* breakpoint.h (struct breakpoint): New member GDBARCH.
[deliverable/binutils-gdb.git] / gdb / spu-tdep.c
1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdbtypes.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include "gdb_string.h"
28 #include "gdb_assert.h"
29 #include "frame.h"
30 #include "frame-unwind.h"
31 #include "frame-base.h"
32 #include "trad-frame.h"
33 #include "symtab.h"
34 #include "symfile.h"
35 #include "value.h"
36 #include "inferior.h"
37 #include "dis-asm.h"
38 #include "objfiles.h"
39 #include "language.h"
40 #include "regcache.h"
41 #include "reggroups.h"
42 #include "floatformat.h"
43 #include "observer.h"
44
45 #include "spu-tdep.h"
46
47
48 /* The tdep structure. */
49 struct gdbarch_tdep
50 {
51 /* SPU-specific vector type. */
52 struct type *spu_builtin_type_vec128;
53 };
54
55
56 /* SPU-specific vector type. */
57 static struct type *
58 spu_builtin_type_vec128 (struct gdbarch *gdbarch)
59 {
60 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
61
62 if (!tdep->spu_builtin_type_vec128)
63 {
64 const struct builtin_type *bt = builtin_type (gdbarch);
65 struct type *t;
66
67 t = arch_composite_type (gdbarch,
68 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
69 append_composite_type_field (t, "uint128", bt->builtin_int128);
70 append_composite_type_field (t, "v2_int64",
71 init_vector_type (bt->builtin_int64, 2));
72 append_composite_type_field (t, "v4_int32",
73 init_vector_type (bt->builtin_int32, 4));
74 append_composite_type_field (t, "v8_int16",
75 init_vector_type (bt->builtin_int16, 8));
76 append_composite_type_field (t, "v16_int8",
77 init_vector_type (bt->builtin_int8, 16));
78 append_composite_type_field (t, "v2_double",
79 init_vector_type (bt->builtin_double, 2));
80 append_composite_type_field (t, "v4_float",
81 init_vector_type (bt->builtin_float, 4));
82
83 TYPE_VECTOR (t) = 1;
84 TYPE_NAME (t) = "spu_builtin_type_vec128";
85
86 tdep->spu_builtin_type_vec128 = t;
87 }
88
89 return tdep->spu_builtin_type_vec128;
90 }
91
92
93 /* The list of available "info spu " commands. */
94 static struct cmd_list_element *infospucmdlist = NULL;
95
96 /* Registers. */
97
98 static const char *
99 spu_register_name (struct gdbarch *gdbarch, int reg_nr)
100 {
101 static char *register_names[] =
102 {
103 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
104 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
105 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
106 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
107 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
108 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
109 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
110 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
111 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
112 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
113 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
114 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
115 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
116 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
117 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
118 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
119 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
120 };
121
122 if (reg_nr < 0)
123 return NULL;
124 if (reg_nr >= sizeof register_names / sizeof *register_names)
125 return NULL;
126
127 return register_names[reg_nr];
128 }
129
130 static struct type *
131 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
132 {
133 if (reg_nr < SPU_NUM_GPRS)
134 return spu_builtin_type_vec128 (gdbarch);
135
136 switch (reg_nr)
137 {
138 case SPU_ID_REGNUM:
139 return builtin_type (gdbarch)->builtin_uint32;
140
141 case SPU_PC_REGNUM:
142 return builtin_type (gdbarch)->builtin_func_ptr;
143
144 case SPU_SP_REGNUM:
145 return builtin_type (gdbarch)->builtin_data_ptr;
146
147 case SPU_FPSCR_REGNUM:
148 return builtin_type (gdbarch)->builtin_uint128;
149
150 case SPU_SRR0_REGNUM:
151 return builtin_type (gdbarch)->builtin_uint32;
152
153 case SPU_LSLR_REGNUM:
154 return builtin_type (gdbarch)->builtin_uint32;
155
156 case SPU_DECR_REGNUM:
157 return builtin_type (gdbarch)->builtin_uint32;
158
159 case SPU_DECR_STATUS_REGNUM:
160 return builtin_type (gdbarch)->builtin_uint32;
161
162 default:
163 internal_error (__FILE__, __LINE__, "invalid regnum");
164 }
165 }
166
167 /* Pseudo registers for preferred slots - stack pointer. */
168
169 static void
170 spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
171 gdb_byte *buf)
172 {
173 gdb_byte reg[32];
174 char annex[32];
175 ULONGEST id;
176
177 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
178 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
179 memset (reg, 0, sizeof reg);
180 target_read (&current_target, TARGET_OBJECT_SPU, annex,
181 reg, 0, sizeof reg);
182
183 store_unsigned_integer (buf, 4, strtoulst (reg, NULL, 16));
184 }
185
186 static void
187 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
188 int regnum, gdb_byte *buf)
189 {
190 gdb_byte reg[16];
191 char annex[32];
192 ULONGEST id;
193
194 switch (regnum)
195 {
196 case SPU_SP_REGNUM:
197 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
198 memcpy (buf, reg, 4);
199 break;
200
201 case SPU_FPSCR_REGNUM:
202 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
203 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
204 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
205 break;
206
207 case SPU_SRR0_REGNUM:
208 spu_pseudo_register_read_spu (regcache, "srr0", buf);
209 break;
210
211 case SPU_LSLR_REGNUM:
212 spu_pseudo_register_read_spu (regcache, "lslr", buf);
213 break;
214
215 case SPU_DECR_REGNUM:
216 spu_pseudo_register_read_spu (regcache, "decr", buf);
217 break;
218
219 case SPU_DECR_STATUS_REGNUM:
220 spu_pseudo_register_read_spu (regcache, "decr_status", buf);
221 break;
222
223 default:
224 internal_error (__FILE__, __LINE__, _("invalid regnum"));
225 }
226 }
227
228 static void
229 spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
230 const gdb_byte *buf)
231 {
232 gdb_byte reg[32];
233 char annex[32];
234 ULONGEST id;
235
236 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
237 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
238 xsnprintf (reg, sizeof reg, "0x%s",
239 phex_nz (extract_unsigned_integer (buf, 4), 4));
240 target_write (&current_target, TARGET_OBJECT_SPU, annex,
241 reg, 0, strlen (reg));
242 }
243
244 static void
245 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
246 int regnum, const gdb_byte *buf)
247 {
248 gdb_byte reg[16];
249 char annex[32];
250 ULONGEST id;
251
252 switch (regnum)
253 {
254 case SPU_SP_REGNUM:
255 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
256 memcpy (reg, buf, 4);
257 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
258 break;
259
260 case SPU_FPSCR_REGNUM:
261 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
262 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
263 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
264 break;
265
266 case SPU_SRR0_REGNUM:
267 spu_pseudo_register_write_spu (regcache, "srr0", buf);
268 break;
269
270 case SPU_LSLR_REGNUM:
271 spu_pseudo_register_write_spu (regcache, "lslr", buf);
272 break;
273
274 case SPU_DECR_REGNUM:
275 spu_pseudo_register_write_spu (regcache, "decr", buf);
276 break;
277
278 case SPU_DECR_STATUS_REGNUM:
279 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
280 break;
281
282 default:
283 internal_error (__FILE__, __LINE__, _("invalid regnum"));
284 }
285 }
286
287 /* Value conversion -- access scalar values at the preferred slot. */
288
289 static struct value *
290 spu_value_from_register (struct type *type, int regnum,
291 struct frame_info *frame)
292 {
293 struct value *value = default_value_from_register (type, regnum, frame);
294 int len = TYPE_LENGTH (type);
295
296 if (regnum < SPU_NUM_GPRS && len < 16)
297 {
298 int preferred_slot = len < 4 ? 4 - len : 0;
299 set_value_offset (value, preferred_slot);
300 }
301
302 return value;
303 }
304
305 /* Register groups. */
306
307 static int
308 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
309 struct reggroup *group)
310 {
311 /* Registers displayed via 'info regs'. */
312 if (group == general_reggroup)
313 return 1;
314
315 /* Registers displayed via 'info float'. */
316 if (group == float_reggroup)
317 return 0;
318
319 /* Registers that need to be saved/restored in order to
320 push or pop frames. */
321 if (group == save_reggroup || group == restore_reggroup)
322 return 1;
323
324 return default_register_reggroup_p (gdbarch, regnum, group);
325 }
326
327 /* Address conversion. */
328
329 static CORE_ADDR
330 spu_pointer_to_address (struct gdbarch *gdbarch,
331 struct type *type, const gdb_byte *buf)
332 {
333 ULONGEST addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
334 ULONGEST lslr = SPU_LS_SIZE - 1; /* Hard-wired LS size. */
335
336 if (target_has_registers && target_has_stack && target_has_memory)
337 lslr = get_frame_register_unsigned (get_selected_frame (NULL),
338 SPU_LSLR_REGNUM);
339
340 return addr & lslr;
341 }
342
343 static CORE_ADDR
344 spu_integer_to_address (struct gdbarch *gdbarch,
345 struct type *type, const gdb_byte *buf)
346 {
347 ULONGEST addr = unpack_long (type, buf);
348 ULONGEST lslr = SPU_LS_SIZE - 1; /* Hard-wired LS size. */
349
350 if (target_has_registers && target_has_stack && target_has_memory)
351 lslr = get_frame_register_unsigned (get_selected_frame (NULL),
352 SPU_LSLR_REGNUM);
353
354 return addr & lslr;
355 }
356
357
358 /* Decoding SPU instructions. */
359
360 enum
361 {
362 op_lqd = 0x34,
363 op_lqx = 0x3c4,
364 op_lqa = 0x61,
365 op_lqr = 0x67,
366 op_stqd = 0x24,
367 op_stqx = 0x144,
368 op_stqa = 0x41,
369 op_stqr = 0x47,
370
371 op_il = 0x081,
372 op_ila = 0x21,
373 op_a = 0x0c0,
374 op_ai = 0x1c,
375
376 op_selb = 0x4,
377
378 op_br = 0x64,
379 op_bra = 0x60,
380 op_brsl = 0x66,
381 op_brasl = 0x62,
382 op_brnz = 0x42,
383 op_brz = 0x40,
384 op_brhnz = 0x46,
385 op_brhz = 0x44,
386 op_bi = 0x1a8,
387 op_bisl = 0x1a9,
388 op_biz = 0x128,
389 op_binz = 0x129,
390 op_bihz = 0x12a,
391 op_bihnz = 0x12b,
392 };
393
394 static int
395 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
396 {
397 if ((insn >> 21) == op)
398 {
399 *rt = insn & 127;
400 *ra = (insn >> 7) & 127;
401 *rb = (insn >> 14) & 127;
402 return 1;
403 }
404
405 return 0;
406 }
407
408 static int
409 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
410 {
411 if ((insn >> 28) == op)
412 {
413 *rt = (insn >> 21) & 127;
414 *ra = (insn >> 7) & 127;
415 *rb = (insn >> 14) & 127;
416 *rc = insn & 127;
417 return 1;
418 }
419
420 return 0;
421 }
422
423 static int
424 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
425 {
426 if ((insn >> 21) == op)
427 {
428 *rt = insn & 127;
429 *ra = (insn >> 7) & 127;
430 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
431 return 1;
432 }
433
434 return 0;
435 }
436
437 static int
438 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
439 {
440 if ((insn >> 24) == op)
441 {
442 *rt = insn & 127;
443 *ra = (insn >> 7) & 127;
444 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
445 return 1;
446 }
447
448 return 0;
449 }
450
451 static int
452 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
453 {
454 if ((insn >> 23) == op)
455 {
456 *rt = insn & 127;
457 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
458 return 1;
459 }
460
461 return 0;
462 }
463
464 static int
465 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
466 {
467 if ((insn >> 25) == op)
468 {
469 *rt = insn & 127;
470 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
471 return 1;
472 }
473
474 return 0;
475 }
476
477 static int
478 is_branch (unsigned int insn, int *offset, int *reg)
479 {
480 int rt, i7, i16;
481
482 if (is_ri16 (insn, op_br, &rt, &i16)
483 || is_ri16 (insn, op_brsl, &rt, &i16)
484 || is_ri16 (insn, op_brnz, &rt, &i16)
485 || is_ri16 (insn, op_brz, &rt, &i16)
486 || is_ri16 (insn, op_brhnz, &rt, &i16)
487 || is_ri16 (insn, op_brhz, &rt, &i16))
488 {
489 *reg = SPU_PC_REGNUM;
490 *offset = i16 << 2;
491 return 1;
492 }
493
494 if (is_ri16 (insn, op_bra, &rt, &i16)
495 || is_ri16 (insn, op_brasl, &rt, &i16))
496 {
497 *reg = -1;
498 *offset = i16 << 2;
499 return 1;
500 }
501
502 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
503 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
504 || is_ri7 (insn, op_biz, &rt, reg, &i7)
505 || is_ri7 (insn, op_binz, &rt, reg, &i7)
506 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
507 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
508 {
509 *offset = 0;
510 return 1;
511 }
512
513 return 0;
514 }
515
516
517 /* Prolog parsing. */
518
519 struct spu_prologue_data
520 {
521 /* Stack frame size. -1 if analysis was unsuccessful. */
522 int size;
523
524 /* How to find the CFA. The CFA is equal to SP at function entry. */
525 int cfa_reg;
526 int cfa_offset;
527
528 /* Offset relative to CFA where a register is saved. -1 if invalid. */
529 int reg_offset[SPU_NUM_GPRS];
530 };
531
532 static CORE_ADDR
533 spu_analyze_prologue (CORE_ADDR start_pc, CORE_ADDR end_pc,
534 struct spu_prologue_data *data)
535 {
536 int found_sp = 0;
537 int found_fp = 0;
538 int found_lr = 0;
539 int reg_immed[SPU_NUM_GPRS];
540 gdb_byte buf[16];
541 CORE_ADDR prolog_pc = start_pc;
542 CORE_ADDR pc;
543 int i;
544
545
546 /* Initialize DATA to default values. */
547 data->size = -1;
548
549 data->cfa_reg = SPU_RAW_SP_REGNUM;
550 data->cfa_offset = 0;
551
552 for (i = 0; i < SPU_NUM_GPRS; i++)
553 data->reg_offset[i] = -1;
554
555 /* Set up REG_IMMED array. This is non-zero for a register if we know its
556 preferred slot currently holds this immediate value. */
557 for (i = 0; i < SPU_NUM_GPRS; i++)
558 reg_immed[i] = 0;
559
560 /* Scan instructions until the first branch.
561
562 The following instructions are important prolog components:
563
564 - The first instruction to set up the stack pointer.
565 - The first instruction to set up the frame pointer.
566 - The first instruction to save the link register.
567
568 We return the instruction after the latest of these three,
569 or the incoming PC if none is found. The first instruction
570 to set up the stack pointer also defines the frame size.
571
572 Note that instructions saving incoming arguments to their stack
573 slots are not counted as important, because they are hard to
574 identify with certainty. This should not matter much, because
575 arguments are relevant only in code compiled with debug data,
576 and in such code the GDB core will advance until the first source
577 line anyway, using SAL data.
578
579 For purposes of stack unwinding, we analyze the following types
580 of instructions in addition:
581
582 - Any instruction adding to the current frame pointer.
583 - Any instruction loading an immediate constant into a register.
584 - Any instruction storing a register onto the stack.
585
586 These are used to compute the CFA and REG_OFFSET output. */
587
588 for (pc = start_pc; pc < end_pc; pc += 4)
589 {
590 unsigned int insn;
591 int rt, ra, rb, rc, immed;
592
593 if (target_read_memory (pc, buf, 4))
594 break;
595 insn = extract_unsigned_integer (buf, 4);
596
597 /* AI is the typical instruction to set up a stack frame.
598 It is also used to initialize the frame pointer. */
599 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
600 {
601 if (rt == data->cfa_reg && ra == data->cfa_reg)
602 data->cfa_offset -= immed;
603
604 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
605 && !found_sp)
606 {
607 found_sp = 1;
608 prolog_pc = pc + 4;
609
610 data->size = -immed;
611 }
612 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
613 && !found_fp)
614 {
615 found_fp = 1;
616 prolog_pc = pc + 4;
617
618 data->cfa_reg = SPU_FP_REGNUM;
619 data->cfa_offset -= immed;
620 }
621 }
622
623 /* A is used to set up stack frames of size >= 512 bytes.
624 If we have tracked the contents of the addend register,
625 we can handle this as well. */
626 else if (is_rr (insn, op_a, &rt, &ra, &rb))
627 {
628 if (rt == data->cfa_reg && ra == data->cfa_reg)
629 {
630 if (reg_immed[rb] != 0)
631 data->cfa_offset -= reg_immed[rb];
632 else
633 data->cfa_reg = -1; /* We don't know the CFA any more. */
634 }
635
636 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
637 && !found_sp)
638 {
639 found_sp = 1;
640 prolog_pc = pc + 4;
641
642 if (reg_immed[rb] != 0)
643 data->size = -reg_immed[rb];
644 }
645 }
646
647 /* We need to track IL and ILA used to load immediate constants
648 in case they are later used as input to an A instruction. */
649 else if (is_ri16 (insn, op_il, &rt, &immed))
650 {
651 reg_immed[rt] = immed;
652
653 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
654 found_sp = 1;
655 }
656
657 else if (is_ri18 (insn, op_ila, &rt, &immed))
658 {
659 reg_immed[rt] = immed & 0x3ffff;
660
661 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
662 found_sp = 1;
663 }
664
665 /* STQD is used to save registers to the stack. */
666 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
667 {
668 if (ra == data->cfa_reg)
669 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
670
671 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
672 && !found_lr)
673 {
674 found_lr = 1;
675 prolog_pc = pc + 4;
676 }
677 }
678
679 /* _start uses SELB to set up the stack pointer. */
680 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
681 {
682 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
683 found_sp = 1;
684 }
685
686 /* We terminate if we find a branch. */
687 else if (is_branch (insn, &immed, &ra))
688 break;
689 }
690
691
692 /* If we successfully parsed until here, and didn't find any instruction
693 modifying SP, we assume we have a frameless function. */
694 if (!found_sp)
695 data->size = 0;
696
697 /* Return cooked instead of raw SP. */
698 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
699 data->cfa_reg = SPU_SP_REGNUM;
700
701 return prolog_pc;
702 }
703
704 /* Return the first instruction after the prologue starting at PC. */
705 static CORE_ADDR
706 spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
707 {
708 struct spu_prologue_data data;
709 return spu_analyze_prologue (pc, (CORE_ADDR)-1, &data);
710 }
711
712 /* Return the frame pointer in use at address PC. */
713 static void
714 spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
715 int *reg, LONGEST *offset)
716 {
717 struct spu_prologue_data data;
718 spu_analyze_prologue (pc, (CORE_ADDR)-1, &data);
719
720 if (data.size != -1 && data.cfa_reg != -1)
721 {
722 /* The 'frame pointer' address is CFA minus frame size. */
723 *reg = data.cfa_reg;
724 *offset = data.cfa_offset - data.size;
725 }
726 else
727 {
728 /* ??? We don't really know ... */
729 *reg = SPU_SP_REGNUM;
730 *offset = 0;
731 }
732 }
733
734 /* Return true if we are in the function's epilogue, i.e. after the
735 instruction that destroyed the function's stack frame.
736
737 1) scan forward from the point of execution:
738 a) If you find an instruction that modifies the stack pointer
739 or transfers control (except a return), execution is not in
740 an epilogue, return.
741 b) Stop scanning if you find a return instruction or reach the
742 end of the function or reach the hard limit for the size of
743 an epilogue.
744 2) scan backward from the point of execution:
745 a) If you find an instruction that modifies the stack pointer,
746 execution *is* in an epilogue, return.
747 b) Stop scanning if you reach an instruction that transfers
748 control or the beginning of the function or reach the hard
749 limit for the size of an epilogue. */
750
751 static int
752 spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
753 {
754 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
755 bfd_byte buf[4];
756 unsigned int insn;
757 int rt, ra, rb, rc, immed;
758
759 /* Find the search limits based on function boundaries and hard limit.
760 We assume the epilogue can be up to 64 instructions long. */
761
762 const int spu_max_epilogue_size = 64 * 4;
763
764 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
765 return 0;
766
767 if (pc - func_start < spu_max_epilogue_size)
768 epilogue_start = func_start;
769 else
770 epilogue_start = pc - spu_max_epilogue_size;
771
772 if (func_end - pc < spu_max_epilogue_size)
773 epilogue_end = func_end;
774 else
775 epilogue_end = pc + spu_max_epilogue_size;
776
777 /* Scan forward until next 'bi $0'. */
778
779 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
780 {
781 if (target_read_memory (scan_pc, buf, 4))
782 return 0;
783 insn = extract_unsigned_integer (buf, 4);
784
785 if (is_branch (insn, &immed, &ra))
786 {
787 if (immed == 0 && ra == SPU_LR_REGNUM)
788 break;
789
790 return 0;
791 }
792
793 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
794 || is_rr (insn, op_a, &rt, &ra, &rb)
795 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
796 {
797 if (rt == SPU_RAW_SP_REGNUM)
798 return 0;
799 }
800 }
801
802 if (scan_pc >= epilogue_end)
803 return 0;
804
805 /* Scan backward until adjustment to stack pointer (R1). */
806
807 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
808 {
809 if (target_read_memory (scan_pc, buf, 4))
810 return 0;
811 insn = extract_unsigned_integer (buf, 4);
812
813 if (is_branch (insn, &immed, &ra))
814 return 0;
815
816 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
817 || is_rr (insn, op_a, &rt, &ra, &rb)
818 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
819 {
820 if (rt == SPU_RAW_SP_REGNUM)
821 return 1;
822 }
823 }
824
825 return 0;
826 }
827
828
829 /* Normal stack frames. */
830
831 struct spu_unwind_cache
832 {
833 CORE_ADDR func;
834 CORE_ADDR frame_base;
835 CORE_ADDR local_base;
836
837 struct trad_frame_saved_reg *saved_regs;
838 };
839
840 static struct spu_unwind_cache *
841 spu_frame_unwind_cache (struct frame_info *this_frame,
842 void **this_prologue_cache)
843 {
844 struct spu_unwind_cache *info;
845 struct spu_prologue_data data;
846 gdb_byte buf[16];
847
848 if (*this_prologue_cache)
849 return *this_prologue_cache;
850
851 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
852 *this_prologue_cache = info;
853 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
854 info->frame_base = 0;
855 info->local_base = 0;
856
857 /* Find the start of the current function, and analyze its prologue. */
858 info->func = get_frame_func (this_frame);
859 if (info->func == 0)
860 {
861 /* Fall back to using the current PC as frame ID. */
862 info->func = get_frame_pc (this_frame);
863 data.size = -1;
864 }
865 else
866 spu_analyze_prologue (info->func, get_frame_pc (this_frame), &data);
867
868
869 /* If successful, use prologue analysis data. */
870 if (data.size != -1 && data.cfa_reg != -1)
871 {
872 CORE_ADDR cfa;
873 int i;
874
875 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
876 get_frame_register (this_frame, data.cfa_reg, buf);
877 cfa = extract_unsigned_integer (buf, 4) + data.cfa_offset;
878
879 /* Call-saved register slots. */
880 for (i = 0; i < SPU_NUM_GPRS; i++)
881 if (i == SPU_LR_REGNUM
882 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
883 if (data.reg_offset[i] != -1)
884 info->saved_regs[i].addr = cfa - data.reg_offset[i];
885
886 /* Frame bases. */
887 info->frame_base = cfa;
888 info->local_base = cfa - data.size;
889 }
890
891 /* Otherwise, fall back to reading the backchain link. */
892 else
893 {
894 CORE_ADDR reg;
895 LONGEST backchain;
896 int status;
897
898 /* Get the backchain. */
899 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
900 status = safe_read_memory_integer (reg, 4, &backchain);
901
902 /* A zero backchain terminates the frame chain. Also, sanity
903 check against the local store size limit. */
904 if (status && backchain > 0 && backchain < SPU_LS_SIZE)
905 {
906 /* Assume the link register is saved into its slot. */
907 if (backchain + 16 < SPU_LS_SIZE)
908 info->saved_regs[SPU_LR_REGNUM].addr = backchain + 16;
909
910 /* Frame bases. */
911 info->frame_base = backchain;
912 info->local_base = reg;
913 }
914 }
915
916 /* If we didn't find a frame, we cannot determine SP / return address. */
917 if (info->frame_base == 0)
918 return info;
919
920 /* The previous SP is equal to the CFA. */
921 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM, info->frame_base);
922
923 /* Read full contents of the unwound link register in order to
924 be able to determine the return address. */
925 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
926 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
927 else
928 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
929
930 /* Normally, the return address is contained in the slot 0 of the
931 link register, and slots 1-3 are zero. For an overlay return,
932 slot 0 contains the address of the overlay manager return stub,
933 slot 1 contains the partition number of the overlay section to
934 be returned to, and slot 2 contains the return address within
935 that section. Return the latter address in that case. */
936 if (extract_unsigned_integer (buf + 8, 4) != 0)
937 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
938 extract_unsigned_integer (buf + 8, 4));
939 else
940 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
941 extract_unsigned_integer (buf, 4));
942
943 return info;
944 }
945
946 static void
947 spu_frame_this_id (struct frame_info *this_frame,
948 void **this_prologue_cache, struct frame_id *this_id)
949 {
950 struct spu_unwind_cache *info =
951 spu_frame_unwind_cache (this_frame, this_prologue_cache);
952
953 if (info->frame_base == 0)
954 return;
955
956 *this_id = frame_id_build (info->frame_base, info->func);
957 }
958
959 static struct value *
960 spu_frame_prev_register (struct frame_info *this_frame,
961 void **this_prologue_cache, int regnum)
962 {
963 struct spu_unwind_cache *info
964 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
965
966 /* Special-case the stack pointer. */
967 if (regnum == SPU_RAW_SP_REGNUM)
968 regnum = SPU_SP_REGNUM;
969
970 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
971 }
972
973 static const struct frame_unwind spu_frame_unwind = {
974 NORMAL_FRAME,
975 spu_frame_this_id,
976 spu_frame_prev_register,
977 NULL,
978 default_frame_sniffer
979 };
980
981 static CORE_ADDR
982 spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
983 {
984 struct spu_unwind_cache *info
985 = spu_frame_unwind_cache (this_frame, this_cache);
986 return info->local_base;
987 }
988
989 static const struct frame_base spu_frame_base = {
990 &spu_frame_unwind,
991 spu_frame_base_address,
992 spu_frame_base_address,
993 spu_frame_base_address
994 };
995
996 static CORE_ADDR
997 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
998 {
999 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1000 /* Mask off interrupt enable bit. */
1001 return pc & -4;
1002 }
1003
1004 static CORE_ADDR
1005 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1006 {
1007 return frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1008 }
1009
1010 static CORE_ADDR
1011 spu_read_pc (struct regcache *regcache)
1012 {
1013 ULONGEST pc;
1014 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
1015 /* Mask off interrupt enable bit. */
1016 return pc & -4;
1017 }
1018
1019 static void
1020 spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
1021 {
1022 /* Keep interrupt enabled state unchanged. */
1023 ULONGEST old_pc;
1024 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1025 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
1026 (pc & -4) | (old_pc & 3));
1027 }
1028
1029
1030 /* Function calling convention. */
1031
1032 static CORE_ADDR
1033 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1034 {
1035 return sp & ~15;
1036 }
1037
1038 static CORE_ADDR
1039 spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1040 struct value **args, int nargs, struct type *value_type,
1041 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1042 struct regcache *regcache)
1043 {
1044 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1045 sp = (sp - 4) & ~15;
1046 /* Store the address of that breakpoint */
1047 *bp_addr = sp;
1048 /* The call starts at the callee's entry point. */
1049 *real_pc = funaddr;
1050
1051 return sp;
1052 }
1053
1054 static int
1055 spu_scalar_value_p (struct type *type)
1056 {
1057 switch (TYPE_CODE (type))
1058 {
1059 case TYPE_CODE_INT:
1060 case TYPE_CODE_ENUM:
1061 case TYPE_CODE_RANGE:
1062 case TYPE_CODE_CHAR:
1063 case TYPE_CODE_BOOL:
1064 case TYPE_CODE_PTR:
1065 case TYPE_CODE_REF:
1066 return TYPE_LENGTH (type) <= 16;
1067
1068 default:
1069 return 0;
1070 }
1071 }
1072
1073 static void
1074 spu_value_to_regcache (struct regcache *regcache, int regnum,
1075 struct type *type, const gdb_byte *in)
1076 {
1077 int len = TYPE_LENGTH (type);
1078
1079 if (spu_scalar_value_p (type))
1080 {
1081 int preferred_slot = len < 4 ? 4 - len : 0;
1082 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1083 }
1084 else
1085 {
1086 while (len >= 16)
1087 {
1088 regcache_cooked_write (regcache, regnum++, in);
1089 in += 16;
1090 len -= 16;
1091 }
1092
1093 if (len > 0)
1094 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1095 }
1096 }
1097
1098 static void
1099 spu_regcache_to_value (struct regcache *regcache, int regnum,
1100 struct type *type, gdb_byte *out)
1101 {
1102 int len = TYPE_LENGTH (type);
1103
1104 if (spu_scalar_value_p (type))
1105 {
1106 int preferred_slot = len < 4 ? 4 - len : 0;
1107 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1108 }
1109 else
1110 {
1111 while (len >= 16)
1112 {
1113 regcache_cooked_read (regcache, regnum++, out);
1114 out += 16;
1115 len -= 16;
1116 }
1117
1118 if (len > 0)
1119 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1120 }
1121 }
1122
1123 static CORE_ADDR
1124 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1125 struct regcache *regcache, CORE_ADDR bp_addr,
1126 int nargs, struct value **args, CORE_ADDR sp,
1127 int struct_return, CORE_ADDR struct_addr)
1128 {
1129 CORE_ADDR sp_delta;
1130 int i;
1131 int regnum = SPU_ARG1_REGNUM;
1132 int stack_arg = -1;
1133 gdb_byte buf[16];
1134
1135 /* Set the return address. */
1136 memset (buf, 0, sizeof buf);
1137 store_unsigned_integer (buf, 4, bp_addr);
1138 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1139
1140 /* If STRUCT_RETURN is true, then the struct return address (in
1141 STRUCT_ADDR) will consume the first argument-passing register.
1142 Both adjust the register count and store that value. */
1143 if (struct_return)
1144 {
1145 memset (buf, 0, sizeof buf);
1146 store_unsigned_integer (buf, 4, struct_addr);
1147 regcache_cooked_write (regcache, regnum++, buf);
1148 }
1149
1150 /* Fill in argument registers. */
1151 for (i = 0; i < nargs; i++)
1152 {
1153 struct value *arg = args[i];
1154 struct type *type = check_typedef (value_type (arg));
1155 const gdb_byte *contents = value_contents (arg);
1156 int len = TYPE_LENGTH (type);
1157 int n_regs = align_up (len, 16) / 16;
1158
1159 /* If the argument doesn't wholly fit into registers, it and
1160 all subsequent arguments go to the stack. */
1161 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1162 {
1163 stack_arg = i;
1164 break;
1165 }
1166
1167 spu_value_to_regcache (regcache, regnum, type, contents);
1168 regnum += n_regs;
1169 }
1170
1171 /* Overflow arguments go to the stack. */
1172 if (stack_arg != -1)
1173 {
1174 CORE_ADDR ap;
1175
1176 /* Allocate all required stack size. */
1177 for (i = stack_arg; i < nargs; i++)
1178 {
1179 struct type *type = check_typedef (value_type (args[i]));
1180 sp -= align_up (TYPE_LENGTH (type), 16);
1181 }
1182
1183 /* Fill in stack arguments. */
1184 ap = sp;
1185 for (i = stack_arg; i < nargs; i++)
1186 {
1187 struct value *arg = args[i];
1188 struct type *type = check_typedef (value_type (arg));
1189 int len = TYPE_LENGTH (type);
1190 int preferred_slot;
1191
1192 if (spu_scalar_value_p (type))
1193 preferred_slot = len < 4 ? 4 - len : 0;
1194 else
1195 preferred_slot = 0;
1196
1197 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1198 ap += align_up (TYPE_LENGTH (type), 16);
1199 }
1200 }
1201
1202 /* Allocate stack frame header. */
1203 sp -= 32;
1204
1205 /* Store stack back chain. */
1206 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1207 target_write_memory (sp, buf, 16);
1208
1209 /* Finally, update all slots of the SP register. */
1210 sp_delta = sp - extract_unsigned_integer (buf, 4);
1211 for (i = 0; i < 4; i++)
1212 {
1213 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4);
1214 store_unsigned_integer (buf + 4*i, 4, sp_slot + sp_delta);
1215 }
1216 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
1217
1218 return sp;
1219 }
1220
1221 static struct frame_id
1222 spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1223 {
1224 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1225 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1226 return frame_id_build (sp, pc & -4);
1227 }
1228
1229 /* Function return value access. */
1230
1231 static enum return_value_convention
1232 spu_return_value (struct gdbarch *gdbarch, struct type *func_type,
1233 struct type *type, struct regcache *regcache,
1234 gdb_byte *out, const gdb_byte *in)
1235 {
1236 enum return_value_convention rvc;
1237
1238 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1239 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1240 else
1241 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1242
1243 if (in)
1244 {
1245 switch (rvc)
1246 {
1247 case RETURN_VALUE_REGISTER_CONVENTION:
1248 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1249 break;
1250
1251 case RETURN_VALUE_STRUCT_CONVENTION:
1252 error ("Cannot set function return value.");
1253 break;
1254 }
1255 }
1256 else if (out)
1257 {
1258 switch (rvc)
1259 {
1260 case RETURN_VALUE_REGISTER_CONVENTION:
1261 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1262 break;
1263
1264 case RETURN_VALUE_STRUCT_CONVENTION:
1265 error ("Function return value unknown.");
1266 break;
1267 }
1268 }
1269
1270 return rvc;
1271 }
1272
1273
1274 /* Breakpoints. */
1275
1276 static const gdb_byte *
1277 spu_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
1278 {
1279 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
1280
1281 *lenptr = sizeof breakpoint;
1282 return breakpoint;
1283 }
1284
1285
1286 /* Software single-stepping support. */
1287
1288 static int
1289 spu_software_single_step (struct frame_info *frame)
1290 {
1291 struct gdbarch *gdbarch = get_frame_arch (frame);
1292 CORE_ADDR pc, next_pc;
1293 unsigned int insn;
1294 int offset, reg;
1295 gdb_byte buf[4];
1296
1297 pc = get_frame_pc (frame);
1298
1299 if (target_read_memory (pc, buf, 4))
1300 return 1;
1301 insn = extract_unsigned_integer (buf, 4);
1302
1303 /* Next sequential instruction is at PC + 4, except if the current
1304 instruction is a PPE-assisted call, in which case it is at PC + 8.
1305 Wrap around LS limit to be on the safe side. */
1306 if ((insn & 0xffffff00) == 0x00002100)
1307 next_pc = (pc + 8) & (SPU_LS_SIZE - 1);
1308 else
1309 next_pc = (pc + 4) & (SPU_LS_SIZE - 1);
1310
1311 insert_single_step_breakpoint (gdbarch, next_pc);
1312
1313 if (is_branch (insn, &offset, &reg))
1314 {
1315 CORE_ADDR target = offset;
1316
1317 if (reg == SPU_PC_REGNUM)
1318 target += pc;
1319 else if (reg != -1)
1320 {
1321 get_frame_register_bytes (frame, reg, 0, 4, buf);
1322 target += extract_unsigned_integer (buf, 4) & -4;
1323 }
1324
1325 target = target & (SPU_LS_SIZE - 1);
1326 if (target != next_pc)
1327 insert_single_step_breakpoint (gdbarch, target);
1328 }
1329
1330 return 1;
1331 }
1332
1333
1334 /* Longjmp support. */
1335
1336 static int
1337 spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1338 {
1339 gdb_byte buf[4];
1340 CORE_ADDR jb_addr;
1341
1342 /* Jump buffer is pointed to by the argument register $r3. */
1343 get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf);
1344 jb_addr = extract_unsigned_integer (buf, 4);
1345 if (target_read_memory (jb_addr, buf, 4))
1346 return 0;
1347
1348 *pc = extract_unsigned_integer (buf, 4);
1349 return 1;
1350 }
1351
1352
1353 /* Target overlays for the SPU overlay manager.
1354
1355 See the documentation of simple_overlay_update for how the
1356 interface is supposed to work.
1357
1358 Data structures used by the overlay manager:
1359
1360 struct ovly_table
1361 {
1362 u32 vma;
1363 u32 size;
1364 u32 pos;
1365 u32 buf;
1366 } _ovly_table[]; -- one entry per overlay section
1367
1368 struct ovly_buf_table
1369 {
1370 u32 mapped;
1371 } _ovly_buf_table[]; -- one entry per overlay buffer
1372
1373 _ovly_table should never change.
1374
1375 Both tables are aligned to a 16-byte boundary, the symbols _ovly_table
1376 and _ovly_buf_table are of type STT_OBJECT and their size set to the size
1377 of the respective array. buf in _ovly_table is an index into _ovly_buf_table.
1378
1379 mapped is an index into _ovly_table. Both the mapped and buf indices start
1380 from one to reference the first entry in their respective tables. */
1381
1382 /* Using the per-objfile private data mechanism, we store for each
1383 objfile an array of "struct spu_overlay_table" structures, one
1384 for each obj_section of the objfile. This structure holds two
1385 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1386 is *not* an overlay section. If it is non-zero, it represents
1387 a target address. The overlay section is mapped iff the target
1388 integer at this location equals MAPPED_VAL. */
1389
1390 static const struct objfile_data *spu_overlay_data;
1391
1392 struct spu_overlay_table
1393 {
1394 CORE_ADDR mapped_ptr;
1395 CORE_ADDR mapped_val;
1396 };
1397
1398 /* Retrieve the overlay table for OBJFILE. If not already cached, read
1399 the _ovly_table data structure from the target and initialize the
1400 spu_overlay_table data structure from it. */
1401 static struct spu_overlay_table *
1402 spu_get_overlay_table (struct objfile *objfile)
1403 {
1404 struct minimal_symbol *ovly_table_msym, *ovly_buf_table_msym;
1405 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1406 unsigned ovly_table_size, ovly_buf_table_size;
1407 struct spu_overlay_table *tbl;
1408 struct obj_section *osect;
1409 char *ovly_table;
1410 int i;
1411
1412 tbl = objfile_data (objfile, spu_overlay_data);
1413 if (tbl)
1414 return tbl;
1415
1416 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1417 if (!ovly_table_msym)
1418 return NULL;
1419
1420 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table", NULL, objfile);
1421 if (!ovly_buf_table_msym)
1422 return NULL;
1423
1424 ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
1425 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym);
1426
1427 ovly_buf_table_base = SYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1428 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym);
1429
1430 ovly_table = xmalloc (ovly_table_size);
1431 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1432
1433 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1434 objfile->sections_end - objfile->sections,
1435 struct spu_overlay_table);
1436
1437 for (i = 0; i < ovly_table_size / 16; i++)
1438 {
1439 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0, 4);
1440 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4, 4);
1441 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8, 4);
1442 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12, 4);
1443
1444 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1445 continue;
1446
1447 ALL_OBJFILE_OSECTIONS (objfile, osect)
1448 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1449 && pos == osect->the_bfd_section->filepos)
1450 {
1451 int ndx = osect - objfile->sections;
1452 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1453 tbl[ndx].mapped_val = i + 1;
1454 break;
1455 }
1456 }
1457
1458 xfree (ovly_table);
1459 set_objfile_data (objfile, spu_overlay_data, tbl);
1460 return tbl;
1461 }
1462
1463 /* Read _ovly_buf_table entry from the target to dermine whether
1464 OSECT is currently mapped, and update the mapped state. */
1465 static void
1466 spu_overlay_update_osect (struct obj_section *osect)
1467 {
1468 struct spu_overlay_table *ovly_table;
1469 CORE_ADDR val;
1470
1471 ovly_table = spu_get_overlay_table (osect->objfile);
1472 if (!ovly_table)
1473 return;
1474
1475 ovly_table += osect - osect->objfile->sections;
1476 if (ovly_table->mapped_ptr == 0)
1477 return;
1478
1479 val = read_memory_unsigned_integer (ovly_table->mapped_ptr, 4);
1480 osect->ovly_mapped = (val == ovly_table->mapped_val);
1481 }
1482
1483 /* If OSECT is NULL, then update all sections' mapped state.
1484 If OSECT is non-NULL, then update only OSECT's mapped state. */
1485 static void
1486 spu_overlay_update (struct obj_section *osect)
1487 {
1488 /* Just one section. */
1489 if (osect)
1490 spu_overlay_update_osect (osect);
1491
1492 /* All sections. */
1493 else
1494 {
1495 struct objfile *objfile;
1496
1497 ALL_OBJSECTIONS (objfile, osect)
1498 if (section_is_overlay (osect))
1499 spu_overlay_update_osect (osect);
1500 }
1501 }
1502
1503 /* Whenever a new objfile is loaded, read the target's _ovly_table.
1504 If there is one, go through all sections and make sure for non-
1505 overlay sections LMA equals VMA, while for overlay sections LMA
1506 is larger than local store size. */
1507 static void
1508 spu_overlay_new_objfile (struct objfile *objfile)
1509 {
1510 struct spu_overlay_table *ovly_table;
1511 struct obj_section *osect;
1512
1513 /* If we've already touched this file, do nothing. */
1514 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1515 return;
1516
1517 /* Consider only SPU objfiles. */
1518 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1519 return;
1520
1521 /* Check if this objfile has overlays. */
1522 ovly_table = spu_get_overlay_table (objfile);
1523 if (!ovly_table)
1524 return;
1525
1526 /* Now go and fiddle with all the LMAs. */
1527 ALL_OBJFILE_OSECTIONS (objfile, osect)
1528 {
1529 bfd *obfd = objfile->obfd;
1530 asection *bsect = osect->the_bfd_section;
1531 int ndx = osect - objfile->sections;
1532
1533 if (ovly_table[ndx].mapped_ptr == 0)
1534 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1535 else
1536 bfd_section_lma (obfd, bsect) = bsect->filepos + SPU_LS_SIZE;
1537 }
1538 }
1539
1540
1541 /* "info spu" commands. */
1542
1543 static void
1544 info_spu_event_command (char *args, int from_tty)
1545 {
1546 struct frame_info *frame = get_selected_frame (NULL);
1547 ULONGEST event_status = 0;
1548 ULONGEST event_mask = 0;
1549 struct cleanup *chain;
1550 gdb_byte buf[100];
1551 char annex[32];
1552 LONGEST len;
1553 int rc, id;
1554
1555 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
1556 error (_("\"info spu\" is only supported on the SPU architecture."));
1557
1558 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
1559
1560 xsnprintf (annex, sizeof annex, "%d/event_status", id);
1561 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1562 buf, 0, (sizeof (buf) - 1));
1563 if (len <= 0)
1564 error (_("Could not read event_status."));
1565 buf[len] = '\0';
1566 event_status = strtoulst (buf, NULL, 16);
1567
1568 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
1569 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1570 buf, 0, (sizeof (buf) - 1));
1571 if (len <= 0)
1572 error (_("Could not read event_mask."));
1573 buf[len] = '\0';
1574 event_mask = strtoulst (buf, NULL, 16);
1575
1576 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoEvent");
1577
1578 if (ui_out_is_mi_like_p (uiout))
1579 {
1580 ui_out_field_fmt (uiout, "event_status",
1581 "0x%s", phex_nz (event_status, 4));
1582 ui_out_field_fmt (uiout, "event_mask",
1583 "0x%s", phex_nz (event_mask, 4));
1584 }
1585 else
1586 {
1587 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
1588 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
1589 }
1590
1591 do_cleanups (chain);
1592 }
1593
1594 static void
1595 info_spu_signal_command (char *args, int from_tty)
1596 {
1597 struct frame_info *frame = get_selected_frame (NULL);
1598 ULONGEST signal1 = 0;
1599 ULONGEST signal1_type = 0;
1600 int signal1_pending = 0;
1601 ULONGEST signal2 = 0;
1602 ULONGEST signal2_type = 0;
1603 int signal2_pending = 0;
1604 struct cleanup *chain;
1605 char annex[32];
1606 gdb_byte buf[100];
1607 LONGEST len;
1608 int rc, id;
1609
1610 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
1611 error (_("\"info spu\" is only supported on the SPU architecture."));
1612
1613 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
1614
1615 xsnprintf (annex, sizeof annex, "%d/signal1", id);
1616 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
1617 if (len < 0)
1618 error (_("Could not read signal1."));
1619 else if (len == 4)
1620 {
1621 signal1 = extract_unsigned_integer (buf, 4);
1622 signal1_pending = 1;
1623 }
1624
1625 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
1626 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1627 buf, 0, (sizeof (buf) - 1));
1628 if (len <= 0)
1629 error (_("Could not read signal1_type."));
1630 buf[len] = '\0';
1631 signal1_type = strtoulst (buf, NULL, 16);
1632
1633 xsnprintf (annex, sizeof annex, "%d/signal2", id);
1634 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
1635 if (len < 0)
1636 error (_("Could not read signal2."));
1637 else if (len == 4)
1638 {
1639 signal2 = extract_unsigned_integer (buf, 4);
1640 signal2_pending = 1;
1641 }
1642
1643 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
1644 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1645 buf, 0, (sizeof (buf) - 1));
1646 if (len <= 0)
1647 error (_("Could not read signal2_type."));
1648 buf[len] = '\0';
1649 signal2_type = strtoulst (buf, NULL, 16);
1650
1651 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoSignal");
1652
1653 if (ui_out_is_mi_like_p (uiout))
1654 {
1655 ui_out_field_int (uiout, "signal1_pending", signal1_pending);
1656 ui_out_field_fmt (uiout, "signal1", "0x%s", phex_nz (signal1, 4));
1657 ui_out_field_int (uiout, "signal1_type", signal1_type);
1658 ui_out_field_int (uiout, "signal2_pending", signal2_pending);
1659 ui_out_field_fmt (uiout, "signal2", "0x%s", phex_nz (signal2, 4));
1660 ui_out_field_int (uiout, "signal2_type", signal2_type);
1661 }
1662 else
1663 {
1664 if (signal1_pending)
1665 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
1666 else
1667 printf_filtered (_("Signal 1 not pending "));
1668
1669 if (signal1_type)
1670 printf_filtered (_("(Type Or)\n"));
1671 else
1672 printf_filtered (_("(Type Overwrite)\n"));
1673
1674 if (signal2_pending)
1675 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
1676 else
1677 printf_filtered (_("Signal 2 not pending "));
1678
1679 if (signal2_type)
1680 printf_filtered (_("(Type Or)\n"));
1681 else
1682 printf_filtered (_("(Type Overwrite)\n"));
1683 }
1684
1685 do_cleanups (chain);
1686 }
1687
1688 static void
1689 info_spu_mailbox_list (gdb_byte *buf, int nr,
1690 const char *field, const char *msg)
1691 {
1692 struct cleanup *chain;
1693 int i;
1694
1695 if (nr <= 0)
1696 return;
1697
1698 chain = make_cleanup_ui_out_table_begin_end (uiout, 1, nr, "mbox");
1699
1700 ui_out_table_header (uiout, 32, ui_left, field, msg);
1701 ui_out_table_body (uiout);
1702
1703 for (i = 0; i < nr; i++)
1704 {
1705 struct cleanup *val_chain;
1706 ULONGEST val;
1707 val_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "mbox");
1708 val = extract_unsigned_integer (buf + 4*i, 4);
1709 ui_out_field_fmt (uiout, field, "0x%s", phex (val, 4));
1710 do_cleanups (val_chain);
1711
1712 if (!ui_out_is_mi_like_p (uiout))
1713 printf_filtered ("\n");
1714 }
1715
1716 do_cleanups (chain);
1717 }
1718
1719 static void
1720 info_spu_mailbox_command (char *args, int from_tty)
1721 {
1722 struct frame_info *frame = get_selected_frame (NULL);
1723 struct cleanup *chain;
1724 char annex[32];
1725 gdb_byte buf[1024];
1726 LONGEST len;
1727 int i, id;
1728
1729 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
1730 error (_("\"info spu\" is only supported on the SPU architecture."));
1731
1732 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
1733
1734 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoMailbox");
1735
1736 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
1737 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1738 buf, 0, sizeof buf);
1739 if (len < 0)
1740 error (_("Could not read mbox_info."));
1741
1742 info_spu_mailbox_list (buf, len / 4, "mbox", "SPU Outbound Mailbox");
1743
1744 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
1745 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1746 buf, 0, sizeof buf);
1747 if (len < 0)
1748 error (_("Could not read ibox_info."));
1749
1750 info_spu_mailbox_list (buf, len / 4, "ibox", "SPU Outbound Interrupt Mailbox");
1751
1752 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
1753 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1754 buf, 0, sizeof buf);
1755 if (len < 0)
1756 error (_("Could not read wbox_info."));
1757
1758 info_spu_mailbox_list (buf, len / 4, "wbox", "SPU Inbound Mailbox");
1759
1760 do_cleanups (chain);
1761 }
1762
1763 static ULONGEST
1764 spu_mfc_get_bitfield (ULONGEST word, int first, int last)
1765 {
1766 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
1767 return (word >> (63 - last)) & mask;
1768 }
1769
1770 static void
1771 info_spu_dma_cmdlist (gdb_byte *buf, int nr)
1772 {
1773 static char *spu_mfc_opcode[256] =
1774 {
1775 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1776 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1777 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1778 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1779 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
1780 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
1781 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
1782 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1783 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
1784 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
1785 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1786 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1787 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1788 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1789 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1790 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1791 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
1792 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
1793 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1794 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1795 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
1796 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1797 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
1798 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1799 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1800 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
1801 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1802 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1803 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1804 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1805 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1806 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1807 };
1808
1809 int *seq = alloca (nr * sizeof (int));
1810 int done = 0;
1811 struct cleanup *chain;
1812 int i, j;
1813
1814
1815 /* Determine sequence in which to display (valid) entries. */
1816 for (i = 0; i < nr; i++)
1817 {
1818 /* Search for the first valid entry all of whose
1819 dependencies are met. */
1820 for (j = 0; j < nr; j++)
1821 {
1822 ULONGEST mfc_cq_dw3;
1823 ULONGEST dependencies;
1824
1825 if (done & (1 << (nr - 1 - j)))
1826 continue;
1827
1828 mfc_cq_dw3 = extract_unsigned_integer (buf + 32*j + 24, 8);
1829 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
1830 continue;
1831
1832 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
1833 if ((dependencies & done) != dependencies)
1834 continue;
1835
1836 seq[i] = j;
1837 done |= 1 << (nr - 1 - j);
1838 break;
1839 }
1840
1841 if (j == nr)
1842 break;
1843 }
1844
1845 nr = i;
1846
1847
1848 chain = make_cleanup_ui_out_table_begin_end (uiout, 10, nr, "dma_cmd");
1849
1850 ui_out_table_header (uiout, 7, ui_left, "opcode", "Opcode");
1851 ui_out_table_header (uiout, 3, ui_left, "tag", "Tag");
1852 ui_out_table_header (uiout, 3, ui_left, "tid", "TId");
1853 ui_out_table_header (uiout, 3, ui_left, "rid", "RId");
1854 ui_out_table_header (uiout, 18, ui_left, "ea", "EA");
1855 ui_out_table_header (uiout, 7, ui_left, "lsa", "LSA");
1856 ui_out_table_header (uiout, 7, ui_left, "size", "Size");
1857 ui_out_table_header (uiout, 7, ui_left, "lstaddr", "LstAddr");
1858 ui_out_table_header (uiout, 7, ui_left, "lstsize", "LstSize");
1859 ui_out_table_header (uiout, 1, ui_left, "error_p", "E");
1860
1861 ui_out_table_body (uiout);
1862
1863 for (i = 0; i < nr; i++)
1864 {
1865 struct cleanup *cmd_chain;
1866 ULONGEST mfc_cq_dw0;
1867 ULONGEST mfc_cq_dw1;
1868 ULONGEST mfc_cq_dw2;
1869 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
1870 int lsa, size, list_lsa, list_size, mfc_lsa, mfc_size;
1871 ULONGEST mfc_ea;
1872 int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
1873
1874 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
1875 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
1876
1877 mfc_cq_dw0 = extract_unsigned_integer (buf + 32*seq[i], 8);
1878 mfc_cq_dw1 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8);
1879 mfc_cq_dw2 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8);
1880
1881 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
1882 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
1883 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
1884 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
1885 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
1886 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
1887 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
1888
1889 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
1890 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
1891
1892 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
1893 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
1894 noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
1895 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
1896 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
1897 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
1898
1899 cmd_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "cmd");
1900
1901 if (spu_mfc_opcode[mfc_cmd_opcode])
1902 ui_out_field_string (uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
1903 else
1904 ui_out_field_int (uiout, "opcode", mfc_cmd_opcode);
1905
1906 ui_out_field_int (uiout, "tag", mfc_cmd_tag);
1907 ui_out_field_int (uiout, "tid", tclass_id);
1908 ui_out_field_int (uiout, "rid", rclass_id);
1909
1910 if (ea_valid_p)
1911 ui_out_field_fmt (uiout, "ea", "0x%s", phex (mfc_ea, 8));
1912 else
1913 ui_out_field_skip (uiout, "ea");
1914
1915 ui_out_field_fmt (uiout, "lsa", "0x%05x", mfc_lsa << 4);
1916 if (qw_valid_p)
1917 ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size << 4);
1918 else
1919 ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size);
1920
1921 if (list_valid_p)
1922 {
1923 ui_out_field_fmt (uiout, "lstaddr", "0x%05x", list_lsa << 3);
1924 ui_out_field_fmt (uiout, "lstsize", "0x%05x", list_size << 3);
1925 }
1926 else
1927 {
1928 ui_out_field_skip (uiout, "lstaddr");
1929 ui_out_field_skip (uiout, "lstsize");
1930 }
1931
1932 if (cmd_error_p)
1933 ui_out_field_string (uiout, "error_p", "*");
1934 else
1935 ui_out_field_skip (uiout, "error_p");
1936
1937 do_cleanups (cmd_chain);
1938
1939 if (!ui_out_is_mi_like_p (uiout))
1940 printf_filtered ("\n");
1941 }
1942
1943 do_cleanups (chain);
1944 }
1945
1946 static void
1947 info_spu_dma_command (char *args, int from_tty)
1948 {
1949 struct frame_info *frame = get_selected_frame (NULL);
1950 ULONGEST dma_info_type;
1951 ULONGEST dma_info_mask;
1952 ULONGEST dma_info_status;
1953 ULONGEST dma_info_stall_and_notify;
1954 ULONGEST dma_info_atomic_command_status;
1955 struct cleanup *chain;
1956 char annex[32];
1957 gdb_byte buf[1024];
1958 LONGEST len;
1959 int i, id;
1960
1961 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
1962 error (_("\"info spu\" is only supported on the SPU architecture."));
1963
1964 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
1965
1966 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
1967 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1968 buf, 0, 40 + 16 * 32);
1969 if (len <= 0)
1970 error (_("Could not read dma_info."));
1971
1972 dma_info_type = extract_unsigned_integer (buf, 8);
1973 dma_info_mask = extract_unsigned_integer (buf + 8, 8);
1974 dma_info_status = extract_unsigned_integer (buf + 16, 8);
1975 dma_info_stall_and_notify = extract_unsigned_integer (buf + 24, 8);
1976 dma_info_atomic_command_status = extract_unsigned_integer (buf + 32, 8);
1977
1978 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoDMA");
1979
1980 if (ui_out_is_mi_like_p (uiout))
1981 {
1982 ui_out_field_fmt (uiout, "dma_info_type", "0x%s",
1983 phex_nz (dma_info_type, 4));
1984 ui_out_field_fmt (uiout, "dma_info_mask", "0x%s",
1985 phex_nz (dma_info_mask, 4));
1986 ui_out_field_fmt (uiout, "dma_info_status", "0x%s",
1987 phex_nz (dma_info_status, 4));
1988 ui_out_field_fmt (uiout, "dma_info_stall_and_notify", "0x%s",
1989 phex_nz (dma_info_stall_and_notify, 4));
1990 ui_out_field_fmt (uiout, "dma_info_atomic_command_status", "0x%s",
1991 phex_nz (dma_info_atomic_command_status, 4));
1992 }
1993 else
1994 {
1995 const char *query_msg = _("no query pending");
1996
1997 if (dma_info_type & 4)
1998 switch (dma_info_type & 3)
1999 {
2000 case 1: query_msg = _("'any' query pending"); break;
2001 case 2: query_msg = _("'all' query pending"); break;
2002 default: query_msg = _("undefined query type"); break;
2003 }
2004
2005 printf_filtered (_("Tag-Group Status 0x%s\n"),
2006 phex (dma_info_status, 4));
2007 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2008 phex (dma_info_mask, 4), query_msg);
2009 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2010 phex (dma_info_stall_and_notify, 4));
2011 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2012 phex (dma_info_atomic_command_status, 4));
2013 printf_filtered ("\n");
2014 }
2015
2016 info_spu_dma_cmdlist (buf + 40, 16);
2017 do_cleanups (chain);
2018 }
2019
2020 static void
2021 info_spu_proxydma_command (char *args, int from_tty)
2022 {
2023 struct frame_info *frame = get_selected_frame (NULL);
2024 ULONGEST dma_info_type;
2025 ULONGEST dma_info_mask;
2026 ULONGEST dma_info_status;
2027 struct cleanup *chain;
2028 char annex[32];
2029 gdb_byte buf[1024];
2030 LONGEST len;
2031 int i, id;
2032
2033 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2034 error (_("\"info spu\" is only supported on the SPU architecture."));
2035
2036 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2037
2038 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2039 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2040 buf, 0, 24 + 8 * 32);
2041 if (len <= 0)
2042 error (_("Could not read proxydma_info."));
2043
2044 dma_info_type = extract_unsigned_integer (buf, 8);
2045 dma_info_mask = extract_unsigned_integer (buf + 8, 8);
2046 dma_info_status = extract_unsigned_integer (buf + 16, 8);
2047
2048 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoProxyDMA");
2049
2050 if (ui_out_is_mi_like_p (uiout))
2051 {
2052 ui_out_field_fmt (uiout, "proxydma_info_type", "0x%s",
2053 phex_nz (dma_info_type, 4));
2054 ui_out_field_fmt (uiout, "proxydma_info_mask", "0x%s",
2055 phex_nz (dma_info_mask, 4));
2056 ui_out_field_fmt (uiout, "proxydma_info_status", "0x%s",
2057 phex_nz (dma_info_status, 4));
2058 }
2059 else
2060 {
2061 const char *query_msg;
2062
2063 switch (dma_info_type & 3)
2064 {
2065 case 0: query_msg = _("no query pending"); break;
2066 case 1: query_msg = _("'any' query pending"); break;
2067 case 2: query_msg = _("'all' query pending"); break;
2068 default: query_msg = _("undefined query type"); break;
2069 }
2070
2071 printf_filtered (_("Tag-Group Status 0x%s\n"),
2072 phex (dma_info_status, 4));
2073 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2074 phex (dma_info_mask, 4), query_msg);
2075 printf_filtered ("\n");
2076 }
2077
2078 info_spu_dma_cmdlist (buf + 24, 8);
2079 do_cleanups (chain);
2080 }
2081
2082 static void
2083 info_spu_command (char *args, int from_tty)
2084 {
2085 printf_unfiltered (_("\"info spu\" must be followed by the name of an SPU facility.\n"));
2086 help_list (infospucmdlist, "info spu ", -1, gdb_stdout);
2087 }
2088
2089
2090 /* Set up gdbarch struct. */
2091
2092 static struct gdbarch *
2093 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2094 {
2095 struct gdbarch *gdbarch;
2096 struct gdbarch_tdep *tdep;
2097
2098 /* Find a candidate among the list of pre-declared architectures. */
2099 arches = gdbarch_list_lookup_by_info (arches, &info);
2100 if (arches != NULL)
2101 return arches->gdbarch;
2102
2103 /* Is is for us? */
2104 if (info.bfd_arch_info->mach != bfd_mach_spu)
2105 return NULL;
2106
2107 /* Yes, create a new architecture. */
2108 tdep = XCALLOC (1, struct gdbarch_tdep);
2109 gdbarch = gdbarch_alloc (&info, tdep);
2110
2111 /* Disassembler. */
2112 set_gdbarch_print_insn (gdbarch, print_insn_spu);
2113
2114 /* Registers. */
2115 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2116 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2117 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2118 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
2119 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2120 set_gdbarch_write_pc (gdbarch, spu_write_pc);
2121 set_gdbarch_register_name (gdbarch, spu_register_name);
2122 set_gdbarch_register_type (gdbarch, spu_register_type);
2123 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2124 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
2125 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
2126 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2127
2128 /* Data types. */
2129 set_gdbarch_char_signed (gdbarch, 0);
2130 set_gdbarch_ptr_bit (gdbarch, 32);
2131 set_gdbarch_addr_bit (gdbarch, 32);
2132 set_gdbarch_short_bit (gdbarch, 16);
2133 set_gdbarch_int_bit (gdbarch, 32);
2134 set_gdbarch_long_bit (gdbarch, 32);
2135 set_gdbarch_long_long_bit (gdbarch, 64);
2136 set_gdbarch_float_bit (gdbarch, 32);
2137 set_gdbarch_double_bit (gdbarch, 64);
2138 set_gdbarch_long_double_bit (gdbarch, 64);
2139 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2140 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2141 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
2142
2143 /* Address conversion. */
2144 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2145 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
2146
2147 /* Inferior function calls. */
2148 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2149 set_gdbarch_frame_align (gdbarch, spu_frame_align);
2150 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
2151 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
2152 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
2153 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
2154 set_gdbarch_return_value (gdbarch, spu_return_value);
2155
2156 /* Frame handling. */
2157 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2158 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
2159 frame_base_set_default (gdbarch, &spu_frame_base);
2160 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2161 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2162 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2163 set_gdbarch_frame_args_skip (gdbarch, 0);
2164 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
2165 set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p);
2166
2167 /* Breakpoints. */
2168 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2169 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
2170 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
2171 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
2172 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
2173
2174 /* Overlays. */
2175 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2176
2177 return gdbarch;
2178 }
2179
2180 /* Provide a prototype to silence -Wmissing-prototypes. */
2181 extern initialize_file_ftype _initialize_spu_tdep;
2182
2183 void
2184 _initialize_spu_tdep (void)
2185 {
2186 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
2187
2188 /* Add ourselves to objfile event chain. */
2189 observer_attach_new_objfile (spu_overlay_new_objfile);
2190 spu_overlay_data = register_objfile_data ();
2191
2192 /* Add root prefix command for all "info spu" commands. */
2193 add_prefix_cmd ("spu", class_info, info_spu_command,
2194 _("Various SPU specific commands."),
2195 &infospucmdlist, "info spu ", 0, &infolist);
2196
2197 /* Add various "info spu" commands. */
2198 add_cmd ("event", class_info, info_spu_event_command,
2199 _("Display SPU event facility status.\n"),
2200 &infospucmdlist);
2201 add_cmd ("signal", class_info, info_spu_signal_command,
2202 _("Display SPU signal notification facility status.\n"),
2203 &infospucmdlist);
2204 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2205 _("Display SPU mailbox facility status.\n"),
2206 &infospucmdlist);
2207 add_cmd ("dma", class_info, info_spu_dma_command,
2208 _("Display MFC DMA status.\n"),
2209 &infospucmdlist);
2210 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2211 _("Display MFC Proxy-DMA status.\n"),
2212 &infospucmdlist);
2213 }
This page took 0.076921 seconds and 4 git commands to generate.