Include gdb_assert.h in common-defs.h
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for SPARC.
2
3 Copyright (C) 2003-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "dis-asm.h"
23 #include "dwarf2-frame.h"
24 #include "floatformat.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "inferior.h"
31 #include "symtab.h"
32 #include "objfiles.h"
33 #include "osabi.h"
34 #include "regcache.h"
35 #include "target.h"
36 #include "value.h"
37
38 #include <string.h>
39
40 #include "sparc-tdep.h"
41 #include "sparc-ravenscar-thread.h"
42
43 struct regset;
44
45 /* This file implements the SPARC 32-bit ABI as defined by the section
46 "Low-Level System Information" of the SPARC Compliance Definition
47 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
48 lists changes with respect to the original 32-bit psABI as defined
49 in the "System V ABI, SPARC Processor Supplement".
50
51 Note that if we talk about SunOS, we mean SunOS 4.x, which was
52 BSD-based, which is sometimes (retroactively?) referred to as
53 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
54 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
55 suffering from severe version number inflation). Solaris 2.x is
56 also known as SunOS 5.x, since that's what uname(1) says. Solaris
57 2.x is SVR4-based. */
58
59 /* Please use the sparc32_-prefix for 32-bit specific code, the
60 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
61 code that can handle both. The 64-bit specific code lives in
62 sparc64-tdep.c; don't add any here. */
63
64 /* The SPARC Floating-Point Quad-Precision format is similar to
65 big-endian IA-64 Quad-Precision format. */
66 #define floatformats_sparc_quad floatformats_ia64_quad
67
68 /* The stack pointer is offset from the stack frame by a BIAS of 2047
69 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
70 hosts, so undefine it first. */
71 #undef BIAS
72 #define BIAS 2047
73
74 /* Macros to extract fields from SPARC instructions. */
75 #define X_OP(i) (((i) >> 30) & 0x3)
76 #define X_RD(i) (((i) >> 25) & 0x1f)
77 #define X_A(i) (((i) >> 29) & 1)
78 #define X_COND(i) (((i) >> 25) & 0xf)
79 #define X_OP2(i) (((i) >> 22) & 0x7)
80 #define X_IMM22(i) ((i) & 0x3fffff)
81 #define X_OP3(i) (((i) >> 19) & 0x3f)
82 #define X_RS1(i) (((i) >> 14) & 0x1f)
83 #define X_RS2(i) ((i) & 0x1f)
84 #define X_I(i) (((i) >> 13) & 1)
85 /* Sign extension macros. */
86 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
87 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
88 #define X_DISP10(i) ((((((i) >> 11) && 0x300) | (((i) >> 5) & 0xff)) ^ 0x200) - 0x200)
89 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
90 /* Macros to identify some instructions. */
91 /* RETURN (RETT in V8) */
92 #define X_RETTURN(i) ((X_OP (i) == 0x2) && (X_OP3 (i) == 0x39))
93
94 /* Fetch the instruction at PC. Instructions are always big-endian
95 even if the processor operates in little-endian mode. */
96
97 unsigned long
98 sparc_fetch_instruction (CORE_ADDR pc)
99 {
100 gdb_byte buf[4];
101 unsigned long insn;
102 int i;
103
104 /* If we can't read the instruction at PC, return zero. */
105 if (target_read_memory (pc, buf, sizeof (buf)))
106 return 0;
107
108 insn = 0;
109 for (i = 0; i < sizeof (buf); i++)
110 insn = (insn << 8) | buf[i];
111 return insn;
112 }
113 \f
114
115 /* Return non-zero if the instruction corresponding to PC is an "unimp"
116 instruction. */
117
118 static int
119 sparc_is_unimp_insn (CORE_ADDR pc)
120 {
121 const unsigned long insn = sparc_fetch_instruction (pc);
122
123 return ((insn & 0xc1c00000) == 0);
124 }
125
126 /* Return non-zero if the instruction corresponding to PC is an
127 "annulled" branch, i.e. the annul bit is set. */
128
129 int
130 sparc_is_annulled_branch_insn (CORE_ADDR pc)
131 {
132 /* The branch instructions featuring an annul bit can be identified
133 by the following bit patterns:
134
135 OP=0
136 OP2=1: Branch on Integer Condition Codes with Prediction (BPcc).
137 OP2=2: Branch on Integer Condition Codes (Bcc).
138 OP2=5: Branch on FP Condition Codes with Prediction (FBfcc).
139 OP2=6: Branch on FP Condition Codes (FBcc).
140 OP2=3 && Bit28=0:
141 Branch on Integer Register with Prediction (BPr).
142
143 This leaves out ILLTRAP (OP2=0), SETHI/NOP (OP2=4) and the V8
144 coprocessor branch instructions (Op2=7). */
145
146 const unsigned long insn = sparc_fetch_instruction (pc);
147 const unsigned op2 = X_OP2 (insn);
148
149 if ((X_OP (insn) == 0)
150 && ((op2 == 1) || (op2 == 2) || (op2 == 5) || (op2 == 6)
151 || ((op2 == 3) && ((insn & 0x10000000) == 0))))
152 return X_A (insn);
153 else
154 return 0;
155 }
156
157 /* OpenBSD/sparc includes StackGhost, which according to the author's
158 website http://stackghost.cerias.purdue.edu "... transparently and
159 automatically protects applications' stack frames; more
160 specifically, it guards the return pointers. The protection
161 mechanisms require no application source or binary modification and
162 imposes only a negligible performance penalty."
163
164 The same website provides the following description of how
165 StackGhost works:
166
167 "StackGhost interfaces with the kernel trap handler that would
168 normally write out registers to the stack and the handler that
169 would read them back in. By XORing a cookie into the
170 return-address saved in the user stack when it is actually written
171 to the stack, and then XOR it out when the return-address is pulled
172 from the stack, StackGhost can cause attacker corrupted return
173 pointers to behave in a manner the attacker cannot predict.
174 StackGhost can also use several unused bits in the return pointer
175 to detect a smashed return pointer and abort the process."
176
177 For GDB this means that whenever we're reading %i7 from a stack
178 frame's window save area, we'll have to XOR the cookie.
179
180 More information on StackGuard can be found on in:
181
182 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
183 Stack Protection." 2001. Published in USENIX Security Symposium
184 '01. */
185
186 /* Fetch StackGhost Per-Process XOR cookie. */
187
188 ULONGEST
189 sparc_fetch_wcookie (struct gdbarch *gdbarch)
190 {
191 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
192 struct target_ops *ops = &current_target;
193 gdb_byte buf[8];
194 int len;
195
196 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
197 if (len == -1)
198 return 0;
199
200 /* We should have either an 32-bit or an 64-bit cookie. */
201 gdb_assert (len == 4 || len == 8);
202
203 return extract_unsigned_integer (buf, len, byte_order);
204 }
205 \f
206
207 /* The functions on this page are intended to be used to classify
208 function arguments. */
209
210 /* Check whether TYPE is "Integral or Pointer". */
211
212 static int
213 sparc_integral_or_pointer_p (const struct type *type)
214 {
215 int len = TYPE_LENGTH (type);
216
217 switch (TYPE_CODE (type))
218 {
219 case TYPE_CODE_INT:
220 case TYPE_CODE_BOOL:
221 case TYPE_CODE_CHAR:
222 case TYPE_CODE_ENUM:
223 case TYPE_CODE_RANGE:
224 /* We have byte, half-word, word and extended-word/doubleword
225 integral types. The doubleword is an extension to the
226 original 32-bit ABI by the SCD 2.4.x. */
227 return (len == 1 || len == 2 || len == 4 || len == 8);
228 case TYPE_CODE_PTR:
229 case TYPE_CODE_REF:
230 /* Allow either 32-bit or 64-bit pointers. */
231 return (len == 4 || len == 8);
232 default:
233 break;
234 }
235
236 return 0;
237 }
238
239 /* Check whether TYPE is "Floating". */
240
241 static int
242 sparc_floating_p (const struct type *type)
243 {
244 switch (TYPE_CODE (type))
245 {
246 case TYPE_CODE_FLT:
247 {
248 int len = TYPE_LENGTH (type);
249 return (len == 4 || len == 8 || len == 16);
250 }
251 default:
252 break;
253 }
254
255 return 0;
256 }
257
258 /* Check whether TYPE is "Complex Floating". */
259
260 static int
261 sparc_complex_floating_p (const struct type *type)
262 {
263 switch (TYPE_CODE (type))
264 {
265 case TYPE_CODE_COMPLEX:
266 {
267 int len = TYPE_LENGTH (type);
268 return (len == 8 || len == 16 || len == 32);
269 }
270 default:
271 break;
272 }
273
274 return 0;
275 }
276
277 /* Check whether TYPE is "Structure or Union".
278
279 In terms of Ada subprogram calls, arrays are treated the same as
280 struct and union types. So this function also returns non-zero
281 for array types. */
282
283 static int
284 sparc_structure_or_union_p (const struct type *type)
285 {
286 switch (TYPE_CODE (type))
287 {
288 case TYPE_CODE_STRUCT:
289 case TYPE_CODE_UNION:
290 case TYPE_CODE_ARRAY:
291 return 1;
292 default:
293 break;
294 }
295
296 return 0;
297 }
298
299 /* Register information. */
300
301 static const char *sparc32_register_names[] =
302 {
303 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
304 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
305 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
306 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
307
308 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
309 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
310 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
311 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
312
313 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
314 };
315
316 /* Total number of registers. */
317 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
318
319 /* We provide the aliases %d0..%d30 for the floating registers as
320 "psuedo" registers. */
321
322 static const char *sparc32_pseudo_register_names[] =
323 {
324 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
325 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
326 };
327
328 /* Total number of pseudo registers. */
329 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
330
331 /* Return the name of register REGNUM. */
332
333 static const char *
334 sparc32_register_name (struct gdbarch *gdbarch, int regnum)
335 {
336 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
337 return sparc32_register_names[regnum];
338
339 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
340 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
341
342 return NULL;
343 }
344 \f
345 /* Construct types for ISA-specific registers. */
346
347 static struct type *
348 sparc_psr_type (struct gdbarch *gdbarch)
349 {
350 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
351
352 if (!tdep->sparc_psr_type)
353 {
354 struct type *type;
355
356 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
357 append_flags_type_flag (type, 5, "ET");
358 append_flags_type_flag (type, 6, "PS");
359 append_flags_type_flag (type, 7, "S");
360 append_flags_type_flag (type, 12, "EF");
361 append_flags_type_flag (type, 13, "EC");
362
363 tdep->sparc_psr_type = type;
364 }
365
366 return tdep->sparc_psr_type;
367 }
368
369 static struct type *
370 sparc_fsr_type (struct gdbarch *gdbarch)
371 {
372 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
373
374 if (!tdep->sparc_fsr_type)
375 {
376 struct type *type;
377
378 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
379 append_flags_type_flag (type, 0, "NXA");
380 append_flags_type_flag (type, 1, "DZA");
381 append_flags_type_flag (type, 2, "UFA");
382 append_flags_type_flag (type, 3, "OFA");
383 append_flags_type_flag (type, 4, "NVA");
384 append_flags_type_flag (type, 5, "NXC");
385 append_flags_type_flag (type, 6, "DZC");
386 append_flags_type_flag (type, 7, "UFC");
387 append_flags_type_flag (type, 8, "OFC");
388 append_flags_type_flag (type, 9, "NVC");
389 append_flags_type_flag (type, 22, "NS");
390 append_flags_type_flag (type, 23, "NXM");
391 append_flags_type_flag (type, 24, "DZM");
392 append_flags_type_flag (type, 25, "UFM");
393 append_flags_type_flag (type, 26, "OFM");
394 append_flags_type_flag (type, 27, "NVM");
395
396 tdep->sparc_fsr_type = type;
397 }
398
399 return tdep->sparc_fsr_type;
400 }
401
402 /* Return the GDB type object for the "standard" data type of data in
403 register REGNUM. */
404
405 static struct type *
406 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
407 {
408 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
409 return builtin_type (gdbarch)->builtin_float;
410
411 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
412 return builtin_type (gdbarch)->builtin_double;
413
414 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
415 return builtin_type (gdbarch)->builtin_data_ptr;
416
417 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
418 return builtin_type (gdbarch)->builtin_func_ptr;
419
420 if (regnum == SPARC32_PSR_REGNUM)
421 return sparc_psr_type (gdbarch);
422
423 if (regnum == SPARC32_FSR_REGNUM)
424 return sparc_fsr_type (gdbarch);
425
426 return builtin_type (gdbarch)->builtin_int32;
427 }
428
429 static enum register_status
430 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
431 struct regcache *regcache,
432 int regnum, gdb_byte *buf)
433 {
434 enum register_status status;
435
436 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
437
438 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
439 status = regcache_raw_read (regcache, regnum, buf);
440 if (status == REG_VALID)
441 status = regcache_raw_read (regcache, regnum + 1, buf + 4);
442 return status;
443 }
444
445 static void
446 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
447 struct regcache *regcache,
448 int regnum, const gdb_byte *buf)
449 {
450 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
451
452 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
453 regcache_raw_write (regcache, regnum, buf);
454 regcache_raw_write (regcache, regnum + 1, buf + 4);
455 }
456 \f
457 /* Implement "in_function_epilogue_p". */
458
459 int
460 sparc_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
461 {
462 /* This function must return true if we are one instruction after an
463 instruction that destroyed the stack frame of the current
464 function. The SPARC instructions used to restore the callers
465 stack frame are RESTORE and RETURN/RETT.
466
467 Of these RETURN/RETT is a branch instruction and thus we return
468 true if we are in its delay slot.
469
470 RESTORE is almost always found in the delay slot of a branch
471 instruction that transfers control to the caller, such as JMPL.
472 Thus the next instruction is in the caller frame and we don't
473 need to do anything about it. */
474
475 unsigned int insn = sparc_fetch_instruction (pc - 4);
476
477 return X_RETTURN (insn);
478 }
479 \f
480
481 static CORE_ADDR
482 sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
483 {
484 /* The ABI requires double-word alignment. */
485 return address & ~0x7;
486 }
487
488 static CORE_ADDR
489 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
490 CORE_ADDR funcaddr,
491 struct value **args, int nargs,
492 struct type *value_type,
493 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
494 struct regcache *regcache)
495 {
496 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
497
498 *bp_addr = sp - 4;
499 *real_pc = funcaddr;
500
501 if (using_struct_return (gdbarch, NULL, value_type))
502 {
503 gdb_byte buf[4];
504
505 /* This is an UNIMP instruction. */
506 store_unsigned_integer (buf, 4, byte_order,
507 TYPE_LENGTH (value_type) & 0x1fff);
508 write_memory (sp - 8, buf, 4);
509 return sp - 8;
510 }
511
512 return sp - 4;
513 }
514
515 static CORE_ADDR
516 sparc32_store_arguments (struct regcache *regcache, int nargs,
517 struct value **args, CORE_ADDR sp,
518 int struct_return, CORE_ADDR struct_addr)
519 {
520 struct gdbarch *gdbarch = get_regcache_arch (regcache);
521 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
522 /* Number of words in the "parameter array". */
523 int num_elements = 0;
524 int element = 0;
525 int i;
526
527 for (i = 0; i < nargs; i++)
528 {
529 struct type *type = value_type (args[i]);
530 int len = TYPE_LENGTH (type);
531
532 if (sparc_structure_or_union_p (type)
533 || (sparc_floating_p (type) && len == 16)
534 || sparc_complex_floating_p (type))
535 {
536 /* Structure, Union and Quad-Precision Arguments. */
537 sp -= len;
538
539 /* Use doubleword alignment for these values. That's always
540 correct, and wasting a few bytes shouldn't be a problem. */
541 sp &= ~0x7;
542
543 write_memory (sp, value_contents (args[i]), len);
544 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
545 num_elements++;
546 }
547 else if (sparc_floating_p (type))
548 {
549 /* Floating arguments. */
550 gdb_assert (len == 4 || len == 8);
551 num_elements += (len / 4);
552 }
553 else
554 {
555 /* Integral and pointer arguments. */
556 gdb_assert (sparc_integral_or_pointer_p (type));
557
558 if (len < 4)
559 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
560 args[i]);
561 num_elements += ((len + 3) / 4);
562 }
563 }
564
565 /* Always allocate at least six words. */
566 sp -= max (6, num_elements) * 4;
567
568 /* The psABI says that "Software convention requires space for the
569 struct/union return value pointer, even if the word is unused." */
570 sp -= 4;
571
572 /* The psABI says that "Although software convention and the
573 operating system require every stack frame to be doubleword
574 aligned." */
575 sp &= ~0x7;
576
577 for (i = 0; i < nargs; i++)
578 {
579 const bfd_byte *valbuf = value_contents (args[i]);
580 struct type *type = value_type (args[i]);
581 int len = TYPE_LENGTH (type);
582
583 gdb_assert (len == 4 || len == 8);
584
585 if (element < 6)
586 {
587 int regnum = SPARC_O0_REGNUM + element;
588
589 regcache_cooked_write (regcache, regnum, valbuf);
590 if (len > 4 && element < 5)
591 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
592 }
593
594 /* Always store the argument in memory. */
595 write_memory (sp + 4 + element * 4, valbuf, len);
596 element += len / 4;
597 }
598
599 gdb_assert (element == num_elements);
600
601 if (struct_return)
602 {
603 gdb_byte buf[4];
604
605 store_unsigned_integer (buf, 4, byte_order, struct_addr);
606 write_memory (sp, buf, 4);
607 }
608
609 return sp;
610 }
611
612 static CORE_ADDR
613 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
614 struct regcache *regcache, CORE_ADDR bp_addr,
615 int nargs, struct value **args, CORE_ADDR sp,
616 int struct_return, CORE_ADDR struct_addr)
617 {
618 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
619
620 /* Set return address. */
621 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
622
623 /* Set up function arguments. */
624 sp = sparc32_store_arguments (regcache, nargs, args, sp,
625 struct_return, struct_addr);
626
627 /* Allocate the 16-word window save area. */
628 sp -= 16 * 4;
629
630 /* Stack should be doubleword aligned at this point. */
631 gdb_assert (sp % 8 == 0);
632
633 /* Finally, update the stack pointer. */
634 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
635
636 return sp;
637 }
638 \f
639
640 /* Use the program counter to determine the contents and size of a
641 breakpoint instruction. Return a pointer to a string of bytes that
642 encode a breakpoint instruction, store the length of the string in
643 *LEN and optionally adjust *PC to point to the correct memory
644 location for inserting the breakpoint. */
645
646 static const gdb_byte *
647 sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
648 {
649 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
650
651 *len = sizeof (break_insn);
652 return break_insn;
653 }
654 \f
655
656 /* Allocate and initialize a frame cache. */
657
658 static struct sparc_frame_cache *
659 sparc_alloc_frame_cache (void)
660 {
661 struct sparc_frame_cache *cache;
662
663 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
664
665 /* Base address. */
666 cache->base = 0;
667 cache->pc = 0;
668
669 /* Frameless until proven otherwise. */
670 cache->frameless_p = 1;
671 cache->frame_offset = 0;
672 cache->saved_regs_mask = 0;
673 cache->copied_regs_mask = 0;
674 cache->struct_return_p = 0;
675
676 return cache;
677 }
678
679 /* GCC generates several well-known sequences of instructions at the begining
680 of each function prologue when compiling with -fstack-check. If one of
681 such sequences starts at START_PC, then return the address of the
682 instruction immediately past this sequence. Otherwise, return START_PC. */
683
684 static CORE_ADDR
685 sparc_skip_stack_check (const CORE_ADDR start_pc)
686 {
687 CORE_ADDR pc = start_pc;
688 unsigned long insn;
689 int offset_stack_checking_sequence = 0;
690 int probing_loop = 0;
691
692 /* With GCC, all stack checking sequences begin with the same two
693 instructions, plus an optional one in the case of a probing loop:
694
695 sethi <some immediate>, %g1
696 sub %sp, %g1, %g1
697
698 or:
699
700 sethi <some immediate>, %g1
701 sethi <some immediate>, %g4
702 sub %sp, %g1, %g1
703
704 or:
705
706 sethi <some immediate>, %g1
707 sub %sp, %g1, %g1
708 sethi <some immediate>, %g4
709
710 If the optional instruction is found (setting g4), assume that a
711 probing loop will follow. */
712
713 /* sethi <some immediate>, %g1 */
714 insn = sparc_fetch_instruction (pc);
715 pc = pc + 4;
716 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
717 return start_pc;
718
719 /* optional: sethi <some immediate>, %g4 */
720 insn = sparc_fetch_instruction (pc);
721 pc = pc + 4;
722 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
723 {
724 probing_loop = 1;
725 insn = sparc_fetch_instruction (pc);
726 pc = pc + 4;
727 }
728
729 /* sub %sp, %g1, %g1 */
730 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
731 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
732 return start_pc;
733
734 insn = sparc_fetch_instruction (pc);
735 pc = pc + 4;
736
737 /* optional: sethi <some immediate>, %g4 */
738 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
739 {
740 probing_loop = 1;
741 insn = sparc_fetch_instruction (pc);
742 pc = pc + 4;
743 }
744
745 /* First possible sequence:
746 [first two instructions above]
747 clr [%g1 - some immediate] */
748
749 /* clr [%g1 - some immediate] */
750 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
751 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
752 {
753 /* Valid stack-check sequence, return the new PC. */
754 return pc;
755 }
756
757 /* Second possible sequence: A small number of probes.
758 [first two instructions above]
759 clr [%g1]
760 add %g1, -<some immediate>, %g1
761 clr [%g1]
762 [repeat the two instructions above any (small) number of times]
763 clr [%g1 - some immediate] */
764
765 /* clr [%g1] */
766 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
767 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
768 {
769 while (1)
770 {
771 /* add %g1, -<some immediate>, %g1 */
772 insn = sparc_fetch_instruction (pc);
773 pc = pc + 4;
774 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
775 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
776 break;
777
778 /* clr [%g1] */
779 insn = sparc_fetch_instruction (pc);
780 pc = pc + 4;
781 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
782 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
783 return start_pc;
784 }
785
786 /* clr [%g1 - some immediate] */
787 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
788 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
789 return start_pc;
790
791 /* We found a valid stack-check sequence, return the new PC. */
792 return pc;
793 }
794
795 /* Third sequence: A probing loop.
796 [first three instructions above]
797 sub %g1, %g4, %g4
798 cmp %g1, %g4
799 be <disp>
800 add %g1, -<some immediate>, %g1
801 ba <disp>
802 clr [%g1]
803
804 And an optional last probe for the remainder:
805
806 clr [%g4 - some immediate] */
807
808 if (probing_loop)
809 {
810 /* sub %g1, %g4, %g4 */
811 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
812 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
813 return start_pc;
814
815 /* cmp %g1, %g4 */
816 insn = sparc_fetch_instruction (pc);
817 pc = pc + 4;
818 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
819 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
820 return start_pc;
821
822 /* be <disp> */
823 insn = sparc_fetch_instruction (pc);
824 pc = pc + 4;
825 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
826 return start_pc;
827
828 /* add %g1, -<some immediate>, %g1 */
829 insn = sparc_fetch_instruction (pc);
830 pc = pc + 4;
831 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
832 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
833 return start_pc;
834
835 /* ba <disp> */
836 insn = sparc_fetch_instruction (pc);
837 pc = pc + 4;
838 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
839 return start_pc;
840
841 /* clr [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
842 insn = sparc_fetch_instruction (pc);
843 pc = pc + 4;
844 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
845 && X_RD (insn) == 0 && X_RS1 (insn) == 1
846 && (!X_I(insn) || X_SIMM13 (insn) == 0)))
847 return start_pc;
848
849 /* We found a valid stack-check sequence, return the new PC. */
850
851 /* optional: clr [%g4 - some immediate] */
852 insn = sparc_fetch_instruction (pc);
853 pc = pc + 4;
854 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
855 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
856 return pc - 4;
857 else
858 return pc;
859 }
860
861 /* No stack check code in our prologue, return the start_pc. */
862 return start_pc;
863 }
864
865 /* Record the effect of a SAVE instruction on CACHE. */
866
867 void
868 sparc_record_save_insn (struct sparc_frame_cache *cache)
869 {
870 /* The frame is set up. */
871 cache->frameless_p = 0;
872
873 /* The frame pointer contains the CFA. */
874 cache->frame_offset = 0;
875
876 /* The `local' and `in' registers are all saved. */
877 cache->saved_regs_mask = 0xffff;
878
879 /* The `out' registers are all renamed. */
880 cache->copied_regs_mask = 0xff;
881 }
882
883 /* Do a full analysis of the prologue at PC and update CACHE accordingly.
884 Bail out early if CURRENT_PC is reached. Return the address where
885 the analysis stopped.
886
887 We handle both the traditional register window model and the single
888 register window (aka flat) model. */
889
890 CORE_ADDR
891 sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
892 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
893 {
894 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
895 unsigned long insn;
896 int offset = 0;
897 int dest = -1;
898
899 pc = sparc_skip_stack_check (pc);
900
901 if (current_pc <= pc)
902 return current_pc;
903
904 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
905 SPARC the linker usually defines a symbol (typically
906 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
907 This symbol makes us end up here with PC pointing at the start of
908 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
909 would do our normal prologue analysis, we would probably conclude
910 that we've got a frame when in reality we don't, since the
911 dynamic linker patches up the first PLT with some code that
912 starts with a SAVE instruction. Patch up PC such that it points
913 at the start of our PLT entry. */
914 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc))
915 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
916
917 insn = sparc_fetch_instruction (pc);
918
919 /* Recognize store insns and record their sources. */
920 while (X_OP (insn) == 3
921 && (X_OP3 (insn) == 0x4 /* stw */
922 || X_OP3 (insn) == 0x7 /* std */
923 || X_OP3 (insn) == 0xe) /* stx */
924 && X_RS1 (insn) == SPARC_SP_REGNUM)
925 {
926 int regnum = X_RD (insn);
927
928 /* Recognize stores into the corresponding stack slots. */
929 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
930 && ((X_I (insn)
931 && X_SIMM13 (insn) == (X_OP3 (insn) == 0xe
932 ? (regnum - SPARC_L0_REGNUM) * 8 + BIAS
933 : (regnum - SPARC_L0_REGNUM) * 4))
934 || (!X_I (insn) && regnum == SPARC_L0_REGNUM)))
935 {
936 cache->saved_regs_mask |= (1 << (regnum - SPARC_L0_REGNUM));
937 if (X_OP3 (insn) == 0x7)
938 cache->saved_regs_mask |= (1 << (regnum + 1 - SPARC_L0_REGNUM));
939 }
940
941 offset += 4;
942
943 insn = sparc_fetch_instruction (pc + offset);
944 }
945
946 /* Recognize a SETHI insn and record its destination. */
947 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
948 {
949 dest = X_RD (insn);
950 offset += 4;
951
952 insn = sparc_fetch_instruction (pc + offset);
953 }
954
955 /* Allow for an arithmetic operation on DEST or %g1. */
956 if (X_OP (insn) == 2 && X_I (insn)
957 && (X_RD (insn) == 1 || X_RD (insn) == dest))
958 {
959 offset += 4;
960
961 insn = sparc_fetch_instruction (pc + offset);
962 }
963
964 /* Check for the SAVE instruction that sets up the frame. */
965 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
966 {
967 sparc_record_save_insn (cache);
968 offset += 4;
969 return pc + offset;
970 }
971
972 /* Check for an arithmetic operation on %sp. */
973 if (X_OP (insn) == 2
974 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
975 && X_RS1 (insn) == SPARC_SP_REGNUM
976 && X_RD (insn) == SPARC_SP_REGNUM)
977 {
978 if (X_I (insn))
979 {
980 cache->frame_offset = X_SIMM13 (insn);
981 if (X_OP3 (insn) == 0)
982 cache->frame_offset = -cache->frame_offset;
983 }
984 offset += 4;
985
986 insn = sparc_fetch_instruction (pc + offset);
987
988 /* Check for an arithmetic operation that sets up the frame. */
989 if (X_OP (insn) == 2
990 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
991 && X_RS1 (insn) == SPARC_SP_REGNUM
992 && X_RD (insn) == SPARC_FP_REGNUM)
993 {
994 cache->frameless_p = 0;
995 cache->frame_offset = 0;
996 /* We could check that the amount subtracted to %sp above is the
997 same as the one added here, but this seems superfluous. */
998 cache->copied_regs_mask |= 0x40;
999 offset += 4;
1000
1001 insn = sparc_fetch_instruction (pc + offset);
1002 }
1003
1004 /* Check for a move (or) operation that copies the return register. */
1005 if (X_OP (insn) == 2
1006 && X_OP3 (insn) == 0x2
1007 && !X_I (insn)
1008 && X_RS1 (insn) == SPARC_G0_REGNUM
1009 && X_RS2 (insn) == SPARC_O7_REGNUM
1010 && X_RD (insn) == SPARC_I7_REGNUM)
1011 {
1012 cache->copied_regs_mask |= 0x80;
1013 offset += 4;
1014 }
1015
1016 return pc + offset;
1017 }
1018
1019 return pc;
1020 }
1021
1022 static CORE_ADDR
1023 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1024 {
1025 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1026 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
1027 }
1028
1029 /* Return PC of first real instruction of the function starting at
1030 START_PC. */
1031
1032 static CORE_ADDR
1033 sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1034 {
1035 struct symtab_and_line sal;
1036 CORE_ADDR func_start, func_end;
1037 struct sparc_frame_cache cache;
1038
1039 /* This is the preferred method, find the end of the prologue by
1040 using the debugging information. */
1041 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
1042 {
1043 sal = find_pc_line (func_start, 0);
1044
1045 if (sal.end < func_end
1046 && start_pc <= sal.end)
1047 return sal.end;
1048 }
1049
1050 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
1051
1052 /* The psABI says that "Although the first 6 words of arguments
1053 reside in registers, the standard stack frame reserves space for
1054 them.". It also suggests that a function may use that space to
1055 "write incoming arguments 0 to 5" into that space, and that's
1056 indeed what GCC seems to be doing. In that case GCC will
1057 generate debug information that points to the stack slots instead
1058 of the registers, so we should consider the instructions that
1059 write out these incoming arguments onto the stack. */
1060
1061 while (1)
1062 {
1063 unsigned long insn = sparc_fetch_instruction (start_pc);
1064
1065 /* Recognize instructions that store incoming arguments into the
1066 corresponding stack slots. */
1067 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04
1068 && X_I (insn) && X_RS1 (insn) == SPARC_FP_REGNUM)
1069 {
1070 int regnum = X_RD (insn);
1071
1072 /* Case of arguments still in %o[0..5]. */
1073 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O5_REGNUM
1074 && !(cache.copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM)))
1075 && X_SIMM13 (insn) == 68 + (regnum - SPARC_O0_REGNUM) * 4)
1076 {
1077 start_pc += 4;
1078 continue;
1079 }
1080
1081 /* Case of arguments copied into %i[0..5]. */
1082 if (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I5_REGNUM
1083 && (cache.copied_regs_mask & (1 << (regnum - SPARC_I0_REGNUM)))
1084 && X_SIMM13 (insn) == 68 + (regnum - SPARC_I0_REGNUM) * 4)
1085 {
1086 start_pc += 4;
1087 continue;
1088 }
1089 }
1090
1091 break;
1092 }
1093
1094 return start_pc;
1095 }
1096
1097 /* Normal frames. */
1098
1099 struct sparc_frame_cache *
1100 sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
1101 {
1102 struct sparc_frame_cache *cache;
1103
1104 if (*this_cache)
1105 return *this_cache;
1106
1107 cache = sparc_alloc_frame_cache ();
1108 *this_cache = cache;
1109
1110 cache->pc = get_frame_func (this_frame);
1111 if (cache->pc != 0)
1112 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
1113 get_frame_pc (this_frame), cache);
1114
1115 if (cache->frameless_p)
1116 {
1117 /* This function is frameless, so %fp (%i6) holds the frame
1118 pointer for our calling frame. Use %sp (%o6) as this frame's
1119 base address. */
1120 cache->base =
1121 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1122 }
1123 else
1124 {
1125 /* For normal frames, %fp (%i6) holds the frame pointer, the
1126 base address for the current stack frame. */
1127 cache->base =
1128 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
1129 }
1130
1131 cache->base += cache->frame_offset;
1132
1133 if (cache->base & 1)
1134 cache->base += BIAS;
1135
1136 return cache;
1137 }
1138
1139 static int
1140 sparc32_struct_return_from_sym (struct symbol *sym)
1141 {
1142 struct type *type = check_typedef (SYMBOL_TYPE (sym));
1143 enum type_code code = TYPE_CODE (type);
1144
1145 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1146 {
1147 type = check_typedef (TYPE_TARGET_TYPE (type));
1148 if (sparc_structure_or_union_p (type)
1149 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1150 return 1;
1151 }
1152
1153 return 0;
1154 }
1155
1156 struct sparc_frame_cache *
1157 sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
1158 {
1159 struct sparc_frame_cache *cache;
1160 struct symbol *sym;
1161
1162 if (*this_cache)
1163 return *this_cache;
1164
1165 cache = sparc_frame_cache (this_frame, this_cache);
1166
1167 sym = find_pc_function (cache->pc);
1168 if (sym)
1169 {
1170 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
1171 }
1172 else
1173 {
1174 /* There is no debugging information for this function to
1175 help us determine whether this function returns a struct
1176 or not. So we rely on another heuristic which is to check
1177 the instruction at the return address and see if this is
1178 an "unimp" instruction. If it is, then it is a struct-return
1179 function. */
1180 CORE_ADDR pc;
1181 int regnum =
1182 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1183
1184 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
1185 if (sparc_is_unimp_insn (pc))
1186 cache->struct_return_p = 1;
1187 }
1188
1189 return cache;
1190 }
1191
1192 static void
1193 sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
1194 struct frame_id *this_id)
1195 {
1196 struct sparc_frame_cache *cache =
1197 sparc32_frame_cache (this_frame, this_cache);
1198
1199 /* This marks the outermost frame. */
1200 if (cache->base == 0)
1201 return;
1202
1203 (*this_id) = frame_id_build (cache->base, cache->pc);
1204 }
1205
1206 static struct value *
1207 sparc32_frame_prev_register (struct frame_info *this_frame,
1208 void **this_cache, int regnum)
1209 {
1210 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1211 struct sparc_frame_cache *cache =
1212 sparc32_frame_cache (this_frame, this_cache);
1213
1214 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
1215 {
1216 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
1217
1218 /* If this functions has a Structure, Union or Quad-Precision
1219 return value, we have to skip the UNIMP instruction that encodes
1220 the size of the structure. */
1221 if (cache->struct_return_p)
1222 pc += 4;
1223
1224 regnum =
1225 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1226 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1227 return frame_unwind_got_constant (this_frame, regnum, pc);
1228 }
1229
1230 /* Handle StackGhost. */
1231 {
1232 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1233
1234 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1235 {
1236 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1237 ULONGEST i7;
1238
1239 /* Read the value in from memory. */
1240 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1241 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
1242 }
1243 }
1244
1245 /* The previous frame's `local' and `in' registers may have been saved
1246 in the register save area. */
1247 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1248 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
1249 {
1250 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1251
1252 return frame_unwind_got_memory (this_frame, regnum, addr);
1253 }
1254
1255 /* The previous frame's `out' registers may be accessible as the current
1256 frame's `in' registers. */
1257 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1258 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
1259 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1260
1261 return frame_unwind_got_register (this_frame, regnum, regnum);
1262 }
1263
1264 static const struct frame_unwind sparc32_frame_unwind =
1265 {
1266 NORMAL_FRAME,
1267 default_frame_unwind_stop_reason,
1268 sparc32_frame_this_id,
1269 sparc32_frame_prev_register,
1270 NULL,
1271 default_frame_sniffer
1272 };
1273 \f
1274
1275 static CORE_ADDR
1276 sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
1277 {
1278 struct sparc_frame_cache *cache =
1279 sparc32_frame_cache (this_frame, this_cache);
1280
1281 return cache->base;
1282 }
1283
1284 static const struct frame_base sparc32_frame_base =
1285 {
1286 &sparc32_frame_unwind,
1287 sparc32_frame_base_address,
1288 sparc32_frame_base_address,
1289 sparc32_frame_base_address
1290 };
1291
1292 static struct frame_id
1293 sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1294 {
1295 CORE_ADDR sp;
1296
1297 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1298 if (sp & 1)
1299 sp += BIAS;
1300 return frame_id_build (sp, get_frame_pc (this_frame));
1301 }
1302 \f
1303
1304 /* Extract a function return value of TYPE from REGCACHE, and copy
1305 that into VALBUF. */
1306
1307 static void
1308 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
1309 gdb_byte *valbuf)
1310 {
1311 int len = TYPE_LENGTH (type);
1312 gdb_byte buf[32];
1313
1314 gdb_assert (!sparc_structure_or_union_p (type));
1315 gdb_assert (!(sparc_floating_p (type) && len == 16));
1316
1317 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
1318 {
1319 /* Floating return values. */
1320 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1321 if (len > 4)
1322 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1323 if (len > 8)
1324 {
1325 regcache_cooked_read (regcache, SPARC_F2_REGNUM, buf + 8);
1326 regcache_cooked_read (regcache, SPARC_F3_REGNUM, buf + 12);
1327 }
1328 if (len > 16)
1329 {
1330 regcache_cooked_read (regcache, SPARC_F4_REGNUM, buf + 16);
1331 regcache_cooked_read (regcache, SPARC_F5_REGNUM, buf + 20);
1332 regcache_cooked_read (regcache, SPARC_F6_REGNUM, buf + 24);
1333 regcache_cooked_read (regcache, SPARC_F7_REGNUM, buf + 28);
1334 }
1335 memcpy (valbuf, buf, len);
1336 }
1337 else
1338 {
1339 /* Integral and pointer return values. */
1340 gdb_assert (sparc_integral_or_pointer_p (type));
1341
1342 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1343 if (len > 4)
1344 {
1345 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1346 gdb_assert (len == 8);
1347 memcpy (valbuf, buf, 8);
1348 }
1349 else
1350 {
1351 /* Just stripping off any unused bytes should preserve the
1352 signed-ness just fine. */
1353 memcpy (valbuf, buf + 4 - len, len);
1354 }
1355 }
1356 }
1357
1358 /* Store the function return value of type TYPE from VALBUF into
1359 REGCACHE. */
1360
1361 static void
1362 sparc32_store_return_value (struct type *type, struct regcache *regcache,
1363 const gdb_byte *valbuf)
1364 {
1365 int len = TYPE_LENGTH (type);
1366 gdb_byte buf[8];
1367
1368 gdb_assert (!sparc_structure_or_union_p (type));
1369 gdb_assert (!(sparc_floating_p (type) && len == 16));
1370 gdb_assert (len <= 8);
1371
1372 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
1373 {
1374 /* Floating return values. */
1375 memcpy (buf, valbuf, len);
1376 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1377 if (len > 4)
1378 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1379 if (len > 8)
1380 {
1381 regcache_cooked_write (regcache, SPARC_F2_REGNUM, buf + 8);
1382 regcache_cooked_write (regcache, SPARC_F3_REGNUM, buf + 12);
1383 }
1384 if (len > 16)
1385 {
1386 regcache_cooked_write (regcache, SPARC_F4_REGNUM, buf + 16);
1387 regcache_cooked_write (regcache, SPARC_F5_REGNUM, buf + 20);
1388 regcache_cooked_write (regcache, SPARC_F6_REGNUM, buf + 24);
1389 regcache_cooked_write (regcache, SPARC_F7_REGNUM, buf + 28);
1390 }
1391 }
1392 else
1393 {
1394 /* Integral and pointer return values. */
1395 gdb_assert (sparc_integral_or_pointer_p (type));
1396
1397 if (len > 4)
1398 {
1399 gdb_assert (len == 8);
1400 memcpy (buf, valbuf, 8);
1401 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
1402 }
1403 else
1404 {
1405 /* ??? Do we need to do any sign-extension here? */
1406 memcpy (buf + 4 - len, valbuf, len);
1407 }
1408 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
1409 }
1410 }
1411
1412 static enum return_value_convention
1413 sparc32_return_value (struct gdbarch *gdbarch, struct value *function,
1414 struct type *type, struct regcache *regcache,
1415 gdb_byte *readbuf, const gdb_byte *writebuf)
1416 {
1417 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1418
1419 /* The psABI says that "...every stack frame reserves the word at
1420 %fp+64. If a function returns a structure, union, or
1421 quad-precision value, this word should hold the address of the
1422 object into which the return value should be copied." This
1423 guarantees that we can always find the return value, not just
1424 before the function returns. */
1425
1426 if (sparc_structure_or_union_p (type)
1427 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1428 {
1429 ULONGEST sp;
1430 CORE_ADDR addr;
1431
1432 if (readbuf)
1433 {
1434 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1435 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1436 read_memory (addr, readbuf, TYPE_LENGTH (type));
1437 }
1438 if (writebuf)
1439 {
1440 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1441 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1442 write_memory (addr, writebuf, TYPE_LENGTH (type));
1443 }
1444
1445 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1446 }
1447
1448 if (readbuf)
1449 sparc32_extract_return_value (type, regcache, readbuf);
1450 if (writebuf)
1451 sparc32_store_return_value (type, regcache, writebuf);
1452
1453 return RETURN_VALUE_REGISTER_CONVENTION;
1454 }
1455
1456 static int
1457 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1458 {
1459 return (sparc_structure_or_union_p (type)
1460 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)
1461 || sparc_complex_floating_p (type));
1462 }
1463
1464 static int
1465 sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
1466 {
1467 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1468 struct symbol *sym = find_pc_function (pc);
1469
1470 if (sym)
1471 return sparc32_struct_return_from_sym (sym);
1472 return 0;
1473 }
1474
1475 static void
1476 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1477 struct dwarf2_frame_state_reg *reg,
1478 struct frame_info *this_frame)
1479 {
1480 int off;
1481
1482 switch (regnum)
1483 {
1484 case SPARC_G0_REGNUM:
1485 /* Since %g0 is always zero, there is no point in saving it, and
1486 people will be inclined omit it from the CFI. Make sure we
1487 don't warn about that. */
1488 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1489 break;
1490 case SPARC_SP_REGNUM:
1491 reg->how = DWARF2_FRAME_REG_CFA;
1492 break;
1493 case SPARC32_PC_REGNUM:
1494 case SPARC32_NPC_REGNUM:
1495 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1496 off = 8;
1497 if (sparc32_dwarf2_struct_return_p (this_frame))
1498 off += 4;
1499 if (regnum == SPARC32_NPC_REGNUM)
1500 off += 4;
1501 reg->loc.offset = off;
1502 break;
1503 }
1504 }
1505
1506 \f
1507 /* The SPARC Architecture doesn't have hardware single-step support,
1508 and most operating systems don't implement it either, so we provide
1509 software single-step mechanism. */
1510
1511 static CORE_ADDR
1512 sparc_analyze_control_transfer (struct frame_info *frame,
1513 CORE_ADDR pc, CORE_ADDR *npc)
1514 {
1515 unsigned long insn = sparc_fetch_instruction (pc);
1516 int conditional_p = X_COND (insn) & 0x7;
1517 int branch_p = 0, fused_p = 0;
1518 long offset = 0; /* Must be signed for sign-extend. */
1519
1520 if (X_OP (insn) == 0 && X_OP2 (insn) == 3)
1521 {
1522 if ((insn & 0x10000000) == 0)
1523 {
1524 /* Branch on Integer Register with Prediction (BPr). */
1525 branch_p = 1;
1526 conditional_p = 1;
1527 }
1528 else
1529 {
1530 /* Compare and Branch */
1531 branch_p = 1;
1532 fused_p = 1;
1533 offset = 4 * X_DISP10 (insn);
1534 }
1535 }
1536 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1537 {
1538 /* Branch on Floating-Point Condition Codes (FBfcc). */
1539 branch_p = 1;
1540 offset = 4 * X_DISP22 (insn);
1541 }
1542 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1543 {
1544 /* Branch on Floating-Point Condition Codes with Prediction
1545 (FBPfcc). */
1546 branch_p = 1;
1547 offset = 4 * X_DISP19 (insn);
1548 }
1549 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1550 {
1551 /* Branch on Integer Condition Codes (Bicc). */
1552 branch_p = 1;
1553 offset = 4 * X_DISP22 (insn);
1554 }
1555 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1556 {
1557 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1558 branch_p = 1;
1559 offset = 4 * X_DISP19 (insn);
1560 }
1561 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1562 {
1563 /* Trap instruction (TRAP). */
1564 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
1565 }
1566
1567 /* FIXME: Handle DONE and RETRY instructions. */
1568
1569 if (branch_p)
1570 {
1571 if (fused_p)
1572 {
1573 /* Fused compare-and-branch instructions are non-delayed,
1574 and do not have an annuling capability. So we need to
1575 always set a breakpoint on both the NPC and the branch
1576 target address. */
1577 gdb_assert (offset != 0);
1578 return pc + offset;
1579 }
1580 else if (conditional_p)
1581 {
1582 /* For conditional branches, return nPC + 4 iff the annul
1583 bit is 1. */
1584 return (X_A (insn) ? *npc + 4 : 0);
1585 }
1586 else
1587 {
1588 /* For unconditional branches, return the target if its
1589 specified condition is "always" and return nPC + 4 if the
1590 condition is "never". If the annul bit is 1, set *NPC to
1591 zero. */
1592 if (X_COND (insn) == 0x0)
1593 pc = *npc, offset = 4;
1594 if (X_A (insn))
1595 *npc = 0;
1596
1597 return pc + offset;
1598 }
1599 }
1600
1601 return 0;
1602 }
1603
1604 static CORE_ADDR
1605 sparc_step_trap (struct frame_info *frame, unsigned long insn)
1606 {
1607 return 0;
1608 }
1609
1610 int
1611 sparc_software_single_step (struct frame_info *frame)
1612 {
1613 struct gdbarch *arch = get_frame_arch (frame);
1614 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1615 struct address_space *aspace = get_frame_address_space (frame);
1616 CORE_ADDR npc, nnpc;
1617
1618 CORE_ADDR pc, orig_npc;
1619
1620 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1621 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
1622
1623 /* Analyze the instruction at PC. */
1624 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
1625 if (npc != 0)
1626 insert_single_step_breakpoint (arch, aspace, npc);
1627
1628 if (nnpc != 0)
1629 insert_single_step_breakpoint (arch, aspace, nnpc);
1630
1631 /* Assert that we have set at least one breakpoint, and that
1632 they're not set at the same spot - unless we're going
1633 from here straight to NULL, i.e. a call or jump to 0. */
1634 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1635 gdb_assert (nnpc != npc || orig_npc == 0);
1636
1637 return 1;
1638 }
1639
1640 static void
1641 sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
1642 {
1643 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1644
1645 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1646 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
1647 }
1648 \f
1649
1650 /* Return the appropriate register set for the core section identified
1651 by SECT_NAME and SECT_SIZE. */
1652
1653 static const struct regset *
1654 sparc_regset_from_core_section (struct gdbarch *gdbarch,
1655 const char *sect_name, size_t sect_size)
1656 {
1657 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1658
1659 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
1660 return tdep->gregset;
1661
1662 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
1663 return tdep->fpregset;
1664
1665 return NULL;
1666 }
1667 \f
1668
1669 static struct gdbarch *
1670 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1671 {
1672 struct gdbarch_tdep *tdep;
1673 struct gdbarch *gdbarch;
1674
1675 /* If there is already a candidate, use it. */
1676 arches = gdbarch_list_lookup_by_info (arches, &info);
1677 if (arches != NULL)
1678 return arches->gdbarch;
1679
1680 /* Allocate space for the new architecture. */
1681 tdep = XCNEW (struct gdbarch_tdep);
1682 gdbarch = gdbarch_alloc (&info, tdep);
1683
1684 tdep->pc_regnum = SPARC32_PC_REGNUM;
1685 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1686 tdep->step_trap = sparc_step_trap;
1687
1688 set_gdbarch_long_double_bit (gdbarch, 128);
1689 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
1690
1691 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1692 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1693 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1694 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1695 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1696 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1697
1698 /* Register numbers of various important registers. */
1699 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1700 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1701 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1702
1703 /* Call dummy code. */
1704 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
1705 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1706 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1707 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1708
1709 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1710 set_gdbarch_stabs_argument_has_addr
1711 (gdbarch, sparc32_stabs_argument_has_addr);
1712
1713 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1714
1715 /* Stack grows downward. */
1716 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1717
1718 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
1719
1720 set_gdbarch_frame_args_skip (gdbarch, 8);
1721
1722 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
1723
1724 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1725 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1726
1727 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
1728
1729 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1730
1731 frame_base_set_default (gdbarch, &sparc32_frame_base);
1732
1733 /* Hook in the DWARF CFI frame unwinder. */
1734 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1735 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1736 StackGhost issues have been resolved. */
1737
1738 /* Hook in ABI-specific overrides, if they have been registered. */
1739 gdbarch_init_osabi (info, gdbarch);
1740
1741 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
1742
1743 /* If we have register sets, enable the generic core file support. */
1744 if (tdep->gregset)
1745 set_gdbarch_regset_from_core_section (gdbarch,
1746 sparc_regset_from_core_section);
1747
1748 register_sparc_ravenscar_ops (gdbarch);
1749
1750 return gdbarch;
1751 }
1752 \f
1753 /* Helper functions for dealing with register windows. */
1754
1755 void
1756 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1757 {
1758 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1759 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1760 int offset = 0;
1761 gdb_byte buf[8];
1762 int i;
1763
1764 if (sp & 1)
1765 {
1766 /* Registers are 64-bit. */
1767 sp += BIAS;
1768
1769 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1770 {
1771 if (regnum == i || regnum == -1)
1772 {
1773 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1774
1775 /* Handle StackGhost. */
1776 if (i == SPARC_I7_REGNUM)
1777 {
1778 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1779 ULONGEST i7;
1780
1781 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1782 store_unsigned_integer (buf + offset, 8, byte_order,
1783 i7 ^ wcookie);
1784 }
1785
1786 regcache_raw_supply (regcache, i, buf);
1787 }
1788 }
1789 }
1790 else
1791 {
1792 /* Registers are 32-bit. Toss any sign-extension of the stack
1793 pointer. */
1794 sp &= 0xffffffffUL;
1795
1796 /* Clear out the top half of the temporary buffer, and put the
1797 register value in the bottom half if we're in 64-bit mode. */
1798 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1799 {
1800 memset (buf, 0, 4);
1801 offset = 4;
1802 }
1803
1804 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1805 {
1806 if (regnum == i || regnum == -1)
1807 {
1808 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1809 buf + offset, 4);
1810
1811 /* Handle StackGhost. */
1812 if (i == SPARC_I7_REGNUM)
1813 {
1814 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1815 ULONGEST i7;
1816
1817 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1818 store_unsigned_integer (buf + offset, 4, byte_order,
1819 i7 ^ wcookie);
1820 }
1821
1822 regcache_raw_supply (regcache, i, buf);
1823 }
1824 }
1825 }
1826 }
1827
1828 void
1829 sparc_collect_rwindow (const struct regcache *regcache,
1830 CORE_ADDR sp, int regnum)
1831 {
1832 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1833 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1834 int offset = 0;
1835 gdb_byte buf[8];
1836 int i;
1837
1838 if (sp & 1)
1839 {
1840 /* Registers are 64-bit. */
1841 sp += BIAS;
1842
1843 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1844 {
1845 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1846 {
1847 regcache_raw_collect (regcache, i, buf);
1848
1849 /* Handle StackGhost. */
1850 if (i == SPARC_I7_REGNUM)
1851 {
1852 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1853 ULONGEST i7;
1854
1855 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1856 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
1857 }
1858
1859 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1860 }
1861 }
1862 }
1863 else
1864 {
1865 /* Registers are 32-bit. Toss any sign-extension of the stack
1866 pointer. */
1867 sp &= 0xffffffffUL;
1868
1869 /* Only use the bottom half if we're in 64-bit mode. */
1870 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1871 offset = 4;
1872
1873 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1874 {
1875 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1876 {
1877 regcache_raw_collect (regcache, i, buf);
1878
1879 /* Handle StackGhost. */
1880 if (i == SPARC_I7_REGNUM)
1881 {
1882 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1883 ULONGEST i7;
1884
1885 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1886 store_unsigned_integer (buf + offset, 4, byte_order,
1887 i7 ^ wcookie);
1888 }
1889
1890 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1891 buf + offset, 4);
1892 }
1893 }
1894 }
1895 }
1896
1897 /* Helper functions for dealing with register sets. */
1898
1899 void
1900 sparc32_supply_gregset (const struct sparc_gregmap *gregmap,
1901 struct regcache *regcache,
1902 int regnum, const void *gregs)
1903 {
1904 const gdb_byte *regs = gregs;
1905 gdb_byte zero[4] = { 0 };
1906 int i;
1907
1908 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1909 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1910 regs + gregmap->r_psr_offset);
1911
1912 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1913 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1914 regs + gregmap->r_pc_offset);
1915
1916 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1917 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1918 regs + gregmap->r_npc_offset);
1919
1920 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1921 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1922 regs + gregmap->r_y_offset);
1923
1924 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1925 regcache_raw_supply (regcache, SPARC_G0_REGNUM, &zero);
1926
1927 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1928 {
1929 int offset = gregmap->r_g1_offset;
1930
1931 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1932 {
1933 if (regnum == i || regnum == -1)
1934 regcache_raw_supply (regcache, i, regs + offset);
1935 offset += 4;
1936 }
1937 }
1938
1939 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1940 {
1941 /* Not all of the register set variants include Locals and
1942 Inputs. For those that don't, we read them off the stack. */
1943 if (gregmap->r_l0_offset == -1)
1944 {
1945 ULONGEST sp;
1946
1947 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1948 sparc_supply_rwindow (regcache, sp, regnum);
1949 }
1950 else
1951 {
1952 int offset = gregmap->r_l0_offset;
1953
1954 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1955 {
1956 if (regnum == i || regnum == -1)
1957 regcache_raw_supply (regcache, i, regs + offset);
1958 offset += 4;
1959 }
1960 }
1961 }
1962 }
1963
1964 void
1965 sparc32_collect_gregset (const struct sparc_gregmap *gregmap,
1966 const struct regcache *regcache,
1967 int regnum, void *gregs)
1968 {
1969 gdb_byte *regs = gregs;
1970 int i;
1971
1972 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1973 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1974 regs + gregmap->r_psr_offset);
1975
1976 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1977 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1978 regs + gregmap->r_pc_offset);
1979
1980 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1981 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1982 regs + gregmap->r_npc_offset);
1983
1984 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1985 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1986 regs + gregmap->r_y_offset);
1987
1988 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1989 {
1990 int offset = gregmap->r_g1_offset;
1991
1992 /* %g0 is always zero. */
1993 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1994 {
1995 if (regnum == i || regnum == -1)
1996 regcache_raw_collect (regcache, i, regs + offset);
1997 offset += 4;
1998 }
1999 }
2000
2001 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
2002 {
2003 /* Not all of the register set variants include Locals and
2004 Inputs. For those that don't, we read them off the stack. */
2005 if (gregmap->r_l0_offset != -1)
2006 {
2007 int offset = gregmap->r_l0_offset;
2008
2009 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2010 {
2011 if (regnum == i || regnum == -1)
2012 regcache_raw_collect (regcache, i, regs + offset);
2013 offset += 4;
2014 }
2015 }
2016 }
2017 }
2018
2019 void
2020 sparc32_supply_fpregset (const struct sparc_fpregmap *fpregmap,
2021 struct regcache *regcache,
2022 int regnum, const void *fpregs)
2023 {
2024 const gdb_byte *regs = fpregs;
2025 int i;
2026
2027 for (i = 0; i < 32; i++)
2028 {
2029 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2030 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i,
2031 regs + fpregmap->r_f0_offset + (i * 4));
2032 }
2033
2034 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2035 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM,
2036 regs + fpregmap->r_fsr_offset);
2037 }
2038
2039 void
2040 sparc32_collect_fpregset (const struct sparc_fpregmap *fpregmap,
2041 const struct regcache *regcache,
2042 int regnum, void *fpregs)
2043 {
2044 gdb_byte *regs = fpregs;
2045 int i;
2046
2047 for (i = 0; i < 32; i++)
2048 {
2049 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2050 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i,
2051 regs + fpregmap->r_f0_offset + (i * 4));
2052 }
2053
2054 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2055 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM,
2056 regs + fpregmap->r_fsr_offset);
2057 }
2058 \f
2059
2060 /* SunOS 4. */
2061
2062 /* From <machine/reg.h>. */
2063 const struct sparc_gregmap sparc32_sunos4_gregmap =
2064 {
2065 0 * 4, /* %psr */
2066 1 * 4, /* %pc */
2067 2 * 4, /* %npc */
2068 3 * 4, /* %y */
2069 -1, /* %wim */
2070 -1, /* %tbr */
2071 4 * 4, /* %g1 */
2072 -1 /* %l0 */
2073 };
2074
2075 const struct sparc_fpregmap sparc32_sunos4_fpregmap =
2076 {
2077 0 * 4, /* %f0 */
2078 33 * 4, /* %fsr */
2079 };
2080
2081 const struct sparc_fpregmap sparc32_bsd_fpregmap =
2082 {
2083 0 * 4, /* %f0 */
2084 32 * 4, /* %fsr */
2085 };
2086 \f
2087
2088 /* Provide a prototype to silence -Wmissing-prototypes. */
2089 void _initialize_sparc_tdep (void);
2090
2091 void
2092 _initialize_sparc_tdep (void)
2093 {
2094 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
2095 }
This page took 0.071105 seconds and 5 git commands to generate.