SH: Migrate from 'regset_from_core_section' to 'iterate_over_regset_sections'
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for SPARC.
2
3 Copyright (C) 2003-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "dis-asm.h"
23 #include "dwarf2-frame.h"
24 #include "floatformat.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "inferior.h"
31 #include "symtab.h"
32 #include "objfiles.h"
33 #include "osabi.h"
34 #include "regcache.h"
35 #include "target.h"
36 #include "value.h"
37
38 #include "sparc-tdep.h"
39 #include "sparc-ravenscar-thread.h"
40
41 struct regset;
42
43 /* This file implements the SPARC 32-bit ABI as defined by the section
44 "Low-Level System Information" of the SPARC Compliance Definition
45 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
46 lists changes with respect to the original 32-bit psABI as defined
47 in the "System V ABI, SPARC Processor Supplement".
48
49 Note that if we talk about SunOS, we mean SunOS 4.x, which was
50 BSD-based, which is sometimes (retroactively?) referred to as
51 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
52 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
53 suffering from severe version number inflation). Solaris 2.x is
54 also known as SunOS 5.x, since that's what uname(1) says. Solaris
55 2.x is SVR4-based. */
56
57 /* Please use the sparc32_-prefix for 32-bit specific code, the
58 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
59 code that can handle both. The 64-bit specific code lives in
60 sparc64-tdep.c; don't add any here. */
61
62 /* The SPARC Floating-Point Quad-Precision format is similar to
63 big-endian IA-64 Quad-Precision format. */
64 #define floatformats_sparc_quad floatformats_ia64_quad
65
66 /* The stack pointer is offset from the stack frame by a BIAS of 2047
67 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
68 hosts, so undefine it first. */
69 #undef BIAS
70 #define BIAS 2047
71
72 /* Macros to extract fields from SPARC instructions. */
73 #define X_OP(i) (((i) >> 30) & 0x3)
74 #define X_RD(i) (((i) >> 25) & 0x1f)
75 #define X_A(i) (((i) >> 29) & 1)
76 #define X_COND(i) (((i) >> 25) & 0xf)
77 #define X_OP2(i) (((i) >> 22) & 0x7)
78 #define X_IMM22(i) ((i) & 0x3fffff)
79 #define X_OP3(i) (((i) >> 19) & 0x3f)
80 #define X_RS1(i) (((i) >> 14) & 0x1f)
81 #define X_RS2(i) ((i) & 0x1f)
82 #define X_I(i) (((i) >> 13) & 1)
83 /* Sign extension macros. */
84 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
85 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
86 #define X_DISP10(i) ((((((i) >> 11) && 0x300) | (((i) >> 5) & 0xff)) ^ 0x200) - 0x200)
87 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
88 /* Macros to identify some instructions. */
89 /* RETURN (RETT in V8) */
90 #define X_RETTURN(i) ((X_OP (i) == 0x2) && (X_OP3 (i) == 0x39))
91
92 /* Fetch the instruction at PC. Instructions are always big-endian
93 even if the processor operates in little-endian mode. */
94
95 unsigned long
96 sparc_fetch_instruction (CORE_ADDR pc)
97 {
98 gdb_byte buf[4];
99 unsigned long insn;
100 int i;
101
102 /* If we can't read the instruction at PC, return zero. */
103 if (target_read_memory (pc, buf, sizeof (buf)))
104 return 0;
105
106 insn = 0;
107 for (i = 0; i < sizeof (buf); i++)
108 insn = (insn << 8) | buf[i];
109 return insn;
110 }
111 \f
112
113 /* Return non-zero if the instruction corresponding to PC is an "unimp"
114 instruction. */
115
116 static int
117 sparc_is_unimp_insn (CORE_ADDR pc)
118 {
119 const unsigned long insn = sparc_fetch_instruction (pc);
120
121 return ((insn & 0xc1c00000) == 0);
122 }
123
124 /* Return non-zero if the instruction corresponding to PC is an
125 "annulled" branch, i.e. the annul bit is set. */
126
127 int
128 sparc_is_annulled_branch_insn (CORE_ADDR pc)
129 {
130 /* The branch instructions featuring an annul bit can be identified
131 by the following bit patterns:
132
133 OP=0
134 OP2=1: Branch on Integer Condition Codes with Prediction (BPcc).
135 OP2=2: Branch on Integer Condition Codes (Bcc).
136 OP2=5: Branch on FP Condition Codes with Prediction (FBfcc).
137 OP2=6: Branch on FP Condition Codes (FBcc).
138 OP2=3 && Bit28=0:
139 Branch on Integer Register with Prediction (BPr).
140
141 This leaves out ILLTRAP (OP2=0), SETHI/NOP (OP2=4) and the V8
142 coprocessor branch instructions (Op2=7). */
143
144 const unsigned long insn = sparc_fetch_instruction (pc);
145 const unsigned op2 = X_OP2 (insn);
146
147 if ((X_OP (insn) == 0)
148 && ((op2 == 1) || (op2 == 2) || (op2 == 5) || (op2 == 6)
149 || ((op2 == 3) && ((insn & 0x10000000) == 0))))
150 return X_A (insn);
151 else
152 return 0;
153 }
154
155 /* OpenBSD/sparc includes StackGhost, which according to the author's
156 website http://stackghost.cerias.purdue.edu "... transparently and
157 automatically protects applications' stack frames; more
158 specifically, it guards the return pointers. The protection
159 mechanisms require no application source or binary modification and
160 imposes only a negligible performance penalty."
161
162 The same website provides the following description of how
163 StackGhost works:
164
165 "StackGhost interfaces with the kernel trap handler that would
166 normally write out registers to the stack and the handler that
167 would read them back in. By XORing a cookie into the
168 return-address saved in the user stack when it is actually written
169 to the stack, and then XOR it out when the return-address is pulled
170 from the stack, StackGhost can cause attacker corrupted return
171 pointers to behave in a manner the attacker cannot predict.
172 StackGhost can also use several unused bits in the return pointer
173 to detect a smashed return pointer and abort the process."
174
175 For GDB this means that whenever we're reading %i7 from a stack
176 frame's window save area, we'll have to XOR the cookie.
177
178 More information on StackGuard can be found on in:
179
180 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
181 Stack Protection." 2001. Published in USENIX Security Symposium
182 '01. */
183
184 /* Fetch StackGhost Per-Process XOR cookie. */
185
186 ULONGEST
187 sparc_fetch_wcookie (struct gdbarch *gdbarch)
188 {
189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
190 struct target_ops *ops = &current_target;
191 gdb_byte buf[8];
192 int len;
193
194 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
195 if (len == -1)
196 return 0;
197
198 /* We should have either an 32-bit or an 64-bit cookie. */
199 gdb_assert (len == 4 || len == 8);
200
201 return extract_unsigned_integer (buf, len, byte_order);
202 }
203 \f
204
205 /* The functions on this page are intended to be used to classify
206 function arguments. */
207
208 /* Check whether TYPE is "Integral or Pointer". */
209
210 static int
211 sparc_integral_or_pointer_p (const struct type *type)
212 {
213 int len = TYPE_LENGTH (type);
214
215 switch (TYPE_CODE (type))
216 {
217 case TYPE_CODE_INT:
218 case TYPE_CODE_BOOL:
219 case TYPE_CODE_CHAR:
220 case TYPE_CODE_ENUM:
221 case TYPE_CODE_RANGE:
222 /* We have byte, half-word, word and extended-word/doubleword
223 integral types. The doubleword is an extension to the
224 original 32-bit ABI by the SCD 2.4.x. */
225 return (len == 1 || len == 2 || len == 4 || len == 8);
226 case TYPE_CODE_PTR:
227 case TYPE_CODE_REF:
228 /* Allow either 32-bit or 64-bit pointers. */
229 return (len == 4 || len == 8);
230 default:
231 break;
232 }
233
234 return 0;
235 }
236
237 /* Check whether TYPE is "Floating". */
238
239 static int
240 sparc_floating_p (const struct type *type)
241 {
242 switch (TYPE_CODE (type))
243 {
244 case TYPE_CODE_FLT:
245 {
246 int len = TYPE_LENGTH (type);
247 return (len == 4 || len == 8 || len == 16);
248 }
249 default:
250 break;
251 }
252
253 return 0;
254 }
255
256 /* Check whether TYPE is "Complex Floating". */
257
258 static int
259 sparc_complex_floating_p (const struct type *type)
260 {
261 switch (TYPE_CODE (type))
262 {
263 case TYPE_CODE_COMPLEX:
264 {
265 int len = TYPE_LENGTH (type);
266 return (len == 8 || len == 16 || len == 32);
267 }
268 default:
269 break;
270 }
271
272 return 0;
273 }
274
275 /* Check whether TYPE is "Structure or Union".
276
277 In terms of Ada subprogram calls, arrays are treated the same as
278 struct and union types. So this function also returns non-zero
279 for array types. */
280
281 static int
282 sparc_structure_or_union_p (const struct type *type)
283 {
284 switch (TYPE_CODE (type))
285 {
286 case TYPE_CODE_STRUCT:
287 case TYPE_CODE_UNION:
288 case TYPE_CODE_ARRAY:
289 return 1;
290 default:
291 break;
292 }
293
294 return 0;
295 }
296
297 /* Register information. */
298
299 static const char *sparc32_register_names[] =
300 {
301 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
302 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
303 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
304 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
305
306 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
307 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
308 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
309 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
310
311 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
312 };
313
314 /* Total number of registers. */
315 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
316
317 /* We provide the aliases %d0..%d30 for the floating registers as
318 "psuedo" registers. */
319
320 static const char *sparc32_pseudo_register_names[] =
321 {
322 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
323 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
324 };
325
326 /* Total number of pseudo registers. */
327 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
328
329 /* Return the name of register REGNUM. */
330
331 static const char *
332 sparc32_register_name (struct gdbarch *gdbarch, int regnum)
333 {
334 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
335 return sparc32_register_names[regnum];
336
337 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
338 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
339
340 return NULL;
341 }
342 \f
343 /* Construct types for ISA-specific registers. */
344
345 static struct type *
346 sparc_psr_type (struct gdbarch *gdbarch)
347 {
348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
349
350 if (!tdep->sparc_psr_type)
351 {
352 struct type *type;
353
354 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
355 append_flags_type_flag (type, 5, "ET");
356 append_flags_type_flag (type, 6, "PS");
357 append_flags_type_flag (type, 7, "S");
358 append_flags_type_flag (type, 12, "EF");
359 append_flags_type_flag (type, 13, "EC");
360
361 tdep->sparc_psr_type = type;
362 }
363
364 return tdep->sparc_psr_type;
365 }
366
367 static struct type *
368 sparc_fsr_type (struct gdbarch *gdbarch)
369 {
370 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
371
372 if (!tdep->sparc_fsr_type)
373 {
374 struct type *type;
375
376 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
377 append_flags_type_flag (type, 0, "NXA");
378 append_flags_type_flag (type, 1, "DZA");
379 append_flags_type_flag (type, 2, "UFA");
380 append_flags_type_flag (type, 3, "OFA");
381 append_flags_type_flag (type, 4, "NVA");
382 append_flags_type_flag (type, 5, "NXC");
383 append_flags_type_flag (type, 6, "DZC");
384 append_flags_type_flag (type, 7, "UFC");
385 append_flags_type_flag (type, 8, "OFC");
386 append_flags_type_flag (type, 9, "NVC");
387 append_flags_type_flag (type, 22, "NS");
388 append_flags_type_flag (type, 23, "NXM");
389 append_flags_type_flag (type, 24, "DZM");
390 append_flags_type_flag (type, 25, "UFM");
391 append_flags_type_flag (type, 26, "OFM");
392 append_flags_type_flag (type, 27, "NVM");
393
394 tdep->sparc_fsr_type = type;
395 }
396
397 return tdep->sparc_fsr_type;
398 }
399
400 /* Return the GDB type object for the "standard" data type of data in
401 register REGNUM. */
402
403 static struct type *
404 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
405 {
406 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
407 return builtin_type (gdbarch)->builtin_float;
408
409 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
410 return builtin_type (gdbarch)->builtin_double;
411
412 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
413 return builtin_type (gdbarch)->builtin_data_ptr;
414
415 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
416 return builtin_type (gdbarch)->builtin_func_ptr;
417
418 if (regnum == SPARC32_PSR_REGNUM)
419 return sparc_psr_type (gdbarch);
420
421 if (regnum == SPARC32_FSR_REGNUM)
422 return sparc_fsr_type (gdbarch);
423
424 return builtin_type (gdbarch)->builtin_int32;
425 }
426
427 static enum register_status
428 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
429 struct regcache *regcache,
430 int regnum, gdb_byte *buf)
431 {
432 enum register_status status;
433
434 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
435
436 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
437 status = regcache_raw_read (regcache, regnum, buf);
438 if (status == REG_VALID)
439 status = regcache_raw_read (regcache, regnum + 1, buf + 4);
440 return status;
441 }
442
443 static void
444 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
445 struct regcache *regcache,
446 int regnum, const gdb_byte *buf)
447 {
448 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
449
450 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
451 regcache_raw_write (regcache, regnum, buf);
452 regcache_raw_write (regcache, regnum + 1, buf + 4);
453 }
454 \f
455 /* Implement "in_function_epilogue_p". */
456
457 int
458 sparc_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
459 {
460 /* This function must return true if we are one instruction after an
461 instruction that destroyed the stack frame of the current
462 function. The SPARC instructions used to restore the callers
463 stack frame are RESTORE and RETURN/RETT.
464
465 Of these RETURN/RETT is a branch instruction and thus we return
466 true if we are in its delay slot.
467
468 RESTORE is almost always found in the delay slot of a branch
469 instruction that transfers control to the caller, such as JMPL.
470 Thus the next instruction is in the caller frame and we don't
471 need to do anything about it. */
472
473 unsigned int insn = sparc_fetch_instruction (pc - 4);
474
475 return X_RETTURN (insn);
476 }
477 \f
478
479 static CORE_ADDR
480 sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
481 {
482 /* The ABI requires double-word alignment. */
483 return address & ~0x7;
484 }
485
486 static CORE_ADDR
487 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
488 CORE_ADDR funcaddr,
489 struct value **args, int nargs,
490 struct type *value_type,
491 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
492 struct regcache *regcache)
493 {
494 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
495
496 *bp_addr = sp - 4;
497 *real_pc = funcaddr;
498
499 if (using_struct_return (gdbarch, NULL, value_type))
500 {
501 gdb_byte buf[4];
502
503 /* This is an UNIMP instruction. */
504 store_unsigned_integer (buf, 4, byte_order,
505 TYPE_LENGTH (value_type) & 0x1fff);
506 write_memory (sp - 8, buf, 4);
507 return sp - 8;
508 }
509
510 return sp - 4;
511 }
512
513 static CORE_ADDR
514 sparc32_store_arguments (struct regcache *regcache, int nargs,
515 struct value **args, CORE_ADDR sp,
516 int struct_return, CORE_ADDR struct_addr)
517 {
518 struct gdbarch *gdbarch = get_regcache_arch (regcache);
519 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
520 /* Number of words in the "parameter array". */
521 int num_elements = 0;
522 int element = 0;
523 int i;
524
525 for (i = 0; i < nargs; i++)
526 {
527 struct type *type = value_type (args[i]);
528 int len = TYPE_LENGTH (type);
529
530 if (sparc_structure_or_union_p (type)
531 || (sparc_floating_p (type) && len == 16)
532 || sparc_complex_floating_p (type))
533 {
534 /* Structure, Union and Quad-Precision Arguments. */
535 sp -= len;
536
537 /* Use doubleword alignment for these values. That's always
538 correct, and wasting a few bytes shouldn't be a problem. */
539 sp &= ~0x7;
540
541 write_memory (sp, value_contents (args[i]), len);
542 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
543 num_elements++;
544 }
545 else if (sparc_floating_p (type))
546 {
547 /* Floating arguments. */
548 gdb_assert (len == 4 || len == 8);
549 num_elements += (len / 4);
550 }
551 else
552 {
553 /* Integral and pointer arguments. */
554 gdb_assert (sparc_integral_or_pointer_p (type));
555
556 if (len < 4)
557 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
558 args[i]);
559 num_elements += ((len + 3) / 4);
560 }
561 }
562
563 /* Always allocate at least six words. */
564 sp -= max (6, num_elements) * 4;
565
566 /* The psABI says that "Software convention requires space for the
567 struct/union return value pointer, even if the word is unused." */
568 sp -= 4;
569
570 /* The psABI says that "Although software convention and the
571 operating system require every stack frame to be doubleword
572 aligned." */
573 sp &= ~0x7;
574
575 for (i = 0; i < nargs; i++)
576 {
577 const bfd_byte *valbuf = value_contents (args[i]);
578 struct type *type = value_type (args[i]);
579 int len = TYPE_LENGTH (type);
580
581 gdb_assert (len == 4 || len == 8);
582
583 if (element < 6)
584 {
585 int regnum = SPARC_O0_REGNUM + element;
586
587 regcache_cooked_write (regcache, regnum, valbuf);
588 if (len > 4 && element < 5)
589 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
590 }
591
592 /* Always store the argument in memory. */
593 write_memory (sp + 4 + element * 4, valbuf, len);
594 element += len / 4;
595 }
596
597 gdb_assert (element == num_elements);
598
599 if (struct_return)
600 {
601 gdb_byte buf[4];
602
603 store_unsigned_integer (buf, 4, byte_order, struct_addr);
604 write_memory (sp, buf, 4);
605 }
606
607 return sp;
608 }
609
610 static CORE_ADDR
611 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
612 struct regcache *regcache, CORE_ADDR bp_addr,
613 int nargs, struct value **args, CORE_ADDR sp,
614 int struct_return, CORE_ADDR struct_addr)
615 {
616 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
617
618 /* Set return address. */
619 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
620
621 /* Set up function arguments. */
622 sp = sparc32_store_arguments (regcache, nargs, args, sp,
623 struct_return, struct_addr);
624
625 /* Allocate the 16-word window save area. */
626 sp -= 16 * 4;
627
628 /* Stack should be doubleword aligned at this point. */
629 gdb_assert (sp % 8 == 0);
630
631 /* Finally, update the stack pointer. */
632 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
633
634 return sp;
635 }
636 \f
637
638 /* Use the program counter to determine the contents and size of a
639 breakpoint instruction. Return a pointer to a string of bytes that
640 encode a breakpoint instruction, store the length of the string in
641 *LEN and optionally adjust *PC to point to the correct memory
642 location for inserting the breakpoint. */
643
644 static const gdb_byte *
645 sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
646 {
647 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
648
649 *len = sizeof (break_insn);
650 return break_insn;
651 }
652 \f
653
654 /* Allocate and initialize a frame cache. */
655
656 static struct sparc_frame_cache *
657 sparc_alloc_frame_cache (void)
658 {
659 struct sparc_frame_cache *cache;
660
661 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
662
663 /* Base address. */
664 cache->base = 0;
665 cache->pc = 0;
666
667 /* Frameless until proven otherwise. */
668 cache->frameless_p = 1;
669 cache->frame_offset = 0;
670 cache->saved_regs_mask = 0;
671 cache->copied_regs_mask = 0;
672 cache->struct_return_p = 0;
673
674 return cache;
675 }
676
677 /* GCC generates several well-known sequences of instructions at the begining
678 of each function prologue when compiling with -fstack-check. If one of
679 such sequences starts at START_PC, then return the address of the
680 instruction immediately past this sequence. Otherwise, return START_PC. */
681
682 static CORE_ADDR
683 sparc_skip_stack_check (const CORE_ADDR start_pc)
684 {
685 CORE_ADDR pc = start_pc;
686 unsigned long insn;
687 int offset_stack_checking_sequence = 0;
688 int probing_loop = 0;
689
690 /* With GCC, all stack checking sequences begin with the same two
691 instructions, plus an optional one in the case of a probing loop:
692
693 sethi <some immediate>, %g1
694 sub %sp, %g1, %g1
695
696 or:
697
698 sethi <some immediate>, %g1
699 sethi <some immediate>, %g4
700 sub %sp, %g1, %g1
701
702 or:
703
704 sethi <some immediate>, %g1
705 sub %sp, %g1, %g1
706 sethi <some immediate>, %g4
707
708 If the optional instruction is found (setting g4), assume that a
709 probing loop will follow. */
710
711 /* sethi <some immediate>, %g1 */
712 insn = sparc_fetch_instruction (pc);
713 pc = pc + 4;
714 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
715 return start_pc;
716
717 /* optional: sethi <some immediate>, %g4 */
718 insn = sparc_fetch_instruction (pc);
719 pc = pc + 4;
720 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
721 {
722 probing_loop = 1;
723 insn = sparc_fetch_instruction (pc);
724 pc = pc + 4;
725 }
726
727 /* sub %sp, %g1, %g1 */
728 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
729 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
730 return start_pc;
731
732 insn = sparc_fetch_instruction (pc);
733 pc = pc + 4;
734
735 /* optional: sethi <some immediate>, %g4 */
736 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
737 {
738 probing_loop = 1;
739 insn = sparc_fetch_instruction (pc);
740 pc = pc + 4;
741 }
742
743 /* First possible sequence:
744 [first two instructions above]
745 clr [%g1 - some immediate] */
746
747 /* clr [%g1 - some immediate] */
748 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
749 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
750 {
751 /* Valid stack-check sequence, return the new PC. */
752 return pc;
753 }
754
755 /* Second possible sequence: A small number of probes.
756 [first two instructions above]
757 clr [%g1]
758 add %g1, -<some immediate>, %g1
759 clr [%g1]
760 [repeat the two instructions above any (small) number of times]
761 clr [%g1 - some immediate] */
762
763 /* clr [%g1] */
764 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
765 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
766 {
767 while (1)
768 {
769 /* add %g1, -<some immediate>, %g1 */
770 insn = sparc_fetch_instruction (pc);
771 pc = pc + 4;
772 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
773 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
774 break;
775
776 /* clr [%g1] */
777 insn = sparc_fetch_instruction (pc);
778 pc = pc + 4;
779 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
780 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
781 return start_pc;
782 }
783
784 /* clr [%g1 - some immediate] */
785 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
786 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
787 return start_pc;
788
789 /* We found a valid stack-check sequence, return the new PC. */
790 return pc;
791 }
792
793 /* Third sequence: A probing loop.
794 [first three instructions above]
795 sub %g1, %g4, %g4
796 cmp %g1, %g4
797 be <disp>
798 add %g1, -<some immediate>, %g1
799 ba <disp>
800 clr [%g1]
801
802 And an optional last probe for the remainder:
803
804 clr [%g4 - some immediate] */
805
806 if (probing_loop)
807 {
808 /* sub %g1, %g4, %g4 */
809 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
810 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
811 return start_pc;
812
813 /* cmp %g1, %g4 */
814 insn = sparc_fetch_instruction (pc);
815 pc = pc + 4;
816 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
817 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
818 return start_pc;
819
820 /* be <disp> */
821 insn = sparc_fetch_instruction (pc);
822 pc = pc + 4;
823 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
824 return start_pc;
825
826 /* add %g1, -<some immediate>, %g1 */
827 insn = sparc_fetch_instruction (pc);
828 pc = pc + 4;
829 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
830 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
831 return start_pc;
832
833 /* ba <disp> */
834 insn = sparc_fetch_instruction (pc);
835 pc = pc + 4;
836 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
837 return start_pc;
838
839 /* clr [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
840 insn = sparc_fetch_instruction (pc);
841 pc = pc + 4;
842 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
843 && X_RD (insn) == 0 && X_RS1 (insn) == 1
844 && (!X_I(insn) || X_SIMM13 (insn) == 0)))
845 return start_pc;
846
847 /* We found a valid stack-check sequence, return the new PC. */
848
849 /* optional: clr [%g4 - some immediate] */
850 insn = sparc_fetch_instruction (pc);
851 pc = pc + 4;
852 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
853 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
854 return pc - 4;
855 else
856 return pc;
857 }
858
859 /* No stack check code in our prologue, return the start_pc. */
860 return start_pc;
861 }
862
863 /* Record the effect of a SAVE instruction on CACHE. */
864
865 void
866 sparc_record_save_insn (struct sparc_frame_cache *cache)
867 {
868 /* The frame is set up. */
869 cache->frameless_p = 0;
870
871 /* The frame pointer contains the CFA. */
872 cache->frame_offset = 0;
873
874 /* The `local' and `in' registers are all saved. */
875 cache->saved_regs_mask = 0xffff;
876
877 /* The `out' registers are all renamed. */
878 cache->copied_regs_mask = 0xff;
879 }
880
881 /* Do a full analysis of the prologue at PC and update CACHE accordingly.
882 Bail out early if CURRENT_PC is reached. Return the address where
883 the analysis stopped.
884
885 We handle both the traditional register window model and the single
886 register window (aka flat) model. */
887
888 CORE_ADDR
889 sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
890 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
891 {
892 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
893 unsigned long insn;
894 int offset = 0;
895 int dest = -1;
896
897 pc = sparc_skip_stack_check (pc);
898
899 if (current_pc <= pc)
900 return current_pc;
901
902 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
903 SPARC the linker usually defines a symbol (typically
904 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
905 This symbol makes us end up here with PC pointing at the start of
906 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
907 would do our normal prologue analysis, we would probably conclude
908 that we've got a frame when in reality we don't, since the
909 dynamic linker patches up the first PLT with some code that
910 starts with a SAVE instruction. Patch up PC such that it points
911 at the start of our PLT entry. */
912 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc))
913 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
914
915 insn = sparc_fetch_instruction (pc);
916
917 /* Recognize store insns and record their sources. */
918 while (X_OP (insn) == 3
919 && (X_OP3 (insn) == 0x4 /* stw */
920 || X_OP3 (insn) == 0x7 /* std */
921 || X_OP3 (insn) == 0xe) /* stx */
922 && X_RS1 (insn) == SPARC_SP_REGNUM)
923 {
924 int regnum = X_RD (insn);
925
926 /* Recognize stores into the corresponding stack slots. */
927 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
928 && ((X_I (insn)
929 && X_SIMM13 (insn) == (X_OP3 (insn) == 0xe
930 ? (regnum - SPARC_L0_REGNUM) * 8 + BIAS
931 : (regnum - SPARC_L0_REGNUM) * 4))
932 || (!X_I (insn) && regnum == SPARC_L0_REGNUM)))
933 {
934 cache->saved_regs_mask |= (1 << (regnum - SPARC_L0_REGNUM));
935 if (X_OP3 (insn) == 0x7)
936 cache->saved_regs_mask |= (1 << (regnum + 1 - SPARC_L0_REGNUM));
937 }
938
939 offset += 4;
940
941 insn = sparc_fetch_instruction (pc + offset);
942 }
943
944 /* Recognize a SETHI insn and record its destination. */
945 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
946 {
947 dest = X_RD (insn);
948 offset += 4;
949
950 insn = sparc_fetch_instruction (pc + offset);
951 }
952
953 /* Allow for an arithmetic operation on DEST or %g1. */
954 if (X_OP (insn) == 2 && X_I (insn)
955 && (X_RD (insn) == 1 || X_RD (insn) == dest))
956 {
957 offset += 4;
958
959 insn = sparc_fetch_instruction (pc + offset);
960 }
961
962 /* Check for the SAVE instruction that sets up the frame. */
963 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
964 {
965 sparc_record_save_insn (cache);
966 offset += 4;
967 return pc + offset;
968 }
969
970 /* Check for an arithmetic operation on %sp. */
971 if (X_OP (insn) == 2
972 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
973 && X_RS1 (insn) == SPARC_SP_REGNUM
974 && X_RD (insn) == SPARC_SP_REGNUM)
975 {
976 if (X_I (insn))
977 {
978 cache->frame_offset = X_SIMM13 (insn);
979 if (X_OP3 (insn) == 0)
980 cache->frame_offset = -cache->frame_offset;
981 }
982 offset += 4;
983
984 insn = sparc_fetch_instruction (pc + offset);
985
986 /* Check for an arithmetic operation that sets up the frame. */
987 if (X_OP (insn) == 2
988 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
989 && X_RS1 (insn) == SPARC_SP_REGNUM
990 && X_RD (insn) == SPARC_FP_REGNUM)
991 {
992 cache->frameless_p = 0;
993 cache->frame_offset = 0;
994 /* We could check that the amount subtracted to %sp above is the
995 same as the one added here, but this seems superfluous. */
996 cache->copied_regs_mask |= 0x40;
997 offset += 4;
998
999 insn = sparc_fetch_instruction (pc + offset);
1000 }
1001
1002 /* Check for a move (or) operation that copies the return register. */
1003 if (X_OP (insn) == 2
1004 && X_OP3 (insn) == 0x2
1005 && !X_I (insn)
1006 && X_RS1 (insn) == SPARC_G0_REGNUM
1007 && X_RS2 (insn) == SPARC_O7_REGNUM
1008 && X_RD (insn) == SPARC_I7_REGNUM)
1009 {
1010 cache->copied_regs_mask |= 0x80;
1011 offset += 4;
1012 }
1013
1014 return pc + offset;
1015 }
1016
1017 return pc;
1018 }
1019
1020 static CORE_ADDR
1021 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1022 {
1023 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1024 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
1025 }
1026
1027 /* Return PC of first real instruction of the function starting at
1028 START_PC. */
1029
1030 static CORE_ADDR
1031 sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1032 {
1033 struct symtab_and_line sal;
1034 CORE_ADDR func_start, func_end;
1035 struct sparc_frame_cache cache;
1036
1037 /* This is the preferred method, find the end of the prologue by
1038 using the debugging information. */
1039 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
1040 {
1041 sal = find_pc_line (func_start, 0);
1042
1043 if (sal.end < func_end
1044 && start_pc <= sal.end)
1045 return sal.end;
1046 }
1047
1048 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
1049
1050 /* The psABI says that "Although the first 6 words of arguments
1051 reside in registers, the standard stack frame reserves space for
1052 them.". It also suggests that a function may use that space to
1053 "write incoming arguments 0 to 5" into that space, and that's
1054 indeed what GCC seems to be doing. In that case GCC will
1055 generate debug information that points to the stack slots instead
1056 of the registers, so we should consider the instructions that
1057 write out these incoming arguments onto the stack. */
1058
1059 while (1)
1060 {
1061 unsigned long insn = sparc_fetch_instruction (start_pc);
1062
1063 /* Recognize instructions that store incoming arguments into the
1064 corresponding stack slots. */
1065 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04
1066 && X_I (insn) && X_RS1 (insn) == SPARC_FP_REGNUM)
1067 {
1068 int regnum = X_RD (insn);
1069
1070 /* Case of arguments still in %o[0..5]. */
1071 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O5_REGNUM
1072 && !(cache.copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM)))
1073 && X_SIMM13 (insn) == 68 + (regnum - SPARC_O0_REGNUM) * 4)
1074 {
1075 start_pc += 4;
1076 continue;
1077 }
1078
1079 /* Case of arguments copied into %i[0..5]. */
1080 if (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I5_REGNUM
1081 && (cache.copied_regs_mask & (1 << (regnum - SPARC_I0_REGNUM)))
1082 && X_SIMM13 (insn) == 68 + (regnum - SPARC_I0_REGNUM) * 4)
1083 {
1084 start_pc += 4;
1085 continue;
1086 }
1087 }
1088
1089 break;
1090 }
1091
1092 return start_pc;
1093 }
1094
1095 /* Normal frames. */
1096
1097 struct sparc_frame_cache *
1098 sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
1099 {
1100 struct sparc_frame_cache *cache;
1101
1102 if (*this_cache)
1103 return *this_cache;
1104
1105 cache = sparc_alloc_frame_cache ();
1106 *this_cache = cache;
1107
1108 cache->pc = get_frame_func (this_frame);
1109 if (cache->pc != 0)
1110 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
1111 get_frame_pc (this_frame), cache);
1112
1113 if (cache->frameless_p)
1114 {
1115 /* This function is frameless, so %fp (%i6) holds the frame
1116 pointer for our calling frame. Use %sp (%o6) as this frame's
1117 base address. */
1118 cache->base =
1119 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1120 }
1121 else
1122 {
1123 /* For normal frames, %fp (%i6) holds the frame pointer, the
1124 base address for the current stack frame. */
1125 cache->base =
1126 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
1127 }
1128
1129 cache->base += cache->frame_offset;
1130
1131 if (cache->base & 1)
1132 cache->base += BIAS;
1133
1134 return cache;
1135 }
1136
1137 static int
1138 sparc32_struct_return_from_sym (struct symbol *sym)
1139 {
1140 struct type *type = check_typedef (SYMBOL_TYPE (sym));
1141 enum type_code code = TYPE_CODE (type);
1142
1143 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1144 {
1145 type = check_typedef (TYPE_TARGET_TYPE (type));
1146 if (sparc_structure_or_union_p (type)
1147 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1148 return 1;
1149 }
1150
1151 return 0;
1152 }
1153
1154 struct sparc_frame_cache *
1155 sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
1156 {
1157 struct sparc_frame_cache *cache;
1158 struct symbol *sym;
1159
1160 if (*this_cache)
1161 return *this_cache;
1162
1163 cache = sparc_frame_cache (this_frame, this_cache);
1164
1165 sym = find_pc_function (cache->pc);
1166 if (sym)
1167 {
1168 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
1169 }
1170 else
1171 {
1172 /* There is no debugging information for this function to
1173 help us determine whether this function returns a struct
1174 or not. So we rely on another heuristic which is to check
1175 the instruction at the return address and see if this is
1176 an "unimp" instruction. If it is, then it is a struct-return
1177 function. */
1178 CORE_ADDR pc;
1179 int regnum =
1180 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1181
1182 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
1183 if (sparc_is_unimp_insn (pc))
1184 cache->struct_return_p = 1;
1185 }
1186
1187 return cache;
1188 }
1189
1190 static void
1191 sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
1192 struct frame_id *this_id)
1193 {
1194 struct sparc_frame_cache *cache =
1195 sparc32_frame_cache (this_frame, this_cache);
1196
1197 /* This marks the outermost frame. */
1198 if (cache->base == 0)
1199 return;
1200
1201 (*this_id) = frame_id_build (cache->base, cache->pc);
1202 }
1203
1204 static struct value *
1205 sparc32_frame_prev_register (struct frame_info *this_frame,
1206 void **this_cache, int regnum)
1207 {
1208 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1209 struct sparc_frame_cache *cache =
1210 sparc32_frame_cache (this_frame, this_cache);
1211
1212 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
1213 {
1214 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
1215
1216 /* If this functions has a Structure, Union or Quad-Precision
1217 return value, we have to skip the UNIMP instruction that encodes
1218 the size of the structure. */
1219 if (cache->struct_return_p)
1220 pc += 4;
1221
1222 regnum =
1223 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1224 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1225 return frame_unwind_got_constant (this_frame, regnum, pc);
1226 }
1227
1228 /* Handle StackGhost. */
1229 {
1230 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1231
1232 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1233 {
1234 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1235 ULONGEST i7;
1236
1237 /* Read the value in from memory. */
1238 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1239 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
1240 }
1241 }
1242
1243 /* The previous frame's `local' and `in' registers may have been saved
1244 in the register save area. */
1245 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1246 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
1247 {
1248 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1249
1250 return frame_unwind_got_memory (this_frame, regnum, addr);
1251 }
1252
1253 /* The previous frame's `out' registers may be accessible as the current
1254 frame's `in' registers. */
1255 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1256 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
1257 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1258
1259 return frame_unwind_got_register (this_frame, regnum, regnum);
1260 }
1261
1262 static const struct frame_unwind sparc32_frame_unwind =
1263 {
1264 NORMAL_FRAME,
1265 default_frame_unwind_stop_reason,
1266 sparc32_frame_this_id,
1267 sparc32_frame_prev_register,
1268 NULL,
1269 default_frame_sniffer
1270 };
1271 \f
1272
1273 static CORE_ADDR
1274 sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
1275 {
1276 struct sparc_frame_cache *cache =
1277 sparc32_frame_cache (this_frame, this_cache);
1278
1279 return cache->base;
1280 }
1281
1282 static const struct frame_base sparc32_frame_base =
1283 {
1284 &sparc32_frame_unwind,
1285 sparc32_frame_base_address,
1286 sparc32_frame_base_address,
1287 sparc32_frame_base_address
1288 };
1289
1290 static struct frame_id
1291 sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1292 {
1293 CORE_ADDR sp;
1294
1295 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1296 if (sp & 1)
1297 sp += BIAS;
1298 return frame_id_build (sp, get_frame_pc (this_frame));
1299 }
1300 \f
1301
1302 /* Extract a function return value of TYPE from REGCACHE, and copy
1303 that into VALBUF. */
1304
1305 static void
1306 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
1307 gdb_byte *valbuf)
1308 {
1309 int len = TYPE_LENGTH (type);
1310 gdb_byte buf[32];
1311
1312 gdb_assert (!sparc_structure_or_union_p (type));
1313 gdb_assert (!(sparc_floating_p (type) && len == 16));
1314
1315 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
1316 {
1317 /* Floating return values. */
1318 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1319 if (len > 4)
1320 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1321 if (len > 8)
1322 {
1323 regcache_cooked_read (regcache, SPARC_F2_REGNUM, buf + 8);
1324 regcache_cooked_read (regcache, SPARC_F3_REGNUM, buf + 12);
1325 }
1326 if (len > 16)
1327 {
1328 regcache_cooked_read (regcache, SPARC_F4_REGNUM, buf + 16);
1329 regcache_cooked_read (regcache, SPARC_F5_REGNUM, buf + 20);
1330 regcache_cooked_read (regcache, SPARC_F6_REGNUM, buf + 24);
1331 regcache_cooked_read (regcache, SPARC_F7_REGNUM, buf + 28);
1332 }
1333 memcpy (valbuf, buf, len);
1334 }
1335 else
1336 {
1337 /* Integral and pointer return values. */
1338 gdb_assert (sparc_integral_or_pointer_p (type));
1339
1340 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1341 if (len > 4)
1342 {
1343 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1344 gdb_assert (len == 8);
1345 memcpy (valbuf, buf, 8);
1346 }
1347 else
1348 {
1349 /* Just stripping off any unused bytes should preserve the
1350 signed-ness just fine. */
1351 memcpy (valbuf, buf + 4 - len, len);
1352 }
1353 }
1354 }
1355
1356 /* Store the function return value of type TYPE from VALBUF into
1357 REGCACHE. */
1358
1359 static void
1360 sparc32_store_return_value (struct type *type, struct regcache *regcache,
1361 const gdb_byte *valbuf)
1362 {
1363 int len = TYPE_LENGTH (type);
1364 gdb_byte buf[8];
1365
1366 gdb_assert (!sparc_structure_or_union_p (type));
1367 gdb_assert (!(sparc_floating_p (type) && len == 16));
1368 gdb_assert (len <= 8);
1369
1370 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
1371 {
1372 /* Floating return values. */
1373 memcpy (buf, valbuf, len);
1374 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1375 if (len > 4)
1376 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1377 if (len > 8)
1378 {
1379 regcache_cooked_write (regcache, SPARC_F2_REGNUM, buf + 8);
1380 regcache_cooked_write (regcache, SPARC_F3_REGNUM, buf + 12);
1381 }
1382 if (len > 16)
1383 {
1384 regcache_cooked_write (regcache, SPARC_F4_REGNUM, buf + 16);
1385 regcache_cooked_write (regcache, SPARC_F5_REGNUM, buf + 20);
1386 regcache_cooked_write (regcache, SPARC_F6_REGNUM, buf + 24);
1387 regcache_cooked_write (regcache, SPARC_F7_REGNUM, buf + 28);
1388 }
1389 }
1390 else
1391 {
1392 /* Integral and pointer return values. */
1393 gdb_assert (sparc_integral_or_pointer_p (type));
1394
1395 if (len > 4)
1396 {
1397 gdb_assert (len == 8);
1398 memcpy (buf, valbuf, 8);
1399 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
1400 }
1401 else
1402 {
1403 /* ??? Do we need to do any sign-extension here? */
1404 memcpy (buf + 4 - len, valbuf, len);
1405 }
1406 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
1407 }
1408 }
1409
1410 static enum return_value_convention
1411 sparc32_return_value (struct gdbarch *gdbarch, struct value *function,
1412 struct type *type, struct regcache *regcache,
1413 gdb_byte *readbuf, const gdb_byte *writebuf)
1414 {
1415 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1416
1417 /* The psABI says that "...every stack frame reserves the word at
1418 %fp+64. If a function returns a structure, union, or
1419 quad-precision value, this word should hold the address of the
1420 object into which the return value should be copied." This
1421 guarantees that we can always find the return value, not just
1422 before the function returns. */
1423
1424 if (sparc_structure_or_union_p (type)
1425 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1426 {
1427 ULONGEST sp;
1428 CORE_ADDR addr;
1429
1430 if (readbuf)
1431 {
1432 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1433 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1434 read_memory (addr, readbuf, TYPE_LENGTH (type));
1435 }
1436 if (writebuf)
1437 {
1438 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1439 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1440 write_memory (addr, writebuf, TYPE_LENGTH (type));
1441 }
1442
1443 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1444 }
1445
1446 if (readbuf)
1447 sparc32_extract_return_value (type, regcache, readbuf);
1448 if (writebuf)
1449 sparc32_store_return_value (type, regcache, writebuf);
1450
1451 return RETURN_VALUE_REGISTER_CONVENTION;
1452 }
1453
1454 static int
1455 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1456 {
1457 return (sparc_structure_or_union_p (type)
1458 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)
1459 || sparc_complex_floating_p (type));
1460 }
1461
1462 static int
1463 sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
1464 {
1465 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1466 struct symbol *sym = find_pc_function (pc);
1467
1468 if (sym)
1469 return sparc32_struct_return_from_sym (sym);
1470 return 0;
1471 }
1472
1473 static void
1474 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1475 struct dwarf2_frame_state_reg *reg,
1476 struct frame_info *this_frame)
1477 {
1478 int off;
1479
1480 switch (regnum)
1481 {
1482 case SPARC_G0_REGNUM:
1483 /* Since %g0 is always zero, there is no point in saving it, and
1484 people will be inclined omit it from the CFI. Make sure we
1485 don't warn about that. */
1486 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1487 break;
1488 case SPARC_SP_REGNUM:
1489 reg->how = DWARF2_FRAME_REG_CFA;
1490 break;
1491 case SPARC32_PC_REGNUM:
1492 case SPARC32_NPC_REGNUM:
1493 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1494 off = 8;
1495 if (sparc32_dwarf2_struct_return_p (this_frame))
1496 off += 4;
1497 if (regnum == SPARC32_NPC_REGNUM)
1498 off += 4;
1499 reg->loc.offset = off;
1500 break;
1501 }
1502 }
1503
1504 \f
1505 /* The SPARC Architecture doesn't have hardware single-step support,
1506 and most operating systems don't implement it either, so we provide
1507 software single-step mechanism. */
1508
1509 static CORE_ADDR
1510 sparc_analyze_control_transfer (struct frame_info *frame,
1511 CORE_ADDR pc, CORE_ADDR *npc)
1512 {
1513 unsigned long insn = sparc_fetch_instruction (pc);
1514 int conditional_p = X_COND (insn) & 0x7;
1515 int branch_p = 0, fused_p = 0;
1516 long offset = 0; /* Must be signed for sign-extend. */
1517
1518 if (X_OP (insn) == 0 && X_OP2 (insn) == 3)
1519 {
1520 if ((insn & 0x10000000) == 0)
1521 {
1522 /* Branch on Integer Register with Prediction (BPr). */
1523 branch_p = 1;
1524 conditional_p = 1;
1525 }
1526 else
1527 {
1528 /* Compare and Branch */
1529 branch_p = 1;
1530 fused_p = 1;
1531 offset = 4 * X_DISP10 (insn);
1532 }
1533 }
1534 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1535 {
1536 /* Branch on Floating-Point Condition Codes (FBfcc). */
1537 branch_p = 1;
1538 offset = 4 * X_DISP22 (insn);
1539 }
1540 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1541 {
1542 /* Branch on Floating-Point Condition Codes with Prediction
1543 (FBPfcc). */
1544 branch_p = 1;
1545 offset = 4 * X_DISP19 (insn);
1546 }
1547 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1548 {
1549 /* Branch on Integer Condition Codes (Bicc). */
1550 branch_p = 1;
1551 offset = 4 * X_DISP22 (insn);
1552 }
1553 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1554 {
1555 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1556 branch_p = 1;
1557 offset = 4 * X_DISP19 (insn);
1558 }
1559 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1560 {
1561 /* Trap instruction (TRAP). */
1562 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
1563 }
1564
1565 /* FIXME: Handle DONE and RETRY instructions. */
1566
1567 if (branch_p)
1568 {
1569 if (fused_p)
1570 {
1571 /* Fused compare-and-branch instructions are non-delayed,
1572 and do not have an annuling capability. So we need to
1573 always set a breakpoint on both the NPC and the branch
1574 target address. */
1575 gdb_assert (offset != 0);
1576 return pc + offset;
1577 }
1578 else if (conditional_p)
1579 {
1580 /* For conditional branches, return nPC + 4 iff the annul
1581 bit is 1. */
1582 return (X_A (insn) ? *npc + 4 : 0);
1583 }
1584 else
1585 {
1586 /* For unconditional branches, return the target if its
1587 specified condition is "always" and return nPC + 4 if the
1588 condition is "never". If the annul bit is 1, set *NPC to
1589 zero. */
1590 if (X_COND (insn) == 0x0)
1591 pc = *npc, offset = 4;
1592 if (X_A (insn))
1593 *npc = 0;
1594
1595 return pc + offset;
1596 }
1597 }
1598
1599 return 0;
1600 }
1601
1602 static CORE_ADDR
1603 sparc_step_trap (struct frame_info *frame, unsigned long insn)
1604 {
1605 return 0;
1606 }
1607
1608 int
1609 sparc_software_single_step (struct frame_info *frame)
1610 {
1611 struct gdbarch *arch = get_frame_arch (frame);
1612 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1613 struct address_space *aspace = get_frame_address_space (frame);
1614 CORE_ADDR npc, nnpc;
1615
1616 CORE_ADDR pc, orig_npc;
1617
1618 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1619 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
1620
1621 /* Analyze the instruction at PC. */
1622 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
1623 if (npc != 0)
1624 insert_single_step_breakpoint (arch, aspace, npc);
1625
1626 if (nnpc != 0)
1627 insert_single_step_breakpoint (arch, aspace, nnpc);
1628
1629 /* Assert that we have set at least one breakpoint, and that
1630 they're not set at the same spot - unless we're going
1631 from here straight to NULL, i.e. a call or jump to 0. */
1632 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1633 gdb_assert (nnpc != npc || orig_npc == 0);
1634
1635 return 1;
1636 }
1637
1638 static void
1639 sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
1640 {
1641 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1642
1643 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1644 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
1645 }
1646 \f
1647
1648 /* Return the appropriate register set for the core section identified
1649 by SECT_NAME and SECT_SIZE. */
1650
1651 static const struct regset *
1652 sparc_regset_from_core_section (struct gdbarch *gdbarch,
1653 const char *sect_name, size_t sect_size)
1654 {
1655 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1656
1657 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
1658 return tdep->gregset;
1659
1660 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
1661 return tdep->fpregset;
1662
1663 return NULL;
1664 }
1665 \f
1666
1667 static struct gdbarch *
1668 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1669 {
1670 struct gdbarch_tdep *tdep;
1671 struct gdbarch *gdbarch;
1672
1673 /* If there is already a candidate, use it. */
1674 arches = gdbarch_list_lookup_by_info (arches, &info);
1675 if (arches != NULL)
1676 return arches->gdbarch;
1677
1678 /* Allocate space for the new architecture. */
1679 tdep = XCNEW (struct gdbarch_tdep);
1680 gdbarch = gdbarch_alloc (&info, tdep);
1681
1682 tdep->pc_regnum = SPARC32_PC_REGNUM;
1683 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1684 tdep->step_trap = sparc_step_trap;
1685
1686 set_gdbarch_long_double_bit (gdbarch, 128);
1687 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
1688
1689 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1690 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1691 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1692 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1693 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1694 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1695
1696 /* Register numbers of various important registers. */
1697 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1698 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1699 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1700
1701 /* Call dummy code. */
1702 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
1703 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1704 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1705 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1706
1707 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1708 set_gdbarch_stabs_argument_has_addr
1709 (gdbarch, sparc32_stabs_argument_has_addr);
1710
1711 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1712
1713 /* Stack grows downward. */
1714 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1715
1716 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
1717
1718 set_gdbarch_frame_args_skip (gdbarch, 8);
1719
1720 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
1721
1722 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1723 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1724
1725 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
1726
1727 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1728
1729 frame_base_set_default (gdbarch, &sparc32_frame_base);
1730
1731 /* Hook in the DWARF CFI frame unwinder. */
1732 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1733 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1734 StackGhost issues have been resolved. */
1735
1736 /* Hook in ABI-specific overrides, if they have been registered. */
1737 gdbarch_init_osabi (info, gdbarch);
1738
1739 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
1740
1741 /* If we have register sets, enable the generic core file support. */
1742 if (tdep->gregset)
1743 set_gdbarch_regset_from_core_section (gdbarch,
1744 sparc_regset_from_core_section);
1745
1746 register_sparc_ravenscar_ops (gdbarch);
1747
1748 return gdbarch;
1749 }
1750 \f
1751 /* Helper functions for dealing with register windows. */
1752
1753 void
1754 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1755 {
1756 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1757 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1758 int offset = 0;
1759 gdb_byte buf[8];
1760 int i;
1761
1762 if (sp & 1)
1763 {
1764 /* Registers are 64-bit. */
1765 sp += BIAS;
1766
1767 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1768 {
1769 if (regnum == i || regnum == -1)
1770 {
1771 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1772
1773 /* Handle StackGhost. */
1774 if (i == SPARC_I7_REGNUM)
1775 {
1776 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1777 ULONGEST i7;
1778
1779 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1780 store_unsigned_integer (buf + offset, 8, byte_order,
1781 i7 ^ wcookie);
1782 }
1783
1784 regcache_raw_supply (regcache, i, buf);
1785 }
1786 }
1787 }
1788 else
1789 {
1790 /* Registers are 32-bit. Toss any sign-extension of the stack
1791 pointer. */
1792 sp &= 0xffffffffUL;
1793
1794 /* Clear out the top half of the temporary buffer, and put the
1795 register value in the bottom half if we're in 64-bit mode. */
1796 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1797 {
1798 memset (buf, 0, 4);
1799 offset = 4;
1800 }
1801
1802 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1803 {
1804 if (regnum == i || regnum == -1)
1805 {
1806 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1807 buf + offset, 4);
1808
1809 /* Handle StackGhost. */
1810 if (i == SPARC_I7_REGNUM)
1811 {
1812 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1813 ULONGEST i7;
1814
1815 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1816 store_unsigned_integer (buf + offset, 4, byte_order,
1817 i7 ^ wcookie);
1818 }
1819
1820 regcache_raw_supply (regcache, i, buf);
1821 }
1822 }
1823 }
1824 }
1825
1826 void
1827 sparc_collect_rwindow (const struct regcache *regcache,
1828 CORE_ADDR sp, int regnum)
1829 {
1830 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1831 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1832 int offset = 0;
1833 gdb_byte buf[8];
1834 int i;
1835
1836 if (sp & 1)
1837 {
1838 /* Registers are 64-bit. */
1839 sp += BIAS;
1840
1841 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1842 {
1843 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1844 {
1845 regcache_raw_collect (regcache, i, buf);
1846
1847 /* Handle StackGhost. */
1848 if (i == SPARC_I7_REGNUM)
1849 {
1850 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1851 ULONGEST i7;
1852
1853 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1854 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
1855 }
1856
1857 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1858 }
1859 }
1860 }
1861 else
1862 {
1863 /* Registers are 32-bit. Toss any sign-extension of the stack
1864 pointer. */
1865 sp &= 0xffffffffUL;
1866
1867 /* Only use the bottom half if we're in 64-bit mode. */
1868 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1869 offset = 4;
1870
1871 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1872 {
1873 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1874 {
1875 regcache_raw_collect (regcache, i, buf);
1876
1877 /* Handle StackGhost. */
1878 if (i == SPARC_I7_REGNUM)
1879 {
1880 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1881 ULONGEST i7;
1882
1883 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1884 store_unsigned_integer (buf + offset, 4, byte_order,
1885 i7 ^ wcookie);
1886 }
1887
1888 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1889 buf + offset, 4);
1890 }
1891 }
1892 }
1893 }
1894
1895 /* Helper functions for dealing with register sets. */
1896
1897 void
1898 sparc32_supply_gregset (const struct sparc_gregmap *gregmap,
1899 struct regcache *regcache,
1900 int regnum, const void *gregs)
1901 {
1902 const gdb_byte *regs = gregs;
1903 gdb_byte zero[4] = { 0 };
1904 int i;
1905
1906 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1907 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1908 regs + gregmap->r_psr_offset);
1909
1910 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1911 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1912 regs + gregmap->r_pc_offset);
1913
1914 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1915 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1916 regs + gregmap->r_npc_offset);
1917
1918 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1919 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1920 regs + gregmap->r_y_offset);
1921
1922 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1923 regcache_raw_supply (regcache, SPARC_G0_REGNUM, &zero);
1924
1925 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1926 {
1927 int offset = gregmap->r_g1_offset;
1928
1929 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1930 {
1931 if (regnum == i || regnum == -1)
1932 regcache_raw_supply (regcache, i, regs + offset);
1933 offset += 4;
1934 }
1935 }
1936
1937 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1938 {
1939 /* Not all of the register set variants include Locals and
1940 Inputs. For those that don't, we read them off the stack. */
1941 if (gregmap->r_l0_offset == -1)
1942 {
1943 ULONGEST sp;
1944
1945 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1946 sparc_supply_rwindow (regcache, sp, regnum);
1947 }
1948 else
1949 {
1950 int offset = gregmap->r_l0_offset;
1951
1952 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1953 {
1954 if (regnum == i || regnum == -1)
1955 regcache_raw_supply (regcache, i, regs + offset);
1956 offset += 4;
1957 }
1958 }
1959 }
1960 }
1961
1962 void
1963 sparc32_collect_gregset (const struct sparc_gregmap *gregmap,
1964 const struct regcache *regcache,
1965 int regnum, void *gregs)
1966 {
1967 gdb_byte *regs = gregs;
1968 int i;
1969
1970 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1971 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1972 regs + gregmap->r_psr_offset);
1973
1974 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1975 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1976 regs + gregmap->r_pc_offset);
1977
1978 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1979 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1980 regs + gregmap->r_npc_offset);
1981
1982 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1983 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1984 regs + gregmap->r_y_offset);
1985
1986 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1987 {
1988 int offset = gregmap->r_g1_offset;
1989
1990 /* %g0 is always zero. */
1991 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1992 {
1993 if (regnum == i || regnum == -1)
1994 regcache_raw_collect (regcache, i, regs + offset);
1995 offset += 4;
1996 }
1997 }
1998
1999 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
2000 {
2001 /* Not all of the register set variants include Locals and
2002 Inputs. For those that don't, we read them off the stack. */
2003 if (gregmap->r_l0_offset != -1)
2004 {
2005 int offset = gregmap->r_l0_offset;
2006
2007 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2008 {
2009 if (regnum == i || regnum == -1)
2010 regcache_raw_collect (regcache, i, regs + offset);
2011 offset += 4;
2012 }
2013 }
2014 }
2015 }
2016
2017 void
2018 sparc32_supply_fpregset (const struct sparc_fpregmap *fpregmap,
2019 struct regcache *regcache,
2020 int regnum, const void *fpregs)
2021 {
2022 const gdb_byte *regs = fpregs;
2023 int i;
2024
2025 for (i = 0; i < 32; i++)
2026 {
2027 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2028 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i,
2029 regs + fpregmap->r_f0_offset + (i * 4));
2030 }
2031
2032 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2033 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM,
2034 regs + fpregmap->r_fsr_offset);
2035 }
2036
2037 void
2038 sparc32_collect_fpregset (const struct sparc_fpregmap *fpregmap,
2039 const struct regcache *regcache,
2040 int regnum, void *fpregs)
2041 {
2042 gdb_byte *regs = fpregs;
2043 int i;
2044
2045 for (i = 0; i < 32; i++)
2046 {
2047 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2048 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i,
2049 regs + fpregmap->r_f0_offset + (i * 4));
2050 }
2051
2052 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2053 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM,
2054 regs + fpregmap->r_fsr_offset);
2055 }
2056 \f
2057
2058 /* SunOS 4. */
2059
2060 /* From <machine/reg.h>. */
2061 const struct sparc_gregmap sparc32_sunos4_gregmap =
2062 {
2063 0 * 4, /* %psr */
2064 1 * 4, /* %pc */
2065 2 * 4, /* %npc */
2066 3 * 4, /* %y */
2067 -1, /* %wim */
2068 -1, /* %tbr */
2069 4 * 4, /* %g1 */
2070 -1 /* %l0 */
2071 };
2072
2073 const struct sparc_fpregmap sparc32_sunos4_fpregmap =
2074 {
2075 0 * 4, /* %f0 */
2076 33 * 4, /* %fsr */
2077 };
2078
2079 const struct sparc_fpregmap sparc32_bsd_fpregmap =
2080 {
2081 0 * 4, /* %f0 */
2082 32 * 4, /* %fsr */
2083 };
2084 \f
2085
2086 /* Provide a prototype to silence -Wmissing-prototypes. */
2087 void _initialize_sparc_tdep (void);
2088
2089 void
2090 _initialize_sparc_tdep (void)
2091 {
2092 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
2093 }
This page took 0.117577 seconds and 5 git commands to generate.