (struct gdbarch *gdbarch, int regnum)
277 {
278 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
279 return sparc32_register_names[regnum];
280
281 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
282 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
283
284 return NULL;
285 }
286 \f
287 /* Construct types for ISA-specific registers. */
288
289 static struct type *
290 sparc_psr_type (struct gdbarch *gdbarch)
291 {
292 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
293
294 if (!tdep->sparc_psr_type)
295 {
296 struct type *type;
297
298 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
299 append_flags_type_flag (type, 5, "ET");
300 append_flags_type_flag (type, 6, "PS");
301 append_flags_type_flag (type, 7, "S");
302 append_flags_type_flag (type, 12, "EF");
303 append_flags_type_flag (type, 13, "EC");
304
305 tdep->sparc_psr_type = type;
306 }
307
308 return tdep->sparc_psr_type;
309 }
310
311 static struct type *
312 sparc_fsr_type (struct gdbarch *gdbarch)
313 {
314 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
315
316 if (!tdep->sparc_fsr_type)
317 {
318 struct type *type;
319
320 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
321 append_flags_type_flag (type, 0, "NXA");
322 append_flags_type_flag (type, 1, "DZA");
323 append_flags_type_flag (type, 2, "UFA");
324 append_flags_type_flag (type, 3, "OFA");
325 append_flags_type_flag (type, 4, "NVA");
326 append_flags_type_flag (type, 5, "NXC");
327 append_flags_type_flag (type, 6, "DZC");
328 append_flags_type_flag (type, 7, "UFC");
329 append_flags_type_flag (type, 8, "OFC");
330 append_flags_type_flag (type, 9, "NVC");
331 append_flags_type_flag (type, 22, "NS");
332 append_flags_type_flag (type, 23, "NXM");
333 append_flags_type_flag (type, 24, "DZM");
334 append_flags_type_flag (type, 25, "UFM");
335 append_flags_type_flag (type, 26, "OFM");
336 append_flags_type_flag (type, 27, "NVM");
337
338 tdep->sparc_fsr_type = type;
339 }
340
341 return tdep->sparc_fsr_type;
342 }
343
344 /* Return the GDB type object for the "standard" data type of data in
345 register REGNUM. */
346
347 static struct type *
348 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
349 {
350 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
351 return builtin_type (gdbarch)->builtin_float;
352
353 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
354 return builtin_type (gdbarch)->builtin_double;
355
356 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
357 return builtin_type (gdbarch)->builtin_data_ptr;
358
359 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
360 return builtin_type (gdbarch)->builtin_func_ptr;
361
362 if (regnum == SPARC32_PSR_REGNUM)
363 return sparc_psr_type (gdbarch);
364
365 if (regnum == SPARC32_FSR_REGNUM)
366 return sparc_fsr_type (gdbarch);
367
368 return builtin_type (gdbarch)->builtin_int32;
369 }
370
371 static void
372 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
373 struct regcache *regcache,
374 int regnum, gdb_byte *buf)
375 {
376 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
377
378 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
379 regcache_raw_read (regcache, regnum, buf);
380 regcache_raw_read (regcache, regnum + 1, buf + 4);
381 }
382
383 static void
384 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
385 struct regcache *regcache,
386 int regnum, const gdb_byte *buf)
387 {
388 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
389
390 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
391 regcache_raw_write (regcache, regnum, buf);
392 regcache_raw_write (regcache, regnum + 1, buf + 4);
393 }
394 \f
395
396 static CORE_ADDR
397 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
398 CORE_ADDR funcaddr,
399 struct value **args, int nargs,
400 struct type *value_type,
401 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
402 struct regcache *regcache)
403 {
404 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
405
406 *bp_addr = sp - 4;
407 *real_pc = funcaddr;
408
409 if (using_struct_return (gdbarch, NULL, value_type))
410 {
411 gdb_byte buf[4];
412
413 /* This is an UNIMP instruction. */
414 store_unsigned_integer (buf, 4, byte_order,
415 TYPE_LENGTH (value_type) & 0x1fff);
416 write_memory (sp - 8, buf, 4);
417 return sp - 8;
418 }
419
420 return sp - 4;
421 }
422
423 static CORE_ADDR
424 sparc32_store_arguments (struct regcache *regcache, int nargs,
425 struct value **args, CORE_ADDR sp,
426 int struct_return, CORE_ADDR struct_addr)
427 {
428 struct gdbarch *gdbarch = get_regcache_arch (regcache);
429 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
430 /* Number of words in the "parameter array". */
431 int num_elements = 0;
432 int element = 0;
433 int i;
434
435 for (i = 0; i < nargs; i++)
436 {
437 struct type *type = value_type (args[i]);
438 int len = TYPE_LENGTH (type);
439
440 if (sparc_structure_or_union_p (type)
441 || (sparc_floating_p (type) && len == 16))
442 {
443 /* Structure, Union and Quad-Precision Arguments. */
444 sp -= len;
445
446 /* Use doubleword alignment for these values. That's always
447 correct, and wasting a few bytes shouldn't be a problem. */
448 sp &= ~0x7;
449
450 write_memory (sp, value_contents (args[i]), len);
451 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
452 num_elements++;
453 }
454 else if (sparc_floating_p (type))
455 {
456 /* Floating arguments. */
457 gdb_assert (len == 4 || len == 8);
458 num_elements += (len / 4);
459 }
460 else
461 {
462 /* Integral and pointer arguments. */
463 gdb_assert (sparc_integral_or_pointer_p (type));
464
465 if (len < 4)
466 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
467 args[i]);
468 num_elements += ((len + 3) / 4);
469 }
470 }
471
472 /* Always allocate at least six words. */
473 sp -= max (6, num_elements) * 4;
474
475 /* The psABI says that "Software convention requires space for the
476 struct/union return value pointer, even if the word is unused." */
477 sp -= 4;
478
479 /* The psABI says that "Although software convention and the
480 operating system require every stack frame to be doubleword
481 aligned." */
482 sp &= ~0x7;
483
484 for (i = 0; i < nargs; i++)
485 {
486 const bfd_byte *valbuf = value_contents (args[i]);
487 struct type *type = value_type (args[i]);
488 int len = TYPE_LENGTH (type);
489
490 gdb_assert (len == 4 || len == 8);
491
492 if (element < 6)
493 {
494 int regnum = SPARC_O0_REGNUM + element;
495
496 regcache_cooked_write (regcache, regnum, valbuf);
497 if (len > 4 && element < 5)
498 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
499 }
500
501 /* Always store the argument in memory. */
502 write_memory (sp + 4 + element * 4, valbuf, len);
503 element += len / 4;
504 }
505
506 gdb_assert (element == num_elements);
507
508 if (struct_return)
509 {
510 gdb_byte buf[4];
511
512 store_unsigned_integer (buf, 4, byte_order, struct_addr);
513 write_memory (sp, buf, 4);
514 }
515
516 return sp;
517 }
518
519 static CORE_ADDR
520 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
521 struct regcache *regcache, CORE_ADDR bp_addr,
522 int nargs, struct value **args, CORE_ADDR sp,
523 int struct_return, CORE_ADDR struct_addr)
524 {
525 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
526
527 /* Set return address. */
528 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
529
530 /* Set up function arguments. */
531 sp = sparc32_store_arguments (regcache, nargs, args, sp,
532 struct_return, struct_addr);
533
534 /* Allocate the 16-word window save area. */
535 sp -= 16 * 4;
536
537 /* Stack should be doubleword aligned at this point. */
538 gdb_assert (sp % 8 == 0);
539
540 /* Finally, update the stack pointer. */
541 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
542
543 return sp;
544 }
545 \f
546
547 /* Use the program counter to determine the contents and size of a
548 breakpoint instruction. Return a pointer to a string of bytes that
549 encode a breakpoint instruction, store the length of the string in
550 *LEN and optionally adjust *PC to point to the correct memory
551 location for inserting the breakpoint. */
552
553 static const gdb_byte *
554 sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
555 {
556 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
557
558 *len = sizeof (break_insn);
559 return break_insn;
560 }
561 \f
562
563 /* Allocate and initialize a frame cache. */
564
565 static struct sparc_frame_cache *
566 sparc_alloc_frame_cache (void)
567 {
568 struct sparc_frame_cache *cache;
569 int i;
570
571 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
572
573 /* Base address. */
574 cache->base = 0;
575 cache->pc = 0;
576
577 /* Frameless until proven otherwise. */
578 cache->frameless_p = 1;
579
580 cache->struct_return_p = 0;
581
582 return cache;
583 }
584
585 /* GCC generates several well-known sequences of instructions at the begining
586 of each function prologue when compiling with -fstack-check. If one of
587 such sequences starts at START_PC, then return the address of the
588 instruction immediately past this sequence. Otherwise, return START_PC. */
589
590 static CORE_ADDR
591 sparc_skip_stack_check (const CORE_ADDR start_pc)
592 {
593 CORE_ADDR pc = start_pc;
594 unsigned long insn;
595 int offset_stack_checking_sequence = 0;
596
597 /* With GCC, all stack checking sequences begin with the same two
598 instructions. */
599
600 /* sethi <some immediate>,%g1 */
601 insn = sparc_fetch_instruction (pc);
602 pc = pc + 4;
603 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
604 return start_pc;
605
606 /* sub %sp, %g1, %g1 */
607 insn = sparc_fetch_instruction (pc);
608 pc = pc + 4;
609 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
610 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
611 return start_pc;
612
613 insn = sparc_fetch_instruction (pc);
614 pc = pc + 4;
615
616 /* First possible sequence:
617 [first two instructions above]
618 clr [%g1 - some immediate] */
619
620 /* clr [%g1 - some immediate] */
621 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
622 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
623 {
624 /* Valid stack-check sequence, return the new PC. */
625 return pc;
626 }
627
628 /* Second possible sequence: A small number of probes.
629 [first two instructions above]
630 clr [%g1]
631 add %g1, -<some immediate>, %g1
632 clr [%g1]
633 [repeat the two instructions above any (small) number of times]
634 clr [%g1 - some immediate] */
635
636 /* clr [%g1] */
637 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
638 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
639 {
640 while (1)
641 {
642 /* add %g1, -<some immediate>, %g1 */
643 insn = sparc_fetch_instruction (pc);
644 pc = pc + 4;
645 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
646 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
647 break;
648
649 /* clr [%g1] */
650 insn = sparc_fetch_instruction (pc);
651 pc = pc + 4;
652 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
653 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
654 return start_pc;
655 }
656
657 /* clr [%g1 - some immediate] */
658 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
659 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
660 return start_pc;
661
662 /* We found a valid stack-check sequence, return the new PC. */
663 return pc;
664 }
665
666 /* Third sequence: A probing loop.
667 [first two instructions above]
668 sethi <some immediate>, %g4
669 sub %g1, %g4, %g4
670 cmp %g1, %g4
671 be <disp>
672 add %g1, -<some immediate>, %g1
673 ba <disp>
674 clr [%g1]
675 clr [%g4 - some immediate] */
676
677 /* sethi <some immediate>, %g4 */
678 else if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
679 {
680 /* sub %g1, %g4, %g4 */
681 insn = sparc_fetch_instruction (pc);
682 pc = pc + 4;
683 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
684 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
685 return start_pc;
686
687 /* cmp %g1, %g4 */
688 insn = sparc_fetch_instruction (pc);
689 pc = pc + 4;
690 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
691 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
692 return start_pc;
693
694 /* be <disp> */
695 insn = sparc_fetch_instruction (pc);
696 pc = pc + 4;
697 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
698 return start_pc;
699
700 /* add %g1, -<some immediate>, %g1 */
701 insn = sparc_fetch_instruction (pc);
702 pc = pc + 4;
703 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
704 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
705 return start_pc;
706
707 /* ba <disp> */
708 insn = sparc_fetch_instruction (pc);
709 pc = pc + 4;
710 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
711 return start_pc;
712
713 /* clr [%g1] */
714 insn = sparc_fetch_instruction (pc);
715 pc = pc + 4;
716 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
717 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
718 return start_pc;
719
720 /* clr [%g4 - some immediate] */
721 insn = sparc_fetch_instruction (pc);
722 pc = pc + 4;
723 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
724 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
725 return start_pc;
726
727 /* We found a valid stack-check sequence, return the new PC. */
728 return pc;
729 }
730
731 /* No stack check code in our prologue, return the start_pc. */
732 return start_pc;
733 }
734
735 CORE_ADDR
736 sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
737 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
738 {
739 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
740 unsigned long insn;
741 int offset = 0;
742 int dest = -1;
743
744 pc = sparc_skip_stack_check (pc);
745
746 if (current_pc <= pc)
747 return current_pc;
748
749 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
750 SPARC the linker usually defines a symbol (typically
751 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
752 This symbol makes us end up here with PC pointing at the start of
753 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
754 would do our normal prologue analysis, we would probably conclude
755 that we've got a frame when in reality we don't, since the
756 dynamic linker patches up the first PLT with some code that
757 starts with a SAVE instruction. Patch up PC such that it points
758 at the start of our PLT entry. */
759 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
760 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
761
762 insn = sparc_fetch_instruction (pc);
763
764 /* Recognize a SETHI insn and record its destination. */
765 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
766 {
767 dest = X_RD (insn);
768 offset += 4;
769
770 insn = sparc_fetch_instruction (pc + 4);
771 }
772
773 /* Allow for an arithmetic operation on DEST or %g1. */
774 if (X_OP (insn) == 2 && X_I (insn)
775 && (X_RD (insn) == 1 || X_RD (insn) == dest))
776 {
777 offset += 4;
778
779 insn = sparc_fetch_instruction (pc + 8);
780 }
781
782 /* Check for the SAVE instruction that sets up the frame. */
783 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
784 {
785 cache->frameless_p = 0;
786 return pc + offset + 4;
787 }
788
789 return pc;
790 }
791
792 static CORE_ADDR
793 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
794 {
795 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
796 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
797 }
798
799 /* Return PC of first real instruction of the function starting at
800 START_PC. */
801
802 static CORE_ADDR
803 sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
804 {
805 struct symtab_and_line sal;
806 CORE_ADDR func_start, func_end;
807 struct sparc_frame_cache cache;
808
809 /* This is the preferred method, find the end of the prologue by
810 using the debugging information. */
811 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
812 {
813 sal = find_pc_line (func_start, 0);
814
815 if (sal.end < func_end
816 && start_pc <= sal.end)
817 return sal.end;
818 }
819
820 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
821
822 /* The psABI says that "Although the first 6 words of arguments
823 reside in registers, the standard stack frame reserves space for
824 them.". It also suggests that a function may use that space to
825 "write incoming arguments 0 to 5" into that space, and that's
826 indeed what GCC seems to be doing. In that case GCC will
827 generate debug information that points to the stack slots instead
828 of the registers, so we should consider the instructions that
829 write out these incoming arguments onto the stack. Of course we
830 only need to do this if we have a stack frame. */
831
832 while (!cache.frameless_p)
833 {
834 unsigned long insn = sparc_fetch_instruction (start_pc);
835
836 /* Recognize instructions that store incoming arguments in
837 %i0...%i5 into the corresponding stack slot. */
838 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
839 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
840 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
841 {
842 start_pc += 4;
843 continue;
844 }
845
846 break;
847 }
848
849 return start_pc;
850 }
851
852 /* Normal frames. */
853
854 struct sparc_frame_cache *
855 sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
856 {
857 struct sparc_frame_cache *cache;
858
859 if (*this_cache)
860 return *this_cache;
861
862 cache = sparc_alloc_frame_cache ();
863 *this_cache = cache;
864
865 cache->pc = get_frame_func (this_frame);
866 if (cache->pc != 0)
867 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
868 get_frame_pc (this_frame), cache);
869
870 if (cache->frameless_p)
871 {
872 /* This function is frameless, so %fp (%i6) holds the frame
873 pointer for our calling frame. Use %sp (%o6) as this frame's
874 base address. */
875 cache->base =
876 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
877 }
878 else
879 {
880 /* For normal frames, %fp (%i6) holds the frame pointer, the
881 base address for the current stack frame. */
882 cache->base =
883 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
884 }
885
886 if (cache->base & 1)
887 cache->base += BIAS;
888
889 return cache;
890 }
891
892 static int
893 sparc32_struct_return_from_sym (struct symbol *sym)
894 {
895 struct type *type = check_typedef (SYMBOL_TYPE (sym));
896 enum type_code code = TYPE_CODE (type);
897
898 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
899 {
900 type = check_typedef (TYPE_TARGET_TYPE (type));
901 if (sparc_structure_or_union_p (type)
902 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
903 return 1;
904 }
905
906 return 0;
907 }
908
909 struct sparc_frame_cache *
910 sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
911 {
912 struct sparc_frame_cache *cache;
913 struct symbol *sym;
914
915 if (*this_cache)
916 return *this_cache;
917
918 cache = sparc_frame_cache (this_frame, this_cache);
919
920 sym = find_pc_function (cache->pc);
921 if (sym)
922 {
923 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
924 }
925 else
926 {
927 /* There is no debugging information for this function to
928 help us determine whether this function returns a struct
929 or not. So we rely on another heuristic which is to check
930 the instruction at the return address and see if this is
931 an "unimp" instruction. If it is, then it is a struct-return
932 function. */
933 CORE_ADDR pc;
934 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
935
936 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
937 if (sparc_is_unimp_insn (pc))
938 cache->struct_return_p = 1;
939 }
940
941 return cache;
942 }
943
944 static void
945 sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
946 struct frame_id *this_id)
947 {
948 struct sparc_frame_cache *cache =
949 sparc32_frame_cache (this_frame, this_cache);
950
951 /* This marks the outermost frame. */
952 if (cache->base == 0)
953 return;
954
955 (*this_id) = frame_id_build (cache->base, cache->pc);
956 }
957
958 static struct value *
959 sparc32_frame_prev_register (struct frame_info *this_frame,
960 void **this_cache, int regnum)
961 {
962 struct gdbarch *gdbarch = get_frame_arch (this_frame);
963 struct sparc_frame_cache *cache =
964 sparc32_frame_cache (this_frame, this_cache);
965
966 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
967 {
968 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
969
970 /* If this functions has a Structure, Union or Quad-Precision
971 return value, we have to skip the UNIMP instruction that encodes
972 the size of the structure. */
973 if (cache->struct_return_p)
974 pc += 4;
975
976 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
977 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
978 return frame_unwind_got_constant (this_frame, regnum, pc);
979 }
980
981 /* Handle StackGhost. */
982 {
983 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
984
985 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
986 {
987 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
988 ULONGEST i7;
989
990 /* Read the value in from memory. */
991 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
992 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
993 }
994 }
995
996 /* The previous frame's `local' and `in' registers have been saved
997 in the register save area. */
998 if (!cache->frameless_p
999 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
1000 {
1001 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1002
1003 return frame_unwind_got_memory (this_frame, regnum, addr);
1004 }
1005
1006 /* The previous frame's `out' registers are accessible as the
1007 current frame's `in' registers. */
1008 if (!cache->frameless_p
1009 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
1010 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1011
1012 return frame_unwind_got_register (this_frame, regnum, regnum);
1013 }
1014
1015 static const struct frame_unwind sparc32_frame_unwind =
1016 {
1017 NORMAL_FRAME,
1018 sparc32_frame_this_id,
1019 sparc32_frame_prev_register,
1020 NULL,
1021 default_frame_sniffer
1022 };
1023 \f
1024
1025 static CORE_ADDR
1026 sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
1027 {
1028 struct sparc_frame_cache *cache =
1029 sparc32_frame_cache (this_frame, this_cache);
1030
1031 return cache->base;
1032 }
1033
1034 static const struct frame_base sparc32_frame_base =
1035 {
1036 &sparc32_frame_unwind,
1037 sparc32_frame_base_address,
1038 sparc32_frame_base_address,
1039 sparc32_frame_base_address
1040 };
1041
1042 static struct frame_id
1043 sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1044 {
1045 CORE_ADDR sp;
1046
1047 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1048 if (sp & 1)
1049 sp += BIAS;
1050 return frame_id_build (sp, get_frame_pc (this_frame));
1051 }
1052 \f
1053
1054 /* Extract a function return value of TYPE from REGCACHE, and copy
1055 that into VALBUF. */
1056
1057 static void
1058 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
1059 gdb_byte *valbuf)
1060 {
1061 int len = TYPE_LENGTH (type);
1062 gdb_byte buf[8];
1063
1064 gdb_assert (!sparc_structure_or_union_p (type));
1065 gdb_assert (!(sparc_floating_p (type) && len == 16));
1066
1067 if (sparc_floating_p (type))
1068 {
1069 /* Floating return values. */
1070 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1071 if (len > 4)
1072 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1073 memcpy (valbuf, buf, len);
1074 }
1075 else
1076 {
1077 /* Integral and pointer return values. */
1078 gdb_assert (sparc_integral_or_pointer_p (type));
1079
1080 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1081 if (len > 4)
1082 {
1083 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1084 gdb_assert (len == 8);
1085 memcpy (valbuf, buf, 8);
1086 }
1087 else
1088 {
1089 /* Just stripping off any unused bytes should preserve the
1090 signed-ness just fine. */
1091 memcpy (valbuf, buf + 4 - len, len);
1092 }
1093 }
1094 }
1095
1096 /* Store the function return value of type TYPE from VALBUF into
1097 REGCACHE. */
1098
1099 static void
1100 sparc32_store_return_value (struct type *type, struct regcache *regcache,
1101 const gdb_byte *valbuf)
1102 {
1103 int len = TYPE_LENGTH (type);
1104 gdb_byte buf[8];
1105
1106 gdb_assert (!sparc_structure_or_union_p (type));
1107 gdb_assert (!(sparc_floating_p (type) && len == 16));
1108 gdb_assert (len <= 8);
1109
1110 if (sparc_floating_p (type))
1111 {
1112 /* Floating return values. */
1113 memcpy (buf, valbuf, len);
1114 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1115 if (len > 4)
1116 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1117 }
1118 else
1119 {
1120 /* Integral and pointer return values. */
1121 gdb_assert (sparc_integral_or_pointer_p (type));
1122
1123 if (len > 4)
1124 {
1125 gdb_assert (len == 8);
1126 memcpy (buf, valbuf, 8);
1127 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
1128 }
1129 else
1130 {
1131 /* ??? Do we need to do any sign-extension here? */
1132 memcpy (buf + 4 - len, valbuf, len);
1133 }
1134 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
1135 }
1136 }
1137
1138 static enum return_value_convention
1139 sparc32_return_value (struct gdbarch *gdbarch, struct type *func_type,
1140 struct type *type, struct regcache *regcache,
1141 gdb_byte *readbuf, const gdb_byte *writebuf)
1142 {
1143 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1144
1145 /* The psABI says that "...every stack frame reserves the word at
1146 %fp+64. If a function returns a structure, union, or
1147 quad-precision value, this word should hold the address of the
1148 object into which the return value should be copied." This
1149 guarantees that we can always find the return value, not just
1150 before the function returns. */
1151
1152 if (sparc_structure_or_union_p (type)
1153 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1154 {
1155 if (readbuf)
1156 {
1157 ULONGEST sp;
1158 CORE_ADDR addr;
1159
1160 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1161 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1162 read_memory (addr, readbuf, TYPE_LENGTH (type));
1163 }
1164
1165 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1166 }
1167
1168 if (readbuf)
1169 sparc32_extract_return_value (type, regcache, readbuf);
1170 if (writebuf)
1171 sparc32_store_return_value (type, regcache, writebuf);
1172
1173 return RETURN_VALUE_REGISTER_CONVENTION;
1174 }
1175
1176 static int
1177 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1178 {
1179 return (sparc_structure_or_union_p (type)
1180 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1181 }
1182
1183 static int
1184 sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
1185 {
1186 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1187 struct symbol *sym = find_pc_function (pc);
1188
1189 if (sym)
1190 return sparc32_struct_return_from_sym (sym);
1191 return 0;
1192 }
1193
1194 static void
1195 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1196 struct dwarf2_frame_state_reg *reg,
1197 struct frame_info *this_frame)
1198 {
1199 int off;
1200
1201 switch (regnum)
1202 {
1203 case SPARC_G0_REGNUM:
1204 /* Since %g0 is always zero, there is no point in saving it, and
1205 people will be inclined omit it from the CFI. Make sure we
1206 don't warn about that. */
1207 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1208 break;
1209 case SPARC_SP_REGNUM:
1210 reg->how = DWARF2_FRAME_REG_CFA;
1211 break;
1212 case SPARC32_PC_REGNUM:
1213 case SPARC32_NPC_REGNUM:
1214 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1215 off = 8;
1216 if (sparc32_dwarf2_struct_return_p (this_frame))
1217 off += 4;
1218 if (regnum == SPARC32_NPC_REGNUM)
1219 off += 4;
1220 reg->loc.offset = off;
1221 break;
1222 }
1223 }
1224
1225 \f
1226 /* The SPARC Architecture doesn't have hardware single-step support,
1227 and most operating systems don't implement it either, so we provide
1228 software single-step mechanism. */
1229
1230 static CORE_ADDR
1231 sparc_analyze_control_transfer (struct frame_info *frame,
1232 CORE_ADDR pc, CORE_ADDR *npc)
1233 {
1234 unsigned long insn = sparc_fetch_instruction (pc);
1235 int conditional_p = X_COND (insn) & 0x7;
1236 int branch_p = 0;
1237 long offset = 0; /* Must be signed for sign-extend. */
1238
1239 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
1240 {
1241 /* Branch on Integer Register with Prediction (BPr). */
1242 branch_p = 1;
1243 conditional_p = 1;
1244 }
1245 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1246 {
1247 /* Branch on Floating-Point Condition Codes (FBfcc). */
1248 branch_p = 1;
1249 offset = 4 * X_DISP22 (insn);
1250 }
1251 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1252 {
1253 /* Branch on Floating-Point Condition Codes with Prediction
1254 (FBPfcc). */
1255 branch_p = 1;
1256 offset = 4 * X_DISP19 (insn);
1257 }
1258 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1259 {
1260 /* Branch on Integer Condition Codes (Bicc). */
1261 branch_p = 1;
1262 offset = 4 * X_DISP22 (insn);
1263 }
1264 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1265 {
1266 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1267 branch_p = 1;
1268 offset = 4 * X_DISP19 (insn);
1269 }
1270 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1271 {
1272 /* Trap instruction (TRAP). */
1273 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
1274 }
1275
1276 /* FIXME: Handle DONE and RETRY instructions. */
1277
1278 if (branch_p)
1279 {
1280 if (conditional_p)
1281 {
1282 /* For conditional branches, return nPC + 4 iff the annul
1283 bit is 1. */
1284 return (X_A (insn) ? *npc + 4 : 0);
1285 }
1286 else
1287 {
1288 /* For unconditional branches, return the target if its
1289 specified condition is "always" and return nPC + 4 if the
1290 condition is "never". If the annul bit is 1, set *NPC to
1291 zero. */
1292 if (X_COND (insn) == 0x0)
1293 pc = *npc, offset = 4;
1294 if (X_A (insn))
1295 *npc = 0;
1296
1297 gdb_assert (offset != 0);
1298 return pc + offset;
1299 }
1300 }
1301
1302 return 0;
1303 }
1304
1305 static CORE_ADDR
1306 sparc_step_trap (struct frame_info *frame, unsigned long insn)
1307 {
1308 return 0;
1309 }
1310
1311 int
1312 sparc_software_single_step (struct frame_info *frame)
1313 {
1314 struct gdbarch *arch = get_frame_arch (frame);
1315 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1316 struct address_space *aspace = get_frame_address_space (frame);
1317 CORE_ADDR npc, nnpc;
1318
1319 CORE_ADDR pc, orig_npc;
1320
1321 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1322 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
1323
1324 /* Analyze the instruction at PC. */
1325 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
1326 if (npc != 0)
1327 insert_single_step_breakpoint (arch, aspace, npc);
1328
1329 if (nnpc != 0)
1330 insert_single_step_breakpoint (arch, aspace, nnpc);
1331
1332 /* Assert that we have set at least one breakpoint, and that
1333 they're not set at the same spot - unless we're going
1334 from here straight to NULL, i.e. a call or jump to 0. */
1335 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1336 gdb_assert (nnpc != npc || orig_npc == 0);
1337
1338 return 1;
1339 }
1340
1341 static void
1342 sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
1343 {
1344 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1345
1346 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1347 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
1348 }
1349 \f
1350
1351 /* Return the appropriate register set for the core section identified
1352 by SECT_NAME and SECT_SIZE. */
1353
1354 static const struct regset *
1355 sparc_regset_from_core_section (struct gdbarch *gdbarch,
1356 const char *sect_name, size_t sect_size)
1357 {
1358 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1359
1360 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
1361 return tdep->gregset;
1362
1363 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
1364 return tdep->fpregset;
1365
1366 return NULL;
1367 }
1368 \f
1369
1370 static struct gdbarch *
1371 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1372 {
1373 struct gdbarch_tdep *tdep;
1374 struct gdbarch *gdbarch;
1375
1376 /* If there is already a candidate, use it. */
1377 arches = gdbarch_list_lookup_by_info (arches, &info);
1378 if (arches != NULL)
1379 return arches->gdbarch;
1380
1381 /* Allocate space for the new architecture. */
1382 tdep = XZALLOC (struct gdbarch_tdep);
1383 gdbarch = gdbarch_alloc (&info, tdep);
1384
1385 tdep->pc_regnum = SPARC32_PC_REGNUM;
1386 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1387 tdep->step_trap = sparc_step_trap;
1388
1389 set_gdbarch_long_double_bit (gdbarch, 128);
1390 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
1391
1392 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1393 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1394 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1395 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1396 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1397 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1398
1399 /* Register numbers of various important registers. */
1400 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1401 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1402 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1403
1404 /* Call dummy code. */
1405 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1406 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1407 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1408
1409 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1410 set_gdbarch_stabs_argument_has_addr
1411 (gdbarch, sparc32_stabs_argument_has_addr);
1412
1413 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1414
1415 /* Stack grows downward. */
1416 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1417
1418 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
1419
1420 set_gdbarch_frame_args_skip (gdbarch, 8);
1421
1422 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
1423
1424 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1425 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1426
1427 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
1428
1429 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1430
1431 frame_base_set_default (gdbarch, &sparc32_frame_base);
1432
1433 /* Hook in the DWARF CFI frame unwinder. */
1434 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1435 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1436 StackGhost issues have been resolved. */
1437
1438 /* Hook in ABI-specific overrides, if they have been registered. */
1439 gdbarch_init_osabi (info, gdbarch);
1440
1441 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
1442
1443 /* If we have register sets, enable the generic core file support. */
1444 if (tdep->gregset)
1445 set_gdbarch_regset_from_core_section (gdbarch,
1446 sparc_regset_from_core_section);
1447
1448 return gdbarch;
1449 }
1450 \f
1451 /* Helper functions for dealing with register windows. */
1452
1453 void
1454 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1455 {
1456 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1457 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1458 int offset = 0;
1459 gdb_byte buf[8];
1460 int i;
1461
1462 if (sp & 1)
1463 {
1464 /* Registers are 64-bit. */
1465 sp += BIAS;
1466
1467 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1468 {
1469 if (regnum == i || regnum == -1)
1470 {
1471 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1472
1473 /* Handle StackGhost. */
1474 if (i == SPARC_I7_REGNUM)
1475 {
1476 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1477 ULONGEST i7;
1478
1479 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1480 store_unsigned_integer (buf + offset, 8, byte_order,
1481 i7 ^ wcookie);
1482 }
1483
1484 regcache_raw_supply (regcache, i, buf);
1485 }
1486 }
1487 }
1488 else
1489 {
1490 /* Registers are 32-bit. Toss any sign-extension of the stack
1491 pointer. */
1492 sp &= 0xffffffffUL;
1493
1494 /* Clear out the top half of the temporary buffer, and put the
1495 register value in the bottom half if we're in 64-bit mode. */
1496 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1497 {
1498 memset (buf, 0, 4);
1499 offset = 4;
1500 }
1501
1502 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1503 {
1504 if (regnum == i || regnum == -1)
1505 {
1506 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1507 buf + offset, 4);
1508
1509 /* Handle StackGhost. */
1510 if (i == SPARC_I7_REGNUM)
1511 {
1512 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1513 ULONGEST i7;
1514
1515 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1516 store_unsigned_integer (buf + offset, 4, byte_order,
1517 i7 ^ wcookie);
1518 }
1519
1520 regcache_raw_supply (regcache, i, buf);
1521 }
1522 }
1523 }
1524 }
1525
1526 void
1527 sparc_collect_rwindow (const struct regcache *regcache,
1528 CORE_ADDR sp, int regnum)
1529 {
1530 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1531 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1532 int offset = 0;
1533 gdb_byte buf[8];
1534 int i;
1535
1536 if (sp & 1)
1537 {
1538 /* Registers are 64-bit. */
1539 sp += BIAS;
1540
1541 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1542 {
1543 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1544 {
1545 regcache_raw_collect (regcache, i, buf);
1546
1547 /* Handle StackGhost. */
1548 if (i == SPARC_I7_REGNUM)
1549 {
1550 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1551 ULONGEST i7;
1552
1553 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1554 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
1555 }
1556
1557 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1558 }
1559 }
1560 }
1561 else
1562 {
1563 /* Registers are 32-bit. Toss any sign-extension of the stack
1564 pointer. */
1565 sp &= 0xffffffffUL;
1566
1567 /* Only use the bottom half if we're in 64-bit mode. */
1568 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1569 offset = 4;
1570
1571 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1572 {
1573 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1574 {
1575 regcache_raw_collect (regcache, i, buf);
1576
1577 /* Handle StackGhost. */
1578 if (i == SPARC_I7_REGNUM)
1579 {
1580 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1581 ULONGEST i7;
1582
1583 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1584 store_unsigned_integer (buf + offset, 4, byte_order,
1585 i7 ^ wcookie);
1586 }
1587
1588 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1589 buf + offset, 4);
1590 }
1591 }
1592 }
1593 }
1594
1595 /* Helper functions for dealing with register sets. */
1596
1597 void
1598 sparc32_supply_gregset (const struct sparc_gregset *gregset,
1599 struct regcache *regcache,
1600 int regnum, const void *gregs)
1601 {
1602 const gdb_byte *regs = gregs;
1603 int i;
1604
1605 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1606 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1607 regs + gregset->r_psr_offset);
1608
1609 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1610 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1611 regs + gregset->r_pc_offset);
1612
1613 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1614 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1615 regs + gregset->r_npc_offset);
1616
1617 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1618 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1619 regs + gregset->r_y_offset);
1620
1621 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1622 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
1623
1624 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1625 {
1626 int offset = gregset->r_g1_offset;
1627
1628 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1629 {
1630 if (regnum == i || regnum == -1)
1631 regcache_raw_supply (regcache, i, regs + offset);
1632 offset += 4;
1633 }
1634 }
1635
1636 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1637 {
1638 /* Not all of the register set variants include Locals and
1639 Inputs. For those that don't, we read them off the stack. */
1640 if (gregset->r_l0_offset == -1)
1641 {
1642 ULONGEST sp;
1643
1644 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1645 sparc_supply_rwindow (regcache, sp, regnum);
1646 }
1647 else
1648 {
1649 int offset = gregset->r_l0_offset;
1650
1651 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1652 {
1653 if (regnum == i || regnum == -1)
1654 regcache_raw_supply (regcache, i, regs + offset);
1655 offset += 4;
1656 }
1657 }
1658 }
1659 }
1660
1661 void
1662 sparc32_collect_gregset (const struct sparc_gregset *gregset,
1663 const struct regcache *regcache,
1664 int regnum, void *gregs)
1665 {
1666 gdb_byte *regs = gregs;
1667 int i;
1668
1669 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1670 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1671 regs + gregset->r_psr_offset);
1672
1673 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1674 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1675 regs + gregset->r_pc_offset);
1676
1677 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1678 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1679 regs + gregset->r_npc_offset);
1680
1681 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1682 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1683 regs + gregset->r_y_offset);
1684
1685 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1686 {
1687 int offset = gregset->r_g1_offset;
1688
1689 /* %g0 is always zero. */
1690 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1691 {
1692 if (regnum == i || regnum == -1)
1693 regcache_raw_collect (regcache, i, regs + offset);
1694 offset += 4;
1695 }
1696 }
1697
1698 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1699 {
1700 /* Not all of the register set variants include Locals and
1701 Inputs. For those that don't, we read them off the stack. */
1702 if (gregset->r_l0_offset != -1)
1703 {
1704 int offset = gregset->r_l0_offset;
1705
1706 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1707 {
1708 if (regnum == i || regnum == -1)
1709 regcache_raw_collect (regcache, i, regs + offset);
1710 offset += 4;
1711 }
1712 }
1713 }
1714 }
1715
1716 void
1717 sparc32_supply_fpregset (struct regcache *regcache,
1718 int regnum, const void *fpregs)
1719 {
1720 const gdb_byte *regs = fpregs;
1721 int i;
1722
1723 for (i = 0; i < 32; i++)
1724 {
1725 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1726 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1727 }
1728
1729 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1730 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1731 }
1732
1733 void
1734 sparc32_collect_fpregset (const struct regcache *regcache,
1735 int regnum, void *fpregs)
1736 {
1737 gdb_byte *regs = fpregs;
1738 int i;
1739
1740 for (i = 0; i < 32; i++)
1741 {
1742 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1743 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1744 }
1745
1746 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1747 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1748 }
1749 \f
1750
1751 /* SunOS 4. */
1752
1753 /* From <machine/reg.h>. */
1754 const struct sparc_gregset sparc32_sunos4_gregset =
1755 {
1756 0 * 4, /* %psr */
1757 1 * 4, /* %pc */
1758 2 * 4, /* %npc */
1759 3 * 4, /* %y */
1760 -1, /* %wim */
1761 -1, /* %tbr */
1762 4 * 4, /* %g1 */
1763 -1 /* %l0 */
1764 };
1765 \f
1766
1767 /* Provide a prototype to silence -Wmissing-prototypes. */
1768 void _initialize_sparc_tdep (void);
1769
1770 void
1771 _initialize_sparc_tdep (void)
1772 {
1773 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
1774 }
This page took 0.108854 seconds and 5 git commands to generate.