269ad2897b3f480da963e2a84f4659eb33ddad4e
[deliverable/binutils-gdb.git] / gdb / spu-tdep.c
1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdbtypes.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include "gdb_string.h"
28 #include "gdb_assert.h"
29 #include "frame.h"
30 #include "frame-unwind.h"
31 #include "frame-base.h"
32 #include "trad-frame.h"
33 #include "symtab.h"
34 #include "symfile.h"
35 #include "value.h"
36 #include "inferior.h"
37 #include "dis-asm.h"
38 #include "objfiles.h"
39 #include "language.h"
40 #include "regcache.h"
41 #include "reggroups.h"
42 #include "floatformat.h"
43 #include "block.h"
44 #include "observer.h"
45 #include "infcall.h"
46
47 #include "spu-tdep.h"
48
49
50 /* The list of available "set spu " and "show spu " commands. */
51 static struct cmd_list_element *setspucmdlist = NULL;
52 static struct cmd_list_element *showspucmdlist = NULL;
53
54 /* Whether to stop for new SPE contexts. */
55 static int spu_stop_on_load_p = 0;
56 /* Whether to automatically flush the SW-managed cache. */
57 static int spu_auto_flush_cache_p = 1;
58
59
60 /* The tdep structure. */
61 struct gdbarch_tdep
62 {
63 /* The spufs ID identifying our address space. */
64 int id;
65
66 /* SPU-specific vector type. */
67 struct type *spu_builtin_type_vec128;
68 };
69
70
71 /* SPU-specific vector type. */
72 static struct type *
73 spu_builtin_type_vec128 (struct gdbarch *gdbarch)
74 {
75 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
76
77 if (!tdep->spu_builtin_type_vec128)
78 {
79 const struct builtin_type *bt = builtin_type (gdbarch);
80 struct type *t;
81
82 t = arch_composite_type (gdbarch,
83 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
84 append_composite_type_field (t, "uint128", bt->builtin_int128);
85 append_composite_type_field (t, "v2_int64",
86 init_vector_type (bt->builtin_int64, 2));
87 append_composite_type_field (t, "v4_int32",
88 init_vector_type (bt->builtin_int32, 4));
89 append_composite_type_field (t, "v8_int16",
90 init_vector_type (bt->builtin_int16, 8));
91 append_composite_type_field (t, "v16_int8",
92 init_vector_type (bt->builtin_int8, 16));
93 append_composite_type_field (t, "v2_double",
94 init_vector_type (bt->builtin_double, 2));
95 append_composite_type_field (t, "v4_float",
96 init_vector_type (bt->builtin_float, 4));
97
98 TYPE_VECTOR (t) = 1;
99 TYPE_NAME (t) = "spu_builtin_type_vec128";
100
101 tdep->spu_builtin_type_vec128 = t;
102 }
103
104 return tdep->spu_builtin_type_vec128;
105 }
106
107
108 /* The list of available "info spu " commands. */
109 static struct cmd_list_element *infospucmdlist = NULL;
110
111 /* Registers. */
112
113 static const char *
114 spu_register_name (struct gdbarch *gdbarch, int reg_nr)
115 {
116 static char *register_names[] =
117 {
118 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
119 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
120 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
121 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
122 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
123 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
124 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
125 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
126 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
127 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
128 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
129 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
130 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
131 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
132 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
133 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
134 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
135 };
136
137 if (reg_nr < 0)
138 return NULL;
139 if (reg_nr >= sizeof register_names / sizeof *register_names)
140 return NULL;
141
142 return register_names[reg_nr];
143 }
144
145 static struct type *
146 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
147 {
148 if (reg_nr < SPU_NUM_GPRS)
149 return spu_builtin_type_vec128 (gdbarch);
150
151 switch (reg_nr)
152 {
153 case SPU_ID_REGNUM:
154 return builtin_type (gdbarch)->builtin_uint32;
155
156 case SPU_PC_REGNUM:
157 return builtin_type (gdbarch)->builtin_func_ptr;
158
159 case SPU_SP_REGNUM:
160 return builtin_type (gdbarch)->builtin_data_ptr;
161
162 case SPU_FPSCR_REGNUM:
163 return builtin_type (gdbarch)->builtin_uint128;
164
165 case SPU_SRR0_REGNUM:
166 return builtin_type (gdbarch)->builtin_uint32;
167
168 case SPU_LSLR_REGNUM:
169 return builtin_type (gdbarch)->builtin_uint32;
170
171 case SPU_DECR_REGNUM:
172 return builtin_type (gdbarch)->builtin_uint32;
173
174 case SPU_DECR_STATUS_REGNUM:
175 return builtin_type (gdbarch)->builtin_uint32;
176
177 default:
178 internal_error (__FILE__, __LINE__, "invalid regnum");
179 }
180 }
181
182 /* Pseudo registers for preferred slots - stack pointer. */
183
184 static void
185 spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
186 gdb_byte *buf)
187 {
188 struct gdbarch *gdbarch = get_regcache_arch (regcache);
189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
190 gdb_byte reg[32];
191 char annex[32];
192 ULONGEST id;
193
194 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
195 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
196 memset (reg, 0, sizeof reg);
197 target_read (&current_target, TARGET_OBJECT_SPU, annex,
198 reg, 0, sizeof reg);
199
200 store_unsigned_integer (buf, 4, byte_order, strtoulst (reg, NULL, 16));
201 }
202
203 static void
204 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
205 int regnum, gdb_byte *buf)
206 {
207 gdb_byte reg[16];
208 char annex[32];
209 ULONGEST id;
210
211 switch (regnum)
212 {
213 case SPU_SP_REGNUM:
214 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
215 memcpy (buf, reg, 4);
216 break;
217
218 case SPU_FPSCR_REGNUM:
219 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
220 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
221 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
222 break;
223
224 case SPU_SRR0_REGNUM:
225 spu_pseudo_register_read_spu (regcache, "srr0", buf);
226 break;
227
228 case SPU_LSLR_REGNUM:
229 spu_pseudo_register_read_spu (regcache, "lslr", buf);
230 break;
231
232 case SPU_DECR_REGNUM:
233 spu_pseudo_register_read_spu (regcache, "decr", buf);
234 break;
235
236 case SPU_DECR_STATUS_REGNUM:
237 spu_pseudo_register_read_spu (regcache, "decr_status", buf);
238 break;
239
240 default:
241 internal_error (__FILE__, __LINE__, _("invalid regnum"));
242 }
243 }
244
245 static void
246 spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
247 const gdb_byte *buf)
248 {
249 struct gdbarch *gdbarch = get_regcache_arch (regcache);
250 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
251 gdb_byte reg[32];
252 char annex[32];
253 ULONGEST id;
254
255 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
256 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
257 xsnprintf (reg, sizeof reg, "0x%s",
258 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
259 target_write (&current_target, TARGET_OBJECT_SPU, annex,
260 reg, 0, strlen (reg));
261 }
262
263 static void
264 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
265 int regnum, const gdb_byte *buf)
266 {
267 gdb_byte reg[16];
268 char annex[32];
269 ULONGEST id;
270
271 switch (regnum)
272 {
273 case SPU_SP_REGNUM:
274 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
275 memcpy (reg, buf, 4);
276 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
277 break;
278
279 case SPU_FPSCR_REGNUM:
280 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
281 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
282 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
283 break;
284
285 case SPU_SRR0_REGNUM:
286 spu_pseudo_register_write_spu (regcache, "srr0", buf);
287 break;
288
289 case SPU_LSLR_REGNUM:
290 spu_pseudo_register_write_spu (regcache, "lslr", buf);
291 break;
292
293 case SPU_DECR_REGNUM:
294 spu_pseudo_register_write_spu (regcache, "decr", buf);
295 break;
296
297 case SPU_DECR_STATUS_REGNUM:
298 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
299 break;
300
301 default:
302 internal_error (__FILE__, __LINE__, _("invalid regnum"));
303 }
304 }
305
306 /* Value conversion -- access scalar values at the preferred slot. */
307
308 static struct value *
309 spu_value_from_register (struct type *type, int regnum,
310 struct frame_info *frame)
311 {
312 struct value *value = default_value_from_register (type, regnum, frame);
313 int len = TYPE_LENGTH (type);
314
315 if (regnum < SPU_NUM_GPRS && len < 16)
316 {
317 int preferred_slot = len < 4 ? 4 - len : 0;
318 set_value_offset (value, preferred_slot);
319 }
320
321 return value;
322 }
323
324 /* Register groups. */
325
326 static int
327 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
328 struct reggroup *group)
329 {
330 /* Registers displayed via 'info regs'. */
331 if (group == general_reggroup)
332 return 1;
333
334 /* Registers displayed via 'info float'. */
335 if (group == float_reggroup)
336 return 0;
337
338 /* Registers that need to be saved/restored in order to
339 push or pop frames. */
340 if (group == save_reggroup || group == restore_reggroup)
341 return 1;
342
343 return default_register_reggroup_p (gdbarch, regnum, group);
344 }
345
346
347 /* Address handling. */
348
349 static int
350 spu_gdbarch_id (struct gdbarch *gdbarch)
351 {
352 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
353 int id = tdep->id;
354
355 /* The objfile architecture of a standalone SPU executable does not
356 provide an SPU ID. Retrieve it from the the objfile's relocated
357 address range in this special case. */
358 if (id == -1
359 && symfile_objfile && symfile_objfile->obfd
360 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
361 && symfile_objfile->sections != symfile_objfile->sections_end)
362 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
363
364 return id;
365 }
366
367 static ULONGEST
368 spu_lslr (int id)
369 {
370 gdb_byte buf[32];
371 char annex[32];
372
373 if (id == -1)
374 return SPU_LS_SIZE - 1;
375
376 xsnprintf (annex, sizeof annex, "%d/lslr", id);
377 memset (buf, 0, sizeof buf);
378 target_read (&current_target, TARGET_OBJECT_SPU, annex,
379 buf, 0, sizeof buf);
380
381 return strtoulst (buf, NULL, 16);
382 }
383
384 static int
385 spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
386 {
387 if (dwarf2_addr_class == 1)
388 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
389 else
390 return 0;
391 }
392
393 static const char *
394 spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
395 {
396 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
397 return "__ea";
398 else
399 return NULL;
400 }
401
402 static int
403 spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
404 const char *name, int *type_flags_ptr)
405 {
406 if (strcmp (name, "__ea") == 0)
407 {
408 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
409 return 1;
410 }
411 else
412 return 0;
413 }
414
415 static void
416 spu_address_to_pointer (struct gdbarch *gdbarch,
417 struct type *type, gdb_byte *buf, CORE_ADDR addr)
418 {
419 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
420 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
421 SPUADDR_ADDR (addr));
422 }
423
424 static CORE_ADDR
425 spu_pointer_to_address (struct gdbarch *gdbarch,
426 struct type *type, const gdb_byte *buf)
427 {
428 int id = spu_gdbarch_id (gdbarch);
429 ULONGEST lslr = spu_lslr (id);
430 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
431 ULONGEST addr
432 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
433
434 /* Do not convert __ea pointers. */
435 if (TYPE_ADDRESS_CLASS_1 (type))
436 return addr;
437
438 return addr? SPUADDR (id, addr & lslr) : 0;
439 }
440
441 static CORE_ADDR
442 spu_integer_to_address (struct gdbarch *gdbarch,
443 struct type *type, const gdb_byte *buf)
444 {
445 int id = spu_gdbarch_id (gdbarch);
446 ULONGEST lslr = spu_lslr (id);
447 ULONGEST addr = unpack_long (type, buf);
448
449 return SPUADDR (id, addr & lslr);
450 }
451
452
453 /* Decoding SPU instructions. */
454
455 enum
456 {
457 op_lqd = 0x34,
458 op_lqx = 0x3c4,
459 op_lqa = 0x61,
460 op_lqr = 0x67,
461 op_stqd = 0x24,
462 op_stqx = 0x144,
463 op_stqa = 0x41,
464 op_stqr = 0x47,
465
466 op_il = 0x081,
467 op_ila = 0x21,
468 op_a = 0x0c0,
469 op_ai = 0x1c,
470
471 op_selb = 0x4,
472
473 op_br = 0x64,
474 op_bra = 0x60,
475 op_brsl = 0x66,
476 op_brasl = 0x62,
477 op_brnz = 0x42,
478 op_brz = 0x40,
479 op_brhnz = 0x46,
480 op_brhz = 0x44,
481 op_bi = 0x1a8,
482 op_bisl = 0x1a9,
483 op_biz = 0x128,
484 op_binz = 0x129,
485 op_bihz = 0x12a,
486 op_bihnz = 0x12b,
487 };
488
489 static int
490 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
491 {
492 if ((insn >> 21) == op)
493 {
494 *rt = insn & 127;
495 *ra = (insn >> 7) & 127;
496 *rb = (insn >> 14) & 127;
497 return 1;
498 }
499
500 return 0;
501 }
502
503 static int
504 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
505 {
506 if ((insn >> 28) == op)
507 {
508 *rt = (insn >> 21) & 127;
509 *ra = (insn >> 7) & 127;
510 *rb = (insn >> 14) & 127;
511 *rc = insn & 127;
512 return 1;
513 }
514
515 return 0;
516 }
517
518 static int
519 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
520 {
521 if ((insn >> 21) == op)
522 {
523 *rt = insn & 127;
524 *ra = (insn >> 7) & 127;
525 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
526 return 1;
527 }
528
529 return 0;
530 }
531
532 static int
533 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
534 {
535 if ((insn >> 24) == op)
536 {
537 *rt = insn & 127;
538 *ra = (insn >> 7) & 127;
539 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
540 return 1;
541 }
542
543 return 0;
544 }
545
546 static int
547 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
548 {
549 if ((insn >> 23) == op)
550 {
551 *rt = insn & 127;
552 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
553 return 1;
554 }
555
556 return 0;
557 }
558
559 static int
560 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
561 {
562 if ((insn >> 25) == op)
563 {
564 *rt = insn & 127;
565 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
566 return 1;
567 }
568
569 return 0;
570 }
571
572 static int
573 is_branch (unsigned int insn, int *offset, int *reg)
574 {
575 int rt, i7, i16;
576
577 if (is_ri16 (insn, op_br, &rt, &i16)
578 || is_ri16 (insn, op_brsl, &rt, &i16)
579 || is_ri16 (insn, op_brnz, &rt, &i16)
580 || is_ri16 (insn, op_brz, &rt, &i16)
581 || is_ri16 (insn, op_brhnz, &rt, &i16)
582 || is_ri16 (insn, op_brhz, &rt, &i16))
583 {
584 *reg = SPU_PC_REGNUM;
585 *offset = i16 << 2;
586 return 1;
587 }
588
589 if (is_ri16 (insn, op_bra, &rt, &i16)
590 || is_ri16 (insn, op_brasl, &rt, &i16))
591 {
592 *reg = -1;
593 *offset = i16 << 2;
594 return 1;
595 }
596
597 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
598 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
599 || is_ri7 (insn, op_biz, &rt, reg, &i7)
600 || is_ri7 (insn, op_binz, &rt, reg, &i7)
601 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
602 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
603 {
604 *offset = 0;
605 return 1;
606 }
607
608 return 0;
609 }
610
611
612 /* Prolog parsing. */
613
614 struct spu_prologue_data
615 {
616 /* Stack frame size. -1 if analysis was unsuccessful. */
617 int size;
618
619 /* How to find the CFA. The CFA is equal to SP at function entry. */
620 int cfa_reg;
621 int cfa_offset;
622
623 /* Offset relative to CFA where a register is saved. -1 if invalid. */
624 int reg_offset[SPU_NUM_GPRS];
625 };
626
627 static CORE_ADDR
628 spu_analyze_prologue (struct gdbarch *gdbarch,
629 CORE_ADDR start_pc, CORE_ADDR end_pc,
630 struct spu_prologue_data *data)
631 {
632 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
633 int found_sp = 0;
634 int found_fp = 0;
635 int found_lr = 0;
636 int found_bc = 0;
637 int reg_immed[SPU_NUM_GPRS];
638 gdb_byte buf[16];
639 CORE_ADDR prolog_pc = start_pc;
640 CORE_ADDR pc;
641 int i;
642
643
644 /* Initialize DATA to default values. */
645 data->size = -1;
646
647 data->cfa_reg = SPU_RAW_SP_REGNUM;
648 data->cfa_offset = 0;
649
650 for (i = 0; i < SPU_NUM_GPRS; i++)
651 data->reg_offset[i] = -1;
652
653 /* Set up REG_IMMED array. This is non-zero for a register if we know its
654 preferred slot currently holds this immediate value. */
655 for (i = 0; i < SPU_NUM_GPRS; i++)
656 reg_immed[i] = 0;
657
658 /* Scan instructions until the first branch.
659
660 The following instructions are important prolog components:
661
662 - The first instruction to set up the stack pointer.
663 - The first instruction to set up the frame pointer.
664 - The first instruction to save the link register.
665 - The first instruction to save the backchain.
666
667 We return the instruction after the latest of these four,
668 or the incoming PC if none is found. The first instruction
669 to set up the stack pointer also defines the frame size.
670
671 Note that instructions saving incoming arguments to their stack
672 slots are not counted as important, because they are hard to
673 identify with certainty. This should not matter much, because
674 arguments are relevant only in code compiled with debug data,
675 and in such code the GDB core will advance until the first source
676 line anyway, using SAL data.
677
678 For purposes of stack unwinding, we analyze the following types
679 of instructions in addition:
680
681 - Any instruction adding to the current frame pointer.
682 - Any instruction loading an immediate constant into a register.
683 - Any instruction storing a register onto the stack.
684
685 These are used to compute the CFA and REG_OFFSET output. */
686
687 for (pc = start_pc; pc < end_pc; pc += 4)
688 {
689 unsigned int insn;
690 int rt, ra, rb, rc, immed;
691
692 if (target_read_memory (pc, buf, 4))
693 break;
694 insn = extract_unsigned_integer (buf, 4, byte_order);
695
696 /* AI is the typical instruction to set up a stack frame.
697 It is also used to initialize the frame pointer. */
698 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
699 {
700 if (rt == data->cfa_reg && ra == data->cfa_reg)
701 data->cfa_offset -= immed;
702
703 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
704 && !found_sp)
705 {
706 found_sp = 1;
707 prolog_pc = pc + 4;
708
709 data->size = -immed;
710 }
711 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
712 && !found_fp)
713 {
714 found_fp = 1;
715 prolog_pc = pc + 4;
716
717 data->cfa_reg = SPU_FP_REGNUM;
718 data->cfa_offset -= immed;
719 }
720 }
721
722 /* A is used to set up stack frames of size >= 512 bytes.
723 If we have tracked the contents of the addend register,
724 we can handle this as well. */
725 else if (is_rr (insn, op_a, &rt, &ra, &rb))
726 {
727 if (rt == data->cfa_reg && ra == data->cfa_reg)
728 {
729 if (reg_immed[rb] != 0)
730 data->cfa_offset -= reg_immed[rb];
731 else
732 data->cfa_reg = -1; /* We don't know the CFA any more. */
733 }
734
735 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
736 && !found_sp)
737 {
738 found_sp = 1;
739 prolog_pc = pc + 4;
740
741 if (reg_immed[rb] != 0)
742 data->size = -reg_immed[rb];
743 }
744 }
745
746 /* We need to track IL and ILA used to load immediate constants
747 in case they are later used as input to an A instruction. */
748 else if (is_ri16 (insn, op_il, &rt, &immed))
749 {
750 reg_immed[rt] = immed;
751
752 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
753 found_sp = 1;
754 }
755
756 else if (is_ri18 (insn, op_ila, &rt, &immed))
757 {
758 reg_immed[rt] = immed & 0x3ffff;
759
760 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
761 found_sp = 1;
762 }
763
764 /* STQD is used to save registers to the stack. */
765 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
766 {
767 if (ra == data->cfa_reg)
768 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
769
770 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
771 && !found_lr)
772 {
773 found_lr = 1;
774 prolog_pc = pc + 4;
775 }
776
777 if (ra == SPU_RAW_SP_REGNUM
778 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
779 && !found_bc)
780 {
781 found_bc = 1;
782 prolog_pc = pc + 4;
783 }
784 }
785
786 /* _start uses SELB to set up the stack pointer. */
787 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
788 {
789 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
790 found_sp = 1;
791 }
792
793 /* We terminate if we find a branch. */
794 else if (is_branch (insn, &immed, &ra))
795 break;
796 }
797
798
799 /* If we successfully parsed until here, and didn't find any instruction
800 modifying SP, we assume we have a frameless function. */
801 if (!found_sp)
802 data->size = 0;
803
804 /* Return cooked instead of raw SP. */
805 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
806 data->cfa_reg = SPU_SP_REGNUM;
807
808 return prolog_pc;
809 }
810
811 /* Return the first instruction after the prologue starting at PC. */
812 static CORE_ADDR
813 spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
814 {
815 struct spu_prologue_data data;
816 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
817 }
818
819 /* Return the frame pointer in use at address PC. */
820 static void
821 spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
822 int *reg, LONGEST *offset)
823 {
824 struct spu_prologue_data data;
825 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
826
827 if (data.size != -1 && data.cfa_reg != -1)
828 {
829 /* The 'frame pointer' address is CFA minus frame size. */
830 *reg = data.cfa_reg;
831 *offset = data.cfa_offset - data.size;
832 }
833 else
834 {
835 /* ??? We don't really know ... */
836 *reg = SPU_SP_REGNUM;
837 *offset = 0;
838 }
839 }
840
841 /* Return true if we are in the function's epilogue, i.e. after the
842 instruction that destroyed the function's stack frame.
843
844 1) scan forward from the point of execution:
845 a) If you find an instruction that modifies the stack pointer
846 or transfers control (except a return), execution is not in
847 an epilogue, return.
848 b) Stop scanning if you find a return instruction or reach the
849 end of the function or reach the hard limit for the size of
850 an epilogue.
851 2) scan backward from the point of execution:
852 a) If you find an instruction that modifies the stack pointer,
853 execution *is* in an epilogue, return.
854 b) Stop scanning if you reach an instruction that transfers
855 control or the beginning of the function or reach the hard
856 limit for the size of an epilogue. */
857
858 static int
859 spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
860 {
861 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
862 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
863 bfd_byte buf[4];
864 unsigned int insn;
865 int rt, ra, rb, rc, immed;
866
867 /* Find the search limits based on function boundaries and hard limit.
868 We assume the epilogue can be up to 64 instructions long. */
869
870 const int spu_max_epilogue_size = 64 * 4;
871
872 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
873 return 0;
874
875 if (pc - func_start < spu_max_epilogue_size)
876 epilogue_start = func_start;
877 else
878 epilogue_start = pc - spu_max_epilogue_size;
879
880 if (func_end - pc < spu_max_epilogue_size)
881 epilogue_end = func_end;
882 else
883 epilogue_end = pc + spu_max_epilogue_size;
884
885 /* Scan forward until next 'bi $0'. */
886
887 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
888 {
889 if (target_read_memory (scan_pc, buf, 4))
890 return 0;
891 insn = extract_unsigned_integer (buf, 4, byte_order);
892
893 if (is_branch (insn, &immed, &ra))
894 {
895 if (immed == 0 && ra == SPU_LR_REGNUM)
896 break;
897
898 return 0;
899 }
900
901 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
902 || is_rr (insn, op_a, &rt, &ra, &rb)
903 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
904 {
905 if (rt == SPU_RAW_SP_REGNUM)
906 return 0;
907 }
908 }
909
910 if (scan_pc >= epilogue_end)
911 return 0;
912
913 /* Scan backward until adjustment to stack pointer (R1). */
914
915 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
916 {
917 if (target_read_memory (scan_pc, buf, 4))
918 return 0;
919 insn = extract_unsigned_integer (buf, 4, byte_order);
920
921 if (is_branch (insn, &immed, &ra))
922 return 0;
923
924 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
925 || is_rr (insn, op_a, &rt, &ra, &rb)
926 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
927 {
928 if (rt == SPU_RAW_SP_REGNUM)
929 return 1;
930 }
931 }
932
933 return 0;
934 }
935
936
937 /* Normal stack frames. */
938
939 struct spu_unwind_cache
940 {
941 CORE_ADDR func;
942 CORE_ADDR frame_base;
943 CORE_ADDR local_base;
944
945 struct trad_frame_saved_reg *saved_regs;
946 };
947
948 static struct spu_unwind_cache *
949 spu_frame_unwind_cache (struct frame_info *this_frame,
950 void **this_prologue_cache)
951 {
952 struct gdbarch *gdbarch = get_frame_arch (this_frame);
953 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
954 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
955 struct spu_unwind_cache *info;
956 struct spu_prologue_data data;
957 CORE_ADDR id = tdep->id;
958 gdb_byte buf[16];
959
960 if (*this_prologue_cache)
961 return *this_prologue_cache;
962
963 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
964 *this_prologue_cache = info;
965 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
966 info->frame_base = 0;
967 info->local_base = 0;
968
969 /* Find the start of the current function, and analyze its prologue. */
970 info->func = get_frame_func (this_frame);
971 if (info->func == 0)
972 {
973 /* Fall back to using the current PC as frame ID. */
974 info->func = get_frame_pc (this_frame);
975 data.size = -1;
976 }
977 else
978 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
979 &data);
980
981 /* If successful, use prologue analysis data. */
982 if (data.size != -1 && data.cfa_reg != -1)
983 {
984 CORE_ADDR cfa;
985 int i;
986
987 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
988 get_frame_register (this_frame, data.cfa_reg, buf);
989 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
990 cfa = SPUADDR (id, cfa);
991
992 /* Call-saved register slots. */
993 for (i = 0; i < SPU_NUM_GPRS; i++)
994 if (i == SPU_LR_REGNUM
995 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
996 if (data.reg_offset[i] != -1)
997 info->saved_regs[i].addr = cfa - data.reg_offset[i];
998
999 /* Frame bases. */
1000 info->frame_base = cfa;
1001 info->local_base = cfa - data.size;
1002 }
1003
1004 /* Otherwise, fall back to reading the backchain link. */
1005 else
1006 {
1007 CORE_ADDR reg;
1008 LONGEST backchain;
1009 int status;
1010
1011 /* Get the backchain. */
1012 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1013 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1014 &backchain);
1015
1016 /* A zero backchain terminates the frame chain. Also, sanity
1017 check against the local store size limit. */
1018 if (status && backchain > 0 && backchain < SPU_LS_SIZE)
1019 {
1020 /* Assume the link register is saved into its slot. */
1021 if (backchain + 16 < SPU_LS_SIZE)
1022 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id, backchain + 16);
1023
1024 /* Frame bases. */
1025 info->frame_base = SPUADDR (id, backchain);
1026 info->local_base = SPUADDR (id, reg);
1027 }
1028 }
1029
1030 /* If we didn't find a frame, we cannot determine SP / return address. */
1031 if (info->frame_base == 0)
1032 return info;
1033
1034 /* The previous SP is equal to the CFA. */
1035 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1036 SPUADDR_ADDR (info->frame_base));
1037
1038 /* Read full contents of the unwound link register in order to
1039 be able to determine the return address. */
1040 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1041 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1042 else
1043 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
1044
1045 /* Normally, the return address is contained in the slot 0 of the
1046 link register, and slots 1-3 are zero. For an overlay return,
1047 slot 0 contains the address of the overlay manager return stub,
1048 slot 1 contains the partition number of the overlay section to
1049 be returned to, and slot 2 contains the return address within
1050 that section. Return the latter address in that case. */
1051 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
1052 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1053 extract_unsigned_integer (buf + 8, 4, byte_order));
1054 else
1055 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1056 extract_unsigned_integer (buf, 4, byte_order));
1057
1058 return info;
1059 }
1060
1061 static void
1062 spu_frame_this_id (struct frame_info *this_frame,
1063 void **this_prologue_cache, struct frame_id *this_id)
1064 {
1065 struct spu_unwind_cache *info =
1066 spu_frame_unwind_cache (this_frame, this_prologue_cache);
1067
1068 if (info->frame_base == 0)
1069 return;
1070
1071 *this_id = frame_id_build (info->frame_base, info->func);
1072 }
1073
1074 static struct value *
1075 spu_frame_prev_register (struct frame_info *this_frame,
1076 void **this_prologue_cache, int regnum)
1077 {
1078 struct spu_unwind_cache *info
1079 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
1080
1081 /* Special-case the stack pointer. */
1082 if (regnum == SPU_RAW_SP_REGNUM)
1083 regnum = SPU_SP_REGNUM;
1084
1085 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1086 }
1087
1088 static const struct frame_unwind spu_frame_unwind = {
1089 NORMAL_FRAME,
1090 spu_frame_this_id,
1091 spu_frame_prev_register,
1092 NULL,
1093 default_frame_sniffer
1094 };
1095
1096 static CORE_ADDR
1097 spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
1098 {
1099 struct spu_unwind_cache *info
1100 = spu_frame_unwind_cache (this_frame, this_cache);
1101 return info->local_base;
1102 }
1103
1104 static const struct frame_base spu_frame_base = {
1105 &spu_frame_unwind,
1106 spu_frame_base_address,
1107 spu_frame_base_address,
1108 spu_frame_base_address
1109 };
1110
1111 static CORE_ADDR
1112 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1113 {
1114 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1115 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1116 /* Mask off interrupt enable bit. */
1117 return SPUADDR (tdep->id, pc & -4);
1118 }
1119
1120 static CORE_ADDR
1121 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1122 {
1123 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1124 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1125 return SPUADDR (tdep->id, sp);
1126 }
1127
1128 static CORE_ADDR
1129 spu_read_pc (struct regcache *regcache)
1130 {
1131 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1132 ULONGEST pc;
1133 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
1134 /* Mask off interrupt enable bit. */
1135 return SPUADDR (tdep->id, pc & -4);
1136 }
1137
1138 static void
1139 spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
1140 {
1141 /* Keep interrupt enabled state unchanged. */
1142 ULONGEST old_pc;
1143 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1144 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
1145 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
1146 }
1147
1148
1149 /* Cell/B.E. cross-architecture unwinder support. */
1150
1151 struct spu2ppu_cache
1152 {
1153 struct frame_id frame_id;
1154 struct regcache *regcache;
1155 };
1156
1157 static struct gdbarch *
1158 spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1159 {
1160 struct spu2ppu_cache *cache = *this_cache;
1161 return get_regcache_arch (cache->regcache);
1162 }
1163
1164 static void
1165 spu2ppu_this_id (struct frame_info *this_frame,
1166 void **this_cache, struct frame_id *this_id)
1167 {
1168 struct spu2ppu_cache *cache = *this_cache;
1169 *this_id = cache->frame_id;
1170 }
1171
1172 static struct value *
1173 spu2ppu_prev_register (struct frame_info *this_frame,
1174 void **this_cache, int regnum)
1175 {
1176 struct spu2ppu_cache *cache = *this_cache;
1177 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1178 gdb_byte *buf;
1179
1180 buf = alloca (register_size (gdbarch, regnum));
1181 regcache_cooked_read (cache->regcache, regnum, buf);
1182 return frame_unwind_got_bytes (this_frame, regnum, buf);
1183 }
1184
1185 static int
1186 spu2ppu_sniffer (const struct frame_unwind *self,
1187 struct frame_info *this_frame, void **this_prologue_cache)
1188 {
1189 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1190 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1191 CORE_ADDR base, func, backchain;
1192 gdb_byte buf[4];
1193
1194 if (gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_spu)
1195 return 0;
1196
1197 base = get_frame_sp (this_frame);
1198 func = get_frame_pc (this_frame);
1199 if (target_read_memory (base, buf, 4))
1200 return 0;
1201 backchain = extract_unsigned_integer (buf, 4, byte_order);
1202
1203 if (!backchain)
1204 {
1205 struct frame_info *fi;
1206
1207 struct spu2ppu_cache *cache
1208 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1209
1210 cache->frame_id = frame_id_build (base + 16, func);
1211
1212 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1213 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1214 break;
1215
1216 if (fi)
1217 {
1218 cache->regcache = frame_save_as_regcache (fi);
1219 *this_prologue_cache = cache;
1220 return 1;
1221 }
1222 else
1223 {
1224 struct regcache *regcache;
1225 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1226 cache->regcache = regcache_dup (regcache);
1227 *this_prologue_cache = cache;
1228 return 1;
1229 }
1230 }
1231
1232 return 0;
1233 }
1234
1235 static void
1236 spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1237 {
1238 struct spu2ppu_cache *cache = this_cache;
1239 regcache_xfree (cache->regcache);
1240 }
1241
1242 static const struct frame_unwind spu2ppu_unwind = {
1243 ARCH_FRAME,
1244 spu2ppu_this_id,
1245 spu2ppu_prev_register,
1246 NULL,
1247 spu2ppu_sniffer,
1248 spu2ppu_dealloc_cache,
1249 spu2ppu_prev_arch,
1250 };
1251
1252
1253 /* Function calling convention. */
1254
1255 static CORE_ADDR
1256 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1257 {
1258 return sp & ~15;
1259 }
1260
1261 static CORE_ADDR
1262 spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1263 struct value **args, int nargs, struct type *value_type,
1264 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1265 struct regcache *regcache)
1266 {
1267 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1268 sp = (sp - 4) & ~15;
1269 /* Store the address of that breakpoint */
1270 *bp_addr = sp;
1271 /* The call starts at the callee's entry point. */
1272 *real_pc = funaddr;
1273
1274 return sp;
1275 }
1276
1277 static int
1278 spu_scalar_value_p (struct type *type)
1279 {
1280 switch (TYPE_CODE (type))
1281 {
1282 case TYPE_CODE_INT:
1283 case TYPE_CODE_ENUM:
1284 case TYPE_CODE_RANGE:
1285 case TYPE_CODE_CHAR:
1286 case TYPE_CODE_BOOL:
1287 case TYPE_CODE_PTR:
1288 case TYPE_CODE_REF:
1289 return TYPE_LENGTH (type) <= 16;
1290
1291 default:
1292 return 0;
1293 }
1294 }
1295
1296 static void
1297 spu_value_to_regcache (struct regcache *regcache, int regnum,
1298 struct type *type, const gdb_byte *in)
1299 {
1300 int len = TYPE_LENGTH (type);
1301
1302 if (spu_scalar_value_p (type))
1303 {
1304 int preferred_slot = len < 4 ? 4 - len : 0;
1305 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1306 }
1307 else
1308 {
1309 while (len >= 16)
1310 {
1311 regcache_cooked_write (regcache, regnum++, in);
1312 in += 16;
1313 len -= 16;
1314 }
1315
1316 if (len > 0)
1317 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1318 }
1319 }
1320
1321 static void
1322 spu_regcache_to_value (struct regcache *regcache, int regnum,
1323 struct type *type, gdb_byte *out)
1324 {
1325 int len = TYPE_LENGTH (type);
1326
1327 if (spu_scalar_value_p (type))
1328 {
1329 int preferred_slot = len < 4 ? 4 - len : 0;
1330 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1331 }
1332 else
1333 {
1334 while (len >= 16)
1335 {
1336 regcache_cooked_read (regcache, regnum++, out);
1337 out += 16;
1338 len -= 16;
1339 }
1340
1341 if (len > 0)
1342 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1343 }
1344 }
1345
1346 static CORE_ADDR
1347 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1348 struct regcache *regcache, CORE_ADDR bp_addr,
1349 int nargs, struct value **args, CORE_ADDR sp,
1350 int struct_return, CORE_ADDR struct_addr)
1351 {
1352 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1353 CORE_ADDR sp_delta;
1354 int i;
1355 int regnum = SPU_ARG1_REGNUM;
1356 int stack_arg = -1;
1357 gdb_byte buf[16];
1358
1359 /* Set the return address. */
1360 memset (buf, 0, sizeof buf);
1361 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
1362 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1363
1364 /* If STRUCT_RETURN is true, then the struct return address (in
1365 STRUCT_ADDR) will consume the first argument-passing register.
1366 Both adjust the register count and store that value. */
1367 if (struct_return)
1368 {
1369 memset (buf, 0, sizeof buf);
1370 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
1371 regcache_cooked_write (regcache, regnum++, buf);
1372 }
1373
1374 /* Fill in argument registers. */
1375 for (i = 0; i < nargs; i++)
1376 {
1377 struct value *arg = args[i];
1378 struct type *type = check_typedef (value_type (arg));
1379 const gdb_byte *contents = value_contents (arg);
1380 int len = TYPE_LENGTH (type);
1381 int n_regs = align_up (len, 16) / 16;
1382
1383 /* If the argument doesn't wholly fit into registers, it and
1384 all subsequent arguments go to the stack. */
1385 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1386 {
1387 stack_arg = i;
1388 break;
1389 }
1390
1391 spu_value_to_regcache (regcache, regnum, type, contents);
1392 regnum += n_regs;
1393 }
1394
1395 /* Overflow arguments go to the stack. */
1396 if (stack_arg != -1)
1397 {
1398 CORE_ADDR ap;
1399
1400 /* Allocate all required stack size. */
1401 for (i = stack_arg; i < nargs; i++)
1402 {
1403 struct type *type = check_typedef (value_type (args[i]));
1404 sp -= align_up (TYPE_LENGTH (type), 16);
1405 }
1406
1407 /* Fill in stack arguments. */
1408 ap = sp;
1409 for (i = stack_arg; i < nargs; i++)
1410 {
1411 struct value *arg = args[i];
1412 struct type *type = check_typedef (value_type (arg));
1413 int len = TYPE_LENGTH (type);
1414 int preferred_slot;
1415
1416 if (spu_scalar_value_p (type))
1417 preferred_slot = len < 4 ? 4 - len : 0;
1418 else
1419 preferred_slot = 0;
1420
1421 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1422 ap += align_up (TYPE_LENGTH (type), 16);
1423 }
1424 }
1425
1426 /* Allocate stack frame header. */
1427 sp -= 32;
1428
1429 /* Store stack back chain. */
1430 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1431 target_write_memory (sp, buf, 16);
1432
1433 /* Finally, update all slots of the SP register. */
1434 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
1435 for (i = 0; i < 4; i++)
1436 {
1437 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1438 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
1439 }
1440 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
1441
1442 return sp;
1443 }
1444
1445 static struct frame_id
1446 spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1447 {
1448 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1449 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1450 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1451 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
1452 }
1453
1454 /* Function return value access. */
1455
1456 static enum return_value_convention
1457 spu_return_value (struct gdbarch *gdbarch, struct type *func_type,
1458 struct type *type, struct regcache *regcache,
1459 gdb_byte *out, const gdb_byte *in)
1460 {
1461 enum return_value_convention rvc;
1462
1463 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1464 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1465 else
1466 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1467
1468 if (in)
1469 {
1470 switch (rvc)
1471 {
1472 case RETURN_VALUE_REGISTER_CONVENTION:
1473 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1474 break;
1475
1476 case RETURN_VALUE_STRUCT_CONVENTION:
1477 error ("Cannot set function return value.");
1478 break;
1479 }
1480 }
1481 else if (out)
1482 {
1483 switch (rvc)
1484 {
1485 case RETURN_VALUE_REGISTER_CONVENTION:
1486 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1487 break;
1488
1489 case RETURN_VALUE_STRUCT_CONVENTION:
1490 error ("Function return value unknown.");
1491 break;
1492 }
1493 }
1494
1495 return rvc;
1496 }
1497
1498
1499 /* Breakpoints. */
1500
1501 static const gdb_byte *
1502 spu_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
1503 {
1504 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
1505
1506 *lenptr = sizeof breakpoint;
1507 return breakpoint;
1508 }
1509
1510
1511 /* Software single-stepping support. */
1512
1513 static int
1514 spu_software_single_step (struct frame_info *frame)
1515 {
1516 struct gdbarch *gdbarch = get_frame_arch (frame);
1517 struct address_space *aspace = get_frame_address_space (frame);
1518 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1519 CORE_ADDR pc, next_pc;
1520 unsigned int insn;
1521 int offset, reg;
1522 gdb_byte buf[4];
1523
1524 pc = get_frame_pc (frame);
1525
1526 if (target_read_memory (pc, buf, 4))
1527 return 1;
1528 insn = extract_unsigned_integer (buf, 4, byte_order);
1529
1530 /* Next sequential instruction is at PC + 4, except if the current
1531 instruction is a PPE-assisted call, in which case it is at PC + 8.
1532 Wrap around LS limit to be on the safe side. */
1533 if ((insn & 0xffffff00) == 0x00002100)
1534 next_pc = (SPUADDR_ADDR (pc) + 8) & (SPU_LS_SIZE - 1);
1535 else
1536 next_pc = (SPUADDR_ADDR (pc) + 4) & (SPU_LS_SIZE - 1);
1537
1538 insert_single_step_breakpoint (gdbarch,
1539 aspace, SPUADDR (SPUADDR_SPU (pc), next_pc));
1540
1541 if (is_branch (insn, &offset, &reg))
1542 {
1543 CORE_ADDR target = offset;
1544
1545 if (reg == SPU_PC_REGNUM)
1546 target += SPUADDR_ADDR (pc);
1547 else if (reg != -1)
1548 {
1549 get_frame_register_bytes (frame, reg, 0, 4, buf);
1550 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1551 }
1552
1553 target = target & (SPU_LS_SIZE - 1);
1554 if (target != next_pc)
1555 insert_single_step_breakpoint (gdbarch, aspace,
1556 SPUADDR (SPUADDR_SPU (pc), target));
1557 }
1558
1559 return 1;
1560 }
1561
1562
1563 /* Longjmp support. */
1564
1565 static int
1566 spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1567 {
1568 struct gdbarch *gdbarch = get_frame_arch (frame);
1569 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1570 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1571 gdb_byte buf[4];
1572 CORE_ADDR jb_addr;
1573
1574 /* Jump buffer is pointed to by the argument register $r3. */
1575 get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf);
1576 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1577 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
1578 return 0;
1579
1580 *pc = extract_unsigned_integer (buf, 4, byte_order);
1581 *pc = SPUADDR (tdep->id, *pc);
1582 return 1;
1583 }
1584
1585
1586 /* Disassembler. */
1587
1588 struct spu_dis_asm_data
1589 {
1590 struct gdbarch *gdbarch;
1591 int id;
1592 };
1593
1594 static void
1595 spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1596 {
1597 struct spu_dis_asm_data *data = info->application_data;
1598 print_address (data->gdbarch, SPUADDR (data->id, addr), info->stream);
1599 }
1600
1601 static int
1602 gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1603 {
1604 /* The opcodes disassembler does 18-bit address arithmetic. Make sure the
1605 SPU ID encoded in the high bits is added back when we call print_address. */
1606 struct disassemble_info spu_info = *info;
1607 struct spu_dis_asm_data data;
1608 data.gdbarch = info->application_data;
1609 data.id = SPUADDR_SPU (memaddr);
1610
1611 spu_info.application_data = &data;
1612 spu_info.print_address_func = spu_dis_asm_print_address;
1613 return print_insn_spu (memaddr, &spu_info);
1614 }
1615
1616
1617 /* Target overlays for the SPU overlay manager.
1618
1619 See the documentation of simple_overlay_update for how the
1620 interface is supposed to work.
1621
1622 Data structures used by the overlay manager:
1623
1624 struct ovly_table
1625 {
1626 u32 vma;
1627 u32 size;
1628 u32 pos;
1629 u32 buf;
1630 } _ovly_table[]; -- one entry per overlay section
1631
1632 struct ovly_buf_table
1633 {
1634 u32 mapped;
1635 } _ovly_buf_table[]; -- one entry per overlay buffer
1636
1637 _ovly_table should never change.
1638
1639 Both tables are aligned to a 16-byte boundary, the symbols _ovly_table
1640 and _ovly_buf_table are of type STT_OBJECT and their size set to the size
1641 of the respective array. buf in _ovly_table is an index into _ovly_buf_table.
1642
1643 mapped is an index into _ovly_table. Both the mapped and buf indices start
1644 from one to reference the first entry in their respective tables. */
1645
1646 /* Using the per-objfile private data mechanism, we store for each
1647 objfile an array of "struct spu_overlay_table" structures, one
1648 for each obj_section of the objfile. This structure holds two
1649 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1650 is *not* an overlay section. If it is non-zero, it represents
1651 a target address. The overlay section is mapped iff the target
1652 integer at this location equals MAPPED_VAL. */
1653
1654 static const struct objfile_data *spu_overlay_data;
1655
1656 struct spu_overlay_table
1657 {
1658 CORE_ADDR mapped_ptr;
1659 CORE_ADDR mapped_val;
1660 };
1661
1662 /* Retrieve the overlay table for OBJFILE. If not already cached, read
1663 the _ovly_table data structure from the target and initialize the
1664 spu_overlay_table data structure from it. */
1665 static struct spu_overlay_table *
1666 spu_get_overlay_table (struct objfile *objfile)
1667 {
1668 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1669 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1670 struct minimal_symbol *ovly_table_msym, *ovly_buf_table_msym;
1671 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1672 unsigned ovly_table_size, ovly_buf_table_size;
1673 struct spu_overlay_table *tbl;
1674 struct obj_section *osect;
1675 char *ovly_table;
1676 int i;
1677
1678 tbl = objfile_data (objfile, spu_overlay_data);
1679 if (tbl)
1680 return tbl;
1681
1682 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1683 if (!ovly_table_msym)
1684 return NULL;
1685
1686 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table", NULL, objfile);
1687 if (!ovly_buf_table_msym)
1688 return NULL;
1689
1690 ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
1691 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym);
1692
1693 ovly_buf_table_base = SYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1694 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym);
1695
1696 ovly_table = xmalloc (ovly_table_size);
1697 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1698
1699 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1700 objfile->sections_end - objfile->sections,
1701 struct spu_overlay_table);
1702
1703 for (i = 0; i < ovly_table_size / 16; i++)
1704 {
1705 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1706 4, byte_order);
1707 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1708 4, byte_order);
1709 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1710 4, byte_order);
1711 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1712 4, byte_order);
1713
1714 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1715 continue;
1716
1717 ALL_OBJFILE_OSECTIONS (objfile, osect)
1718 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1719 && pos == osect->the_bfd_section->filepos)
1720 {
1721 int ndx = osect - objfile->sections;
1722 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1723 tbl[ndx].mapped_val = i + 1;
1724 break;
1725 }
1726 }
1727
1728 xfree (ovly_table);
1729 set_objfile_data (objfile, spu_overlay_data, tbl);
1730 return tbl;
1731 }
1732
1733 /* Read _ovly_buf_table entry from the target to dermine whether
1734 OSECT is currently mapped, and update the mapped state. */
1735 static void
1736 spu_overlay_update_osect (struct obj_section *osect)
1737 {
1738 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1739 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1740 struct spu_overlay_table *ovly_table;
1741 CORE_ADDR id, val;
1742
1743 ovly_table = spu_get_overlay_table (osect->objfile);
1744 if (!ovly_table)
1745 return;
1746
1747 ovly_table += osect - osect->objfile->sections;
1748 if (ovly_table->mapped_ptr == 0)
1749 return;
1750
1751 id = SPUADDR_SPU (obj_section_addr (osect));
1752 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1753 4, byte_order);
1754 osect->ovly_mapped = (val == ovly_table->mapped_val);
1755 }
1756
1757 /* If OSECT is NULL, then update all sections' mapped state.
1758 If OSECT is non-NULL, then update only OSECT's mapped state. */
1759 static void
1760 spu_overlay_update (struct obj_section *osect)
1761 {
1762 /* Just one section. */
1763 if (osect)
1764 spu_overlay_update_osect (osect);
1765
1766 /* All sections. */
1767 else
1768 {
1769 struct objfile *objfile;
1770
1771 ALL_OBJSECTIONS (objfile, osect)
1772 if (section_is_overlay (osect))
1773 spu_overlay_update_osect (osect);
1774 }
1775 }
1776
1777 /* Whenever a new objfile is loaded, read the target's _ovly_table.
1778 If there is one, go through all sections and make sure for non-
1779 overlay sections LMA equals VMA, while for overlay sections LMA
1780 is larger than local store size. */
1781 static void
1782 spu_overlay_new_objfile (struct objfile *objfile)
1783 {
1784 struct spu_overlay_table *ovly_table;
1785 struct obj_section *osect;
1786
1787 /* If we've already touched this file, do nothing. */
1788 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1789 return;
1790
1791 /* Consider only SPU objfiles. */
1792 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1793 return;
1794
1795 /* Check if this objfile has overlays. */
1796 ovly_table = spu_get_overlay_table (objfile);
1797 if (!ovly_table)
1798 return;
1799
1800 /* Now go and fiddle with all the LMAs. */
1801 ALL_OBJFILE_OSECTIONS (objfile, osect)
1802 {
1803 bfd *obfd = objfile->obfd;
1804 asection *bsect = osect->the_bfd_section;
1805 int ndx = osect - objfile->sections;
1806
1807 if (ovly_table[ndx].mapped_ptr == 0)
1808 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1809 else
1810 bfd_section_lma (obfd, bsect) = bsect->filepos + SPU_LS_SIZE;
1811 }
1812 }
1813
1814
1815 /* Insert temporary breakpoint on "main" function of newly loaded
1816 SPE context OBJFILE. */
1817 static void
1818 spu_catch_start (struct objfile *objfile)
1819 {
1820 struct minimal_symbol *minsym;
1821 struct symtab *symtab;
1822 CORE_ADDR pc;
1823 char buf[32];
1824
1825 /* Do this only if requested by "set spu stop-on-load on". */
1826 if (!spu_stop_on_load_p)
1827 return;
1828
1829 /* Consider only SPU objfiles. */
1830 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1831 return;
1832
1833 /* The main objfile is handled differently. */
1834 if (objfile == symfile_objfile)
1835 return;
1836
1837 /* There can be multiple symbols named "main". Search for the
1838 "main" in *this* objfile. */
1839 minsym = lookup_minimal_symbol ("main", NULL, objfile);
1840 if (!minsym)
1841 return;
1842
1843 /* If we have debugging information, try to use it -- this
1844 will allow us to properly skip the prologue. */
1845 pc = SYMBOL_VALUE_ADDRESS (minsym);
1846 symtab = find_pc_sect_symtab (pc, SYMBOL_OBJ_SECTION (minsym));
1847 if (symtab != NULL)
1848 {
1849 struct blockvector *bv = BLOCKVECTOR (symtab);
1850 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1851 struct symbol *sym;
1852 struct symtab_and_line sal;
1853
1854 sym = lookup_block_symbol (block, "main", NULL, VAR_DOMAIN);
1855 if (sym)
1856 {
1857 fixup_symbol_section (sym, objfile);
1858 sal = find_function_start_sal (sym, 1);
1859 pc = sal.pc;
1860 }
1861 }
1862
1863 /* Use a numerical address for the set_breakpoint command to avoid having
1864 the breakpoint re-set incorrectly. */
1865 xsnprintf (buf, sizeof buf, "*%s", core_addr_to_string (pc));
1866 set_breakpoint (get_objfile_arch (objfile),
1867 buf, NULL /* condition */,
1868 0 /* hardwareflag */, 1 /* tempflag */,
1869 -1 /* thread */, 0 /* ignore_count */,
1870 0 /* pending */, 1 /* enabled */);
1871 }
1872
1873
1874 /* Look up OBJFILE loaded into FRAME's SPU context. */
1875 static struct objfile *
1876 spu_objfile_from_frame (struct frame_info *frame)
1877 {
1878 struct gdbarch *gdbarch = get_frame_arch (frame);
1879 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1880 struct objfile *obj;
1881
1882 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
1883 return NULL;
1884
1885 ALL_OBJFILES (obj)
1886 {
1887 if (obj->sections != obj->sections_end
1888 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
1889 return obj;
1890 }
1891
1892 return NULL;
1893 }
1894
1895 /* Flush cache for ea pointer access if available. */
1896 static void
1897 flush_ea_cache (void)
1898 {
1899 struct minimal_symbol *msymbol;
1900 struct objfile *obj;
1901
1902 if (!has_stack_frames ())
1903 return;
1904
1905 obj = spu_objfile_from_frame (get_current_frame ());
1906 if (obj == NULL)
1907 return;
1908
1909 /* Lookup inferior function __cache_flush. */
1910 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
1911 if (msymbol != NULL)
1912 {
1913 struct type *type;
1914 CORE_ADDR addr;
1915
1916 type = objfile_type (obj)->builtin_void;
1917 type = lookup_function_type (type);
1918 type = lookup_pointer_type (type);
1919 addr = SYMBOL_VALUE_ADDRESS (msymbol);
1920
1921 call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
1922 }
1923 }
1924
1925 /* This handler is called when the inferior has stopped. If it is stopped in
1926 SPU architecture then flush the ea cache if used. */
1927 static void
1928 spu_attach_normal_stop (struct bpstats *bs, int print_frame)
1929 {
1930 if (!spu_auto_flush_cache_p)
1931 return;
1932
1933 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
1934 re-entering this function when __cache_flush stops. */
1935 spu_auto_flush_cache_p = 0;
1936 flush_ea_cache ();
1937 spu_auto_flush_cache_p = 1;
1938 }
1939
1940
1941 /* "info spu" commands. */
1942
1943 static void
1944 info_spu_event_command (char *args, int from_tty)
1945 {
1946 struct frame_info *frame = get_selected_frame (NULL);
1947 ULONGEST event_status = 0;
1948 ULONGEST event_mask = 0;
1949 struct cleanup *chain;
1950 gdb_byte buf[100];
1951 char annex[32];
1952 LONGEST len;
1953 int rc, id;
1954
1955 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
1956 error (_("\"info spu\" is only supported on the SPU architecture."));
1957
1958 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
1959
1960 xsnprintf (annex, sizeof annex, "%d/event_status", id);
1961 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1962 buf, 0, (sizeof (buf) - 1));
1963 if (len <= 0)
1964 error (_("Could not read event_status."));
1965 buf[len] = '\0';
1966 event_status = strtoulst (buf, NULL, 16);
1967
1968 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
1969 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1970 buf, 0, (sizeof (buf) - 1));
1971 if (len <= 0)
1972 error (_("Could not read event_mask."));
1973 buf[len] = '\0';
1974 event_mask = strtoulst (buf, NULL, 16);
1975
1976 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoEvent");
1977
1978 if (ui_out_is_mi_like_p (uiout))
1979 {
1980 ui_out_field_fmt (uiout, "event_status",
1981 "0x%s", phex_nz (event_status, 4));
1982 ui_out_field_fmt (uiout, "event_mask",
1983 "0x%s", phex_nz (event_mask, 4));
1984 }
1985 else
1986 {
1987 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
1988 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
1989 }
1990
1991 do_cleanups (chain);
1992 }
1993
1994 static void
1995 info_spu_signal_command (char *args, int from_tty)
1996 {
1997 struct frame_info *frame = get_selected_frame (NULL);
1998 struct gdbarch *gdbarch = get_frame_arch (frame);
1999 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2000 ULONGEST signal1 = 0;
2001 ULONGEST signal1_type = 0;
2002 int signal1_pending = 0;
2003 ULONGEST signal2 = 0;
2004 ULONGEST signal2_type = 0;
2005 int signal2_pending = 0;
2006 struct cleanup *chain;
2007 char annex[32];
2008 gdb_byte buf[100];
2009 LONGEST len;
2010 int rc, id;
2011
2012 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2013 error (_("\"info spu\" is only supported on the SPU architecture."));
2014
2015 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2016
2017 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2018 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2019 if (len < 0)
2020 error (_("Could not read signal1."));
2021 else if (len == 4)
2022 {
2023 signal1 = extract_unsigned_integer (buf, 4, byte_order);
2024 signal1_pending = 1;
2025 }
2026
2027 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2028 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2029 buf, 0, (sizeof (buf) - 1));
2030 if (len <= 0)
2031 error (_("Could not read signal1_type."));
2032 buf[len] = '\0';
2033 signal1_type = strtoulst (buf, NULL, 16);
2034
2035 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2036 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2037 if (len < 0)
2038 error (_("Could not read signal2."));
2039 else if (len == 4)
2040 {
2041 signal2 = extract_unsigned_integer (buf, 4, byte_order);
2042 signal2_pending = 1;
2043 }
2044
2045 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2046 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2047 buf, 0, (sizeof (buf) - 1));
2048 if (len <= 0)
2049 error (_("Could not read signal2_type."));
2050 buf[len] = '\0';
2051 signal2_type = strtoulst (buf, NULL, 16);
2052
2053 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoSignal");
2054
2055 if (ui_out_is_mi_like_p (uiout))
2056 {
2057 ui_out_field_int (uiout, "signal1_pending", signal1_pending);
2058 ui_out_field_fmt (uiout, "signal1", "0x%s", phex_nz (signal1, 4));
2059 ui_out_field_int (uiout, "signal1_type", signal1_type);
2060 ui_out_field_int (uiout, "signal2_pending", signal2_pending);
2061 ui_out_field_fmt (uiout, "signal2", "0x%s", phex_nz (signal2, 4));
2062 ui_out_field_int (uiout, "signal2_type", signal2_type);
2063 }
2064 else
2065 {
2066 if (signal1_pending)
2067 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2068 else
2069 printf_filtered (_("Signal 1 not pending "));
2070
2071 if (signal1_type)
2072 printf_filtered (_("(Type Or)\n"));
2073 else
2074 printf_filtered (_("(Type Overwrite)\n"));
2075
2076 if (signal2_pending)
2077 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2078 else
2079 printf_filtered (_("Signal 2 not pending "));
2080
2081 if (signal2_type)
2082 printf_filtered (_("(Type Or)\n"));
2083 else
2084 printf_filtered (_("(Type Overwrite)\n"));
2085 }
2086
2087 do_cleanups (chain);
2088 }
2089
2090 static void
2091 info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
2092 const char *field, const char *msg)
2093 {
2094 struct cleanup *chain;
2095 int i;
2096
2097 if (nr <= 0)
2098 return;
2099
2100 chain = make_cleanup_ui_out_table_begin_end (uiout, 1, nr, "mbox");
2101
2102 ui_out_table_header (uiout, 32, ui_left, field, msg);
2103 ui_out_table_body (uiout);
2104
2105 for (i = 0; i < nr; i++)
2106 {
2107 struct cleanup *val_chain;
2108 ULONGEST val;
2109 val_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "mbox");
2110 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
2111 ui_out_field_fmt (uiout, field, "0x%s", phex (val, 4));
2112 do_cleanups (val_chain);
2113
2114 if (!ui_out_is_mi_like_p (uiout))
2115 printf_filtered ("\n");
2116 }
2117
2118 do_cleanups (chain);
2119 }
2120
2121 static void
2122 info_spu_mailbox_command (char *args, int from_tty)
2123 {
2124 struct frame_info *frame = get_selected_frame (NULL);
2125 struct gdbarch *gdbarch = get_frame_arch (frame);
2126 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2127 struct cleanup *chain;
2128 char annex[32];
2129 gdb_byte buf[1024];
2130 LONGEST len;
2131 int i, id;
2132
2133 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2134 error (_("\"info spu\" is only supported on the SPU architecture."));
2135
2136 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2137
2138 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoMailbox");
2139
2140 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2141 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2142 buf, 0, sizeof buf);
2143 if (len < 0)
2144 error (_("Could not read mbox_info."));
2145
2146 info_spu_mailbox_list (buf, len / 4, byte_order,
2147 "mbox", "SPU Outbound Mailbox");
2148
2149 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2150 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2151 buf, 0, sizeof buf);
2152 if (len < 0)
2153 error (_("Could not read ibox_info."));
2154
2155 info_spu_mailbox_list (buf, len / 4, byte_order,
2156 "ibox", "SPU Outbound Interrupt Mailbox");
2157
2158 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2159 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2160 buf, 0, sizeof buf);
2161 if (len < 0)
2162 error (_("Could not read wbox_info."));
2163
2164 info_spu_mailbox_list (buf, len / 4, byte_order,
2165 "wbox", "SPU Inbound Mailbox");
2166
2167 do_cleanups (chain);
2168 }
2169
2170 static ULONGEST
2171 spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2172 {
2173 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2174 return (word >> (63 - last)) & mask;
2175 }
2176
2177 static void
2178 info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
2179 {
2180 static char *spu_mfc_opcode[256] =
2181 {
2182 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2183 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2184 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2185 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2186 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2187 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2188 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2189 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2190 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2191 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2192 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2193 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2194 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2195 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2196 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2197 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2198 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2199 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2200 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2201 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2202 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2203 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2204 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2205 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2206 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2207 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2208 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2209 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2210 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2211 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2212 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2213 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2214 };
2215
2216 int *seq = alloca (nr * sizeof (int));
2217 int done = 0;
2218 struct cleanup *chain;
2219 int i, j;
2220
2221
2222 /* Determine sequence in which to display (valid) entries. */
2223 for (i = 0; i < nr; i++)
2224 {
2225 /* Search for the first valid entry all of whose
2226 dependencies are met. */
2227 for (j = 0; j < nr; j++)
2228 {
2229 ULONGEST mfc_cq_dw3;
2230 ULONGEST dependencies;
2231
2232 if (done & (1 << (nr - 1 - j)))
2233 continue;
2234
2235 mfc_cq_dw3
2236 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
2237 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2238 continue;
2239
2240 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2241 if ((dependencies & done) != dependencies)
2242 continue;
2243
2244 seq[i] = j;
2245 done |= 1 << (nr - 1 - j);
2246 break;
2247 }
2248
2249 if (j == nr)
2250 break;
2251 }
2252
2253 nr = i;
2254
2255
2256 chain = make_cleanup_ui_out_table_begin_end (uiout, 10, nr, "dma_cmd");
2257
2258 ui_out_table_header (uiout, 7, ui_left, "opcode", "Opcode");
2259 ui_out_table_header (uiout, 3, ui_left, "tag", "Tag");
2260 ui_out_table_header (uiout, 3, ui_left, "tid", "TId");
2261 ui_out_table_header (uiout, 3, ui_left, "rid", "RId");
2262 ui_out_table_header (uiout, 18, ui_left, "ea", "EA");
2263 ui_out_table_header (uiout, 7, ui_left, "lsa", "LSA");
2264 ui_out_table_header (uiout, 7, ui_left, "size", "Size");
2265 ui_out_table_header (uiout, 7, ui_left, "lstaddr", "LstAddr");
2266 ui_out_table_header (uiout, 7, ui_left, "lstsize", "LstSize");
2267 ui_out_table_header (uiout, 1, ui_left, "error_p", "E");
2268
2269 ui_out_table_body (uiout);
2270
2271 for (i = 0; i < nr; i++)
2272 {
2273 struct cleanup *cmd_chain;
2274 ULONGEST mfc_cq_dw0;
2275 ULONGEST mfc_cq_dw1;
2276 ULONGEST mfc_cq_dw2;
2277 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
2278 int lsa, size, list_lsa, list_size, mfc_lsa, mfc_size;
2279 ULONGEST mfc_ea;
2280 int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2281
2282 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2283 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2284
2285 mfc_cq_dw0
2286 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2287 mfc_cq_dw1
2288 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2289 mfc_cq_dw2
2290 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
2291
2292 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2293 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2294 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2295 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2296 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2297 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2298 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2299
2300 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2301 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2302
2303 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2304 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2305 noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
2306 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2307 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2308 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2309
2310 cmd_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "cmd");
2311
2312 if (spu_mfc_opcode[mfc_cmd_opcode])
2313 ui_out_field_string (uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
2314 else
2315 ui_out_field_int (uiout, "opcode", mfc_cmd_opcode);
2316
2317 ui_out_field_int (uiout, "tag", mfc_cmd_tag);
2318 ui_out_field_int (uiout, "tid", tclass_id);
2319 ui_out_field_int (uiout, "rid", rclass_id);
2320
2321 if (ea_valid_p)
2322 ui_out_field_fmt (uiout, "ea", "0x%s", phex (mfc_ea, 8));
2323 else
2324 ui_out_field_skip (uiout, "ea");
2325
2326 ui_out_field_fmt (uiout, "lsa", "0x%05x", mfc_lsa << 4);
2327 if (qw_valid_p)
2328 ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size << 4);
2329 else
2330 ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size);
2331
2332 if (list_valid_p)
2333 {
2334 ui_out_field_fmt (uiout, "lstaddr", "0x%05x", list_lsa << 3);
2335 ui_out_field_fmt (uiout, "lstsize", "0x%05x", list_size << 3);
2336 }
2337 else
2338 {
2339 ui_out_field_skip (uiout, "lstaddr");
2340 ui_out_field_skip (uiout, "lstsize");
2341 }
2342
2343 if (cmd_error_p)
2344 ui_out_field_string (uiout, "error_p", "*");
2345 else
2346 ui_out_field_skip (uiout, "error_p");
2347
2348 do_cleanups (cmd_chain);
2349
2350 if (!ui_out_is_mi_like_p (uiout))
2351 printf_filtered ("\n");
2352 }
2353
2354 do_cleanups (chain);
2355 }
2356
2357 static void
2358 info_spu_dma_command (char *args, int from_tty)
2359 {
2360 struct frame_info *frame = get_selected_frame (NULL);
2361 struct gdbarch *gdbarch = get_frame_arch (frame);
2362 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2363 ULONGEST dma_info_type;
2364 ULONGEST dma_info_mask;
2365 ULONGEST dma_info_status;
2366 ULONGEST dma_info_stall_and_notify;
2367 ULONGEST dma_info_atomic_command_status;
2368 struct cleanup *chain;
2369 char annex[32];
2370 gdb_byte buf[1024];
2371 LONGEST len;
2372 int i, id;
2373
2374 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2375 error (_("\"info spu\" is only supported on the SPU architecture."));
2376
2377 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2378
2379 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2380 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2381 buf, 0, 40 + 16 * 32);
2382 if (len <= 0)
2383 error (_("Could not read dma_info."));
2384
2385 dma_info_type
2386 = extract_unsigned_integer (buf, 8, byte_order);
2387 dma_info_mask
2388 = extract_unsigned_integer (buf + 8, 8, byte_order);
2389 dma_info_status
2390 = extract_unsigned_integer (buf + 16, 8, byte_order);
2391 dma_info_stall_and_notify
2392 = extract_unsigned_integer (buf + 24, 8, byte_order);
2393 dma_info_atomic_command_status
2394 = extract_unsigned_integer (buf + 32, 8, byte_order);
2395
2396 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoDMA");
2397
2398 if (ui_out_is_mi_like_p (uiout))
2399 {
2400 ui_out_field_fmt (uiout, "dma_info_type", "0x%s",
2401 phex_nz (dma_info_type, 4));
2402 ui_out_field_fmt (uiout, "dma_info_mask", "0x%s",
2403 phex_nz (dma_info_mask, 4));
2404 ui_out_field_fmt (uiout, "dma_info_status", "0x%s",
2405 phex_nz (dma_info_status, 4));
2406 ui_out_field_fmt (uiout, "dma_info_stall_and_notify", "0x%s",
2407 phex_nz (dma_info_stall_and_notify, 4));
2408 ui_out_field_fmt (uiout, "dma_info_atomic_command_status", "0x%s",
2409 phex_nz (dma_info_atomic_command_status, 4));
2410 }
2411 else
2412 {
2413 const char *query_msg = _("no query pending");
2414
2415 if (dma_info_type & 4)
2416 switch (dma_info_type & 3)
2417 {
2418 case 1: query_msg = _("'any' query pending"); break;
2419 case 2: query_msg = _("'all' query pending"); break;
2420 default: query_msg = _("undefined query type"); break;
2421 }
2422
2423 printf_filtered (_("Tag-Group Status 0x%s\n"),
2424 phex (dma_info_status, 4));
2425 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2426 phex (dma_info_mask, 4), query_msg);
2427 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2428 phex (dma_info_stall_and_notify, 4));
2429 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2430 phex (dma_info_atomic_command_status, 4));
2431 printf_filtered ("\n");
2432 }
2433
2434 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
2435 do_cleanups (chain);
2436 }
2437
2438 static void
2439 info_spu_proxydma_command (char *args, int from_tty)
2440 {
2441 struct frame_info *frame = get_selected_frame (NULL);
2442 struct gdbarch *gdbarch = get_frame_arch (frame);
2443 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2444 ULONGEST dma_info_type;
2445 ULONGEST dma_info_mask;
2446 ULONGEST dma_info_status;
2447 struct cleanup *chain;
2448 char annex[32];
2449 gdb_byte buf[1024];
2450 LONGEST len;
2451 int i, id;
2452
2453 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2454 error (_("\"info spu\" is only supported on the SPU architecture."));
2455
2456 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2457
2458 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2459 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2460 buf, 0, 24 + 8 * 32);
2461 if (len <= 0)
2462 error (_("Could not read proxydma_info."));
2463
2464 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2465 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2466 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
2467
2468 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoProxyDMA");
2469
2470 if (ui_out_is_mi_like_p (uiout))
2471 {
2472 ui_out_field_fmt (uiout, "proxydma_info_type", "0x%s",
2473 phex_nz (dma_info_type, 4));
2474 ui_out_field_fmt (uiout, "proxydma_info_mask", "0x%s",
2475 phex_nz (dma_info_mask, 4));
2476 ui_out_field_fmt (uiout, "proxydma_info_status", "0x%s",
2477 phex_nz (dma_info_status, 4));
2478 }
2479 else
2480 {
2481 const char *query_msg;
2482
2483 switch (dma_info_type & 3)
2484 {
2485 case 0: query_msg = _("no query pending"); break;
2486 case 1: query_msg = _("'any' query pending"); break;
2487 case 2: query_msg = _("'all' query pending"); break;
2488 default: query_msg = _("undefined query type"); break;
2489 }
2490
2491 printf_filtered (_("Tag-Group Status 0x%s\n"),
2492 phex (dma_info_status, 4));
2493 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2494 phex (dma_info_mask, 4), query_msg);
2495 printf_filtered ("\n");
2496 }
2497
2498 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
2499 do_cleanups (chain);
2500 }
2501
2502 static void
2503 info_spu_command (char *args, int from_tty)
2504 {
2505 printf_unfiltered (_("\"info spu\" must be followed by the name of an SPU facility.\n"));
2506 help_list (infospucmdlist, "info spu ", -1, gdb_stdout);
2507 }
2508
2509
2510 /* Root of all "set spu "/"show spu " commands. */
2511
2512 static void
2513 show_spu_command (char *args, int from_tty)
2514 {
2515 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2516 }
2517
2518 static void
2519 set_spu_command (char *args, int from_tty)
2520 {
2521 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2522 }
2523
2524 static void
2525 show_spu_stop_on_load (struct ui_file *file, int from_tty,
2526 struct cmd_list_element *c, const char *value)
2527 {
2528 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2529 value);
2530 }
2531
2532 static void
2533 show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2534 struct cmd_list_element *c, const char *value)
2535 {
2536 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2537 value);
2538 }
2539
2540
2541 /* Set up gdbarch struct. */
2542
2543 static struct gdbarch *
2544 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2545 {
2546 struct gdbarch *gdbarch;
2547 struct gdbarch_tdep *tdep;
2548 int id = -1;
2549
2550 /* Which spufs ID was requested as address space? */
2551 if (info.tdep_info)
2552 id = *(int *)info.tdep_info;
2553 /* For objfile architectures of SPU solibs, decode the ID from the name.
2554 This assumes the filename convention employed by solib-spu.c. */
2555 else if (info.abfd)
2556 {
2557 char *name = strrchr (info.abfd->filename, '@');
2558 if (name)
2559 sscanf (name, "@0x%*x <%d>", &id);
2560 }
2561
2562 /* Find a candidate among extant architectures. */
2563 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2564 arches != NULL;
2565 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2566 {
2567 tdep = gdbarch_tdep (arches->gdbarch);
2568 if (tdep && tdep->id == id)
2569 return arches->gdbarch;
2570 }
2571
2572 /* None found, so create a new architecture. */
2573 tdep = XCALLOC (1, struct gdbarch_tdep);
2574 tdep->id = id;
2575 gdbarch = gdbarch_alloc (&info, tdep);
2576
2577 /* Disassembler. */
2578 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
2579
2580 /* Registers. */
2581 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2582 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2583 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2584 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
2585 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2586 set_gdbarch_write_pc (gdbarch, spu_write_pc);
2587 set_gdbarch_register_name (gdbarch, spu_register_name);
2588 set_gdbarch_register_type (gdbarch, spu_register_type);
2589 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2590 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
2591 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
2592 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2593
2594 /* Data types. */
2595 set_gdbarch_char_signed (gdbarch, 0);
2596 set_gdbarch_ptr_bit (gdbarch, 32);
2597 set_gdbarch_addr_bit (gdbarch, 32);
2598 set_gdbarch_short_bit (gdbarch, 16);
2599 set_gdbarch_int_bit (gdbarch, 32);
2600 set_gdbarch_long_bit (gdbarch, 32);
2601 set_gdbarch_long_long_bit (gdbarch, 64);
2602 set_gdbarch_float_bit (gdbarch, 32);
2603 set_gdbarch_double_bit (gdbarch, 64);
2604 set_gdbarch_long_double_bit (gdbarch, 64);
2605 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2606 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2607 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
2608
2609 /* Address handling. */
2610 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
2611 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2612 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
2613 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2614 set_gdbarch_address_class_type_flags_to_name
2615 (gdbarch, spu_address_class_type_flags_to_name);
2616 set_gdbarch_address_class_name_to_type_flags
2617 (gdbarch, spu_address_class_name_to_type_flags);
2618
2619
2620 /* Inferior function calls. */
2621 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2622 set_gdbarch_frame_align (gdbarch, spu_frame_align);
2623 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
2624 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
2625 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
2626 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
2627 set_gdbarch_return_value (gdbarch, spu_return_value);
2628
2629 /* Frame handling. */
2630 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2631 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
2632 frame_base_set_default (gdbarch, &spu_frame_base);
2633 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2634 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2635 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2636 set_gdbarch_frame_args_skip (gdbarch, 0);
2637 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
2638 set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p);
2639
2640 /* Cell/B.E. cross-architecture unwinder support. */
2641 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2642
2643 /* Breakpoints. */
2644 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2645 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
2646 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
2647 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
2648 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
2649
2650 /* Overlays. */
2651 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2652
2653 return gdbarch;
2654 }
2655
2656 /* Provide a prototype to silence -Wmissing-prototypes. */
2657 extern initialize_file_ftype _initialize_spu_tdep;
2658
2659 void
2660 _initialize_spu_tdep (void)
2661 {
2662 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
2663
2664 /* Add ourselves to objfile event chain. */
2665 observer_attach_new_objfile (spu_overlay_new_objfile);
2666 spu_overlay_data = register_objfile_data ();
2667
2668 /* Install spu stop-on-load handler. */
2669 observer_attach_new_objfile (spu_catch_start);
2670
2671 /* Add ourselves to normal_stop event chain. */
2672 observer_attach_normal_stop (spu_attach_normal_stop);
2673
2674 /* Add root prefix command for all "set spu"/"show spu" commands. */
2675 add_prefix_cmd ("spu", no_class, set_spu_command,
2676 _("Various SPU specific commands."),
2677 &setspucmdlist, "set spu ", 0, &setlist);
2678 add_prefix_cmd ("spu", no_class, show_spu_command,
2679 _("Various SPU specific commands."),
2680 &showspucmdlist, "show spu ", 0, &showlist);
2681
2682 /* Toggle whether or not to add a temporary breakpoint at the "main"
2683 function of new SPE contexts. */
2684 add_setshow_boolean_cmd ("stop-on-load", class_support,
2685 &spu_stop_on_load_p, _("\
2686 Set whether to stop for new SPE threads."),
2687 _("\
2688 Show whether to stop for new SPE threads."),
2689 _("\
2690 Use \"on\" to give control to the user when a new SPE thread\n\
2691 enters its \"main\" function.\n\
2692 Use \"off\" to disable stopping for new SPE threads."),
2693 NULL,
2694 show_spu_stop_on_load,
2695 &setspucmdlist, &showspucmdlist);
2696
2697 /* Toggle whether or not to automatically flush the software-managed
2698 cache whenever SPE execution stops. */
2699 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2700 &spu_auto_flush_cache_p, _("\
2701 Set whether to automatically flush the software-managed cache."),
2702 _("\
2703 Show whether to automatically flush the software-managed cache."),
2704 _("\
2705 Use \"on\" to automatically flush the software-managed cache\n\
2706 whenever SPE execution stops.\n\
2707 Use \"off\" to never automatically flush the software-managed cache."),
2708 NULL,
2709 show_spu_auto_flush_cache,
2710 &setspucmdlist, &showspucmdlist);
2711
2712 /* Add root prefix command for all "info spu" commands. */
2713 add_prefix_cmd ("spu", class_info, info_spu_command,
2714 _("Various SPU specific commands."),
2715 &infospucmdlist, "info spu ", 0, &infolist);
2716
2717 /* Add various "info spu" commands. */
2718 add_cmd ("event", class_info, info_spu_event_command,
2719 _("Display SPU event facility status.\n"),
2720 &infospucmdlist);
2721 add_cmd ("signal", class_info, info_spu_signal_command,
2722 _("Display SPU signal notification facility status.\n"),
2723 &infospucmdlist);
2724 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2725 _("Display SPU mailbox facility status.\n"),
2726 &infospucmdlist);
2727 add_cmd ("dma", class_info, info_spu_dma_command,
2728 _("Display MFC DMA status.\n"),
2729 &infospucmdlist);
2730 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2731 _("Display MFC Proxy-DMA status.\n"),
2732 &infospucmdlist);
2733 }
This page took 0.083951 seconds and 3 git commands to generate.