Update mn10300 dwarf register map
[deliverable/binutils-gdb.git] / gdb / spu-linux-nat.c
1 /* SPU native-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdbcore.h"
23 #include <string.h>
24 #include "target.h"
25 #include "inferior.h"
26 #include "inf-child.h"
27 #include "inf-ptrace.h"
28 #include "regcache.h"
29 #include "symfile.h"
30 #include "gdb_wait.h"
31 #include "gdbthread.h"
32 #include "gdb_bfd.h"
33
34 #include <sys/ptrace.h>
35 #include <asm/ptrace.h>
36 #include <sys/types.h>
37
38 #include "spu-tdep.h"
39
40 /* PPU side system calls. */
41 #define INSTR_SC 0x44000002
42 #define NR_spu_run 0x0116
43
44
45 /* Fetch PPU register REGNO. */
46 static ULONGEST
47 fetch_ppc_register (int regno)
48 {
49 PTRACE_TYPE_RET res;
50
51 int tid = ptid_get_lwp (inferior_ptid);
52 if (tid == 0)
53 tid = ptid_get_pid (inferior_ptid);
54
55 #ifndef __powerpc64__
56 /* If running as a 32-bit process on a 64-bit system, we attempt
57 to get the full 64-bit register content of the target process.
58 If the PPC special ptrace call fails, we're on a 32-bit system;
59 just fall through to the regular ptrace call in that case. */
60 {
61 gdb_byte buf[8];
62
63 errno = 0;
64 ptrace (PPC_PTRACE_PEEKUSR_3264, tid,
65 (PTRACE_TYPE_ARG3) (regno * 8), buf);
66 if (errno == 0)
67 ptrace (PPC_PTRACE_PEEKUSR_3264, tid,
68 (PTRACE_TYPE_ARG3) (regno * 8 + 4), buf + 4);
69 if (errno == 0)
70 return (ULONGEST) *(uint64_t *)buf;
71 }
72 #endif
73
74 errno = 0;
75 res = ptrace (PT_READ_U, tid,
76 (PTRACE_TYPE_ARG3) (regno * sizeof (PTRACE_TYPE_RET)), 0);
77 if (errno != 0)
78 {
79 char mess[128];
80 xsnprintf (mess, sizeof mess, "reading PPC register #%d", regno);
81 perror_with_name (_(mess));
82 }
83
84 return (ULONGEST) (unsigned long) res;
85 }
86
87 /* Fetch WORD from PPU memory at (aligned) MEMADDR in thread TID. */
88 static int
89 fetch_ppc_memory_1 (int tid, ULONGEST memaddr, PTRACE_TYPE_RET *word)
90 {
91 errno = 0;
92
93 #ifndef __powerpc64__
94 if (memaddr >> 32)
95 {
96 uint64_t addr_8 = (uint64_t) memaddr;
97 ptrace (PPC_PTRACE_PEEKTEXT_3264, tid, (PTRACE_TYPE_ARG3) &addr_8, word);
98 }
99 else
100 #endif
101 *word = ptrace (PT_READ_I, tid, (PTRACE_TYPE_ARG3) (size_t) memaddr, 0);
102
103 return errno;
104 }
105
106 /* Store WORD into PPU memory at (aligned) MEMADDR in thread TID. */
107 static int
108 store_ppc_memory_1 (int tid, ULONGEST memaddr, PTRACE_TYPE_RET word)
109 {
110 errno = 0;
111
112 #ifndef __powerpc64__
113 if (memaddr >> 32)
114 {
115 uint64_t addr_8 = (uint64_t) memaddr;
116 ptrace (PPC_PTRACE_POKEDATA_3264, tid, (PTRACE_TYPE_ARG3) &addr_8, word);
117 }
118 else
119 #endif
120 ptrace (PT_WRITE_D, tid, (PTRACE_TYPE_ARG3) (size_t) memaddr, word);
121
122 return errno;
123 }
124
125 /* Fetch LEN bytes of PPU memory at MEMADDR to MYADDR. */
126 static int
127 fetch_ppc_memory (ULONGEST memaddr, gdb_byte *myaddr, int len)
128 {
129 int i, ret;
130
131 ULONGEST addr = memaddr & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
132 int count = ((((memaddr + len) - addr) + sizeof (PTRACE_TYPE_RET) - 1)
133 / sizeof (PTRACE_TYPE_RET));
134 PTRACE_TYPE_RET *buffer;
135
136 int tid = ptid_get_lwp (inferior_ptid);
137 if (tid == 0)
138 tid = ptid_get_pid (inferior_ptid);
139
140 buffer = (PTRACE_TYPE_RET *) alloca (count * sizeof (PTRACE_TYPE_RET));
141 for (i = 0; i < count; i++, addr += sizeof (PTRACE_TYPE_RET))
142 {
143 ret = fetch_ppc_memory_1 (tid, addr, &buffer[i]);
144 if (ret)
145 return ret;
146 }
147
148 memcpy (myaddr,
149 (char *) buffer + (memaddr & (sizeof (PTRACE_TYPE_RET) - 1)),
150 len);
151
152 return 0;
153 }
154
155 /* Store LEN bytes from MYADDR to PPU memory at MEMADDR. */
156 static int
157 store_ppc_memory (ULONGEST memaddr, const gdb_byte *myaddr, int len)
158 {
159 int i, ret;
160
161 ULONGEST addr = memaddr & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
162 int count = ((((memaddr + len) - addr) + sizeof (PTRACE_TYPE_RET) - 1)
163 / sizeof (PTRACE_TYPE_RET));
164 PTRACE_TYPE_RET *buffer;
165
166 int tid = ptid_get_lwp (inferior_ptid);
167 if (tid == 0)
168 tid = ptid_get_pid (inferior_ptid);
169
170 buffer = (PTRACE_TYPE_RET *) alloca (count * sizeof (PTRACE_TYPE_RET));
171
172 if (addr != memaddr || len < (int) sizeof (PTRACE_TYPE_RET))
173 {
174 ret = fetch_ppc_memory_1 (tid, addr, &buffer[0]);
175 if (ret)
176 return ret;
177 }
178
179 if (count > 1)
180 {
181 ret = fetch_ppc_memory_1 (tid, addr + (count - 1)
182 * sizeof (PTRACE_TYPE_RET),
183 &buffer[count - 1]);
184 if (ret)
185 return ret;
186 }
187
188 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_TYPE_RET) - 1)),
189 myaddr, len);
190
191 for (i = 0; i < count; i++, addr += sizeof (PTRACE_TYPE_RET))
192 {
193 ret = store_ppc_memory_1 (tid, addr, buffer[i]);
194 if (ret)
195 return ret;
196 }
197
198 return 0;
199 }
200
201
202 /* If the PPU thread is currently stopped on a spu_run system call,
203 return to FD and ADDR the file handle and NPC parameter address
204 used with the system call. Return non-zero if successful. */
205 static int
206 parse_spufs_run (int *fd, ULONGEST *addr)
207 {
208 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
209 gdb_byte buf[4];
210 ULONGEST pc = fetch_ppc_register (32); /* nip */
211
212 /* Fetch instruction preceding current NIP. */
213 if (fetch_ppc_memory (pc-4, buf, 4) != 0)
214 return 0;
215 /* It should be a "sc" instruction. */
216 if (extract_unsigned_integer (buf, 4, byte_order) != INSTR_SC)
217 return 0;
218 /* System call number should be NR_spu_run. */
219 if (fetch_ppc_register (0) != NR_spu_run)
220 return 0;
221
222 /* Register 3 contains fd, register 4 the NPC param pointer. */
223 *fd = fetch_ppc_register (34); /* orig_gpr3 */
224 *addr = fetch_ppc_register (4);
225 return 1;
226 }
227
228
229 /* Copy LEN bytes at OFFSET in spufs file ANNEX into/from READBUF or WRITEBUF,
230 using the /proc file system. */
231 static LONGEST
232 spu_proc_xfer_spu (const char *annex, gdb_byte *readbuf,
233 const gdb_byte *writebuf,
234 ULONGEST offset, ULONGEST len)
235 {
236 char buf[128];
237 int fd = 0;
238 int ret = -1;
239 int pid = ptid_get_pid (inferior_ptid);
240
241 if (!annex)
242 return 0;
243
244 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
245 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
246 if (fd <= 0)
247 return -1;
248
249 if (offset != 0
250 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
251 {
252 close (fd);
253 return 0;
254 }
255
256 if (writebuf)
257 ret = write (fd, writebuf, (size_t) len);
258 else if (readbuf)
259 ret = read (fd, readbuf, (size_t) len);
260
261 close (fd);
262 return ret;
263 }
264
265
266 /* Inferior memory should contain an SPE executable image at location ADDR.
267 Allocate a BFD representing that executable. Return NULL on error. */
268
269 static void *
270 spu_bfd_iovec_open (struct bfd *nbfd, void *open_closure)
271 {
272 return open_closure;
273 }
274
275 static int
276 spu_bfd_iovec_close (struct bfd *nbfd, void *stream)
277 {
278 xfree (stream);
279
280 /* Zero means success. */
281 return 0;
282 }
283
284 static file_ptr
285 spu_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
286 file_ptr nbytes, file_ptr offset)
287 {
288 ULONGEST addr = *(ULONGEST *)stream;
289
290 if (fetch_ppc_memory (addr + offset, buf, nbytes) != 0)
291 {
292 bfd_set_error (bfd_error_invalid_operation);
293 return -1;
294 }
295
296 return nbytes;
297 }
298
299 static int
300 spu_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
301 {
302 /* We don't have an easy way of finding the size of embedded spu
303 images. We could parse the in-memory ELF header and section
304 table to find the extent of the last section but that seems
305 pointless when the size is needed only for checks of other
306 parsed values in dbxread.c. */
307 sb->st_size = INT_MAX;
308 return 0;
309 }
310
311 static bfd *
312 spu_bfd_open (ULONGEST addr)
313 {
314 struct bfd *nbfd;
315 asection *spu_name;
316
317 ULONGEST *open_closure = xmalloc (sizeof (ULONGEST));
318 *open_closure = addr;
319
320 nbfd = gdb_bfd_openr_iovec ("<in-memory>", "elf32-spu",
321 spu_bfd_iovec_open, open_closure,
322 spu_bfd_iovec_pread, spu_bfd_iovec_close,
323 spu_bfd_iovec_stat);
324 if (!nbfd)
325 return NULL;
326
327 if (!bfd_check_format (nbfd, bfd_object))
328 {
329 gdb_bfd_unref (nbfd);
330 return NULL;
331 }
332
333 /* Retrieve SPU name note and update BFD name. */
334 spu_name = bfd_get_section_by_name (nbfd, ".note.spu_name");
335 if (spu_name)
336 {
337 int sect_size = bfd_section_size (nbfd, spu_name);
338 if (sect_size > 20)
339 {
340 char *buf = alloca (sect_size - 20 + 1);
341 bfd_get_section_contents (nbfd, spu_name, buf, 20, sect_size - 20);
342 buf[sect_size - 20] = '\0';
343
344 xfree ((char *)nbfd->filename);
345 nbfd->filename = xstrdup (buf);
346 }
347 }
348
349 return nbfd;
350 }
351
352 /* INFERIOR_FD is a file handle passed by the inferior to the
353 spu_run system call. Assuming the SPE context was allocated
354 by the libspe library, try to retrieve the main SPE executable
355 file from its copy within the target process. */
356 static void
357 spu_symbol_file_add_from_memory (int inferior_fd)
358 {
359 ULONGEST addr;
360 struct bfd *nbfd;
361
362 gdb_byte id[128];
363 char annex[32];
364 int len;
365
366 /* Read object ID. */
367 xsnprintf (annex, sizeof annex, "%d/object-id", inferior_fd);
368 len = spu_proc_xfer_spu (annex, id, NULL, 0, sizeof id);
369 if (len <= 0 || len >= sizeof id)
370 return;
371 id[len] = 0;
372 addr = strtoulst ((const char *) id, NULL, 16);
373 if (!addr)
374 return;
375
376 /* Open BFD representing SPE executable and read its symbols. */
377 nbfd = spu_bfd_open (addr);
378 if (nbfd)
379 {
380 struct cleanup *cleanup = make_cleanup_bfd_unref (nbfd);
381
382 symbol_file_add_from_bfd (nbfd, bfd_get_filename (nbfd),
383 SYMFILE_VERBOSE | SYMFILE_MAINLINE,
384 NULL, 0, NULL);
385 do_cleanups (cleanup);
386 }
387 }
388
389
390 /* Override the post_startup_inferior routine to continue running
391 the inferior until the first spu_run system call. */
392 static void
393 spu_child_post_startup_inferior (ptid_t ptid)
394 {
395 int fd;
396 ULONGEST addr;
397
398 int tid = ptid_get_lwp (ptid);
399 if (tid == 0)
400 tid = ptid_get_pid (ptid);
401
402 while (!parse_spufs_run (&fd, &addr))
403 {
404 ptrace (PT_SYSCALL, tid, (PTRACE_TYPE_ARG3) 0, 0);
405 waitpid (tid, NULL, __WALL | __WNOTHREAD);
406 }
407 }
408
409 /* Override the post_attach routine to try load the SPE executable
410 file image from its copy inside the target process. */
411 static void
412 spu_child_post_attach (int pid)
413 {
414 int fd;
415 ULONGEST addr;
416
417 /* Like child_post_startup_inferior, if we happened to attach to
418 the inferior while it wasn't currently in spu_run, continue
419 running it until we get back there. */
420 while (!parse_spufs_run (&fd, &addr))
421 {
422 ptrace (PT_SYSCALL, pid, (PTRACE_TYPE_ARG3) 0, 0);
423 waitpid (pid, NULL, __WALL | __WNOTHREAD);
424 }
425
426 /* If the user has not provided an executable file, try to extract
427 the image from inside the target process. */
428 if (!get_exec_file (0))
429 spu_symbol_file_add_from_memory (fd);
430 }
431
432 /* Wait for child PTID to do something. Return id of the child,
433 minus_one_ptid in case of error; store status into *OURSTATUS. */
434 static ptid_t
435 spu_child_wait (struct target_ops *ops,
436 ptid_t ptid, struct target_waitstatus *ourstatus, int options)
437 {
438 int save_errno;
439 int status;
440 pid_t pid;
441
442 do
443 {
444 set_sigint_trap (); /* Causes SIGINT to be passed on to the
445 attached process. */
446
447 pid = waitpid (ptid_get_pid (ptid), &status, 0);
448 if (pid == -1 && errno == ECHILD)
449 /* Try again with __WCLONE to check cloned processes. */
450 pid = waitpid (ptid_get_pid (ptid), &status, __WCLONE);
451
452 save_errno = errno;
453
454 /* Make sure we don't report an event for the exit of the
455 original program, if we've detached from it. */
456 if (pid != -1 && !WIFSTOPPED (status)
457 && pid != ptid_get_pid (inferior_ptid))
458 {
459 pid = -1;
460 save_errno = EINTR;
461 }
462
463 clear_sigint_trap ();
464 }
465 while (pid == -1 && save_errno == EINTR);
466
467 if (pid == -1)
468 {
469 warning (_("Child process unexpectedly missing: %s"),
470 safe_strerror (save_errno));
471
472 /* Claim it exited with unknown signal. */
473 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
474 ourstatus->value.sig = GDB_SIGNAL_UNKNOWN;
475 return inferior_ptid;
476 }
477
478 store_waitstatus (ourstatus, status);
479 return pid_to_ptid (pid);
480 }
481
482 /* Override the fetch_inferior_register routine. */
483 static void
484 spu_fetch_inferior_registers (struct target_ops *ops,
485 struct regcache *regcache, int regno)
486 {
487 int fd;
488 ULONGEST addr;
489
490 /* We must be stopped on a spu_run system call. */
491 if (!parse_spufs_run (&fd, &addr))
492 return;
493
494 /* The ID register holds the spufs file handle. */
495 if (regno == -1 || regno == SPU_ID_REGNUM)
496 {
497 struct gdbarch *gdbarch = get_regcache_arch (regcache);
498 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
499 gdb_byte buf[4];
500 store_unsigned_integer (buf, 4, byte_order, fd);
501 regcache_raw_supply (regcache, SPU_ID_REGNUM, buf);
502 }
503
504 /* The NPC register is found at ADDR. */
505 if (regno == -1 || regno == SPU_PC_REGNUM)
506 {
507 gdb_byte buf[4];
508 if (fetch_ppc_memory (addr, buf, 4) == 0)
509 regcache_raw_supply (regcache, SPU_PC_REGNUM, buf);
510 }
511
512 /* The GPRs are found in the "regs" spufs file. */
513 if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
514 {
515 gdb_byte buf[16 * SPU_NUM_GPRS];
516 char annex[32];
517 int i;
518
519 xsnprintf (annex, sizeof annex, "%d/regs", fd);
520 if (spu_proc_xfer_spu (annex, buf, NULL, 0, sizeof buf) == sizeof buf)
521 for (i = 0; i < SPU_NUM_GPRS; i++)
522 regcache_raw_supply (regcache, i, buf + i*16);
523 }
524 }
525
526 /* Override the store_inferior_register routine. */
527 static void
528 spu_store_inferior_registers (struct target_ops *ops,
529 struct regcache *regcache, int regno)
530 {
531 int fd;
532 ULONGEST addr;
533
534 /* We must be stopped on a spu_run system call. */
535 if (!parse_spufs_run (&fd, &addr))
536 return;
537
538 /* The NPC register is found at ADDR. */
539 if (regno == -1 || regno == SPU_PC_REGNUM)
540 {
541 gdb_byte buf[4];
542 regcache_raw_collect (regcache, SPU_PC_REGNUM, buf);
543 store_ppc_memory (addr, buf, 4);
544 }
545
546 /* The GPRs are found in the "regs" spufs file. */
547 if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
548 {
549 gdb_byte buf[16 * SPU_NUM_GPRS];
550 char annex[32];
551 int i;
552
553 for (i = 0; i < SPU_NUM_GPRS; i++)
554 regcache_raw_collect (regcache, i, buf + i*16);
555
556 xsnprintf (annex, sizeof annex, "%d/regs", fd);
557 spu_proc_xfer_spu (annex, NULL, buf, 0, sizeof buf);
558 }
559 }
560
561 /* Override the to_xfer_partial routine. */
562 static LONGEST
563 spu_xfer_partial (struct target_ops *ops,
564 enum target_object object, const char *annex,
565 gdb_byte *readbuf, const gdb_byte *writebuf,
566 ULONGEST offset, ULONGEST len)
567 {
568 if (object == TARGET_OBJECT_SPU)
569 return spu_proc_xfer_spu (annex, readbuf, writebuf, offset, len);
570
571 if (object == TARGET_OBJECT_MEMORY)
572 {
573 int fd;
574 ULONGEST addr;
575 char mem_annex[32], lslr_annex[32];
576 gdb_byte buf[32];
577 ULONGEST lslr;
578 LONGEST ret;
579
580 /* We must be stopped on a spu_run system call. */
581 if (!parse_spufs_run (&fd, &addr))
582 return 0;
583
584 /* Use the "mem" spufs file to access SPU local store. */
585 xsnprintf (mem_annex, sizeof mem_annex, "%d/mem", fd);
586 ret = spu_proc_xfer_spu (mem_annex, readbuf, writebuf, offset, len);
587 if (ret > 0)
588 return ret;
589
590 /* SPU local store access wraps the address around at the
591 local store limit. We emulate this here. To avoid needing
592 an extra access to retrieve the LSLR, we only do that after
593 trying the original address first, and getting end-of-file. */
594 xsnprintf (lslr_annex, sizeof lslr_annex, "%d/lslr", fd);
595 memset (buf, 0, sizeof buf);
596 if (spu_proc_xfer_spu (lslr_annex, buf, NULL, 0, sizeof buf) <= 0)
597 return ret;
598
599 lslr = strtoulst ((const char *) buf, NULL, 16);
600 return spu_proc_xfer_spu (mem_annex, readbuf, writebuf,
601 offset & lslr, len);
602 }
603
604 return -1;
605 }
606
607 /* Override the to_can_use_hw_breakpoint routine. */
608 static int
609 spu_can_use_hw_breakpoint (int type, int cnt, int othertype)
610 {
611 return 0;
612 }
613
614 /* -Wmissing-prototypes */
615 extern initialize_file_ftype _initialize_spu_nat;
616
617 /* Initialize SPU native target. */
618 void
619 _initialize_spu_nat (void)
620 {
621 /* Generic ptrace methods. */
622 struct target_ops *t;
623 t = inf_ptrace_target ();
624
625 /* Add SPU methods. */
626 t->to_post_attach = spu_child_post_attach;
627 t->to_post_startup_inferior = spu_child_post_startup_inferior;
628 t->to_wait = spu_child_wait;
629 t->to_fetch_registers = spu_fetch_inferior_registers;
630 t->to_store_registers = spu_store_inferior_registers;
631 t->to_xfer_partial = spu_xfer_partial;
632 t->to_can_use_hw_breakpoint = spu_can_use_hw_breakpoint;
633
634 /* Register SPU target. */
635 add_target (t);
636 }
This page took 0.058799 seconds and 4 git commands to generate.