Protoization.
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for the SPARC for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* ??? Support for calling functions from gdb in sparc64 is unfinished. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "obstack.h"
29 #include "target.h"
30 #include "value.h"
31 #include "bfd.h"
32 #include "gdb_string.h"
33
34 #ifdef USE_PROC_FS
35 #include <sys/procfs.h>
36 #endif
37
38 #include "gdbcore.h"
39
40 #include "symfile.h" /* for 'entry_point_address' */
41
42 /* Prototypes for supply_gregset etc. */
43 #include "gregset.h"
44
45 /*
46 * Some local macros that have multi-arch and non-multi-arch versions:
47 */
48
49 #if (GDB_MULTI_ARCH > 0)
50
51 /* Does the target have Floating Point registers? */
52 #define SPARC_HAS_FPU (gdbarch_tdep (current_gdbarch)->has_fpu)
53 /* Number of bytes devoted to Floating Point registers: */
54 #define FP_REGISTER_BYTES (gdbarch_tdep (current_gdbarch)->fp_register_bytes)
55 /* Highest numbered Floating Point register. */
56 #define FP_MAX_REGNUM (gdbarch_tdep (current_gdbarch)->fp_max_regnum)
57 /* Size of a general (integer) register: */
58 #define SPARC_INTREG_SIZE (gdbarch_tdep (current_gdbarch)->intreg_size)
59 /* Offset within the call dummy stack of the saved registers. */
60 #define DUMMY_REG_SAVE_OFFSET (gdbarch_tdep (current_gdbarch)->reg_save_offset)
61
62 #else /* non-multi-arch */
63
64
65 /* Does the target have Floating Point registers? */
66 #if defined(TARGET_SPARCLET) || defined(TARGET_SPARCLITE)
67 #define SPARC_HAS_FPU 0
68 #else
69 #define SPARC_HAS_FPU 1
70 #endif
71
72 /* Number of bytes devoted to Floating Point registers: */
73 #if (GDB_TARGET_IS_SPARC64)
74 #define FP_REGISTER_BYTES (64 * 4)
75 #else
76 #if (SPARC_HAS_FPU)
77 #define FP_REGISTER_BYTES (32 * 4)
78 #else
79 #define FP_REGISTER_BYTES 0
80 #endif
81 #endif
82
83 /* Highest numbered Floating Point register. */
84 #if (GDB_TARGET_IS_SPARC64)
85 #define FP_MAX_REGNUM (FP0_REGNUM + 48)
86 #else
87 #define FP_MAX_REGNUM (FP0_REGNUM + 32)
88 #endif
89
90 /* Size of a general (integer) register: */
91 #define SPARC_INTREG_SIZE (REGISTER_RAW_SIZE (G0_REGNUM))
92
93 /* Offset within the call dummy stack of the saved registers. */
94 #if (GDB_TARGET_IS_SPARC64)
95 #define DUMMY_REG_SAVE_OFFSET (128 + 16)
96 #else
97 #define DUMMY_REG_SAVE_OFFSET 0x60
98 #endif
99
100 #endif /* GDB_MULTI_ARCH */
101
102 struct gdbarch_tdep
103 {
104 int has_fpu;
105 int fp_register_bytes;
106 int y_regnum;
107 int fp_max_regnum;
108 int intreg_size;
109 int reg_save_offset;
110 int call_dummy_call_offset;
111 int print_insn_mach;
112 };
113
114 /* Now make GDB_TARGET_IS_SPARC64 a runtime test. */
115 /* FIXME MVS: or try testing bfd_arch_info.arch and bfd_arch_info.mach ...
116 * define GDB_TARGET_IS_SPARC64 \
117 * (TARGET_ARCHITECTURE->arch == bfd_arch_sparc && \
118 * (TARGET_ARCHITECTURE->mach == bfd_mach_sparc_v9 || \
119 * TARGET_ARCHITECTURE->mach == bfd_mach_sparc_v9a))
120 */
121
122 /* From infrun.c */
123 extern int stop_after_trap;
124
125 /* We don't store all registers immediately when requested, since they
126 get sent over in large chunks anyway. Instead, we accumulate most
127 of the changes and send them over once. "deferred_stores" keeps
128 track of which sets of registers we have locally-changed copies of,
129 so we only need send the groups that have changed. */
130
131 int deferred_stores = 0; /* Accumulated stores we want to do eventually. */
132
133
134 /* Some machines, such as Fujitsu SPARClite 86x, have a bi-endian mode
135 where instructions are big-endian and data are little-endian.
136 This flag is set when we detect that the target is of this type. */
137
138 int bi_endian = 0;
139
140
141 /* Fetch a single instruction. Even on bi-endian machines
142 such as sparc86x, instructions are always big-endian. */
143
144 static unsigned long
145 fetch_instruction (CORE_ADDR pc)
146 {
147 unsigned long retval;
148 int i;
149 unsigned char buf[4];
150
151 read_memory (pc, buf, sizeof (buf));
152
153 /* Start at the most significant end of the integer, and work towards
154 the least significant. */
155 retval = 0;
156 for (i = 0; i < sizeof (buf); ++i)
157 retval = (retval << 8) | buf[i];
158 return retval;
159 }
160
161
162 /* Branches with prediction are treated like their non-predicting cousins. */
163 /* FIXME: What about floating point branches? */
164
165 /* Macros to extract fields from sparc instructions. */
166 #define X_OP(i) (((i) >> 30) & 0x3)
167 #define X_RD(i) (((i) >> 25) & 0x1f)
168 #define X_A(i) (((i) >> 29) & 1)
169 #define X_COND(i) (((i) >> 25) & 0xf)
170 #define X_OP2(i) (((i) >> 22) & 0x7)
171 #define X_IMM22(i) ((i) & 0x3fffff)
172 #define X_OP3(i) (((i) >> 19) & 0x3f)
173 #define X_RS1(i) (((i) >> 14) & 0x1f)
174 #define X_I(i) (((i) >> 13) & 1)
175 #define X_IMM13(i) ((i) & 0x1fff)
176 /* Sign extension macros. */
177 #define X_SIMM13(i) ((X_IMM13 (i) ^ 0x1000) - 0x1000)
178 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
179 #define X_CC(i) (((i) >> 20) & 3)
180 #define X_P(i) (((i) >> 19) & 1)
181 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
182 #define X_RCOND(i) (((i) >> 25) & 7)
183 #define X_DISP16(i) ((((((i) >> 6) && 0xc000) | ((i) & 0x3fff)) ^ 0x8000) - 0x8000)
184 #define X_FCN(i) (((i) >> 25) & 31)
185
186 typedef enum
187 {
188 Error, not_branch, bicc, bicca, ba, baa, ticc, ta, done_retry
189 } branch_type;
190
191 /* Simulate single-step ptrace call for sun4. Code written by Gary
192 Beihl (beihl@mcc.com). */
193
194 /* npc4 and next_pc describe the situation at the time that the
195 step-breakpoint was set, not necessary the current value of NPC_REGNUM. */
196 static CORE_ADDR next_pc, npc4, target;
197 static int brknpc4, brktrg;
198 typedef char binsn_quantum[BREAKPOINT_MAX];
199 static binsn_quantum break_mem[3];
200
201 static branch_type isbranch (long, CORE_ADDR, CORE_ADDR *);
202
203 /* single_step() is called just before we want to resume the inferior,
204 if we want to single-step it but there is no hardware or kernel single-step
205 support (as on all SPARCs). We find all the possible targets of the
206 coming instruction and breakpoint them.
207
208 single_step is also called just after the inferior stops. If we had
209 set up a simulated single-step, we undo our damage. */
210
211 void
212 sparc_software_single_step (enum target_signal ignore, /* pid, but we don't need it */
213 int insert_breakpoints_p)
214 {
215 branch_type br;
216 CORE_ADDR pc;
217 long pc_instruction;
218
219 if (insert_breakpoints_p)
220 {
221 /* Always set breakpoint for NPC. */
222 next_pc = read_register (NPC_REGNUM);
223 npc4 = next_pc + 4; /* branch not taken */
224
225 target_insert_breakpoint (next_pc, break_mem[0]);
226 /* printf_unfiltered ("set break at %x\n",next_pc); */
227
228 pc = read_register (PC_REGNUM);
229 pc_instruction = fetch_instruction (pc);
230 br = isbranch (pc_instruction, pc, &target);
231 brknpc4 = brktrg = 0;
232
233 if (br == bicca)
234 {
235 /* Conditional annulled branch will either end up at
236 npc (if taken) or at npc+4 (if not taken).
237 Trap npc+4. */
238 brknpc4 = 1;
239 target_insert_breakpoint (npc4, break_mem[1]);
240 }
241 else if (br == baa && target != next_pc)
242 {
243 /* Unconditional annulled branch will always end up at
244 the target. */
245 brktrg = 1;
246 target_insert_breakpoint (target, break_mem[2]);
247 }
248 else if (GDB_TARGET_IS_SPARC64 && br == done_retry)
249 {
250 brktrg = 1;
251 target_insert_breakpoint (target, break_mem[2]);
252 }
253 }
254 else
255 {
256 /* Remove breakpoints */
257 target_remove_breakpoint (next_pc, break_mem[0]);
258
259 if (brknpc4)
260 target_remove_breakpoint (npc4, break_mem[1]);
261
262 if (brktrg)
263 target_remove_breakpoint (target, break_mem[2]);
264 }
265 }
266 \f
267 struct frame_extra_info
268 {
269 CORE_ADDR bottom;
270 int in_prologue;
271 int flat;
272 /* Following fields only relevant for flat frames. */
273 CORE_ADDR pc_addr;
274 CORE_ADDR fp_addr;
275 /* Add this to ->frame to get the value of the stack pointer at the
276 time of the register saves. */
277 int sp_offset;
278 };
279
280 /* Call this for each newly created frame. For SPARC, we need to
281 calculate the bottom of the frame, and do some extra work if the
282 prologue has been generated via the -mflat option to GCC. In
283 particular, we need to know where the previous fp and the pc have
284 been stashed, since their exact position within the frame may vary. */
285
286 void
287 sparc_init_extra_frame_info (int fromleaf, struct frame_info *fi)
288 {
289 char *name;
290 CORE_ADDR prologue_start, prologue_end;
291 int insn;
292
293 fi->extra_info = (struct frame_extra_info *)
294 frame_obstack_alloc (sizeof (struct frame_extra_info));
295 frame_saved_regs_zalloc (fi);
296
297 fi->extra_info->bottom =
298 (fi->next ?
299 (fi->frame == fi->next->frame ? fi->next->extra_info->bottom :
300 fi->next->frame) : read_sp ());
301
302 /* If fi->next is NULL, then we already set ->frame by passing read_fp()
303 to create_new_frame. */
304 if (fi->next)
305 {
306 char *buf;
307
308 buf = alloca (MAX_REGISTER_RAW_SIZE);
309
310 /* Compute ->frame as if not flat. If it is flat, we'll change
311 it later. */
312 if (fi->next->next != NULL
313 && (fi->next->next->signal_handler_caller
314 || frame_in_dummy (fi->next->next))
315 && frameless_look_for_prologue (fi->next))
316 {
317 /* A frameless function interrupted by a signal did not change
318 the frame pointer, fix up frame pointer accordingly. */
319 fi->frame = FRAME_FP (fi->next);
320 fi->extra_info->bottom = fi->next->extra_info->bottom;
321 }
322 else
323 {
324 /* Should we adjust for stack bias here? */
325 get_saved_register (buf, 0, 0, fi, FP_REGNUM, 0);
326 fi->frame = extract_address (buf, REGISTER_RAW_SIZE (FP_REGNUM));
327
328 if (GDB_TARGET_IS_SPARC64 && (fi->frame & 1))
329 fi->frame += 2047;
330 }
331 }
332
333 /* Decide whether this is a function with a ``flat register window''
334 frame. For such functions, the frame pointer is actually in %i7. */
335 fi->extra_info->flat = 0;
336 fi->extra_info->in_prologue = 0;
337 if (find_pc_partial_function (fi->pc, &name, &prologue_start, &prologue_end))
338 {
339 /* See if the function starts with an add (which will be of a
340 negative number if a flat frame) to the sp. FIXME: Does not
341 handle large frames which will need more than one instruction
342 to adjust the sp. */
343 insn = fetch_instruction (prologue_start, 4);
344 if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0
345 && X_I (insn) && X_SIMM13 (insn) < 0)
346 {
347 int offset = X_SIMM13 (insn);
348
349 /* Then look for a save of %i7 into the frame. */
350 insn = fetch_instruction (prologue_start + 4);
351 if (X_OP (insn) == 3
352 && X_RD (insn) == 31
353 && X_OP3 (insn) == 4
354 && X_RS1 (insn) == 14)
355 {
356 char *buf;
357
358 buf = alloca (MAX_REGISTER_RAW_SIZE);
359
360 /* We definitely have a flat frame now. */
361 fi->extra_info->flat = 1;
362
363 fi->extra_info->sp_offset = offset;
364
365 /* Overwrite the frame's address with the value in %i7. */
366 get_saved_register (buf, 0, 0, fi, I7_REGNUM, 0);
367 fi->frame = extract_address (buf, REGISTER_RAW_SIZE (I7_REGNUM));
368
369 if (GDB_TARGET_IS_SPARC64 && (fi->frame & 1))
370 fi->frame += 2047;
371
372 /* Record where the fp got saved. */
373 fi->extra_info->fp_addr =
374 fi->frame + fi->extra_info->sp_offset + X_SIMM13 (insn);
375
376 /* Also try to collect where the pc got saved to. */
377 fi->extra_info->pc_addr = 0;
378 insn = fetch_instruction (prologue_start + 12);
379 if (X_OP (insn) == 3
380 && X_RD (insn) == 15
381 && X_OP3 (insn) == 4
382 && X_RS1 (insn) == 14)
383 fi->extra_info->pc_addr =
384 fi->frame + fi->extra_info->sp_offset + X_SIMM13 (insn);
385 }
386 }
387 else
388 {
389 /* Check if the PC is in the function prologue before a SAVE
390 instruction has been executed yet. If so, set the frame
391 to the current value of the stack pointer and set
392 the in_prologue flag. */
393 CORE_ADDR addr;
394 struct symtab_and_line sal;
395
396 sal = find_pc_line (prologue_start, 0);
397 if (sal.line == 0) /* no line info, use PC */
398 prologue_end = fi->pc;
399 else if (sal.end < prologue_end)
400 prologue_end = sal.end;
401 if (fi->pc < prologue_end)
402 {
403 for (addr = prologue_start; addr < fi->pc; addr += 4)
404 {
405 insn = read_memory_integer (addr, 4);
406 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
407 break; /* SAVE seen, stop searching */
408 }
409 if (addr >= fi->pc)
410 {
411 fi->extra_info->in_prologue = 1;
412 fi->frame = read_register (SP_REGNUM);
413 }
414 }
415 }
416 }
417 if (fi->next && fi->frame == 0)
418 {
419 /* Kludge to cause init_prev_frame_info to destroy the new frame. */
420 fi->frame = fi->next->frame;
421 fi->pc = fi->next->pc;
422 }
423 }
424
425 CORE_ADDR
426 sparc_frame_chain (struct frame_info *frame)
427 {
428 /* Value that will cause FRAME_CHAIN_VALID to not worry about the chain
429 value. If it realy is zero, we detect it later in
430 sparc_init_prev_frame. */
431 return (CORE_ADDR) 1;
432 }
433
434 CORE_ADDR
435 sparc_extract_struct_value_address (char *regbuf)
436 {
437 return extract_address (regbuf + REGISTER_BYTE (O0_REGNUM),
438 REGISTER_RAW_SIZE (O0_REGNUM));
439 }
440
441 /* Find the pc saved in frame FRAME. */
442
443 CORE_ADDR
444 sparc_frame_saved_pc (struct frame_info *frame)
445 {
446 char *buf;
447 CORE_ADDR addr;
448
449 buf = alloca (MAX_REGISTER_RAW_SIZE);
450 if (frame->signal_handler_caller)
451 {
452 /* This is the signal trampoline frame.
453 Get the saved PC from the sigcontext structure. */
454
455 #ifndef SIGCONTEXT_PC_OFFSET
456 #define SIGCONTEXT_PC_OFFSET 12
457 #endif
458
459 CORE_ADDR sigcontext_addr;
460 char *scbuf;
461 int saved_pc_offset = SIGCONTEXT_PC_OFFSET;
462 char *name = NULL;
463
464 scbuf = alloca (TARGET_PTR_BIT / HOST_CHAR_BIT);
465
466 /* Solaris2 ucbsigvechandler passes a pointer to a sigcontext
467 as the third parameter. The offset to the saved pc is 12. */
468 find_pc_partial_function (frame->pc, &name,
469 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
470 if (name && STREQ (name, "ucbsigvechandler"))
471 saved_pc_offset = 12;
472
473 /* The sigcontext address is contained in register O2. */
474 get_saved_register (buf, (int *) NULL, (CORE_ADDR *) NULL,
475 frame, O0_REGNUM + 2, (enum lval_type *) NULL);
476 sigcontext_addr = extract_address (buf, REGISTER_RAW_SIZE (O0_REGNUM + 2));
477
478 /* Don't cause a memory_error when accessing sigcontext in case the
479 stack layout has changed or the stack is corrupt. */
480 target_read_memory (sigcontext_addr + saved_pc_offset,
481 scbuf, sizeof (scbuf));
482 return extract_address (scbuf, sizeof (scbuf));
483 }
484 else if (frame->extra_info->in_prologue ||
485 (frame->next != NULL &&
486 (frame->next->signal_handler_caller ||
487 frame_in_dummy (frame->next)) &&
488 frameless_look_for_prologue (frame)))
489 {
490 /* A frameless function interrupted by a signal did not save
491 the PC, it is still in %o7. */
492 get_saved_register (buf, (int *) NULL, (CORE_ADDR *) NULL,
493 frame, O7_REGNUM, (enum lval_type *) NULL);
494 return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE));
495 }
496 if (frame->extra_info->flat)
497 addr = frame->extra_info->pc_addr;
498 else
499 addr = frame->extra_info->bottom + FRAME_SAVED_I0 +
500 SPARC_INTREG_SIZE * (I7_REGNUM - I0_REGNUM);
501
502 if (addr == 0)
503 /* A flat frame leaf function might not save the PC anywhere,
504 just leave it in %o7. */
505 return PC_ADJUST (read_register (O7_REGNUM));
506
507 read_memory (addr, buf, SPARC_INTREG_SIZE);
508 return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE));
509 }
510
511 /* Since an individual frame in the frame cache is defined by two
512 arguments (a frame pointer and a stack pointer), we need two
513 arguments to get info for an arbitrary stack frame. This routine
514 takes two arguments and makes the cached frames look as if these
515 two arguments defined a frame on the cache. This allows the rest
516 of info frame to extract the important arguments without
517 difficulty. */
518
519 struct frame_info *
520 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
521 {
522 struct frame_info *frame;
523
524 if (argc != 2)
525 error ("Sparc frame specifications require two arguments: fp and sp");
526
527 frame = create_new_frame (argv[0], 0);
528
529 if (!frame)
530 internal_error ("create_new_frame returned invalid frame");
531
532 frame->extra_info->bottom = argv[1];
533 frame->pc = FRAME_SAVED_PC (frame);
534 return frame;
535 }
536
537 /* Given a pc value, skip it forward past the function prologue by
538 disassembling instructions that appear to be a prologue.
539
540 If FRAMELESS_P is set, we are only testing to see if the function
541 is frameless. This allows a quicker answer.
542
543 This routine should be more specific in its actions; making sure
544 that it uses the same register in the initial prologue section. */
545
546 static CORE_ADDR examine_prologue (CORE_ADDR, int, struct frame_info *,
547 CORE_ADDR *);
548
549 static CORE_ADDR
550 examine_prologue (CORE_ADDR start_pc, int frameless_p, struct frame_info *fi,
551 CORE_ADDR *saved_regs)
552 {
553 int insn;
554 int dest = -1;
555 CORE_ADDR pc = start_pc;
556 int is_flat = 0;
557
558 insn = fetch_instruction (pc);
559
560 /* Recognize the `sethi' insn and record its destination. */
561 if (X_OP (insn) == 0 && X_OP2 (insn) == 4)
562 {
563 dest = X_RD (insn);
564 pc += 4;
565 insn = fetch_instruction (pc);
566 }
567
568 /* Recognize an add immediate value to register to either %g1 or
569 the destination register recorded above. Actually, this might
570 well recognize several different arithmetic operations.
571 It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1"
572 followed by "save %sp, %g1, %sp" is a valid prologue (Not that
573 I imagine any compiler really does that, however). */
574 if (X_OP (insn) == 2
575 && X_I (insn)
576 && (X_RD (insn) == 1 || X_RD (insn) == dest))
577 {
578 pc += 4;
579 insn = fetch_instruction (pc);
580 }
581
582 /* Recognize any SAVE insn. */
583 if (X_OP (insn) == 2 && X_OP3 (insn) == 60)
584 {
585 pc += 4;
586 if (frameless_p) /* If the save is all we care about, */
587 return pc; /* return before doing more work */
588 insn = fetch_instruction (pc);
589 }
590 /* Recognize add to %sp. */
591 else if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0)
592 {
593 pc += 4;
594 if (frameless_p) /* If the add is all we care about, */
595 return pc; /* return before doing more work */
596 is_flat = 1;
597 insn = fetch_instruction (pc);
598 /* Recognize store of frame pointer (i7). */
599 if (X_OP (insn) == 3
600 && X_RD (insn) == 31
601 && X_OP3 (insn) == 4
602 && X_RS1 (insn) == 14)
603 {
604 pc += 4;
605 insn = fetch_instruction (pc);
606
607 /* Recognize sub %sp, <anything>, %i7. */
608 if (X_OP (insn) == 2
609 && X_OP3 (insn) == 4
610 && X_RS1 (insn) == 14
611 && X_RD (insn) == 31)
612 {
613 pc += 4;
614 insn = fetch_instruction (pc);
615 }
616 else
617 return pc;
618 }
619 else
620 return pc;
621 }
622 else
623 /* Without a save or add instruction, it's not a prologue. */
624 return start_pc;
625
626 while (1)
627 {
628 /* Recognize stores into the frame from the input registers.
629 This recognizes all non alternate stores of an input register,
630 into a location offset from the frame pointer between
631 +68 and +92. */
632
633 /* The above will fail for arguments that are promoted
634 (eg. shorts to ints or floats to doubles), because the compiler
635 will pass them in positive-offset frame space, but the prologue
636 will save them (after conversion) in negative frame space at an
637 unpredictable offset. Therefore I am going to remove the
638 restriction on the target-address of the save, on the theory
639 that any unbroken sequence of saves from input registers must
640 be part of the prologue. In un-optimized code (at least), I'm
641 fairly sure that the compiler would emit SOME other instruction
642 (eg. a move or add) before emitting another save that is actually
643 a part of the function body.
644
645 Besides, the reserved stack space is different for SPARC64 anyway.
646
647 MVS 4/23/2000 */
648
649 if (X_OP (insn) == 3
650 && (X_OP3 (insn) & 0x3c) == 4 /* Store, non-alternate. */
651 && (X_RD (insn) & 0x18) == 0x18 /* Input register. */
652 && X_I (insn) /* Immediate mode. */
653 && X_RS1 (insn) == 30) /* Off of frame pointer. */
654 ; /* empty statement -- fall thru to end of loop */
655 else if (GDB_TARGET_IS_SPARC64
656 && X_OP (insn) == 3
657 && (X_OP3 (insn) & 0x3c) == 12 /* store, extended (64-bit) */
658 && (X_RD (insn) & 0x18) == 0x18 /* input register */
659 && X_I (insn) /* immediate mode */
660 && X_RS1 (insn) == 30) /* off of frame pointer */
661 ; /* empty statement -- fall thru to end of loop */
662 else if (X_OP (insn) == 3
663 && (X_OP3 (insn) & 0x3c) == 36 /* store, floating-point */
664 && X_I (insn) /* immediate mode */
665 && X_RS1 (insn) == 30) /* off of frame pointer */
666 ; /* empty statement -- fall thru to end of loop */
667 else if (is_flat
668 && X_OP (insn) == 3
669 && X_OP3 (insn) == 4 /* store? */
670 && X_RS1 (insn) == 14) /* off of frame pointer */
671 {
672 if (saved_regs && X_I (insn))
673 saved_regs[X_RD (insn)] =
674 fi->frame + fi->extra_info->sp_offset + X_SIMM13 (insn);
675 }
676 else
677 break;
678 pc += 4;
679 insn = fetch_instruction (pc);
680 }
681
682 return pc;
683 }
684
685 CORE_ADDR
686 sparc_skip_prologue (CORE_ADDR start_pc, int frameless_p)
687 {
688 return examine_prologue (start_pc, frameless_p, NULL, NULL);
689 }
690
691 /* Check instruction at ADDR to see if it is a branch.
692 All non-annulled instructions will go to NPC or will trap.
693 Set *TARGET if we find a candidate branch; set to zero if not.
694
695 This isn't static as it's used by remote-sa.sparc.c. */
696
697 static branch_type
698 isbranch (long instruction, CORE_ADDR addr, CORE_ADDR *target)
699 {
700 branch_type val = not_branch;
701 long int offset = 0; /* Must be signed for sign-extend. */
702
703 *target = 0;
704
705 if (X_OP (instruction) == 0
706 && (X_OP2 (instruction) == 2
707 || X_OP2 (instruction) == 6
708 || X_OP2 (instruction) == 1
709 || X_OP2 (instruction) == 3
710 || X_OP2 (instruction) == 5
711 || (GDB_TARGET_IS_SPARC64 && X_OP2 (instruction) == 7)))
712 {
713 if (X_COND (instruction) == 8)
714 val = X_A (instruction) ? baa : ba;
715 else
716 val = X_A (instruction) ? bicca : bicc;
717 switch (X_OP2 (instruction))
718 {
719 case 7:
720 if (!GDB_TARGET_IS_SPARC64)
721 break;
722 /* else fall thru */
723 case 2:
724 case 6:
725 offset = 4 * X_DISP22 (instruction);
726 break;
727 case 1:
728 case 5:
729 offset = 4 * X_DISP19 (instruction);
730 break;
731 case 3:
732 offset = 4 * X_DISP16 (instruction);
733 break;
734 }
735 *target = addr + offset;
736 }
737 else if (GDB_TARGET_IS_SPARC64
738 && X_OP (instruction) == 2
739 && X_OP3 (instruction) == 62)
740 {
741 if (X_FCN (instruction) == 0)
742 {
743 /* done */
744 *target = read_register (TNPC_REGNUM);
745 val = done_retry;
746 }
747 else if (X_FCN (instruction) == 1)
748 {
749 /* retry */
750 *target = read_register (TPC_REGNUM);
751 val = done_retry;
752 }
753 }
754
755 return val;
756 }
757 \f
758 /* Find register number REGNUM relative to FRAME and put its
759 (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
760 was optimized out (and thus can't be fetched). If the variable
761 was fetched from memory, set *ADDRP to where it was fetched from,
762 otherwise it was fetched from a register.
763
764 The argument RAW_BUFFER must point to aligned memory. */
765
766 void
767 sparc_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
768 struct frame_info *frame, int regnum,
769 enum lval_type *lval)
770 {
771 struct frame_info *frame1;
772 CORE_ADDR addr;
773
774 if (!target_has_registers)
775 error ("No registers.");
776
777 if (optimized)
778 *optimized = 0;
779
780 addr = 0;
781
782 /* FIXME This code extracted from infcmd.c; should put elsewhere! */
783 if (frame == NULL)
784 {
785 /* error ("No selected frame."); */
786 if (!target_has_registers)
787 error ("The program has no registers now.");
788 if (selected_frame == NULL)
789 error ("No selected frame.");
790 /* Try to use selected frame */
791 frame = get_prev_frame (selected_frame);
792 if (frame == 0)
793 error ("Cmd not meaningful in the outermost frame.");
794 }
795
796
797 frame1 = frame->next;
798
799 /* Get saved PC from the frame info if not in innermost frame. */
800 if (regnum == PC_REGNUM && frame1 != NULL)
801 {
802 if (lval != NULL)
803 *lval = not_lval;
804 if (raw_buffer != NULL)
805 {
806 /* Put it back in target format. */
807 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc);
808 }
809 if (addrp != NULL)
810 *addrp = 0;
811 return;
812 }
813
814 while (frame1 != NULL)
815 {
816 /* FIXME MVS: wrong test for dummy frame at entry. */
817
818 if (frame1->pc >= (frame1->extra_info->bottom ?
819 frame1->extra_info->bottom : read_sp ())
820 && frame1->pc <= FRAME_FP (frame1))
821 {
822 /* Dummy frame. All but the window regs are in there somewhere.
823 The window registers are saved on the stack, just like in a
824 normal frame. */
825 if (regnum >= G1_REGNUM && regnum < G1_REGNUM + 7)
826 addr = frame1->frame + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
827 - (FP_REGISTER_BYTES + 8 * SPARC_INTREG_SIZE);
828 else if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
829 addr = (frame1->prev->extra_info->bottom
830 + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
831 + FRAME_SAVED_I0);
832 else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
833 addr = (frame1->prev->extra_info->bottom
834 + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
835 + FRAME_SAVED_L0);
836 else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
837 addr = frame1->frame + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
838 - (FP_REGISTER_BYTES + 16 * SPARC_INTREG_SIZE);
839 else if (SPARC_HAS_FPU &&
840 regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32)
841 addr = frame1->frame + (regnum - FP0_REGNUM) * 4
842 - (FP_REGISTER_BYTES);
843 else if (GDB_TARGET_IS_SPARC64 && SPARC_HAS_FPU &&
844 regnum >= FP0_REGNUM + 32 && regnum < FP_MAX_REGNUM)
845 addr = frame1->frame + 32 * 4 + (regnum - FP0_REGNUM - 32) * 8
846 - (FP_REGISTER_BYTES);
847 else if (regnum >= Y_REGNUM && regnum < NUM_REGS)
848 addr = frame1->frame + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE
849 - (FP_REGISTER_BYTES + 24 * SPARC_INTREG_SIZE);
850 }
851 else if (frame1->extra_info->flat)
852 {
853
854 if (regnum == RP_REGNUM)
855 addr = frame1->extra_info->pc_addr;
856 else if (regnum == I7_REGNUM)
857 addr = frame1->extra_info->fp_addr;
858 else
859 {
860 CORE_ADDR func_start;
861 CORE_ADDR *regs;
862
863 regs = alloca (NUM_REGS * sizeof (CORE_ADDR));
864 memset (regs, 0, NUM_REGS * sizeof (CORE_ADDR));
865
866 find_pc_partial_function (frame1->pc, NULL, &func_start, NULL);
867 examine_prologue (func_start, 0, frame1, regs);
868 addr = regs[regnum];
869 }
870 }
871 else
872 {
873 /* Normal frame. Local and In registers are saved on stack. */
874 if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
875 addr = (frame1->prev->extra_info->bottom
876 + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
877 + FRAME_SAVED_I0);
878 else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
879 addr = (frame1->prev->extra_info->bottom
880 + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
881 + FRAME_SAVED_L0);
882 else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
883 {
884 /* Outs become ins. */
885 get_saved_register (raw_buffer, optimized, addrp, frame1,
886 (regnum - O0_REGNUM + I0_REGNUM), lval);
887 return;
888 }
889 }
890 if (addr != 0)
891 break;
892 frame1 = frame1->next;
893 }
894 if (addr != 0)
895 {
896 if (lval != NULL)
897 *lval = lval_memory;
898 if (regnum == SP_REGNUM)
899 {
900 if (raw_buffer != NULL)
901 {
902 /* Put it back in target format. */
903 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), addr);
904 }
905 if (addrp != NULL)
906 *addrp = 0;
907 return;
908 }
909 if (raw_buffer != NULL)
910 read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
911 }
912 else
913 {
914 if (lval != NULL)
915 *lval = lval_register;
916 addr = REGISTER_BYTE (regnum);
917 if (raw_buffer != NULL)
918 read_register_gen (regnum, raw_buffer);
919 }
920 if (addrp != NULL)
921 *addrp = addr;
922 }
923
924 /* Push an empty stack frame, and record in it the current PC, regs, etc.
925
926 We save the non-windowed registers and the ins. The locals and outs
927 are new; they don't need to be saved. The i's and l's of
928 the last frame were already saved on the stack. */
929
930 /* Definitely see tm-sparc.h for more doc of the frame format here. */
931
932 /* See tm-sparc.h for how this is calculated. */
933
934 #define DUMMY_STACK_REG_BUF_SIZE \
935 (((8+8+8) * SPARC_INTREG_SIZE) + FP_REGISTER_BYTES)
936 #define DUMMY_STACK_SIZE \
937 (DUMMY_STACK_REG_BUF_SIZE + DUMMY_REG_SAVE_OFFSET)
938
939 void
940 sparc_push_dummy_frame (void)
941 {
942 CORE_ADDR sp, old_sp;
943 char *register_temp;
944
945 register_temp = alloca (DUMMY_STACK_SIZE);
946
947 old_sp = sp = read_sp ();
948
949 if (GDB_TARGET_IS_SPARC64)
950 {
951 /* PC, NPC, CCR, FSR, FPRS, Y, ASI */
952 read_register_bytes (REGISTER_BYTE (PC_REGNUM), &register_temp[0],
953 REGISTER_RAW_SIZE (PC_REGNUM) * 7);
954 read_register_bytes (REGISTER_BYTE (PSTATE_REGNUM),
955 &register_temp[7 * SPARC_INTREG_SIZE],
956 REGISTER_RAW_SIZE (PSTATE_REGNUM));
957 /* FIXME: not sure what needs to be saved here. */
958 }
959 else
960 {
961 /* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */
962 read_register_bytes (REGISTER_BYTE (Y_REGNUM), &register_temp[0],
963 REGISTER_RAW_SIZE (Y_REGNUM) * 8);
964 }
965
966 read_register_bytes (REGISTER_BYTE (O0_REGNUM),
967 &register_temp[8 * SPARC_INTREG_SIZE],
968 SPARC_INTREG_SIZE * 8);
969
970 read_register_bytes (REGISTER_BYTE (G0_REGNUM),
971 &register_temp[16 * SPARC_INTREG_SIZE],
972 SPARC_INTREG_SIZE * 8);
973
974 if (SPARC_HAS_FPU)
975 read_register_bytes (REGISTER_BYTE (FP0_REGNUM),
976 &register_temp[24 * SPARC_INTREG_SIZE],
977 FP_REGISTER_BYTES);
978
979 sp -= DUMMY_STACK_SIZE;
980
981 write_sp (sp);
982
983 write_memory (sp + DUMMY_REG_SAVE_OFFSET, &register_temp[0],
984 DUMMY_STACK_REG_BUF_SIZE);
985
986 if (strcmp (target_shortname, "sim") != 0)
987 {
988 write_fp (old_sp);
989
990 /* Set return address register for the call dummy to the current PC. */
991 write_register (I7_REGNUM, read_pc () - 8);
992 }
993 else
994 {
995 /* The call dummy will write this value to FP before executing
996 the 'save'. This ensures that register window flushes work
997 correctly in the simulator. */
998 write_register (G0_REGNUM + 1, read_register (FP_REGNUM));
999
1000 /* The call dummy will write this value to FP after executing
1001 the 'save'. */
1002 write_register (G0_REGNUM + 2, old_sp);
1003
1004 /* The call dummy will write this value to the return address (%i7) after
1005 executing the 'save'. */
1006 write_register (G0_REGNUM + 3, read_pc () - 8);
1007
1008 /* Set the FP that the call dummy will be using after the 'save'.
1009 This makes backtraces from an inferior function call work properly. */
1010 write_register (FP_REGNUM, old_sp);
1011 }
1012 }
1013
1014 /* sparc_frame_find_saved_regs (). This function is here only because
1015 pop_frame uses it. Note there is an interesting corner case which
1016 I think few ports of GDB get right--if you are popping a frame
1017 which does not save some register that *is* saved by a more inner
1018 frame (such a frame will never be a dummy frame because dummy
1019 frames save all registers). Rewriting pop_frame to use
1020 get_saved_register would solve this problem and also get rid of the
1021 ugly duplication between sparc_frame_find_saved_regs and
1022 get_saved_register.
1023
1024 Stores, into an array of CORE_ADDR,
1025 the addresses of the saved registers of frame described by FRAME_INFO.
1026 This includes special registers such as pc and fp saved in special
1027 ways in the stack frame. sp is even more special:
1028 the address we return for it IS the sp for the next frame.
1029
1030 Note that on register window machines, we are currently making the
1031 assumption that window registers are being saved somewhere in the
1032 frame in which they are being used. If they are stored in an
1033 inferior frame, find_saved_register will break.
1034
1035 On the Sun 4, the only time all registers are saved is when
1036 a dummy frame is involved. Otherwise, the only saved registers
1037 are the LOCAL and IN registers which are saved as a result
1038 of the "save/restore" opcodes. This condition is determined
1039 by address rather than by value.
1040
1041 The "pc" is not stored in a frame on the SPARC. (What is stored
1042 is a return address minus 8.) sparc_pop_frame knows how to
1043 deal with that. Other routines might or might not.
1044
1045 See tm-sparc.h (PUSH_DUMMY_FRAME and friends) for CRITICAL information
1046 about how this works. */
1047
1048 static void sparc_frame_find_saved_regs (struct frame_info *, CORE_ADDR *);
1049
1050 static void
1051 sparc_frame_find_saved_regs (struct frame_info *fi, CORE_ADDR *saved_regs_addr)
1052 {
1053 register int regnum;
1054 CORE_ADDR frame_addr = FRAME_FP (fi);
1055
1056 if (!fi)
1057 internal_error ("Bad frame info struct in FRAME_FIND_SAVED_REGS");
1058
1059 memset (saved_regs_addr, 0, NUM_REGS * sizeof (CORE_ADDR));
1060
1061 if (fi->pc >= (fi->extra_info->bottom ?
1062 fi->extra_info->bottom : read_sp ())
1063 && fi->pc <= FRAME_FP (fi))
1064 {
1065 /* Dummy frame. All but the window regs are in there somewhere. */
1066 for (regnum = G1_REGNUM; regnum < G1_REGNUM + 7; regnum++)
1067 saved_regs_addr[regnum] =
1068 frame_addr + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
1069 - DUMMY_STACK_REG_BUF_SIZE + 16 * SPARC_INTREG_SIZE;
1070
1071 for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++)
1072 saved_regs_addr[regnum] =
1073 frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
1074 - DUMMY_STACK_REG_BUF_SIZE + 8 * SPARC_INTREG_SIZE;
1075
1076 if (SPARC_HAS_FPU)
1077 for (regnum = FP0_REGNUM; regnum < FP_MAX_REGNUM; regnum++)
1078 saved_regs_addr[regnum] = frame_addr + (regnum - FP0_REGNUM) * 4
1079 - DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE;
1080
1081 if (GDB_TARGET_IS_SPARC64)
1082 {
1083 for (regnum = PC_REGNUM; regnum < PC_REGNUM + 7; regnum++)
1084 {
1085 saved_regs_addr[regnum] =
1086 frame_addr + (regnum - PC_REGNUM) * SPARC_INTREG_SIZE
1087 - DUMMY_STACK_REG_BUF_SIZE;
1088 }
1089 saved_regs_addr[PSTATE_REGNUM] =
1090 frame_addr + 8 * SPARC_INTREG_SIZE - DUMMY_STACK_REG_BUF_SIZE;
1091 }
1092 else
1093 for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++)
1094 saved_regs_addr[regnum] =
1095 frame_addr + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE
1096 - DUMMY_STACK_REG_BUF_SIZE;
1097
1098 frame_addr = fi->extra_info->bottom ?
1099 fi->extra_info->bottom : read_sp ();
1100 }
1101 else if (fi->extra_info->flat)
1102 {
1103 CORE_ADDR func_start;
1104 find_pc_partial_function (fi->pc, NULL, &func_start, NULL);
1105 examine_prologue (func_start, 0, fi, saved_regs_addr);
1106
1107 /* Flat register window frame. */
1108 saved_regs_addr[RP_REGNUM] = fi->extra_info->pc_addr;
1109 saved_regs_addr[I7_REGNUM] = fi->extra_info->fp_addr;
1110 }
1111 else
1112 {
1113 /* Normal frame. Just Local and In registers */
1114 frame_addr = fi->extra_info->bottom ?
1115 fi->extra_info->bottom : read_sp ();
1116 for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; regnum++)
1117 saved_regs_addr[regnum] =
1118 (frame_addr + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
1119 + FRAME_SAVED_L0);
1120 for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++)
1121 saved_regs_addr[regnum] =
1122 (frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
1123 + FRAME_SAVED_I0);
1124 }
1125 if (fi->next)
1126 {
1127 if (fi->extra_info->flat)
1128 {
1129 saved_regs_addr[O7_REGNUM] = fi->extra_info->pc_addr;
1130 }
1131 else
1132 {
1133 /* Pull off either the next frame pointer or the stack pointer */
1134 CORE_ADDR next_next_frame_addr =
1135 (fi->next->extra_info->bottom ?
1136 fi->next->extra_info->bottom : read_sp ());
1137 for (regnum = O0_REGNUM; regnum < O0_REGNUM + 8; regnum++)
1138 saved_regs_addr[regnum] =
1139 (next_next_frame_addr
1140 + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
1141 + FRAME_SAVED_I0);
1142 }
1143 }
1144 /* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */
1145 /* FIXME -- should this adjust for the sparc64 offset? */
1146 saved_regs_addr[SP_REGNUM] = FRAME_FP (fi);
1147 }
1148
1149 /* Discard from the stack the innermost frame, restoring all saved registers.
1150
1151 Note that the values stored in fsr by get_frame_saved_regs are *in
1152 the context of the called frame*. What this means is that the i
1153 regs of fsr must be restored into the o regs of the (calling) frame that
1154 we pop into. We don't care about the output regs of the calling frame,
1155 since unless it's a dummy frame, it won't have any output regs in it.
1156
1157 We never have to bother with %l (local) regs, since the called routine's
1158 locals get tossed, and the calling routine's locals are already saved
1159 on its stack. */
1160
1161 /* Definitely see tm-sparc.h for more doc of the frame format here. */
1162
1163 void
1164 sparc_pop_frame (void)
1165 {
1166 register struct frame_info *frame = get_current_frame ();
1167 register CORE_ADDR pc;
1168 CORE_ADDR *fsr;
1169 char *raw_buffer;
1170 int regnum;
1171
1172 fsr = alloca (NUM_REGS * sizeof (CORE_ADDR));
1173 raw_buffer = alloca (REGISTER_BYTES);
1174 sparc_frame_find_saved_regs (frame, &fsr[0]);
1175 if (SPARC_HAS_FPU)
1176 {
1177 if (fsr[FP0_REGNUM])
1178 {
1179 read_memory (fsr[FP0_REGNUM], raw_buffer, FP_REGISTER_BYTES);
1180 write_register_bytes (REGISTER_BYTE (FP0_REGNUM),
1181 raw_buffer, FP_REGISTER_BYTES);
1182 }
1183 if (!(GDB_TARGET_IS_SPARC64))
1184 {
1185 if (fsr[FPS_REGNUM])
1186 {
1187 read_memory (fsr[FPS_REGNUM], raw_buffer, SPARC_INTREG_SIZE);
1188 write_register_gen (FPS_REGNUM, raw_buffer);
1189 }
1190 if (fsr[CPS_REGNUM])
1191 {
1192 read_memory (fsr[CPS_REGNUM], raw_buffer, SPARC_INTREG_SIZE);
1193 write_register_gen (CPS_REGNUM, raw_buffer);
1194 }
1195 }
1196 }
1197 if (fsr[G1_REGNUM])
1198 {
1199 read_memory (fsr[G1_REGNUM], raw_buffer, 7 * SPARC_INTREG_SIZE);
1200 write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer,
1201 7 * SPARC_INTREG_SIZE);
1202 }
1203
1204 if (frame->extra_info->flat)
1205 {
1206 /* Each register might or might not have been saved, need to test
1207 individually. */
1208 for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; ++regnum)
1209 if (fsr[regnum])
1210 write_register (regnum, read_memory_integer (fsr[regnum],
1211 SPARC_INTREG_SIZE));
1212 for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; ++regnum)
1213 if (fsr[regnum])
1214 write_register (regnum, read_memory_integer (fsr[regnum],
1215 SPARC_INTREG_SIZE));
1216
1217 /* Handle all outs except stack pointer (o0-o5; o7). */
1218 for (regnum = O0_REGNUM; regnum < O0_REGNUM + 6; ++regnum)
1219 if (fsr[regnum])
1220 write_register (regnum, read_memory_integer (fsr[regnum],
1221 SPARC_INTREG_SIZE));
1222 if (fsr[O0_REGNUM + 7])
1223 write_register (O0_REGNUM + 7,
1224 read_memory_integer (fsr[O0_REGNUM + 7],
1225 SPARC_INTREG_SIZE));
1226
1227 write_sp (frame->frame);
1228 }
1229 else if (fsr[I0_REGNUM])
1230 {
1231 CORE_ADDR sp;
1232
1233 char *reg_temp;
1234
1235 reg_temp = alloca (REGISTER_BYTES);
1236
1237 read_memory (fsr[I0_REGNUM], raw_buffer, 8 * SPARC_INTREG_SIZE);
1238
1239 /* Get the ins and locals which we are about to restore. Just
1240 moving the stack pointer is all that is really needed, except
1241 store_inferior_registers is then going to write the ins and
1242 locals from the registers array, so we need to muck with the
1243 registers array. */
1244 sp = fsr[SP_REGNUM];
1245
1246 if (GDB_TARGET_IS_SPARC64 && (sp & 1))
1247 sp += 2047;
1248
1249 read_memory (sp, reg_temp, SPARC_INTREG_SIZE * 16);
1250
1251 /* Restore the out registers.
1252 Among other things this writes the new stack pointer. */
1253 write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer,
1254 SPARC_INTREG_SIZE * 8);
1255
1256 write_register_bytes (REGISTER_BYTE (L0_REGNUM), reg_temp,
1257 SPARC_INTREG_SIZE * 16);
1258 }
1259
1260 if (!(GDB_TARGET_IS_SPARC64))
1261 if (fsr[PS_REGNUM])
1262 write_register (PS_REGNUM,
1263 read_memory_integer (fsr[PS_REGNUM],
1264 REGISTER_RAW_SIZE (PS_REGNUM)));
1265
1266 if (fsr[Y_REGNUM])
1267 write_register (Y_REGNUM,
1268 read_memory_integer (fsr[Y_REGNUM],
1269 REGISTER_RAW_SIZE (Y_REGNUM)));
1270 if (fsr[PC_REGNUM])
1271 {
1272 /* Explicitly specified PC (and maybe NPC) -- just restore them. */
1273 write_register (PC_REGNUM,
1274 read_memory_integer (fsr[PC_REGNUM],
1275 REGISTER_RAW_SIZE (PC_REGNUM)));
1276 if (fsr[NPC_REGNUM])
1277 write_register (NPC_REGNUM,
1278 read_memory_integer (fsr[NPC_REGNUM],
1279 REGISTER_RAW_SIZE (NPC_REGNUM)));
1280 }
1281 else if (frame->extra_info->flat)
1282 {
1283 if (frame->extra_info->pc_addr)
1284 pc = PC_ADJUST ((CORE_ADDR)
1285 read_memory_integer (frame->extra_info->pc_addr,
1286 REGISTER_RAW_SIZE (PC_REGNUM)));
1287 else
1288 {
1289 /* I think this happens only in the innermost frame, if so then
1290 it is a complicated way of saying
1291 "pc = read_register (O7_REGNUM);". */
1292 char *buf;
1293
1294 buf = alloca (MAX_REGISTER_RAW_SIZE);
1295 get_saved_register (buf, 0, 0, frame, O7_REGNUM, 0);
1296 pc = PC_ADJUST (extract_address
1297 (buf, REGISTER_RAW_SIZE (O7_REGNUM)));
1298 }
1299
1300 write_register (PC_REGNUM, pc);
1301 write_register (NPC_REGNUM, pc + 4);
1302 }
1303 else if (fsr[I7_REGNUM])
1304 {
1305 /* Return address in %i7 -- adjust it, then restore PC and NPC from it */
1306 pc = PC_ADJUST ((CORE_ADDR) read_memory_integer (fsr[I7_REGNUM],
1307 SPARC_INTREG_SIZE));
1308 write_register (PC_REGNUM, pc);
1309 write_register (NPC_REGNUM, pc + 4);
1310 }
1311 flush_cached_frames ();
1312 }
1313
1314 /* On the Sun 4 under SunOS, the compile will leave a fake insn which
1315 encodes the structure size being returned. If we detect such
1316 a fake insn, step past it. */
1317
1318 CORE_ADDR
1319 sparc_pc_adjust (CORE_ADDR pc)
1320 {
1321 unsigned long insn;
1322 char buf[4];
1323 int err;
1324
1325 err = target_read_memory (pc + 8, buf, 4);
1326 insn = extract_unsigned_integer (buf, 4);
1327 if ((err == 0) && (insn & 0xffc00000) == 0)
1328 return pc + 12;
1329 else
1330 return pc + 8;
1331 }
1332
1333 /* If pc is in a shared library trampoline, return its target.
1334 The SunOs 4.x linker rewrites the jump table entries for PIC
1335 compiled modules in the main executable to bypass the dynamic linker
1336 with jumps of the form
1337 sethi %hi(addr),%g1
1338 jmp %g1+%lo(addr)
1339 and removes the corresponding jump table relocation entry in the
1340 dynamic relocations.
1341 find_solib_trampoline_target relies on the presence of the jump
1342 table relocation entry, so we have to detect these jump instructions
1343 by hand. */
1344
1345 CORE_ADDR
1346 sunos4_skip_trampoline_code (CORE_ADDR pc)
1347 {
1348 unsigned long insn1;
1349 char buf[4];
1350 int err;
1351
1352 err = target_read_memory (pc, buf, 4);
1353 insn1 = extract_unsigned_integer (buf, 4);
1354 if (err == 0 && (insn1 & 0xffc00000) == 0x03000000)
1355 {
1356 unsigned long insn2;
1357
1358 err = target_read_memory (pc + 4, buf, 4);
1359 insn2 = extract_unsigned_integer (buf, 4);
1360 if (err == 0 && (insn2 & 0xffffe000) == 0x81c06000)
1361 {
1362 CORE_ADDR target_pc = (insn1 & 0x3fffff) << 10;
1363 int delta = insn2 & 0x1fff;
1364
1365 /* Sign extend the displacement. */
1366 if (delta & 0x1000)
1367 delta |= ~0x1fff;
1368 return target_pc + delta;
1369 }
1370 }
1371 return find_solib_trampoline_target (pc);
1372 }
1373 \f
1374 #ifdef USE_PROC_FS /* Target dependent support for /proc */
1375 /* *INDENT-OFF* */
1376 /* The /proc interface divides the target machine's register set up into
1377 two different sets, the general register set (gregset) and the floating
1378 point register set (fpregset). For each set, there is an ioctl to get
1379 the current register set and another ioctl to set the current values.
1380
1381 The actual structure passed through the ioctl interface is, of course,
1382 naturally machine dependent, and is different for each set of registers.
1383 For the sparc for example, the general register set is typically defined
1384 by:
1385
1386 typedef int gregset_t[38];
1387
1388 #define R_G0 0
1389 ...
1390 #define R_TBR 37
1391
1392 and the floating point set by:
1393
1394 typedef struct prfpregset {
1395 union {
1396 u_long pr_regs[32];
1397 double pr_dregs[16];
1398 } pr_fr;
1399 void * pr_filler;
1400 u_long pr_fsr;
1401 u_char pr_qcnt;
1402 u_char pr_q_entrysize;
1403 u_char pr_en;
1404 u_long pr_q[64];
1405 } prfpregset_t;
1406
1407 These routines provide the packing and unpacking of gregset_t and
1408 fpregset_t formatted data.
1409
1410 */
1411 /* *INDENT-ON* */
1412
1413 /* Given a pointer to a general register set in /proc format (gregset_t *),
1414 unpack the register contents and supply them as gdb's idea of the current
1415 register values. */
1416
1417 void
1418 supply_gregset (gdb_gregset_t *gregsetp)
1419 {
1420 prgreg_t *regp = (prgreg_t *) gregsetp;
1421 int regi, offset = 0;
1422
1423 /* If the host is 64-bit sparc, but the target is 32-bit sparc,
1424 then the gregset may contain 64-bit ints while supply_register
1425 is expecting 32-bit ints. Compensate. */
1426 if (sizeof (regp[0]) == 8 && SPARC_INTREG_SIZE == 4)
1427 offset = 4;
1428
1429 /* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers. */
1430 /* FIXME MVS: assumes the order of the first 32 elements... */
1431 for (regi = G0_REGNUM; regi <= I7_REGNUM; regi++)
1432 {
1433 supply_register (regi, ((char *) (regp + regi)) + offset);
1434 }
1435
1436 /* These require a bit more care. */
1437 supply_register (PC_REGNUM, ((char *) (regp + R_PC)) + offset);
1438 supply_register (NPC_REGNUM, ((char *) (regp + R_nPC)) + offset);
1439 supply_register (Y_REGNUM, ((char *) (regp + R_Y)) + offset);
1440
1441 if (GDB_TARGET_IS_SPARC64)
1442 {
1443 #ifdef R_CCR
1444 supply_register (CCR_REGNUM, ((char *) (regp + R_CCR)) + offset);
1445 #else
1446 supply_register (CCR_REGNUM, NULL);
1447 #endif
1448 #ifdef R_FPRS
1449 supply_register (FPRS_REGNUM, ((char *) (regp + R_FPRS)) + offset);
1450 #else
1451 supply_register (FPRS_REGNUM, NULL);
1452 #endif
1453 #ifdef R_ASI
1454 supply_register (ASI_REGNUM, ((char *) (regp + R_ASI)) + offset);
1455 #else
1456 supply_register (ASI_REGNUM, NULL);
1457 #endif
1458 }
1459 else /* sparc32 */
1460 {
1461 #ifdef R_PS
1462 supply_register (PS_REGNUM, ((char *) (regp + R_PS)) + offset);
1463 #else
1464 supply_register (PS_REGNUM, NULL);
1465 #endif
1466
1467 /* For 64-bit hosts, R_WIM and R_TBR may not be defined.
1468 Steal R_ASI and R_FPRS, and hope for the best! */
1469
1470 #if !defined (R_WIM) && defined (R_ASI)
1471 #define R_WIM R_ASI
1472 #endif
1473
1474 #if !defined (R_TBR) && defined (R_FPRS)
1475 #define R_TBR R_FPRS
1476 #endif
1477
1478 #if defined (R_WIM)
1479 supply_register (WIM_REGNUM, ((char *) (regp + R_WIM)) + offset);
1480 #else
1481 supply_register (WIM_REGNUM, NULL);
1482 #endif
1483
1484 #if defined (R_TBR)
1485 supply_register (TBR_REGNUM, ((char *) (regp + R_TBR)) + offset);
1486 #else
1487 supply_register (TBR_REGNUM, NULL);
1488 #endif
1489 }
1490
1491 /* Fill inaccessible registers with zero. */
1492 if (GDB_TARGET_IS_SPARC64)
1493 {
1494 /*
1495 * don't know how to get value of any of the following:
1496 */
1497 supply_register (VER_REGNUM, NULL);
1498 supply_register (TICK_REGNUM, NULL);
1499 supply_register (PIL_REGNUM, NULL);
1500 supply_register (PSTATE_REGNUM, NULL);
1501 supply_register (TSTATE_REGNUM, NULL);
1502 supply_register (TBA_REGNUM, NULL);
1503 supply_register (TL_REGNUM, NULL);
1504 supply_register (TT_REGNUM, NULL);
1505 supply_register (TPC_REGNUM, NULL);
1506 supply_register (TNPC_REGNUM, NULL);
1507 supply_register (WSTATE_REGNUM, NULL);
1508 supply_register (CWP_REGNUM, NULL);
1509 supply_register (CANSAVE_REGNUM, NULL);
1510 supply_register (CANRESTORE_REGNUM, NULL);
1511 supply_register (CLEANWIN_REGNUM, NULL);
1512 supply_register (OTHERWIN_REGNUM, NULL);
1513 supply_register (ASR16_REGNUM, NULL);
1514 supply_register (ASR17_REGNUM, NULL);
1515 supply_register (ASR18_REGNUM, NULL);
1516 supply_register (ASR19_REGNUM, NULL);
1517 supply_register (ASR20_REGNUM, NULL);
1518 supply_register (ASR21_REGNUM, NULL);
1519 supply_register (ASR22_REGNUM, NULL);
1520 supply_register (ASR23_REGNUM, NULL);
1521 supply_register (ASR24_REGNUM, NULL);
1522 supply_register (ASR25_REGNUM, NULL);
1523 supply_register (ASR26_REGNUM, NULL);
1524 supply_register (ASR27_REGNUM, NULL);
1525 supply_register (ASR28_REGNUM, NULL);
1526 supply_register (ASR29_REGNUM, NULL);
1527 supply_register (ASR30_REGNUM, NULL);
1528 supply_register (ASR31_REGNUM, NULL);
1529 supply_register (ICC_REGNUM, NULL);
1530 supply_register (XCC_REGNUM, NULL);
1531 }
1532 else
1533 {
1534 supply_register (CPS_REGNUM, NULL);
1535 }
1536 }
1537
1538 void
1539 fill_gregset (gdb_gregset_t *gregsetp, int regno)
1540 {
1541 prgreg_t *regp = (prgreg_t *) gregsetp;
1542 int regi, offset = 0;
1543
1544 /* If the host is 64-bit sparc, but the target is 32-bit sparc,
1545 then the gregset may contain 64-bit ints while supply_register
1546 is expecting 32-bit ints. Compensate. */
1547 if (sizeof (regp[0]) == 8 && SPARC_INTREG_SIZE == 4)
1548 offset = 4;
1549
1550 for (regi = 0; regi <= R_I7; regi++)
1551 if ((regno == -1) || (regno == regi))
1552 read_register_gen (regi, (char *) (regp + regi) + offset);
1553
1554 if ((regno == -1) || (regno == PC_REGNUM))
1555 read_register_gen (PC_REGNUM, (char *) (regp + R_PC) + offset);
1556
1557 if ((regno == -1) || (regno == NPC_REGNUM))
1558 read_register_gen (NPC_REGNUM, (char *) (regp + R_nPC) + offset);
1559
1560 if ((regno == -1) || (regno == Y_REGNUM))
1561 read_register_gen (Y_REGNUM, (char *) (regp + R_Y) + offset);
1562
1563 if (GDB_TARGET_IS_SPARC64)
1564 {
1565 #ifdef R_CCR
1566 if (regno == -1 || regno == CCR_REGNUM)
1567 read_register_gen (CCR_REGNUM, ((char *) (regp + R_CCR)) + offset);
1568 #endif
1569 #ifdef R_FPRS
1570 if (regno == -1 || regno == FPRS_REGNUM)
1571 read_register_gen (FPRS_REGNUM, ((char *) (regp + R_FPRS)) + offset);
1572 #endif
1573 #ifdef R_ASI
1574 if (regno == -1 || regno == ASI_REGNUM)
1575 read_register_gen (ASI_REGNUM, ((char *) (regp + R_ASI)) + offset);
1576 #endif
1577 }
1578 else /* sparc32 */
1579 {
1580 #ifdef R_PS
1581 if (regno == -1 || regno == PS_REGNUM)
1582 read_register_gen (PS_REGNUM, ((char *) (regp + R_PS)) + offset);
1583 #endif
1584
1585 /* For 64-bit hosts, R_WIM and R_TBR may not be defined.
1586 Steal R_ASI and R_FPRS, and hope for the best! */
1587
1588 #if !defined (R_WIM) && defined (R_ASI)
1589 #define R_WIM R_ASI
1590 #endif
1591
1592 #if !defined (R_TBR) && defined (R_FPRS)
1593 #define R_TBR R_FPRS
1594 #endif
1595
1596 #if defined (R_WIM)
1597 if (regno == -1 || regno == WIM_REGNUM)
1598 read_register_gen (WIM_REGNUM, ((char *) (regp + R_WIM)) + offset);
1599 #else
1600 if (regno == -1 || regno == WIM_REGNUM)
1601 read_register_gen (WIM_REGNUM, NULL);
1602 #endif
1603
1604 #if defined (R_TBR)
1605 if (regno == -1 || regno == TBR_REGNUM)
1606 read_register_gen (TBR_REGNUM, ((char *) (regp + R_TBR)) + offset);
1607 #else
1608 if (regno == -1 || regno == TBR_REGNUM)
1609 read_register_gen (TBR_REGNUM, NULL);
1610 #endif
1611 }
1612 }
1613
1614 /* Given a pointer to a floating point register set in /proc format
1615 (fpregset_t *), unpack the register contents and supply them as gdb's
1616 idea of the current floating point register values. */
1617
1618 void
1619 supply_fpregset (gdb_fpregset_t *fpregsetp)
1620 {
1621 register int regi;
1622 char *from;
1623
1624 if (!SPARC_HAS_FPU)
1625 return;
1626
1627 for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++)
1628 {
1629 from = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM];
1630 supply_register (regi, from);
1631 }
1632
1633 if (GDB_TARGET_IS_SPARC64)
1634 {
1635 /*
1636 * don't know how to get value of the following.
1637 */
1638 supply_register (FSR_REGNUM, NULL); /* zero it out for now */
1639 supply_register (FCC0_REGNUM, NULL);
1640 supply_register (FCC1_REGNUM, NULL); /* don't know how to get value */
1641 supply_register (FCC2_REGNUM, NULL); /* don't know how to get value */
1642 supply_register (FCC3_REGNUM, NULL); /* don't know how to get value */
1643 }
1644 else
1645 {
1646 supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr));
1647 }
1648 }
1649
1650 /* Given a pointer to a floating point register set in /proc format
1651 (fpregset_t *), update the register specified by REGNO from gdb's idea
1652 of the current floating point register set. If REGNO is -1, update
1653 them all. */
1654 /* This will probably need some changes for sparc64. */
1655
1656 void
1657 fill_fpregset (gdb_fpregset_t *fpregsetp, int regno)
1658 {
1659 int regi;
1660 char *to;
1661 char *from;
1662
1663 if (!SPARC_HAS_FPU)
1664 return;
1665
1666 for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++)
1667 {
1668 if ((regno == -1) || (regno == regi))
1669 {
1670 from = (char *) &registers[REGISTER_BYTE (regi)];
1671 to = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM];
1672 memcpy (to, from, REGISTER_RAW_SIZE (regi));
1673 }
1674 }
1675
1676 if (!(GDB_TARGET_IS_SPARC64)) /* FIXME: does Sparc64 have this register? */
1677 if ((regno == -1) || (regno == FPS_REGNUM))
1678 {
1679 from = (char *)&registers[REGISTER_BYTE (FPS_REGNUM)];
1680 to = (char *) &fpregsetp->pr_fsr;
1681 memcpy (to, from, REGISTER_RAW_SIZE (FPS_REGNUM));
1682 }
1683 }
1684
1685 #endif /* USE_PROC_FS */
1686
1687
1688 #ifdef GET_LONGJMP_TARGET
1689
1690 /* Figure out where the longjmp will land. We expect that we have just entered
1691 longjmp and haven't yet setup the stack frame, so the args are still in the
1692 output regs. %o0 (O0_REGNUM) points at the jmp_buf structure from which we
1693 extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
1694 This routine returns true on success */
1695
1696 int
1697 get_longjmp_target (CORE_ADDR *pc)
1698 {
1699 CORE_ADDR jb_addr;
1700 #define LONGJMP_TARGET_SIZE 4
1701 char buf[LONGJMP_TARGET_SIZE];
1702
1703 jb_addr = read_register (O0_REGNUM);
1704
1705 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
1706 LONGJMP_TARGET_SIZE))
1707 return 0;
1708
1709 *pc = extract_address (buf, LONGJMP_TARGET_SIZE);
1710
1711 return 1;
1712 }
1713 #endif /* GET_LONGJMP_TARGET */
1714 \f
1715 #ifdef STATIC_TRANSFORM_NAME
1716 /* SunPRO (3.0 at least), encodes the static variables. This is not
1717 related to C++ mangling, it is done for C too. */
1718
1719 char *
1720 sunpro_static_transform_name (char *name)
1721 {
1722 char *p;
1723 if (name[0] == '$')
1724 {
1725 /* For file-local statics there will be a dollar sign, a bunch
1726 of junk (the contents of which match a string given in the
1727 N_OPT), a period and the name. For function-local statics
1728 there will be a bunch of junk (which seems to change the
1729 second character from 'A' to 'B'), a period, the name of the
1730 function, and the name. So just skip everything before the
1731 last period. */
1732 p = strrchr (name, '.');
1733 if (p != NULL)
1734 name = p + 1;
1735 }
1736 return name;
1737 }
1738 #endif /* STATIC_TRANSFORM_NAME */
1739 \f
1740
1741 /* Utilities for printing registers.
1742 Page numbers refer to the SPARC Architecture Manual. */
1743
1744 static void dump_ccreg (char *, int);
1745
1746 static void
1747 dump_ccreg (char *reg, int val)
1748 {
1749 /* page 41 */
1750 printf_unfiltered ("%s:%s,%s,%s,%s", reg,
1751 val & 8 ? "N" : "NN",
1752 val & 4 ? "Z" : "NZ",
1753 val & 2 ? "O" : "NO",
1754 val & 1 ? "C" : "NC");
1755 }
1756
1757 static char *
1758 decode_asi (int val)
1759 {
1760 /* page 72 */
1761 switch (val)
1762 {
1763 case 4:
1764 return "ASI_NUCLEUS";
1765 case 0x0c:
1766 return "ASI_NUCLEUS_LITTLE";
1767 case 0x10:
1768 return "ASI_AS_IF_USER_PRIMARY";
1769 case 0x11:
1770 return "ASI_AS_IF_USER_SECONDARY";
1771 case 0x18:
1772 return "ASI_AS_IF_USER_PRIMARY_LITTLE";
1773 case 0x19:
1774 return "ASI_AS_IF_USER_SECONDARY_LITTLE";
1775 case 0x80:
1776 return "ASI_PRIMARY";
1777 case 0x81:
1778 return "ASI_SECONDARY";
1779 case 0x82:
1780 return "ASI_PRIMARY_NOFAULT";
1781 case 0x83:
1782 return "ASI_SECONDARY_NOFAULT";
1783 case 0x88:
1784 return "ASI_PRIMARY_LITTLE";
1785 case 0x89:
1786 return "ASI_SECONDARY_LITTLE";
1787 case 0x8a:
1788 return "ASI_PRIMARY_NOFAULT_LITTLE";
1789 case 0x8b:
1790 return "ASI_SECONDARY_NOFAULT_LITTLE";
1791 default:
1792 return NULL;
1793 }
1794 }
1795
1796 /* PRINT_REGISTER_HOOK routine.
1797 Pretty print various registers. */
1798 /* FIXME: Would be nice if this did some fancy things for 32 bit sparc. */
1799
1800 void
1801 sparc_print_register_hook (int regno)
1802 {
1803 ULONGEST val;
1804
1805 /* Handle double/quad versions of lower 32 fp regs. */
1806 if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32
1807 && (regno & 1) == 0)
1808 {
1809 char value[16];
1810
1811 if (!read_relative_register_raw_bytes (regno, value)
1812 && !read_relative_register_raw_bytes (regno + 1, value + 4))
1813 {
1814 printf_unfiltered ("\t");
1815 print_floating (value, builtin_type_double, gdb_stdout);
1816 }
1817 #if 0 /* FIXME: gdb doesn't handle long doubles */
1818 if ((regno & 3) == 0)
1819 {
1820 if (!read_relative_register_raw_bytes (regno + 2, value + 8)
1821 && !read_relative_register_raw_bytes (regno + 3, value + 12))
1822 {
1823 printf_unfiltered ("\t");
1824 print_floating (value, builtin_type_long_double, gdb_stdout);
1825 }
1826 }
1827 #endif
1828 return;
1829 }
1830
1831 #if 0 /* FIXME: gdb doesn't handle long doubles */
1832 /* Print upper fp regs as long double if appropriate. */
1833 if (regno >= FP0_REGNUM + 32 && regno < FP_MAX_REGNUM
1834 /* We test for even numbered regs and not a multiple of 4 because
1835 the upper fp regs are recorded as doubles. */
1836 && (regno & 1) == 0)
1837 {
1838 char value[16];
1839
1840 if (!read_relative_register_raw_bytes (regno, value)
1841 && !read_relative_register_raw_bytes (regno + 1, value + 8))
1842 {
1843 printf_unfiltered ("\t");
1844 print_floating (value, builtin_type_long_double, gdb_stdout);
1845 }
1846 return;
1847 }
1848 #endif
1849
1850 /* FIXME: Some of these are priviledged registers.
1851 Not sure how they should be handled. */
1852
1853 #define BITS(n, mask) ((int) (((val) >> (n)) & (mask)))
1854
1855 val = read_register (regno);
1856
1857 /* pages 40 - 60 */
1858 if (GDB_TARGET_IS_SPARC64)
1859 switch (regno)
1860 {
1861 case CCR_REGNUM:
1862 printf_unfiltered ("\t");
1863 dump_ccreg ("xcc", val >> 4);
1864 printf_unfiltered (", ");
1865 dump_ccreg ("icc", val & 15);
1866 break;
1867 case FPRS_REGNUM:
1868 printf ("\tfef:%d, du:%d, dl:%d",
1869 BITS (2, 1), BITS (1, 1), BITS (0, 1));
1870 break;
1871 case FSR_REGNUM:
1872 {
1873 static char *fcc[4] =
1874 {"=", "<", ">", "?"};
1875 static char *rd[4] =
1876 {"N", "0", "+", "-"};
1877 /* Long, but I'd rather leave it as is and use a wide screen. */
1878 printf_filtered ("\t0:%s, 1:%s, 2:%s, 3:%s, rd:%s, tem:%d, ",
1879 fcc[BITS (10, 3)], fcc[BITS (32, 3)],
1880 fcc[BITS (34, 3)], fcc[BITS (36, 3)],
1881 rd[BITS (30, 3)], BITS (23, 31));
1882 printf_filtered ("ns:%d, ver:%d, ftt:%d, qne:%d, aexc:%d, cexc:%d",
1883 BITS (22, 1), BITS (17, 7), BITS (14, 7),
1884 BITS (13, 1), BITS (5, 31), BITS (0, 31));
1885 break;
1886 }
1887 case ASI_REGNUM:
1888 {
1889 char *asi = decode_asi (val);
1890 if (asi != NULL)
1891 printf ("\t%s", asi);
1892 break;
1893 }
1894 case VER_REGNUM:
1895 printf ("\tmanuf:%d, impl:%d, mask:%d, maxtl:%d, maxwin:%d",
1896 BITS (48, 0xffff), BITS (32, 0xffff),
1897 BITS (24, 0xff), BITS (8, 0xff), BITS (0, 31));
1898 break;
1899 case PSTATE_REGNUM:
1900 {
1901 static char *mm[4] =
1902 {"tso", "pso", "rso", "?"};
1903 printf_filtered ("\tcle:%d, tle:%d, mm:%s, red:%d, ",
1904 BITS (9, 1), BITS (8, 1),
1905 mm[BITS (6, 3)], BITS (5, 1));
1906 printf_filtered ("pef:%d, am:%d, priv:%d, ie:%d, ag:%d",
1907 BITS (4, 1), BITS (3, 1), BITS (2, 1),
1908 BITS (1, 1), BITS (0, 1));
1909 break;
1910 }
1911 case TSTATE_REGNUM:
1912 /* FIXME: print all 4? */
1913 break;
1914 case TT_REGNUM:
1915 /* FIXME: print all 4? */
1916 break;
1917 case TPC_REGNUM:
1918 /* FIXME: print all 4? */
1919 break;
1920 case TNPC_REGNUM:
1921 /* FIXME: print all 4? */
1922 break;
1923 case WSTATE_REGNUM:
1924 printf ("\tother:%d, normal:%d", BITS (3, 7), BITS (0, 7));
1925 break;
1926 case CWP_REGNUM:
1927 printf ("\t%d", BITS (0, 31));
1928 break;
1929 case CANSAVE_REGNUM:
1930 printf ("\t%-2d before spill", BITS (0, 31));
1931 break;
1932 case CANRESTORE_REGNUM:
1933 printf ("\t%-2d before fill", BITS (0, 31));
1934 break;
1935 case CLEANWIN_REGNUM:
1936 printf ("\t%-2d before clean", BITS (0, 31));
1937 break;
1938 case OTHERWIN_REGNUM:
1939 printf ("\t%d", BITS (0, 31));
1940 break;
1941 }
1942 else /* Sparc32 */
1943 switch (regno)
1944 {
1945 case PS_REGNUM:
1946 printf ("\ticc:%c%c%c%c, pil:%d, s:%d, ps:%d, et:%d, cwp:%d",
1947 BITS (23, 1) ? 'N' : '-', BITS (22, 1) ? 'Z' : '-',
1948 BITS (21, 1) ? 'V' : '-', BITS (20, 1) ? 'C' : '-',
1949 BITS (8, 15), BITS (7, 1), BITS (6, 1), BITS (5, 1),
1950 BITS (0, 31));
1951 break;
1952 case FPS_REGNUM:
1953 {
1954 static char *fcc[4] =
1955 {"=", "<", ">", "?"};
1956 static char *rd[4] =
1957 {"N", "0", "+", "-"};
1958 /* Long, but I'd rather leave it as is and use a wide screen. */
1959 printf ("\trd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, "
1960 "fcc:%s, aexc:%d, cexc:%d",
1961 rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7),
1962 BITS (14, 7), BITS (13, 1), fcc[BITS (10, 3)], BITS (5, 31),
1963 BITS (0, 31));
1964 break;
1965 }
1966 }
1967
1968 #undef BITS
1969 }
1970 \f
1971 int
1972 gdb_print_insn_sparc (bfd_vma memaddr, disassemble_info *info)
1973 {
1974 /* It's necessary to override mach again because print_insn messes it up. */
1975 info->mach = TARGET_ARCHITECTURE->mach;
1976 return print_insn_sparc (memaddr, info);
1977 }
1978 \f
1979 /* The SPARC passes the arguments on the stack; arguments smaller
1980 than an int are promoted to an int. The first 6 words worth of
1981 args are also passed in registers o0 - o5. */
1982
1983 CORE_ADDR
1984 sparc32_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
1985 int struct_return, CORE_ADDR struct_addr)
1986 {
1987 int i, j, oregnum;
1988 int accumulate_size = 0;
1989 struct sparc_arg
1990 {
1991 char *contents;
1992 int len;
1993 int offset;
1994 };
1995 struct sparc_arg *sparc_args =
1996 (struct sparc_arg *) alloca (nargs * sizeof (struct sparc_arg));
1997 struct sparc_arg *m_arg;
1998
1999 /* Promote arguments if necessary, and calculate their stack offsets
2000 and sizes. */
2001 for (i = 0, m_arg = sparc_args; i < nargs; i++, m_arg++)
2002 {
2003 value_ptr arg = args[i];
2004 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2005 /* Cast argument to long if necessary as the compiler does it too. */
2006 switch (TYPE_CODE (arg_type))
2007 {
2008 case TYPE_CODE_INT:
2009 case TYPE_CODE_BOOL:
2010 case TYPE_CODE_CHAR:
2011 case TYPE_CODE_RANGE:
2012 case TYPE_CODE_ENUM:
2013 if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
2014 {
2015 arg_type = builtin_type_long;
2016 arg = value_cast (arg_type, arg);
2017 }
2018 break;
2019 default:
2020 break;
2021 }
2022 m_arg->len = TYPE_LENGTH (arg_type);
2023 m_arg->offset = accumulate_size;
2024 accumulate_size = (accumulate_size + m_arg->len + 3) & ~3;
2025 m_arg->contents = VALUE_CONTENTS (arg);
2026 }
2027
2028 /* Make room for the arguments on the stack. */
2029 accumulate_size += CALL_DUMMY_STACK_ADJUST;
2030 sp = ((sp - accumulate_size) & ~7) + CALL_DUMMY_STACK_ADJUST;
2031
2032 /* `Push' arguments on the stack. */
2033 for (i = 0, oregnum = 0, m_arg = sparc_args;
2034 i < nargs;
2035 i++, m_arg++)
2036 {
2037 write_memory (sp + m_arg->offset, m_arg->contents, m_arg->len);
2038 for (j = 0;
2039 j < m_arg->len && oregnum < 6;
2040 j += SPARC_INTREG_SIZE, oregnum++)
2041 write_register_gen (O0_REGNUM + oregnum, m_arg->contents + j);
2042 }
2043
2044 return sp;
2045 }
2046
2047
2048 /* Extract from an array REGBUF containing the (raw) register state
2049 a function return value of type TYPE, and copy that, in virtual format,
2050 into VALBUF. */
2051
2052 void
2053 sparc32_extract_return_value (struct type *type, char *regbuf, char *valbuf)
2054 {
2055 int typelen = TYPE_LENGTH (type);
2056 int regsize = REGISTER_RAW_SIZE (O0_REGNUM);
2057
2058 if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
2059 memcpy (valbuf, &regbuf[REGISTER_BYTE (FP0_REGNUM)], typelen);
2060 else
2061 memcpy (valbuf,
2062 &regbuf[O0_REGNUM * regsize +
2063 (typelen >= regsize
2064 || TARGET_BYTE_ORDER == LITTLE_ENDIAN ? 0
2065 : regsize - typelen)],
2066 typelen);
2067 }
2068
2069
2070 /* Write into appropriate registers a function return value
2071 of type TYPE, given in virtual format. On SPARCs with FPUs,
2072 float values are returned in %f0 (and %f1). In all other cases,
2073 values are returned in register %o0. */
2074
2075 void
2076 sparc_store_return_value (struct type *type, char *valbuf)
2077 {
2078 int regno;
2079 char *buffer;
2080
2081 buffer = alloca(MAX_REGISTER_RAW_SIZE);
2082
2083 if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
2084 /* Floating-point values are returned in the register pair */
2085 /* formed by %f0 and %f1 (doubles are, anyway). */
2086 regno = FP0_REGNUM;
2087 else
2088 /* Other values are returned in register %o0. */
2089 regno = O0_REGNUM;
2090
2091 /* Add leading zeros to the value. */
2092 if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (regno))
2093 {
2094 memset (buffer, 0, REGISTER_RAW_SIZE (regno));
2095 memcpy (buffer + REGISTER_RAW_SIZE (regno) - TYPE_LENGTH (type), valbuf,
2096 TYPE_LENGTH (type));
2097 write_register_gen (regno, buffer);
2098 }
2099 else
2100 write_register_bytes (REGISTER_BYTE (regno), valbuf, TYPE_LENGTH (type));
2101 }
2102
2103 extern void
2104 sparclet_store_return_value (struct type *type, char *valbuf)
2105 {
2106 /* Other values are returned in register %o0. */
2107 write_register_bytes (REGISTER_BYTE (O0_REGNUM), valbuf,
2108 TYPE_LENGTH (type));
2109 }
2110
2111
2112 #ifndef CALL_DUMMY_CALL_OFFSET
2113 #define CALL_DUMMY_CALL_OFFSET \
2114 (gdbarch_tdep (current_gdbarch)->call_dummy_call_offset)
2115 #endif /* CALL_DUMMY_CALL_OFFSET */
2116
2117 /* Insert the function address into a call dummy instruction sequence
2118 stored at DUMMY.
2119
2120 For structs and unions, if the function was compiled with Sun cc,
2121 it expects 'unimp' after the call. But gcc doesn't use that
2122 (twisted) convention. So leave a nop there for gcc (FIX_CALL_DUMMY
2123 can assume it is operating on a pristine CALL_DUMMY, not one that
2124 has already been customized for a different function). */
2125
2126 void
2127 sparc_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
2128 struct type *value_type, int using_gcc)
2129 {
2130 int i;
2131
2132 /* Store the relative adddress of the target function into the
2133 'call' instruction. */
2134 store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET, 4,
2135 (0x40000000
2136 | (((fun - (pc + CALL_DUMMY_CALL_OFFSET)) >> 2)
2137 & 0x3fffffff)));
2138
2139 /* Comply with strange Sun cc calling convention for struct-returning
2140 functions. */
2141 if (!using_gcc
2142 && (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
2143 || TYPE_CODE (value_type) == TYPE_CODE_UNION))
2144 store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET + 8, 4,
2145 TYPE_LENGTH (value_type) & 0x1fff);
2146
2147 if (!(GDB_TARGET_IS_SPARC64))
2148 {
2149 /* If this is not a simulator target, change the first four
2150 instructions of the call dummy to NOPs. Those instructions
2151 include a 'save' instruction and are designed to work around
2152 problems with register window flushing in the simulator. */
2153
2154 if (strcmp (target_shortname, "sim") != 0)
2155 {
2156 for (i = 0; i < 4; i++)
2157 store_unsigned_integer (dummy + (i * 4), 4, 0x01000000);
2158 }
2159 }
2160
2161 /* If this is a bi-endian target, GDB has written the call dummy
2162 in little-endian order. We must byte-swap it back to big-endian. */
2163 if (bi_endian)
2164 {
2165 for (i = 0; i < CALL_DUMMY_LENGTH; i += 4)
2166 {
2167 char tmp = dummy[i];
2168 dummy[i] = dummy[i + 3];
2169 dummy[i + 3] = tmp;
2170 tmp = dummy[i + 1];
2171 dummy[i + 1] = dummy[i + 2];
2172 dummy[i + 2] = tmp;
2173 }
2174 }
2175 }
2176
2177
2178 /* Set target byte order based on machine type. */
2179
2180 static int
2181 sparc_target_architecture_hook (const bfd_arch_info_type *ap)
2182 {
2183 int i, j;
2184
2185 if (ap->mach == bfd_mach_sparc_sparclite_le)
2186 {
2187 if (TARGET_BYTE_ORDER_SELECTABLE_P)
2188 {
2189 target_byte_order = LITTLE_ENDIAN;
2190 bi_endian = 1;
2191 }
2192 else
2193 {
2194 warning ("This GDB does not support little endian sparclite.");
2195 }
2196 }
2197 else
2198 bi_endian = 0;
2199 return 1;
2200 }
2201 \f
2202
2203 /*
2204 * Module "constructor" function.
2205 */
2206
2207 static struct gdbarch * sparc_gdbarch_init (struct gdbarch_info info,
2208 struct gdbarch_list *arches);
2209
2210 void
2211 _initialize_sparc_tdep (void)
2212 {
2213 /* Hook us into the gdbarch mechanism. */
2214 register_gdbarch_init (bfd_arch_sparc, sparc_gdbarch_init);
2215
2216 tm_print_insn = gdb_print_insn_sparc;
2217 tm_print_insn_info.mach = TM_PRINT_INSN_MACH; /* Selects sparc/sparclite */
2218 target_architecture_hook = sparc_target_architecture_hook;
2219 }
2220
2221 /* Compensate for stack bias. Note that we currently don't handle
2222 mixed 32/64 bit code. */
2223
2224 CORE_ADDR
2225 sparc64_read_sp (void)
2226 {
2227 CORE_ADDR sp = read_register (SP_REGNUM);
2228
2229 if (sp & 1)
2230 sp += 2047;
2231 return sp;
2232 }
2233
2234 CORE_ADDR
2235 sparc64_read_fp (void)
2236 {
2237 CORE_ADDR fp = read_register (FP_REGNUM);
2238
2239 if (fp & 1)
2240 fp += 2047;
2241 return fp;
2242 }
2243
2244 void
2245 sparc64_write_sp (CORE_ADDR val)
2246 {
2247 CORE_ADDR oldsp = read_register (SP_REGNUM);
2248 if (oldsp & 1)
2249 write_register (SP_REGNUM, val - 2047);
2250 else
2251 write_register (SP_REGNUM, val);
2252 }
2253
2254 void
2255 sparc64_write_fp (CORE_ADDR val)
2256 {
2257 CORE_ADDR oldfp = read_register (FP_REGNUM);
2258 if (oldfp & 1)
2259 write_register (FP_REGNUM, val - 2047);
2260 else
2261 write_register (FP_REGNUM, val);
2262 }
2263
2264 /* The SPARC 64 ABI passes floating-point arguments in FP0 to FP31,
2265 and all other arguments in O0 to O5. They are also copied onto
2266 the stack in the correct places. Apparently (empirically),
2267 structs of less than 16 bytes are passed member-by-member in
2268 separate registers, but I am unable to figure out the algorithm.
2269 Some members go in floating point regs, but I don't know which.
2270
2271 FIXME: Handle small structs (less than 16 bytes containing floats).
2272
2273 The counting regimen for using both integer and FP registers
2274 for argument passing is rather odd -- a single counter is used
2275 for both; this means that if the arguments alternate between
2276 int and float, we will waste every other register of both types. */
2277
2278 CORE_ADDR
2279 sparc64_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
2280 int struct_return, CORE_ADDR struct_retaddr)
2281 {
2282 int i, j, register_counter = 0;
2283 CORE_ADDR tempsp;
2284 struct type *sparc_intreg_type =
2285 TYPE_LENGTH (builtin_type_long) == SPARC_INTREG_SIZE ?
2286 builtin_type_long : builtin_type_long_long;
2287
2288 sp = (sp & ~(((unsigned long) SPARC_INTREG_SIZE) - 1UL));
2289
2290 /* Figure out how much space we'll need. */
2291 for (i = nargs - 1; i >= 0; i--)
2292 {
2293 int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[i])));
2294 value_ptr copyarg = args[i];
2295 int copylen = len;
2296
2297 if (copylen < SPARC_INTREG_SIZE)
2298 {
2299 copyarg = value_cast (sparc_intreg_type, copyarg);
2300 copylen = SPARC_INTREG_SIZE;
2301 }
2302 sp -= copylen;
2303 }
2304
2305 /* Round down. */
2306 sp = sp & ~7;
2307 tempsp = sp;
2308
2309 /* if STRUCT_RETURN, then first argument is the struct return location. */
2310 if (struct_return)
2311 write_register (O0_REGNUM + register_counter++, struct_retaddr);
2312
2313 /* Now write the arguments onto the stack, while writing FP
2314 arguments into the FP registers, and other arguments into the
2315 first six 'O' registers. */
2316
2317 for (i = 0; i < nargs; i++)
2318 {
2319 int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[i])));
2320 value_ptr copyarg = args[i];
2321 enum type_code typecode = TYPE_CODE (VALUE_TYPE (args[i]));
2322 int copylen = len;
2323
2324 if (typecode == TYPE_CODE_INT ||
2325 typecode == TYPE_CODE_BOOL ||
2326 typecode == TYPE_CODE_CHAR ||
2327 typecode == TYPE_CODE_RANGE ||
2328 typecode == TYPE_CODE_ENUM)
2329 if (len < SPARC_INTREG_SIZE)
2330 {
2331 /* Small ints will all take up the size of one intreg on
2332 the stack. */
2333 copyarg = value_cast (sparc_intreg_type, copyarg);
2334 copylen = SPARC_INTREG_SIZE;
2335 }
2336
2337 write_memory (tempsp, VALUE_CONTENTS (copyarg), copylen);
2338 tempsp += copylen;
2339
2340 /* Corner case: Structs consisting of a single float member are floats.
2341 * FIXME! I don't know about structs containing multiple floats!
2342 * Structs containing mixed floats and ints are even more weird.
2343 */
2344
2345
2346
2347 /* Separate float args from all other args. */
2348 if (typecode == TYPE_CODE_FLT && SPARC_HAS_FPU)
2349 {
2350 if (register_counter < 16)
2351 {
2352 /* This arg gets copied into a FP register. */
2353 int fpreg;
2354
2355 switch (len) {
2356 case 4: /* Single-precision (float) */
2357 fpreg = FP0_REGNUM + 2 * register_counter + 1;
2358 register_counter += 1;
2359 break;
2360 case 8: /* Double-precision (double) */
2361 fpreg = FP0_REGNUM + 2 * register_counter;
2362 register_counter += 1;
2363 break;
2364 case 16: /* Quad-precision (long double) */
2365 fpreg = FP0_REGNUM + 2 * register_counter;
2366 register_counter += 2;
2367 break;
2368 }
2369 write_register_bytes (REGISTER_BYTE (fpreg),
2370 VALUE_CONTENTS (args[i]),
2371 len);
2372 }
2373 }
2374 else /* all other args go into the first six 'o' registers */
2375 {
2376 for (j = 0;
2377 j < len && register_counter < 6;
2378 j += SPARC_INTREG_SIZE)
2379 {
2380 int oreg = O0_REGNUM + register_counter;
2381
2382 write_register_gen (oreg, VALUE_CONTENTS (copyarg) + j);
2383 register_counter += 1;
2384 }
2385 }
2386 }
2387 return sp;
2388 }
2389
2390 /* Values <= 32 bytes are returned in o0-o3 (floating-point values are
2391 returned in f0-f3). */
2392
2393 void
2394 sp64_extract_return_value (struct type *type, char *regbuf, char *valbuf,
2395 int bitoffset)
2396 {
2397 int typelen = TYPE_LENGTH (type);
2398 int regsize = REGISTER_RAW_SIZE (O0_REGNUM);
2399
2400 if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
2401 {
2402 memcpy (valbuf, &regbuf[REGISTER_BYTE (FP0_REGNUM)], typelen);
2403 return;
2404 }
2405
2406 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
2407 || (TYPE_LENGTH (type) > 32))
2408 {
2409 memcpy (valbuf,
2410 &regbuf[O0_REGNUM * regsize +
2411 (typelen >= regsize ? 0 : regsize - typelen)],
2412 typelen);
2413 return;
2414 }
2415 else
2416 {
2417 char *o0 = &regbuf[O0_REGNUM * regsize];
2418 char *f0 = &regbuf[FP0_REGNUM * regsize];
2419 int x;
2420
2421 for (x = 0; x < TYPE_NFIELDS (type); x++)
2422 {
2423 struct field *f = &TYPE_FIELDS (type)[x];
2424 /* FIXME: We may need to handle static fields here. */
2425 int whichreg = (f->loc.bitpos + bitoffset) / 32;
2426 int remainder = ((f->loc.bitpos + bitoffset) % 32) / 8;
2427 int where = (f->loc.bitpos + bitoffset) / 8;
2428 int size = TYPE_LENGTH (f->type);
2429 int typecode = TYPE_CODE (f->type);
2430
2431 if (typecode == TYPE_CODE_STRUCT)
2432 {
2433 sp64_extract_return_value (f->type,
2434 regbuf,
2435 valbuf,
2436 bitoffset + f->loc.bitpos);
2437 }
2438 else if (typecode == TYPE_CODE_FLT && SPARC_HAS_FPU)
2439 {
2440 memcpy (valbuf + where, &f0[whichreg * 4] + remainder, size);
2441 }
2442 else
2443 {
2444 memcpy (valbuf + where, &o0[whichreg * 4] + remainder, size);
2445 }
2446 }
2447 }
2448 }
2449
2450 extern void
2451 sparc64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
2452 {
2453 sp64_extract_return_value (type, regbuf, valbuf, 0);
2454 }
2455
2456 extern void
2457 sparclet_extract_return_value (struct type *type,
2458 char *regbuf,
2459 char *valbuf)
2460 {
2461 regbuf += REGISTER_RAW_SIZE (O0_REGNUM) * 8;
2462 if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (O0_REGNUM))
2463 regbuf += REGISTER_RAW_SIZE (O0_REGNUM) - TYPE_LENGTH (type);
2464
2465 memcpy ((void *) valbuf, regbuf, TYPE_LENGTH (type));
2466 }
2467
2468
2469 extern CORE_ADDR
2470 sparc32_stack_align (CORE_ADDR addr)
2471 {
2472 return ((addr + 7) & -8);
2473 }
2474
2475 extern CORE_ADDR
2476 sparc64_stack_align (CORE_ADDR addr)
2477 {
2478 return ((addr + 15) & -16);
2479 }
2480
2481 extern void
2482 sparc_print_extra_frame_info (struct frame_info *fi)
2483 {
2484 if (fi && fi->extra_info && fi->extra_info->flat)
2485 printf_filtered (" flat, pc saved at 0x%s, fp saved at 0x%s\n",
2486 paddr_nz (fi->extra_info->pc_addr),
2487 paddr_nz (fi->extra_info->fp_addr));
2488 }
2489
2490 /* MULTI_ARCH support */
2491
2492 static char *
2493 sparc32_register_name (int regno)
2494 {
2495 static char *register_names[] =
2496 { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
2497 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
2498 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
2499 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
2500
2501 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
2502 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
2503 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
2504 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
2505
2506 "y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr"
2507 };
2508
2509 if (regno < 0 ||
2510 regno >= (sizeof (register_names) / sizeof (register_names[0])))
2511 return NULL;
2512 else
2513 return register_names[regno];
2514 }
2515
2516 static char *
2517 sparc64_register_name (int regno)
2518 {
2519 static char *register_names[] =
2520 { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
2521 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
2522 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
2523 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
2524
2525 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
2526 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
2527 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
2528 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
2529 "f32", "f34", "f36", "f38", "f40", "f42", "f44", "f46",
2530 "f48", "f50", "f52", "f54", "f56", "f58", "f60", "f62",
2531
2532 "pc", "npc", "ccr", "fsr", "fprs", "y", "asi", "ver",
2533 "tick", "pil", "pstate", "tstate", "tba", "tl", "tt", "tpc",
2534 "tnpc", "wstate", "cwp", "cansave", "canrestore", "cleanwin", "otherwin",
2535 "asr16", "asr17", "asr18", "asr19", "asr20", "asr21", "asr22", "asr23",
2536 "asr24", "asr25", "asr26", "asr27", "asr28", "asr29", "asr30", "asr31",
2537 /* These are here at the end to simplify removing them if we have to. */
2538 "icc", "xcc", "fcc0", "fcc1", "fcc2", "fcc3"
2539 };
2540
2541 if (regno < 0 ||
2542 regno >= (sizeof (register_names) / sizeof (register_names[0])))
2543 return NULL;
2544 else
2545 return register_names[regno];
2546 }
2547
2548 static char *
2549 sparclite_register_name (int regno)
2550 {
2551 static char *register_names[] =
2552 { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
2553 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
2554 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
2555 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
2556
2557 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
2558 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
2559 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
2560 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
2561
2562 "y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr",
2563 "dia1", "dia2", "dda1", "dda2", "ddv1", "ddv2", "dcr", "dsr"
2564 };
2565
2566 if (regno < 0 ||
2567 regno >= (sizeof (register_names) / sizeof (register_names[0])))
2568 return NULL;
2569 else
2570 return register_names[regno];
2571 }
2572
2573 static char *
2574 sparclet_register_name (int regno)
2575 {
2576 static char *register_names[] =
2577 { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
2578 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
2579 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
2580 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
2581
2582 "", "", "", "", "", "", "", "", /* no floating point registers */
2583 "", "", "", "", "", "", "", "",
2584 "", "", "", "", "", "", "", "",
2585 "", "", "", "", "", "", "", "",
2586
2587 "y", "psr", "wim", "tbr", "pc", "npc", "", "", /* no FPSR or CPSR */
2588 "ccsr", "ccpr", "cccrcr", "ccor", "ccobr", "ccibr", "ccir", "",
2589
2590 /* ASR15 ASR19 (don't display them) */
2591 "asr1", "", "asr17", "asr18", "", "asr20", "asr21", "asr22"
2592 /* None of the rest get displayed */
2593 #if 0
2594 "awr0", "awr1", "awr2", "awr3", "awr4", "awr5", "awr6", "awr7",
2595 "awr8", "awr9", "awr10", "awr11", "awr12", "awr13", "awr14", "awr15",
2596 "awr16", "awr17", "awr18", "awr19", "awr20", "awr21", "awr22", "awr23",
2597 "awr24", "awr25", "awr26", "awr27", "awr28", "awr29", "awr30", "awr31",
2598 "apsr"
2599 #endif /* 0 */
2600 };
2601
2602 if (regno < 0 ||
2603 regno >= (sizeof (register_names) / sizeof (register_names[0])))
2604 return NULL;
2605 else
2606 return register_names[regno];
2607 }
2608
2609 CORE_ADDR
2610 sparc_push_return_address (CORE_ADDR pc_unused, CORE_ADDR sp)
2611 {
2612 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
2613 {
2614 /* The return PC of the dummy_frame is the former 'current' PC
2615 (where we were before we made the target function call).
2616 This is saved in %i7 by push_dummy_frame.
2617
2618 We will save the 'call dummy location' (ie. the address
2619 to which the target function will return) in %o7.
2620 This address will actually be the program's entry point.
2621 There will be a special call_dummy breakpoint there. */
2622
2623 write_register (O7_REGNUM,
2624 CALL_DUMMY_ADDRESS () - 8);
2625 }
2626
2627 return sp;
2628 }
2629
2630 /* Should call_function allocate stack space for a struct return? */
2631
2632 static int
2633 sparc64_use_struct_convention (int gcc_p, struct type *type)
2634 {
2635 return (TYPE_LENGTH (type) > 32);
2636 }
2637
2638 /* Store the address of the place in which to copy the structure the
2639 subroutine will return. This is called from call_function_by_hand.
2640 The ultimate mystery is, tho, what is the value "16"?
2641
2642 MVS: That's the offset from where the sp is now, to where the
2643 subroutine is gonna expect to find the struct return address. */
2644
2645 static void
2646 sparc32_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2647 {
2648 char *val;
2649 CORE_ADDR o7;
2650
2651 val = alloca (SPARC_INTREG_SIZE);
2652 store_unsigned_integer (val, SPARC_INTREG_SIZE, addr);
2653 write_memory (sp + (16 * SPARC_INTREG_SIZE), val, SPARC_INTREG_SIZE);
2654
2655 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
2656 {
2657 /* Now adjust the value of the link register, which was previously
2658 stored by push_return_address. Functions that return structs are
2659 peculiar in that they return to link register + 12, rather than
2660 link register + 8. */
2661
2662 o7 = read_register (O7_REGNUM);
2663 write_register (O7_REGNUM, o7 - 4);
2664 }
2665 }
2666
2667 static void
2668 sparc64_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2669 {
2670 /* FIXME: V9 uses %o0 for this. */
2671 /* FIXME MVS: Only for small enough structs!!! */
2672
2673 target_write_memory (sp + (16 * SPARC_INTREG_SIZE),
2674 (char *) &addr, SPARC_INTREG_SIZE);
2675 #if 0
2676 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
2677 {
2678 /* Now adjust the value of the link register, which was previously
2679 stored by push_return_address. Functions that return structs are
2680 peculiar in that they return to link register + 12, rather than
2681 link register + 8. */
2682
2683 write_register (O7_REGNUM, read_register (O7_REGNUM) - 4);
2684 }
2685 #endif
2686 }
2687
2688 /* Default target data type for register REGNO. */
2689
2690 static struct type *
2691 sparc32_register_virtual_type (int regno)
2692 {
2693 if (regno == PC_REGNUM ||
2694 regno == FP_REGNUM ||
2695 regno == SP_REGNUM)
2696 return builtin_type_unsigned_int;
2697 if (regno < 32)
2698 return builtin_type_int;
2699 if (regno < 64)
2700 return builtin_type_float;
2701 return builtin_type_int;
2702 }
2703
2704 static struct type *
2705 sparc64_register_virtual_type (int regno)
2706 {
2707 if (regno == PC_REGNUM ||
2708 regno == FP_REGNUM ||
2709 regno == SP_REGNUM)
2710 return builtin_type_unsigned_long_long;
2711 if (regno < 32)
2712 return builtin_type_long_long;
2713 if (regno < 64)
2714 return builtin_type_float;
2715 if (regno < 80)
2716 return builtin_type_double;
2717 return builtin_type_long_long;
2718 }
2719
2720 /* Number of bytes of storage in the actual machine representation for
2721 register REGNO. */
2722
2723 static int
2724 sparc32_register_size (int regno)
2725 {
2726 return 4;
2727 }
2728
2729 static int
2730 sparc64_register_size (int regno)
2731 {
2732 return (regno < 32 ? 8 : regno < 64 ? 4 : 8);
2733 }
2734
2735 /* Index within the `registers' buffer of the first byte of the space
2736 for register REGNO. */
2737
2738 static int
2739 sparc32_register_byte (int regno)
2740 {
2741 return (regno * 4);
2742 }
2743
2744 static int
2745 sparc64_register_byte (int regno)
2746 {
2747 if (regno < 32)
2748 return regno * 8;
2749 else if (regno < 64)
2750 return 32 * 8 + (regno - 32) * 4;
2751 else if (regno < 80)
2752 return 32 * 8 + 32 * 4 + (regno - 64) * 8;
2753 else
2754 return 64 * 8 + (regno - 80) * 8;
2755 }
2756
2757 /* Advance PC across any function entry prologue instructions to reach
2758 some "real" code. SKIP_PROLOGUE_FRAMELESS_P advances the PC past
2759 some of the prologue, but stops as soon as it knows that the
2760 function has a frame. Its result is equal to its input PC if the
2761 function is frameless, unequal otherwise. */
2762
2763 static CORE_ADDR
2764 sparc_gdbarch_skip_prologue (CORE_ADDR ip)
2765 {
2766 return examine_prologue (ip, 0, NULL, NULL);
2767 }
2768
2769 /* Immediately after a function call, return the saved pc.
2770 Can't go through the frames for this because on some machines
2771 the new frame is not set up until the new function executes
2772 some instructions. */
2773
2774 static CORE_ADDR
2775 sparc_saved_pc_after_call (struct frame_info *fi)
2776 {
2777 return sparc_pc_adjust (read_register (RP_REGNUM));
2778 }
2779
2780 /* Convert registers between 'raw' and 'virtual' formats.
2781 They are the same on sparc, so there's nothing to do. */
2782
2783 static void
2784 sparc_convert_to_virtual (int regnum, struct type *type, char *from, char *to)
2785 { /* do nothing (should never be called) */
2786 }
2787
2788 static void
2789 sparc_convert_to_raw (struct type *type, int regnum, char *from, char *to)
2790 { /* do nothing (should never be called) */
2791 }
2792
2793 /* Init saved regs: nothing to do, just a place-holder function. */
2794
2795 static void
2796 sparc_frame_init_saved_regs (struct frame_info *fi_ignored)
2797 { /* no-op */
2798 }
2799
2800 /* The frame address: stored in the 'frame' field of the frame_info. */
2801
2802 static CORE_ADDR
2803 sparc_frame_address (struct frame_info *fi)
2804 {
2805 return fi->frame;
2806 }
2807
2808 /* gdbarch fix call dummy:
2809 All this function does is rearrange the arguments before calling
2810 sparc_fix_call_dummy (which does the real work). */
2811
2812 static void
2813 sparc_gdbarch_fix_call_dummy (char *dummy,
2814 CORE_ADDR pc,
2815 CORE_ADDR fun,
2816 int nargs,
2817 struct value **args,
2818 struct type *type,
2819 int gcc_p)
2820 {
2821 if (CALL_DUMMY_LOCATION == ON_STACK)
2822 sparc_fix_call_dummy (dummy, pc, fun, type, gcc_p);
2823 }
2824
2825 /* Coerce float to double: a no-op. */
2826
2827 static int
2828 sparc_coerce_float_to_double (struct type *formal, struct type *actual)
2829 {
2830 return 1;
2831 }
2832
2833 /* CALL_DUMMY_ADDRESS: fetch the breakpoint address for a call dummy. */
2834
2835 static CORE_ADDR
2836 sparc_call_dummy_address (void)
2837 {
2838 return (CALL_DUMMY_START_OFFSET) + CALL_DUMMY_BREAKPOINT_OFFSET;
2839 }
2840
2841 /* Supply the Y register number to those that need it. */
2842
2843 int
2844 sparc_y_regnum (void)
2845 {
2846 return gdbarch_tdep (current_gdbarch)->y_regnum;
2847 }
2848
2849 int
2850 sparc_reg_struct_has_addr (int gcc_p, struct type *type)
2851 {
2852 if (GDB_TARGET_IS_SPARC64)
2853 return (TYPE_LENGTH (type) > 32);
2854 else
2855 return (gcc_p != 1);
2856 }
2857
2858 int
2859 sparc_intreg_size (void)
2860 {
2861 return SPARC_INTREG_SIZE;
2862 }
2863
2864 static int
2865 sparc_return_value_on_stack (struct type *type)
2866 {
2867 if (TYPE_CODE (type) == TYPE_CODE_FLT &&
2868 TYPE_LENGTH (type) > 8)
2869 return 1;
2870 else
2871 return 0;
2872 }
2873
2874 /*
2875 * Gdbarch "constructor" function.
2876 */
2877
2878 #define SPARC32_CALL_DUMMY_ON_STACK
2879
2880 #define SPARC_SP_REGNUM 14
2881 #define SPARC_FP_REGNUM 30
2882 #define SPARC_FP0_REGNUM 32
2883 #define SPARC32_NPC_REGNUM 69
2884 #define SPARC32_PC_REGNUM 68
2885 #define SPARC32_Y_REGNUM 64
2886 #define SPARC64_PC_REGNUM 80
2887 #define SPARC64_NPC_REGNUM 81
2888 #define SPARC64_Y_REGNUM 85
2889
2890 static struct gdbarch *
2891 sparc_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2892 {
2893 struct gdbarch *gdbarch;
2894 struct gdbarch_tdep *tdep;
2895
2896 static LONGEST call_dummy_32[] =
2897 { 0xbc100001, 0x9de38000, 0xbc100002, 0xbe100003,
2898 0xda03a058, 0xd803a054, 0xd603a050, 0xd403a04c,
2899 0xd203a048, 0x40000000, 0xd003a044, 0x01000000,
2900 0x91d02001, 0x01000000
2901 };
2902 static LONGEST call_dummy_64[] =
2903 { 0x9de3bec0fd3fa7f7LL, 0xf93fa7eff53fa7e7LL,
2904 0xf13fa7dfed3fa7d7LL, 0xe93fa7cfe53fa7c7LL,
2905 0xe13fa7bfdd3fa7b7LL, 0xd93fa7afd53fa7a7LL,
2906 0xd13fa79fcd3fa797LL, 0xc93fa78fc53fa787LL,
2907 0xc13fa77fcc3fa777LL, 0xc83fa76fc43fa767LL,
2908 0xc03fa75ffc3fa757LL, 0xf83fa74ff43fa747LL,
2909 0xf03fa73f01000000LL, 0x0100000001000000LL,
2910 0x0100000091580000LL, 0xd027a72b93500000LL,
2911 0xd027a72791480000LL, 0xd027a72391400000LL,
2912 0xd027a71fda5ba8a7LL, 0xd85ba89fd65ba897LL,
2913 0xd45ba88fd25ba887LL, 0x9fc02000d05ba87fLL,
2914 0x0100000091d02001LL, 0x0100000001000000LL
2915 };
2916 static LONGEST call_dummy_nil[] = {0};
2917
2918 /* First see if there is already a gdbarch that can satisfy the request. */
2919 arches = gdbarch_list_lookup_by_info (arches, &info);
2920 if (arches != NULL)
2921 return arches->gdbarch;
2922
2923 /* None found: is the request for a sparc architecture? */
2924 if (info.bfd_architecture != bfd_arch_sparc)
2925 return NULL; /* No; then it's not for us. */
2926
2927 /* Yes: create a new gdbarch for the specified machine type. */
2928 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
2929 gdbarch = gdbarch_alloc (&info, tdep);
2930
2931 /* First set settings that are common for all sparc architectures. */
2932 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2933 set_gdbarch_breakpoint_from_pc (gdbarch, memory_breakpoint_from_pc);
2934 set_gdbarch_coerce_float_to_double (gdbarch,
2935 sparc_coerce_float_to_double);
2936 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2937 set_gdbarch_call_dummy_p (gdbarch, 1);
2938 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 1);
2939 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2940 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2941 set_gdbarch_extract_struct_value_address (gdbarch,
2942 sparc_extract_struct_value_address);
2943 set_gdbarch_fix_call_dummy (gdbarch, sparc_gdbarch_fix_call_dummy);
2944 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2945 set_gdbarch_fp_regnum (gdbarch, SPARC_FP_REGNUM);
2946 set_gdbarch_fp0_regnum (gdbarch, SPARC_FP0_REGNUM);
2947 set_gdbarch_frame_args_address (gdbarch, sparc_frame_address);
2948 set_gdbarch_frame_chain (gdbarch, sparc_frame_chain);
2949 set_gdbarch_frame_init_saved_regs (gdbarch, sparc_frame_init_saved_regs);
2950 set_gdbarch_frame_locals_address (gdbarch, sparc_frame_address);
2951 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2952 set_gdbarch_frame_saved_pc (gdbarch, sparc_frame_saved_pc);
2953 set_gdbarch_frameless_function_invocation (gdbarch,
2954 frameless_look_for_prologue);
2955 set_gdbarch_get_saved_register (gdbarch, sparc_get_saved_register);
2956 set_gdbarch_ieee_float (gdbarch, 1);
2957 set_gdbarch_init_extra_frame_info (gdbarch, sparc_init_extra_frame_info);
2958 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2959 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2960 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2961 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2962 set_gdbarch_max_register_raw_size (gdbarch, 8);
2963 set_gdbarch_max_register_virtual_size (gdbarch, 8);
2964 #ifdef DO_CALL_DUMMY_ON_STACK
2965 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack);
2966 #else
2967 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
2968 #endif
2969 set_gdbarch_pop_frame (gdbarch, sparc_pop_frame);
2970 set_gdbarch_push_return_address (gdbarch, sparc_push_return_address);
2971 set_gdbarch_push_dummy_frame (gdbarch, sparc_push_dummy_frame);
2972 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2973 set_gdbarch_register_convert_to_raw (gdbarch, sparc_convert_to_raw);
2974 set_gdbarch_register_convert_to_virtual (gdbarch,
2975 sparc_convert_to_virtual);
2976 set_gdbarch_register_convertible (gdbarch,
2977 generic_register_convertible_not);
2978 set_gdbarch_reg_struct_has_addr (gdbarch, sparc_reg_struct_has_addr);
2979 set_gdbarch_return_value_on_stack (gdbarch, sparc_return_value_on_stack);
2980 set_gdbarch_saved_pc_after_call (gdbarch, sparc_saved_pc_after_call);
2981 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2982 set_gdbarch_skip_prologue (gdbarch, sparc_gdbarch_skip_prologue);
2983 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM);
2984 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
2985 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2986
2987 /*
2988 * Settings that depend only on 32/64 bit word size
2989 */
2990
2991 switch (info.bfd_arch_info->mach)
2992 {
2993 case bfd_mach_sparc:
2994 case bfd_mach_sparc_sparclet:
2995 case bfd_mach_sparc_sparclite:
2996 case bfd_mach_sparc_v8plus:
2997 case bfd_mach_sparc_v8plusa:
2998 case bfd_mach_sparc_sparclite_le:
2999 /* 32-bit machine types: */
3000
3001 #ifdef SPARC32_CALL_DUMMY_ON_STACK
3002 set_gdbarch_call_dummy_address (gdbarch, sparc_call_dummy_address);
3003 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0x30);
3004 set_gdbarch_call_dummy_length (gdbarch, 0x38);
3005 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
3006 set_gdbarch_call_dummy_words (gdbarch, call_dummy_32);
3007 #else
3008 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
3009 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
3010 set_gdbarch_call_dummy_length (gdbarch, 0);
3011 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
3012 set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil);
3013 #endif
3014 set_gdbarch_call_dummy_stack_adjust (gdbarch, 68);
3015 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
3016 set_gdbarch_frame_args_skip (gdbarch, 68);
3017 set_gdbarch_function_start_offset (gdbarch, 0);
3018 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3019 set_gdbarch_npc_regnum (gdbarch, SPARC32_NPC_REGNUM);
3020 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM);
3021 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3022 set_gdbarch_push_arguments (gdbarch, sparc32_push_arguments);
3023 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
3024 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
3025
3026 set_gdbarch_register_byte (gdbarch, sparc32_register_byte);
3027 set_gdbarch_register_raw_size (gdbarch, sparc32_register_size);
3028 set_gdbarch_register_size (gdbarch, 4);
3029 set_gdbarch_register_virtual_size (gdbarch, sparc32_register_size);
3030 set_gdbarch_register_virtual_type (gdbarch,
3031 sparc32_register_virtual_type);
3032 #ifdef SPARC32_CALL_DUMMY_ON_STACK
3033 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_32));
3034 #else
3035 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
3036 #endif
3037 set_gdbarch_stack_align (gdbarch, sparc32_stack_align);
3038 set_gdbarch_store_struct_return (gdbarch, sparc32_store_struct_return);
3039 set_gdbarch_use_struct_convention (gdbarch,
3040 generic_use_struct_convention);
3041 set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
3042 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
3043 tdep->y_regnum = SPARC32_Y_REGNUM;
3044 tdep->fp_max_regnum = SPARC_FP0_REGNUM + 32;
3045 tdep->intreg_size = 4;
3046 tdep->reg_save_offset = 0x60;
3047 tdep->call_dummy_call_offset = 0x24;
3048 break;
3049
3050 case bfd_mach_sparc_v9:
3051 case bfd_mach_sparc_v9a:
3052 /* 64-bit machine types: */
3053 default: /* Any new machine type is likely to be 64-bit. */
3054
3055 #ifdef SPARC64_CALL_DUMMY_ON_STACK
3056 set_gdbarch_call_dummy_address (gdbarch, sparc_call_dummy_address);
3057 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 8 * 4);
3058 set_gdbarch_call_dummy_length (gdbarch, 192);
3059 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
3060 set_gdbarch_call_dummy_start_offset (gdbarch, 148);
3061 set_gdbarch_call_dummy_words (gdbarch, call_dummy_64);
3062 #else
3063 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
3064 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
3065 set_gdbarch_call_dummy_length (gdbarch, 0);
3066 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
3067 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
3068 set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil);
3069 #endif
3070 set_gdbarch_call_dummy_stack_adjust (gdbarch, 128);
3071 set_gdbarch_frame_args_skip (gdbarch, 136);
3072 set_gdbarch_function_start_offset (gdbarch, 0);
3073 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3074 set_gdbarch_npc_regnum (gdbarch, SPARC64_NPC_REGNUM);
3075 set_gdbarch_pc_regnum (gdbarch, SPARC64_PC_REGNUM);
3076 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3077 set_gdbarch_push_arguments (gdbarch, sparc64_push_arguments);
3078 /* NOTE different for at_entry */
3079 set_gdbarch_read_fp (gdbarch, sparc64_read_fp);
3080 set_gdbarch_read_sp (gdbarch, sparc64_read_sp);
3081 /* Some of the registers aren't 64 bits, but it's a lot simpler just
3082 to assume they all are (since most of them are). */
3083 set_gdbarch_register_byte (gdbarch, sparc64_register_byte);
3084 set_gdbarch_register_raw_size (gdbarch, sparc64_register_size);
3085 set_gdbarch_register_size (gdbarch, 8);
3086 set_gdbarch_register_virtual_size (gdbarch, sparc64_register_size);
3087 set_gdbarch_register_virtual_type (gdbarch,
3088 sparc64_register_virtual_type);
3089 #ifdef SPARC64_CALL_DUMMY_ON_STACK
3090 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_64));
3091 #else
3092 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
3093 #endif
3094 set_gdbarch_stack_align (gdbarch, sparc64_stack_align);
3095 set_gdbarch_store_struct_return (gdbarch, sparc64_store_struct_return);
3096 set_gdbarch_use_struct_convention (gdbarch,
3097 sparc64_use_struct_convention);
3098 set_gdbarch_write_fp (gdbarch, sparc64_write_fp);
3099 set_gdbarch_write_sp (gdbarch, sparc64_write_sp);
3100 tdep->y_regnum = SPARC64_Y_REGNUM;
3101 tdep->fp_max_regnum = SPARC_FP0_REGNUM + 48;
3102 tdep->intreg_size = 8;
3103 tdep->reg_save_offset = 0x90;
3104 tdep->call_dummy_call_offset = 148 + 4 * 5;
3105 break;
3106 }
3107
3108 /*
3109 * Settings that vary per-architecture:
3110 */
3111
3112 switch (info.bfd_arch_info->mach)
3113 {
3114 case bfd_mach_sparc:
3115 set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value);
3116 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
3117 set_gdbarch_num_regs (gdbarch, 72);
3118 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
3119 set_gdbarch_register_name (gdbarch, sparc32_register_name);
3120 set_gdbarch_store_return_value (gdbarch, sparc_store_return_value);
3121 tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3122 tdep->fp_register_bytes = 32 * 4;
3123 tdep->print_insn_mach = bfd_mach_sparc;
3124 break;
3125 case bfd_mach_sparc_sparclet:
3126 set_gdbarch_extract_return_value (gdbarch,
3127 sparclet_extract_return_value);
3128 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
3129 set_gdbarch_num_regs (gdbarch, 32 + 32 + 8 + 8 + 8);
3130 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4 + 8*4);
3131 set_gdbarch_register_name (gdbarch, sparclet_register_name);
3132 set_gdbarch_store_return_value (gdbarch, sparclet_store_return_value);
3133 tdep->has_fpu = 0; /* (all but sparclet and sparclite) */
3134 tdep->fp_register_bytes = 0;
3135 tdep->print_insn_mach = bfd_mach_sparc_sparclet;
3136 break;
3137 case bfd_mach_sparc_sparclite:
3138 set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value);
3139 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
3140 set_gdbarch_num_regs (gdbarch, 80);
3141 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4);
3142 set_gdbarch_register_name (gdbarch, sparclite_register_name);
3143 set_gdbarch_store_return_value (gdbarch, sparc_store_return_value);
3144 tdep->has_fpu = 0; /* (all but sparclet and sparclite) */
3145 tdep->fp_register_bytes = 0;
3146 tdep->print_insn_mach = bfd_mach_sparc_sparclite;
3147 break;
3148 case bfd_mach_sparc_v8plus:
3149 set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value);
3150 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
3151 set_gdbarch_num_regs (gdbarch, 72);
3152 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
3153 set_gdbarch_register_name (gdbarch, sparc32_register_name);
3154 set_gdbarch_store_return_value (gdbarch, sparc_store_return_value);
3155 tdep->print_insn_mach = bfd_mach_sparc;
3156 tdep->fp_register_bytes = 32 * 4;
3157 tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3158 break;
3159 case bfd_mach_sparc_v8plusa:
3160 set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value);
3161 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
3162 set_gdbarch_num_regs (gdbarch, 72);
3163 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
3164 set_gdbarch_register_name (gdbarch, sparc32_register_name);
3165 set_gdbarch_store_return_value (gdbarch, sparc_store_return_value);
3166 tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3167 tdep->fp_register_bytes = 32 * 4;
3168 tdep->print_insn_mach = bfd_mach_sparc;
3169 break;
3170 case bfd_mach_sparc_sparclite_le:
3171 set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value);
3172 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
3173 set_gdbarch_num_regs (gdbarch, 80);
3174 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4);
3175 set_gdbarch_register_name (gdbarch, sparclite_register_name);
3176 set_gdbarch_store_return_value (gdbarch, sparc_store_return_value);
3177 tdep->has_fpu = 0; /* (all but sparclet and sparclite) */
3178 tdep->fp_register_bytes = 0;
3179 tdep->print_insn_mach = bfd_mach_sparc_sparclite;
3180 break;
3181 case bfd_mach_sparc_v9:
3182 set_gdbarch_extract_return_value (gdbarch, sparc64_extract_return_value);
3183 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
3184 set_gdbarch_num_regs (gdbarch, 125);
3185 set_gdbarch_register_bytes (gdbarch, 32*8 + 32*8 + 45*8);
3186 set_gdbarch_register_name (gdbarch, sparc64_register_name);
3187 set_gdbarch_store_return_value (gdbarch, sparc_store_return_value);
3188 tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3189 tdep->fp_register_bytes = 64 * 4;
3190 tdep->print_insn_mach = bfd_mach_sparc_v9a;
3191 break;
3192 case bfd_mach_sparc_v9a:
3193 set_gdbarch_extract_return_value (gdbarch, sparc64_extract_return_value);
3194 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
3195 set_gdbarch_num_regs (gdbarch, 125);
3196 set_gdbarch_register_bytes (gdbarch, 32*8 + 32*8 + 45*8);
3197 set_gdbarch_register_name (gdbarch, sparc64_register_name);
3198 set_gdbarch_store_return_value (gdbarch, sparc_store_return_value);
3199 tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3200 tdep->fp_register_bytes = 64 * 4;
3201 tdep->print_insn_mach = bfd_mach_sparc_v9a;
3202 break;
3203 }
3204
3205 return gdbarch;
3206 }
3207
This page took 0.094052 seconds and 5 git commands to generate.