[ARC] Add SYNTAX_NOP and SYNTAX_1OP for extension instructions
[deliverable/binutils-gdb.git] / gdb / spu-multiarch.c
1 /* Cell SPU GNU/Linux multi-architecture debugging support.
2 Copyright (C) 2009-2016 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdbcore.h"
23 #include "gdbcmd.h"
24 #include "arch-utils.h"
25 #include "observer.h"
26 #include "inferior.h"
27 #include "regcache.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "solib.h"
31 #include "solist.h"
32
33 #include "ppc-tdep.h"
34 #include "ppc-linux-tdep.h"
35 #include "spu-tdep.h"
36
37 /* This module's target vector. */
38 static struct target_ops spu_ops;
39
40 /* Number of SPE objects loaded into the current inferior. */
41 static int spu_nr_solib;
42
43 /* Stand-alone SPE executable? */
44 #define spu_standalone_p() \
45 (symfile_objfile && symfile_objfile->obfd \
46 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu)
47
48 /* PPU side system calls. */
49 #define INSTR_SC 0x44000002
50 #define NR_spu_run 0x0116
51
52 /* If the PPU thread is currently stopped on a spu_run system call,
53 return to FD and ADDR the file handle and NPC parameter address
54 used with the system call. Return non-zero if successful. */
55 static int
56 parse_spufs_run (ptid_t ptid, int *fd, CORE_ADDR *addr)
57 {
58 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
59 struct cleanup *old_chain;
60 struct gdbarch_tdep *tdep;
61 struct regcache *regcache;
62 gdb_byte buf[4];
63 ULONGEST regval;
64
65 /* If we're not on PPU, there's nothing to detect. */
66 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_powerpc)
67 return 0;
68
69 /* If we're called too early (e.g. after fork), we cannot
70 access the inferior yet. */
71 if (find_inferior_ptid (ptid) == NULL)
72 return 0;
73
74 /* Get PPU-side registers. */
75 regcache = get_thread_arch_regcache (ptid, target_gdbarch ());
76 tdep = gdbarch_tdep (target_gdbarch ());
77
78 /* Fetch instruction preceding current NIP. */
79 old_chain = save_inferior_ptid ();
80 inferior_ptid = ptid;
81 regval = target_read_memory (regcache_read_pc (regcache) - 4, buf, 4);
82 do_cleanups (old_chain);
83 if (regval != 0)
84 return 0;
85 /* It should be a "sc" instruction. */
86 if (extract_unsigned_integer (buf, 4, byte_order) != INSTR_SC)
87 return 0;
88 /* System call number should be NR_spu_run. */
89 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum, &regval);
90 if (regval != NR_spu_run)
91 return 0;
92
93 /* Register 3 contains fd, register 4 the NPC param pointer. */
94 regcache_cooked_read_unsigned (regcache, PPC_ORIG_R3_REGNUM, &regval);
95 *fd = (int) regval;
96 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 4, &regval);
97 *addr = (CORE_ADDR) regval;
98 return 1;
99 }
100
101 /* Find gdbarch for SPU context SPUFS_FD. */
102 static struct gdbarch *
103 spu_gdbarch (int spufs_fd)
104 {
105 struct gdbarch_info info;
106 gdbarch_info_init (&info);
107 info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu);
108 info.byte_order = BFD_ENDIAN_BIG;
109 info.osabi = GDB_OSABI_LINUX;
110 info.tdep_info = &spufs_fd;
111 return gdbarch_find_by_info (info);
112 }
113
114 /* Override the to_thread_architecture routine. */
115 static struct gdbarch *
116 spu_thread_architecture (struct target_ops *ops, ptid_t ptid)
117 {
118 int spufs_fd;
119 CORE_ADDR spufs_addr;
120
121 if (parse_spufs_run (ptid, &spufs_fd, &spufs_addr))
122 return spu_gdbarch (spufs_fd);
123
124 return target_gdbarch ();
125 }
126
127 /* Override the to_region_ok_for_hw_watchpoint routine. */
128 static int
129 spu_region_ok_for_hw_watchpoint (struct target_ops *self,
130 CORE_ADDR addr, int len)
131 {
132 struct target_ops *ops_beneath = find_target_beneath (self);
133
134 /* We cannot watch SPU local store. */
135 if (SPUADDR_SPU (addr) != -1)
136 return 0;
137
138 return ops_beneath->to_region_ok_for_hw_watchpoint (ops_beneath, addr, len);
139 }
140
141 /* Override the to_fetch_registers routine. */
142 static void
143 spu_fetch_registers (struct target_ops *ops,
144 struct regcache *regcache, int regno)
145 {
146 struct gdbarch *gdbarch = get_regcache_arch (regcache);
147 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
148 struct target_ops *ops_beneath = find_target_beneath (ops);
149 int spufs_fd;
150 CORE_ADDR spufs_addr;
151
152 /* This version applies only if we're currently in spu_run. */
153 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
154 {
155 ops_beneath->to_fetch_registers (ops_beneath, regcache, regno);
156 return;
157 }
158
159 /* We must be stopped on a spu_run system call. */
160 if (!parse_spufs_run (inferior_ptid, &spufs_fd, &spufs_addr))
161 return;
162
163 /* The ID register holds the spufs file handle. */
164 if (regno == -1 || regno == SPU_ID_REGNUM)
165 {
166 gdb_byte buf[4];
167 store_unsigned_integer (buf, 4, byte_order, spufs_fd);
168 regcache_raw_supply (regcache, SPU_ID_REGNUM, buf);
169 }
170
171 /* The NPC register is found in PPC memory at SPUFS_ADDR. */
172 if (regno == -1 || regno == SPU_PC_REGNUM)
173 {
174 gdb_byte buf[4];
175
176 if (target_read (ops_beneath, TARGET_OBJECT_MEMORY, NULL,
177 buf, spufs_addr, sizeof buf) == sizeof buf)
178 regcache_raw_supply (regcache, SPU_PC_REGNUM, buf);
179 }
180
181 /* The GPRs are found in the "regs" spufs file. */
182 if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
183 {
184 gdb_byte buf[16 * SPU_NUM_GPRS];
185 char annex[32];
186 int i;
187
188 xsnprintf (annex, sizeof annex, "%d/regs", spufs_fd);
189 if (target_read (ops_beneath, TARGET_OBJECT_SPU, annex,
190 buf, 0, sizeof buf) == sizeof buf)
191 for (i = 0; i < SPU_NUM_GPRS; i++)
192 regcache_raw_supply (regcache, i, buf + i*16);
193 }
194 }
195
196 /* Override the to_store_registers routine. */
197 static void
198 spu_store_registers (struct target_ops *ops,
199 struct regcache *regcache, int regno)
200 {
201 struct gdbarch *gdbarch = get_regcache_arch (regcache);
202 struct target_ops *ops_beneath = find_target_beneath (ops);
203 int spufs_fd;
204 CORE_ADDR spufs_addr;
205
206 /* This version applies only if we're currently in spu_run. */
207 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
208 {
209 ops_beneath->to_store_registers (ops_beneath, regcache, regno);
210 return;
211 }
212
213 /* We must be stopped on a spu_run system call. */
214 if (!parse_spufs_run (inferior_ptid, &spufs_fd, &spufs_addr))
215 return;
216
217 /* The NPC register is found in PPC memory at SPUFS_ADDR. */
218 if (regno == -1 || regno == SPU_PC_REGNUM)
219 {
220 gdb_byte buf[4];
221 regcache_raw_collect (regcache, SPU_PC_REGNUM, buf);
222
223 target_write (ops_beneath, TARGET_OBJECT_MEMORY, NULL,
224 buf, spufs_addr, sizeof buf);
225 }
226
227 /* The GPRs are found in the "regs" spufs file. */
228 if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
229 {
230 gdb_byte buf[16 * SPU_NUM_GPRS];
231 char annex[32];
232 int i;
233
234 for (i = 0; i < SPU_NUM_GPRS; i++)
235 regcache_raw_collect (regcache, i, buf + i*16);
236
237 xsnprintf (annex, sizeof annex, "%d/regs", spufs_fd);
238 target_write (ops_beneath, TARGET_OBJECT_SPU, annex,
239 buf, 0, sizeof buf);
240 }
241 }
242
243 /* Override the to_xfer_partial routine. */
244 static enum target_xfer_status
245 spu_xfer_partial (struct target_ops *ops, enum target_object object,
246 const char *annex, gdb_byte *readbuf,
247 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
248 ULONGEST *xfered_len)
249 {
250 struct target_ops *ops_beneath = find_target_beneath (ops);
251
252 /* Use the "mem" spufs file to access SPU local store. */
253 if (object == TARGET_OBJECT_MEMORY)
254 {
255 int fd = SPUADDR_SPU (offset);
256 CORE_ADDR addr = SPUADDR_ADDR (offset);
257 char mem_annex[32], lslr_annex[32];
258 gdb_byte buf[32];
259 ULONGEST lslr;
260 enum target_xfer_status ret;
261
262 if (fd >= 0)
263 {
264 xsnprintf (mem_annex, sizeof mem_annex, "%d/mem", fd);
265 ret = ops_beneath->to_xfer_partial (ops_beneath, TARGET_OBJECT_SPU,
266 mem_annex, readbuf, writebuf,
267 addr, len, xfered_len);
268 if (ret == TARGET_XFER_OK)
269 return ret;
270
271 /* SPU local store access wraps the address around at the
272 local store limit. We emulate this here. To avoid needing
273 an extra access to retrieve the LSLR, we only do that after
274 trying the original address first, and getting end-of-file. */
275 xsnprintf (lslr_annex, sizeof lslr_annex, "%d/lslr", fd);
276 memset (buf, 0, sizeof buf);
277 if (ops_beneath->to_xfer_partial (ops_beneath, TARGET_OBJECT_SPU,
278 lslr_annex, buf, NULL,
279 0, sizeof buf, xfered_len)
280 != TARGET_XFER_OK)
281 return ret;
282
283 lslr = strtoulst ((char *) buf, NULL, 16);
284 return ops_beneath->to_xfer_partial (ops_beneath, TARGET_OBJECT_SPU,
285 mem_annex, readbuf, writebuf,
286 addr & lslr, len, xfered_len);
287 }
288 }
289
290 return ops_beneath->to_xfer_partial (ops_beneath, object, annex,
291 readbuf, writebuf, offset, len, xfered_len);
292 }
293
294 /* Override the to_search_memory routine. */
295 static int
296 spu_search_memory (struct target_ops* ops,
297 CORE_ADDR start_addr, ULONGEST search_space_len,
298 const gdb_byte *pattern, ULONGEST pattern_len,
299 CORE_ADDR *found_addrp)
300 {
301 struct target_ops *ops_beneath = find_target_beneath (ops);
302
303 /* For SPU local store, always fall back to the simple method. */
304 if (SPUADDR_SPU (start_addr) >= 0)
305 return simple_search_memory (ops,
306 start_addr, search_space_len,
307 pattern, pattern_len, found_addrp);
308
309 return ops_beneath->to_search_memory (ops_beneath,
310 start_addr, search_space_len,
311 pattern, pattern_len, found_addrp);
312 }
313
314
315 /* Push and pop the SPU multi-architecture support target. */
316
317 static void
318 spu_multiarch_activate (void)
319 {
320 /* If GDB was configured without SPU architecture support,
321 we cannot install SPU multi-architecture support either. */
322 if (spu_gdbarch (-1) == NULL)
323 return;
324
325 push_target (&spu_ops);
326
327 /* Make sure the thread architecture is re-evaluated. */
328 registers_changed ();
329 }
330
331 static void
332 spu_multiarch_deactivate (void)
333 {
334 unpush_target (&spu_ops);
335
336 /* Make sure the thread architecture is re-evaluated. */
337 registers_changed ();
338 }
339
340 static void
341 spu_multiarch_inferior_created (struct target_ops *ops, int from_tty)
342 {
343 if (spu_standalone_p ())
344 spu_multiarch_activate ();
345 }
346
347 static void
348 spu_multiarch_solib_loaded (struct so_list *so)
349 {
350 if (!spu_standalone_p ())
351 if (so->abfd && bfd_get_arch (so->abfd) == bfd_arch_spu)
352 if (spu_nr_solib++ == 0)
353 spu_multiarch_activate ();
354 }
355
356 static void
357 spu_multiarch_solib_unloaded (struct so_list *so)
358 {
359 if (!spu_standalone_p ())
360 if (so->abfd && bfd_get_arch (so->abfd) == bfd_arch_spu)
361 if (--spu_nr_solib == 0)
362 spu_multiarch_deactivate ();
363 }
364
365 static void
366 spu_mourn_inferior (struct target_ops *ops)
367 {
368 struct target_ops *ops_beneath = find_target_beneath (ops);
369
370 ops_beneath->to_mourn_inferior (ops_beneath);
371 spu_multiarch_deactivate ();
372 }
373
374
375 /* Initialize the SPU multi-architecture support target. */
376
377 static void
378 init_spu_ops (void)
379 {
380 spu_ops.to_shortname = "spu";
381 spu_ops.to_longname = "SPU multi-architecture support.";
382 spu_ops.to_doc = "SPU multi-architecture support.";
383 spu_ops.to_mourn_inferior = spu_mourn_inferior;
384 spu_ops.to_fetch_registers = spu_fetch_registers;
385 spu_ops.to_store_registers = spu_store_registers;
386 spu_ops.to_xfer_partial = spu_xfer_partial;
387 spu_ops.to_search_memory = spu_search_memory;
388 spu_ops.to_region_ok_for_hw_watchpoint = spu_region_ok_for_hw_watchpoint;
389 spu_ops.to_thread_architecture = spu_thread_architecture;
390 spu_ops.to_stratum = arch_stratum;
391 spu_ops.to_magic = OPS_MAGIC;
392 }
393
394 /* -Wmissing-prototypes */
395 extern initialize_file_ftype _initialize_spu_multiarch;
396
397 void
398 _initialize_spu_multiarch (void)
399 {
400 /* Install ourselves on the target stack. */
401 init_spu_ops ();
402 complete_target_initialization (&spu_ops);
403
404 /* Install observers to watch for SPU objects. */
405 observer_attach_inferior_created (spu_multiarch_inferior_created);
406 observer_attach_solib_loaded (spu_multiarch_solib_loaded);
407 observer_attach_solib_unloaded (spu_multiarch_solib_unloaded);
408 }
409
This page took 0.060401 seconds and 4 git commands to generate.